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Abstract

The spotted wing drosophila, Drosophila suzukii, is an invasive pest in Europe and North
America. Access to resources may be challenging in late fall, winter and early spring and
flies may suffer from food deprivation along with cold stress in these periods. Whereas a
plethora of studies have been performed on the overwintering capacity of D. suzukii, the
effects of starvation on the fly’s cold tolerance have not been addressed. In the present
study, young D. suzukii adults (reared at 25°C, LD 12:12 h) were deprived of food for various
periods (0, 12, 24 and 36 h), after which chill coma recovery time, critical thermal minimum,
as well as acute and chronic cold tolerance were assessed. Additionally, the body composition
of adults (body mass, water content, total lipid, glycerol, triglycerides, glucose and proteins)
before and after starvation periods was analysed to confirm that starvation had detectable
effects. Starved adults had a lower body mass, and both lipid and carbohydrate levels
decreased with starvation time. Starvation slightly increased critical thermal minimum and
affected chill coma recovery time; however, these changes were not gradual with starvation
duration. Starvation promoted acute cold tolerance in both sexes. This effect appeared faster
in males than in females. Food deprivation also led to enhanced survival to chronic cold stress.
Short-term starvation was thus associated with significant changes in body composition in
D. suzukii, and these alterations could alter some ecologically relevant traits related to cold
tolerance, particularly in females. Our results suggest that food deprivation during short
time (<36 h) can promote cold tolerance (especially survival after a cold stress) of D. suzukii
flies. Future studies should address the ecological significance of these findings as short food
deprivation may occur in the fields on many occasions and seasons.

Introduction

The spotted wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), was
first detected in Europe and in the contiguous United States in 2008 (Goodhue et al., 2011;
Hauser, 2011; Walsh et al., 2011; Calabria et al., 2012). In the following years, D. suzukii con-
tinued to rapidly spread throughout large parts of North and South America and Europe and
has been identified in North Africa, Middle East and Oceania (Asplen et al., 2015; Nikolouli
et al., 2017; EPPO, 2021). Unlike most other drosophilids, females of D. suzukii have a serrated
and highly sclerotized ovipositor that enables them to deposit eggs in healthy, ripening fruits
(Mitsui et al., 2010; Hauser, 2011). The resulting larvae feed on the fruit tissue, and secondary
damage by pests and pathogens could initiate from the oviposition sites, making the fruits
unmarketable, causing major economic losses in soft and stone fruits (Walsh et al., 2011;
Rombaut et al., 2017). This species has a high fecundity and a wide host range (Lee et al.,
2011; Kenis et al., 2016). Depending on various factors, including crop, cultivar and location,
damage caused by D. suzukii varies from negligible to 80% of harvest losses (Bolda et al.,
2010). More recently, Mazzi et al. (2017) estimated revenue losses of up to €64,000 ha−1 for
sweet cherry production in Switzerland. Various integrated pest management programs are
under development to control this pest (Haye et al., 2016; Mazzi et al., 2017; Nikolouli
et al., 2017). Understanding the complex environmental effects on the biological responses
of D. suzukii and on thermal (cold) tolerance in general is crucial for estimating population
dynamics over the seasons and anticipating population growth at the beginning of the growing
season. Such information can be used to develop predictive models that are an essential part of
sustainable management programs (Asplen et al., 2015; Hamby et al., 2016).

To characterize cold tolerance of insects, several metrics are often used, including the
supercooling point, the critical thermal minimum (CTmin), the chill coma recovery time
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(CCRT), the lower lethal temperature and the lower lethal time
(Sinclair et al., 2015). Since most Drosophilidae, including
D. suzukii (Jakobs et al., 2015; Stephens et al., 2015; Enriquez
and Colinet, 2017), are chill susceptible and quickly die as a result
of non-freezing cold exposures, their supercooling point (i.e. the
temperature at which the insect’s body fluids freeze) has little eco-
logical value (Bale, 1993; Andersen et al., 2015; Sinclair et al.,
2015). Both CTmin (i.e. the low temperature provoking the loss
of neuromuscular coordination) and CCRT (i.e. the time it takes
to recover from chill coma) are ecologically relevant measures for
insect thermal performance and have therefore been used in many
Drosophila studies (e.g. Gibert and Huey, 2001; Hazell and Bale,
2011; MacMillan and Sinclair, 2011). Furthermore, Andersen
et al. (2015) found CTmin, lower lethal temperature and lower
lethal time to be the best predictors of the estimated cold toler-
ance and the geographical distribution of Drosophila species.
The lower lethal temperature (i.e. the low temperature at which
a certain percentage of the test population dies) and the lower
lethal time (i.e. the time required to kill a predefined percentage
of individuals at a certain temperature) characterize mortality
caused by the accumulation of direct and indirect chill injuries,
respectively, and can be used to describe the acute and chronic
cold tolerance of insects (Denlinger and Lee, 2010; Andersen
et al., 2015; Sinclair et al., 2015).

