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Abstract: The effect of varying process parameters during bio-catalyzed leaching of metals from
end-of-life printed circuit boards (PCBs) was investigated. Fragmented PCBs (under 2 mm) were
subjected to an indirect bioleaching in a stirred tank reactor while pulp density, pH and initial ferric
iron content were varied. An iron oxidizing Acidithiobacillus ferrooxidans 61 microbial strain was used
to generate the lixiviant through oxidizing Fe(II) to Fe(III). Chemically generated Fe(III) was tested as
lixiviant under the same conditions as the biological one for comparative purposes. Cell enumeration
during leaching and microscopic observations of the input and leached PCBs were conducted in
parallel to shed light on the observed phenomena. The degree of bringing metals in solution was
found to depend mainly on ferric iron concentration and pH. For the entire duration being always
kept as 24 h, substantial portion of Cu (~87%) was extracted respectively at 1% pulp density (PD),
15.5 g/L Fe3+ and pH 1. For Zn and Ni, nearly 100% recovery was observed at 5% PD, 18 g/L Fe3+

and pH 1.1. The achieved results offer possibilities for further studies at higher pulp density, to
ultimately render the bioleaching approach as enabling economical and environmentally friendly
technology for urban mining of non-ferrous metals.

Keywords: printed circuit boards (PCB); iron oxidizing bacteria; double-stage bioleaching; metal
extraction; pulp density; leaching yield

1. Introduction

Advanced electronic equipment is in high demand due to ongoing technological
development, and as a consequence is characterized by relatively short lifespan [1]. This
situation reflects in an unparallel accumulation of end-of-life electronic devices, commonly
classified as electronic waste. According to the United Nations, the global generation
of electronic waste (e-waste) streams was estimated between 20 and 50 million tons per
year [2]. The main problem with e-waste is its toxicity, which is caused by the presence of
hazardous metals (Ni, Cd, Se, As, Cr and Pb), brominated flame retardants, polychlorinated
biphenyls and epoxy-based materials [3–5].

Printed circuit boards (PCBs), on the other hand, could turn an important source of
base and precious metals, providing an economic incentive for recycling [6–11]. PCBs
typically have a content of 30–40% metals, 30% plastics and 30% glass and oxides [12–17].
Thus, it is clear that there is a critical need for e-waste recycling and material valorization,
which strengthen the supply chain’s sustainability and support the circular economy.
Several pyro- and hydrometallurgical studies have been carried out to recover metals from
PCBs [2,18–21]. The application of pyrometallurgy for base metals recovery implies carrying
out processes at higher temperatures, which provokes environmental concerns linked to gas
emissions and slag generation [22]. On the other hand, conventional hydrometallurgical
processes rely on intensive use of acids and supporting chemicals.
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Organic acids, which are less corrosive and more selective than inorganic ones, can
also be used for metal extraction [23]. Through acidification and complexation mechanisms
they can solubilize the metallic fractions of oxidized or zero-valent metal bearing com-
pounds [24]. Metals can also be recovered from e-waste through bio-hydrometallurgical
routes, which are well-established in non-ferrous metal mining, and in some operations
have proven more efficient than classical hydrometallurgical processes due to lower envi-
ronmental footprint and demonstrated cost competitiveness [25,26].

Biohydrometallurgy encompasses main metallurgical steps such as leaching, solution
purification and recovery of valuable metals. Bioleaching, one of the most-studied unit
operations in biohydrometallurgy, enables non-negligible reduction in reagent use because
they are produced in situ by microorganisms under soft operating conditions, i.e., low
temperatures and mild pH [27]. On the other hand, biohydrometallurgy is less polluting
and offers reduced operating costs and energy demand [28].

Various chemolithotrophic microorganisms are used in bioleaching applications thanks
to their ability to facilitate metal dissolution via series of bio-oxidation reactions [29–34].
Iron exercise a central role as an electron carrier inside the bioleaching system. The oxidized
form of iron (Fe(III)), which is generated by the microbial oxidation of ferrous iron (Fe(II))
substrates, acts as an oxidizing agent capable of oxidizing metal sulfides before being
chemically reduced to ferrous iron [35].