Cold hardiness is species-specific, and numerous factors are
known to affect this trait, such as the sex or the exposure duration
and intensity. Survival at low temperature depends highly on the
temperature to which the insect was exposed prior, during and
after the cold temperature event (Colinet and Hoffmann, 2012;
Grumiaux et al., 2019; Enriquez et al., 2020). Additionally, the
duration of exposure, the cooling and rewarming rate, and the fre-
quency of these low-temperature events also affect insect survival
(Danks, 1996; Chown and Terblanche, 2006; Colinet et al., 2015).
Other ecological variables are known to influence the thermal
tolerance of insects, including the relative humidity, wind, photo-
period or solar radiation (Danks, 1996; Chown and Terblanche,
2006; Andersen et al., 2013). Food deprivation can also alter
insect cold tolerance. Indeed, several studies have shown that
starvation can affect the resistance to long-term cold stress in
D. melanogaster (Le Bourg, 2013; Le Bourg, 2015; Le Bourg and
Massou, 2015; Pathak et al., 2018), but the underlying mechan-
isms remained unresolved.

In recent years, a plethora of studies have focused on the over-
wintering biology of D. suzukii. Winter phenology studies indicate
that D. suzukii flies most likely overwinter as dormant females
in natural or man-made refuges (e.g. Zerulla et al., 2015; Pelton
et al., 2016; Rossi-Stacconi et al., 2016; Thistlewood et al.,
2018). Several studies have suggested the occurrence of reproduct-
ive dormancy in D. suzukii, most likely a quiescence rather than a
true diapause (e.g. Toxopeus et al., 2016; Wallingford et al., 2016;
Wallingford and Loeb, 2016; Zhai et al., 2016; Everman et al.,
2018). In addition, studies have evaluated cold tolerance of differ-
ent life stages and populations (e.g. Kimura, 2004; Jakobs et al.,
2016; Plantamp et al., 2016; Ryan et al., 2016; Enriquez and
Colinet, 2017), as well as the impact of different acclimation
responses and other environmental factors on the thermal
(cold) susceptibility of D. suzukii (e.g. Jakobs et al., 2015;
Shearer et al., 2016; Toxopeus et al., 2016; Enriquez et al., 2018;
Stockton et al., 2018; Grumiaux et al., 2019; Enriquez and
Colinet, 2019a, 2019b).

Despite the suspected role of food deprivation in shaping the
aspects of insect’s cold tolerance, including in drosophilids, via

cross-tolerance and hormetic responses (e.g. Salin et al., 2000;
Nyamukondiwa and Terblanche, 2009; Andersen et al., 2013; Le
Bourg, 2013; Le Bourg, 2015; Scharf et al., 2016), so far, no
study has addressed whether starvation can alter the cold toler-
ance of D. suzukii. Therefore, in the present study, we assessed
the effects of various periods of starvation (0, 12, 24 and 36 h)
on subsequent cold tolerance of adults (reared at 25°C, LD
12:12 h), using several classical cold tolerance metrics (CCRT,
CTmin, acute and chronic cold survival). The body composition
and energetic reserves (mass, water content, total lipid, glycerol,
triglycerides, glucose and soluble proteins) were measured in con-
trol and starved individuals to attest that starvation treatments
had detectable effects, assuming that starvation would strongly
affect lipids and cold tolerance (Hoffmann et al., 2005).