Acid leaching is supported by acidophilic autotrophs, such as Acidithiobacillus
thiooxidans [36], producing sulfuric acid in the presence of thiosulphate/sulfur/sulfide,
while oxidation is performed by ferric iron produced by acidophilic iron-oxidizing au-
totrophs, such as Acidithiobacillus ferrooxidans [3,37] and Leptospirillum ferrooxidans [3].

Several studies have been conducted using microorganisms to extract metals from
PCBs [18,31,37,38]. Recently, various chelating agents have been used in conjunction with
microorganisms to improve metal extraction. Pyrite is used as an alternative source of iron
in mineral processing industries, acting as an energy source for the growth of iron oxidizers.
However, the majority of the studies deals with very low pulp densities and report low
metal extraction efficiency and slow metal extraction rates [19,23,37,39,40].

Acidophilic heterotrophic bacteria and fungi are also used for metal leaching processes
with Acinetobacter [41], Acidiphilium [42], Aspergillus niger [43,44], Aspergillus fumigatus [45],
Pseudomonas aeruginosa [46], Chromobacterium violaceum [46–48] being primarily used for
bioleaching, either as a pure culture or as part of a consortium.

Brandl et al., 2001 [31] presumably was the first study on published PCB bioleaching,
which relied on acidophilic microorganisms. The two main reactions that occur are:

M0 + 2Fe3+ →M2+ + 2Fe2+ (1)

Fe2+ + O2 + H+ bacteria−−−−−→ Fe3+ + H2O (2)

Metals are oxidized by Fe(III), which is reduced into Fe(II)—Equation (1). The bacteria
then regenerate Fe(III) in the presence of dissolved oxygen, according to Equation (2). In
the absence of bacteria, the oxidation of Fe(II) is slow, but the presence of iron oxidizing
bacteria in the system significantly accelerates Fe(III) regeneration. Fe(III) is known as a
low-cost oxidation agent frequently used in hydrometallurgy and is particularly suited to
leaching various metals from PCBs [49].

Several published studies have focused on the feasibility of PCB bioleaching in batch
mode using shake flasks and bioreactors [50–53]. However, due to their notorious hetero-
geneity their bioleaching should ideally be investigated using large volume stirred tank
reactors (>1 L), enabling a sufficient amount of material to be processed. Such conditions
guarantee efficient reactant transport and mimic the industrial situation closely [17]. Stud-
ies also show that staggered addition of PCBs with continuous biological production of
an acidic lixiviant containing Fe(III) do improve bioleaching efficiency, most likely due to
reduced PCB toxicity on microbial growth [17,31,40].
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The toxicity of metals on microbial growth can be addressed using an indirect leaching
approach in which lixiviant production and e-waste leaching are separated into two-stage
processes. This concept has been demonstrated successfully in a laboratory for leaching
metals from lithium-ion batteries [54] and PCBs [17,55].

On the background of the above, the presented study aimed at investigating recovery
of copper, zinc, nickel and aluminum from PCBs using culture-bearing solutions obtained
from an acidophilic iron-oxidizing bacteria, namely Acidithiobacillus ferrooxidans 61. An
indirect bioleaching approach performed as either single or double-stage mode was chosen
to counterbalance the potential toxicity of the PCBs on microbial growth and activity. By
decoupling biolixiviant generation and bioleaching steps, an increased efficiency of metal
leaching was expected.

2. Materials and Methods
2.1. PCBs

Depopulated end-of-life PCBs were fragmented down to a particle size below 22 mm
by a hammer mill (Laarmann CHM4000) run at 1750 rpm. The analysis of the input PCBs
revealed the following concentrations of non-ferrous metals: Cu (21.2%), Zn (1%), Ni (0.1%),
Al (2.2%). Ahead of the bioleaching, the surface passivation layer (green lacquer mask) was
removed by boiling the fragmented PCBs in a 10% NaOH solution for 15 min at ambient
temperature. Afterwards, the samples were thoroughly washed with deionized water until
neutral pH, dried at ambient temperature and preserved for leaching.

The main metal content in the prepared PCBs is shown in Table 1.

Table 1. Main metals concentration in the input PCBs.

Metal, % Concentration

Cu 21.53

Al 6.95

Pb 3.2

Zn 0.78

Ni 5.12

Fe 3.86

Sn 1.98

Ag 0.097

2.2. Microorganisms and Culturing Conditions

The biolixiviant used for leaching was obtained on the basis of an iron-oxidizing
culture of Acidithiobacillus ferrooxidans 61 isolated from Tandzut ore (Armenia) acid drainage
water. Modified 9 K medium (0.5 g/L (NH4)2SO4, 0.5 g/L MgSO4 × 7H2O, 0.5 g/L K2HPO4,
0.05 g/L KCl, 0.01 g/L Ca(NO3)2) with FeSO4 × 7H2O having concentration between 44.2
and 124 g/L, depending on the target Fe3+ content, was used for cultivation and bioleaching
experiments. 10N H2SO4 solution was used to adjust pH.

2.3. Bioleaching of PCBs

For generating lixiviant for the indirect bioleaching, culture of A. ferrooxidans 61 was
cultured in the absence of PCBs using a modified 9 K medium maintained under optimum
growing conditions. The growth of bacteria was carried out inside a bio-fermenter (Bionet
Baby 0) coupled to control unit, to follow gas supply, stirring rate, pH, Eh and temperature,
illustrated in Figure 1a. The fermenter filled in with 2 L culture medium was inoculated at
10% (v/v) and pH adjusted to 1.8–1.9. The fermenter was operated at temperature of 30 ◦C,
stirring sped of 80 rpm and at 1 lpm air-flow. After 5–10 days of cultivation (depending
on the concentration of ferrous sulfate), a reddish coloration of the culture medium was
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observed due to oxidation of Fe2+ to Fe3+, with concomitant bacterial growth reaching
density of 2.5 × 106–0.25 × 109 cells/mL and redox potential arriving in the range of
700 mV Ag/AgCl.
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Figure 1. View of bio-fermenter (a) and stirred tank leaching reactor (b).

Indirect bioleaching of the PCBs was performed inside a 2 L jacketed reactor coupled
to a circulating bath to maintain constant operating temperature of 40◦ needed to sustain
eventual bacterial growth. The reactor was connected to a condenser to prevent excessive
evaporation and a tunable compressor to supply air—Figure 1b.

Leaching tests were run for 24 h at 40 ◦C, stirring rate of 600 rpm and an air supply
of 1 lpm. Experiments were performed under pH 1, 1.1, 1.8 and 2.1, using the following
concentrations of Fe3 as oxidizing agent (g/L): 9; 13.5, 15.5, 20 and 25. Pulp densities (PD)
were varied at 1%, 3%, 5% and 10%. Sampling was performed at start-up, 1 h, 3 h, 5 h and
24 h. Quantitative determination of bacterial cells during the leaching was carried out by a
serial end-point dilution methodology (e.g., “Most Probable Number” technique) [56]. The
solid residues were air dried and subjected to chemical and mineralogical (XRD) analysis.
To mimic industrial conditions to a maximum extent, all experiments were conducted
without sterilization.

To outline the effect from the origin of Fe3+ used in the leaching, parallel to the biogenic
ferric iron obtained from A. ferrooxidans 61, comparative trials using ferric iron of chemical
origin (Fe2(SO4)3 were performed. The comparative tests were realized as two different
modes—as single- and double-stage batches. When double-stage leaching was tested, the
first stage had 2 h duration, after elapsing of which PLS was decanted and fresh lixiviant
added directly to the remaining solid. This marked the beginning of a second-stage run for
further 4 h.

2.4. Analysis

Metals in the pregnant leach solution (PLS) were analyzed by atomic absorption
spectrophotometry (AAS) and ICP-OES. The solid residue after leaching was dried, oven-
treated at 900 ◦C for 240 min, grinded in an agate mortar or a ring mill and digested in
aqua regia before being analyzed, similar to the liquid samples. Ferrous and ferric iron
concentration was determined by an EDTA-based complexometric titration [57].

Mineralogical inspection of the leached PCBs was realized on a Bruker (Billerica, MA,
USA) D8 ECO diffractometer using CuKalpha radiation (Lambda = 1.5418 Å). Representa-
tive amount of the material was pulverized in an agate mortar, and then deposited on a zero
background silicon sample-holder. The X-ray powder diffraction patterns were first inter-
preted using the EVA 3.2 software (Bruker, 2014). This software allowed us to identify the
phases and compare them to the ICDD database, version PDF-2. Then, the powder patterns
were analyzed using the TOPAS 4.2 software (Bruker, 2014), which allowed quantification
of the mineral phases. The quantification procedure is based on the Rietveld method.

PCBs were observed on morphology and phases liberation by a SEM-based automated
mineralogy system—Zeiss sigma 300 FEG “Mineralogic”—coupled to two Brucker EDS
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xFlash 6|30 X-ray energy dispersion spectrometers (silicon drift detector). To this end, raw
PCBs and samples derived after leaching were cast into 30 mm diameter resin mounts
following an established procedure by [58]. The section polishing was accomplished
by using polishing disks and diamond suspensions of different finesses. The SEM-EDS
analyses were carried out using a probe current of 2.3 nA with an accelerating voltage
of 20 kV at a working distance of 8.5 mm. A mapping mode was performed using a 3
to 5 µm step size and a dwell time of 55 ms. Analytical conditions such as contrast and
brightness were set up manually to provide best possible contrast between the observed
phases (plastics, composites, metals). System magnification was set to 6000X and voltage
tension to 20 kV.

Leaching kinetics (g L/h) was calculated using Equation (3) below:

d
[
Cu2+

]
dt

= −
d
[
Fe3+

]
2 dt

(3)

where: [Cu2+]—variation in Cu concentration during the first and second hours;
dt—leaching duration (hour).
Metal recovery was calculated following Equation (4) shown below:

MR (%) =
CMl ×V
m×CMs

× 100 (4)

where MR metal recovery, %;
CMl—concentration of leached metal in the pregnant leaching solution, %;
CMs—metal concentration in the feed, %;
m—mass of used PCBs, g;
V—volume of the leachate inside the reactor, mL (in our case 2000 mL).

3. Results and Disscussion
3.1. Effect of Initial Concentration of Fe(III), Pulp Density and pH on Metals Recovery

The effect of various concentrations of oxidizing agent (Fe(III)) at 1% PD and initial
pH 1 on the recovery of Cu, Zn, Al and Ni is shown in Figure 2.
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As shown in Figure 2, the ferric iron concentration exercises marked effect on copper
recovery. During bioleaching at 40 ◦C, the increase of initial ferric iron concentration from
9 g/L to 15.5 g/L led to an increase in copper leaching rate from 0.6 g/L h to 1.5 g/L h,
respectively. Thus, in the presence of 15.5 g/L Fe3+ the maximum amount of recovered Cu
within 24 h duration was about 87.2% at initial pH 1 and pulp density (PD) of 1%.

At pH 2.1 the recovery of Cu was 81.0% in the presence of 13.5 g/L Fe3+, which was
roughly the same as at pH 1–81.6%, the rest conditions remained the same—Figure 3.
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It could be inferred that the recovery of Al at 1% PD is mostly related to the low pH
and Fe3+ concentration—Figure 2. The higher the amount of Fe3+, the higher the recovery
of Al. The recovery of Al at pH 1.0 in the presence of 9 g/L and 13.5 g/L Fe3+ was about
10.6% and 12.9%, respectively (Figure 2), while at higher pH (pH ≥ 2) it was about 9 and
4.6 times lower (1.2 and 2.8% respectively—Figure 3).

The recovery of Zn at 1% PD and pH 1 in the presence of 9 g/L, 13.5 g/L and 15.5 g/L
Fe3+ was about 81.1%, 97.3% and 96.6%, respectively (Figure 2). The recovery of Zn at pH 2
in the presence of 9 g/L was slightly higher to the one at pH 1, but lower at increased ferric
iron (13.5 g/L) rate—88.6% and 87.2%, respectively. Therefore, in the case of Zn, it can be
inferred that the initial concentration of Fe3+ ions plays a secondary role and the initial pH
is important.

As regarding Ni, its recovery in the presence of 9 g/L and 13.5 g/L Fe3+ was about
28.4% and nearly 100% (Figure 2) at pH 1, and 18.2% and 78.7% at pH 2.1 (Figure 3). Thus,
under acidic conditions an increase in Ni leachability was observed with an increase in the
concentration of Fe3+.

It should be noted that if we consider the leaching duration, the metal recoveries
reported in this paper are similar to those communicated by Hubau et al., 2020 [17]. Hubau
et al. used a double-stage continuous bioleaching of PCBs shredded to 750µm (without
pretreatment) at 1% PD, pH 1.5, 40 ◦C and biolixiviant containing 8 g/L Fe3+ obtained by
bacterial acidophilic consortium BRGM-KCC comprising Leptospirillum, Acidithiobacillus
and Sulfobacillus species. These conditions allowed them to recover 96% Cu, 85% Zn,
73% Ni and 54% Al over 48 h. On the other hand, Tapia et al., 2022 [28] managed to
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recover 58.9% Zn and 65% Cu for 3 days and 91.3% Zn and 68.5% Cu for 15 and 11 days,
respectively, from PCBs shredded to≤300µm (without pretreatment) at 1% of PD and 30 ◦C
using biolixiviant containing 9 g/L Fe3+ obtained by enriched acidophilic iron oxidizing
consortium comprising seven cultures.

The follow-up of metals and Fe3+ content in the PLS with time is shown in Figure 4.
As seen Al, Cu, Ni and Zn are brought in solution predominately during the first 5 h, a
period followed by a plateau trend. In parallel, it can be seen that with Fe3+ consumption
progressing metal extraction rate tended to slow down. This observation was probably
caused either by a limited availability of Fe3+ because of generation of chemical complexes
or due to a non-complete metal liberation from the PCB matrix.
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Figure 4. Evolution of metal ions and Fe3+ in the PLS with time (40 ◦C; 1% PD; pH 1.0; initial
concentration of Fe3+ 9/L).

When we compare the effect from the Fe3+ origin on the single-stage leaching efficiency
at 5% PD, one might note that the recoveries of Cu at pH 2 in the presence of 20 g/L
biogenic Fe3+ and 20 g/L chemical Fe3+ at pH 1.1 were virtually identical (67.5% and 65.8%,
respectively)—Figure 5. A very similar pattern was observed for Zn and Ni. In case of
Al, the recovery was very low in all four cases regardless initial pH and type of Fe3+ used.
As mentioned elsewhere, maintaining highly acidic conditions in leaching is essential to
promoting Al dissolution [59]. However, in our case, even at very low pH, Al was virtually
not dissolved, probably due to intrinsic refractoriness (e.g., present as an alloy), surface
coatings or encapsulation inside the PCB matrix.

The results from the comparative two-stage leaching using bio-derived Fe3+ (at 19 g/L)
and chemically derived Fe3+ (at 16 g/L) are presented in Figure 6. In this series of tests PD
was increased to 10%.

Perusal of the results shown in Figure 6 suggested that the recovery of Cu is virtually
the same (62 and 61.5% for Cu) in chemical and biological leaching systems. Aluminum is
brought into solution to a very modest extent (3–4%). Recovery of both Zn and Ni in the
biological leaching system was about 20% higher than in the chemical.
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Cumulative metal content in the PLS during each of the two stages is plotted for
each metal in Figure 7 to demonstrate the effect of ferric iron origin. It can be noted
that Cu dissolution by biogenic Fe3+ occurred mostly during the first stage, while in case
of chemical leaching, Cu dissolution rate was identical in both stages. The recovery of
Zn was, on the other hand, more pronounced during the second stage in both leaching
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systems. The majority of Ni occurred in solution over the first stage of the chemical-assisted
leaching, while in the case of biogenic Fe3+, Ni dissolution rate was identical in both stages.
Aluminum was brought in solution in majority during the first step.
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Since the intrinsic value of the PCBs tested in the present study is to a larger extent
due to Cu content, it was important to follow the kinetics of Cu bioleaching, and at the
same time to perform iron speciation inside the process. Moreover, it was interesting to
verify through cell enumeration if bacterial activity was maintained during leaching.

Figure 8 illustrates the copper content in PLS and iron speciation during the sampling
performed at each hour of the two-stage process. During the first stage, copper seems
to be brought in solution more easily thanks to the abundant availability of biogenic Fe3.
Ferric iron was almost consumed after two hours, dropping from 20 g/L to less than 3 g/L.
During the second stage, the addition of fresh biolixiviant enabled us to bring out most of
the remaining Cu in solution, however, not to a complete extent. Cu leaching almost halted
after 4 h regardless of the ferric iron still being present. This was probably because part of
the Cu in the PCBs existed in non-leachable form (alloy, oxidized, locked).

Note that after 24 h of leaching there was a distinct reduction in bacterial population
in the PLS—from 109 to 101 cells/mL— as shown in Table 2. This phenomenon seemed
intuitive due to the inhibitory effect of PCBs on bacterial activity given their heterogenous
composition carrying variety of hazardous compounds.
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Table 2. Bacteria enumeration during bioleaching (PD 5%, initial pH-2.0, 20 g/L Fe3+, 40 ◦C,
air -1 lpm, 600 rpm, duration-24 h).

Duration Number of Cells, Cells/mL

Initial (0 min) 0.6 × 109

1 h 0.25 × 107

3 h 0.6 × 105

5 h 0.25 × 105

24 h 0.6 × 10

The oxidation–reduction potential (ORP) is an important metric that reflects the oxi-
dation and reduction reactions taking place in the medium. Before bioleaching, the ORP
of the bacterial solution was as high as 671 mV and 606 mV (Ag/AgCl) at pH 1.1 and 2,
respectively. After one hour of leaching, ORP dropped sharply to 423 mV and 428 mV
(Ag/AgCl), respectively, due to the reduction of Fe3+ ions to Fe2+—Figure 9. After the first
hour and until the tests end, ORP declined at a slower pace from 423 and 428 to 400 and
354 mV (Ag/AgCl), respectively.

Analysis of Figure 9 also shows that the initial pH increased over the course of the
bioleaching. This increase may have resulted from the alkaline compounds found in the
PCBs, which were consumed due to the acidic action of the bacterial culture. Furthermore,
the increase in pH may have resulted from the bacterial oxidation of Fe2+ to Fe3+ (see
Equation (2)), which is known as an acid (proton) consumption process. As seen from
Figure 9, the initial pH of 1.1 and 2 increased to 1.5 and 2.6, respectively, after 24 h, resulted
in precipitation of Fe3+ in the form of jarosite. It might be that metallic particles trapped
inside the jarosite were reflected in a lower overall leaching efficiency for all the metals.
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3.2. Mineralogy of the Leached PCBs

The reddish-brown precipitate observed after PCBs bioleaching was collected and sent
for mineralogical analysis, being determined as jarosite—Figure 10.
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air 1 lpm; 600 rpm, pH 2).

From Figure 10 it can be seen that the occupancy factor for the K site was very high,
which may indicate other heavy atoms on that site (Ag, Pb or Ba). The background was
also high, indicating the presence of amorphous phases. As noted earlier in the Materials
and Methods, given the PCBs’ composition, in 100 g of PCB we could expect 3.2 g Pb, 1.98 g
Sn and 0.097 g Ag. In view of the elevated content of Pb and the low amount of Ag in our
samples, it was likely that the very large electronic density observed in the large site of
jarosite was mainly due to Pb presence. This was supported by the known low dissolution
degree of Pb in acidic media, which remained in the PCBs, a fact being in accordance with
the literature [60]. It has to be noted that a higher amount of jarosite precipitation was
observed when pH was kept around 2.

3.3. Visual Appearance of PCBs before and after Leaching

It was important to visually characterize and follow the chemical composition evo-
lution of the remaining PCBs after the leaching through SEM-EDS inspection. Figures 11
and 12 illustrate images from a PCB sample before leaching. The backscattered electrons
(BSE) images provided signals from a polished section in grayscale (Figures 11a and 12a)
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making it possible to distinguish plastics (dark) from metallic particles (bright) thanks
to their chemical composition contrast. As atomic numbers of the metal (e.g., Cu, Zn)
carriers are close proximity range, the level of brightness could be similar, rendering their
distinguishing difficult. Therefore, extra information acquired from energy dispersive
spectroscopy (EDS) was considered, enabling us to differentiate the composition of the
metallic particles—Figures 11b and 12b.
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Analysis of the images in Figure 11a shows flagged composite particles (probably
fiberglass or silica laminate) and metals being partly interlocked inside the same PCB piece.
Figure 11b shows that tin (Sn) belonging more likely to a soldering material was met in the
fragmented PCBs as a single fragment and as joined with copper assemblage.

A situation similar to the one seen in Figure 11 was observed in Figure 12, with
non-liberated Cu being wrapped within inert layers, possibly fiberglass.

After leaching completion, the leached residue was recovered as two different granu-
lometric fractions: “coarse” (1–2 mm) and “fine” (below 1 mm). Figure 13 provides view of
a “coarse” leached residue indicating presence of copper surrounded by a fiberglass layers.
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Two relatively large particles of encapsulated native Cu were visible. The EDS chemistry of
points 3–5 mapped in Figure 13 are shown in Table 3. The EDS mapping revealed that the
two visible copper fragments were surrounded by Sn with traces of jarosite, and likewise
silicon, the latter being part of the PCB composite matrix—EDS points 4 and 5.
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Figure 13. Micrograph (BSE-SEM) of a leached PCB (“coarse” fraction).

Table 3. EDS mapping of leached PCB (%) (“coarse” residue shown in Figure 13).

Spectrum Oxygen Aluminum Silicon Phosphorus Sulfur Calcium Iron Copper Bromine Tin

1 40.22 20.65 13.11 4.17 21.85
2 45.45 8.76 21.5 17.39 1.45 5.45
3 100
4 36.09 1.84 4.76 0.87 1.25 10.74 2.69 17.3 24.46
5 29.21 0.95 5.91 1.36 17.42 4.01 4.3 36.85

The above observations could explain the impossibility to overcome 87% copper
leaching even at a lower PD of 1%. It seems that the liberation degree resulting from
the fragmentation of the PCBs was sufficient to release native copper to a certain degree;
however, part of it remained trapped inside the PCBs layering.

Figure 14a illustrates a native copper fragment found in the fine residue, seen as
spectrum 1 in Table 4, together with two finer Cu-Sn-bearing particles—spectra 3 and 4.
This finding would indicate that passivation may have occurred during the leaching or that
the hydrodynamic conditions were not optimal with possible creation of dead zones inside
the reactor, allowing part of the material to escape from contact with the leachate. The rest
of the finer fraction was composed of heterogenous, mixed with all different components
present in the PCBs, which were not leachable—Figure 14b.
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Table 4. EDS mapping of leached PCB (%) (“fine” residue shown in Figure 14a).

Spectrum Al Si P S Ca Fe Cu Sn

1 100
2 8.87 24.86 17.82 5.68
3 0.57 3.03 0.78 13.07 6.51 53.33
4 2.46 1.2 15.22 8.12 50.13

4. Conclusions

Several leaching experiments were performed on a fragmented end-of-life printed
circuit board samples (21.2 wt% Cu, 1 wt% Zn, 0.1 wt% Ni, 2.2 wt% Al) pre-treated in
NaOH solution to remove the protective organic coating, while the pulp density, initial pH,
Fe3+ origin and number of leaching steps were varied.

It was determined that indirect bioleaching outperformed chemical leaching when
realized under a two-stage mode. During bioleaching, the relative amount of Fe3+ decreased
while a proportionate amount of jarosite was generated. The corresponding trend of pH
was the opposite of the one for Fe3+. For the highest degree of pulp density (10%), the
copper leaching efficiency for both chemical and biological route was nearly similar—62%.

At the lowest pulp density (1%), 87% bioleaching of copper was achieved at 15.5 g/L
initial Fe3+concentration. There was an observed difference in the leaching efficiency of
nickel as function of the initial concentration of Fe3+ and pH. Nearly 100% recovery was
observed at 5% pulp density, 18 g/L Fe3+ and pH 1.1. As for zinc, the bio-assisted leaching
system brought more improvement in leaching efficiency. A double-stage bioleaching with
a total duration of 6 h and 10% pulp density led to 61% Cu recovery.

Microscopical inspection of input PCBs and leached residues confirmed that metals
were not entirely liberated from their surrounding matrix, which reflected in incomplete
leaching. The intrinsic form under which metals are present in the PCBs (alloys, oxides)
also plays role in their leachability.

The approach presented in this study enabled us to outline the optimal bioleaching
parameters to maximize or achieve the given recovery criteria for non-ferrous metals
contained in the PCBs. The results open an avenue for further investigations with the
ultimate aim of rendering bioleaching as an enabling technology for urban mining of metals
from low-grade WEEE streams that usually escape from the mainstream metallurgical
processing routes.
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The limitation of the suggested method could be the concentration of Fe3+ (lixiviant).
To solve this problem, we intent to carry out bioleaching in two stages using an additional
amount of Fe3+ in the second stage. In order to obtain up-scalable results, tests in larger
volume reactors (5 L) that allow for a larger amount of homogenized input material to be
treated are underway.
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