Materials and methods

Mass rearing and starvation treatments

A 1-year-old laboratory stock culture of D. suzukii flies was used.
It was established from a field collection of flies on blueberries
and raspberries in Thorigné Fouillard, France (48°3′41.8′′N,
1°14′19.3′′W), in September 2016. The colony was reared in
100 ml glass bottles containing an artificial diet (per litre water:
15 g agar, 50 g sucrose, 30 g inactive dry brewer’s yeast, 20 g corn-
meal, 50 g carrot powder, 1.2 g methyl 4-hydroxybenzoate
(Nipagin) dissolved in 12 ml ethanol, 2.22 g tartaric acid, 0.89 g
ammonium sulphate, 0.22 g magnesium sulphate and 0.67 g
potassium phosphate) and kept in an incubator (MIR-154-PE,
Panasonic, Healthcare Co., Ltd., Gunma, Japan) set at 25°C, LD
12:12 h and 70% RH. Newly emerged adults were collected daily
and maintained on the same artificial diet. Three- to four-day-old
adults were randomly taken from the raring stock, were trans-
ferred in groups of approximately 30 individuals to 40 ml plastic
Drosophila vials (25 × 95 mm, VWR International, France) and
divided into four experimental treatments in which they were
either given access to medium ad libitum ( = control group, or
0 h starvation) or deprived of food for increasing periods
(12, 24 or 36 h). Vials of the control group contained 5 ml of the
artificial medium described above, whereas those of the other
treatments were filled with 5 ml agar-water medium (1 litre
distilled water, 15 g agar and 1.2 g methyl 4-hydroxybenzoate dis-
solved in 12 ml ethanol) to induce starvation without desiccation.
Mortality due to starvation was checked before the experiments
and never exceeded 2%.

Critical thermal minimum

The CTmin of flies submitted to increasing starvation periods was
studied using a long (52 × 4.7 cm), vertically positioned glass
knockdown column containing several cleats to help flies hold
on to the column while still awake. The column was connected
to a thermostatic cooling bath (Lauda ECO RE 630S, Lauda Dr
R. Wobser GmbH & Co. KG, Lauda-Königshofen, Germany)
that pumped monopropylene glycol through the double-walled
column. For each treatment group and each sex separately,
approximately 60 flies, randomly selected within each starvation
treatments, were placed in the upper end of the column, after
which temperature was gradually decreased from 20 to −5°C at
a rate of 0.5°C min−1 (n = approximately 60 flies), a rate consid-
ered as a standard when assessing CTmin (Sinclair et al., 2015).
The temperature inside the column was monitored continuously
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using a thermocouple type K connected to a Comark Tempscan
C8600 scanning thermometer (Comark Instruments, Norwich,
Norfolk, UK). The CTmin values were individually recorded at
the moment flies lost muscular functions due to cold-induced
paralysis, also known as chill coma, and hence fell out of the
column. This experiment was conducted twice with flies of two
successive generations (i.e. n total per starvation treatment and
per sex = approximately 120 flies).

Chill coma recovery time

For each starvation treatment and each sex separately, chill coma
was induced by placing 50 flies, randomly selected within each
treatment, in a 35 ml glass test tube that was placed inside an ice-
water slurry already at 0°C for 8 h (n = 50). This temperature and
exposure time were chosen according to previous work on the
thermal tolerance of D. suzukii (Enriquez and Colinet, 2017)
and are classically used in Drosophila (Sinclair et al., 2015).
Upon removal, adults were supinely positioned on a table in a
temperature-regulated room at 24 ± 1°C using a fine paintbrush,
and the time to regain the ability to stand (i.e. chill coma recovery
time, CCRT) was monitored individually. After 1 h, the experi-
ment was stopped. Flies that were not on their legs after 1 h
of recovery were considered not recovered. Measurements of
CCRT were done in two repeated experiments using adult
D. suzukii of two successive generations (i.e. n total per starvation
treatment and sex = 100 flies).

Acute cold tolerance assay

For each starvation treatment and sex separately, 100 flies ran-
domly selected within each treatment were separated into ten
replicates of ten individuals (n = 100 per treatment and sex).
Flies were exposed to acute cold stress in 35 ml empty glass test
tubes (n = 10 per tube) directly placed in a cryostat (Lauda ECO
RE 630S, Lauda Dr R. Wobser GmbH & Co. KG) set at −5°C
for 1 h. This temperature and exposure time were chosen accord-
ing to previous work on the thermal tolerance of D. suzukii
(Enriquez and Colinet, 2017). Afterwards, flies were transferred
back to food vials and placed in an incubator (MIR-154-PE,
Panasonic, Healthcare Co., Ltd.) set at rearing conditions.
Survival was visually assessed 48 h after cold exposure. Acute
cold tolerance assays were performed twice in two successive gen-
erations (i.e. n total per starvation treatment and sex = 200 flies).

Chronic cold tolerance assay

To assess the chronic cold tolerance, for each starvation treatment
and each sex separately, 100 flies randomly selected within each
treatment were separated into ten replicates of ten individuals
(n = 100 per treatment and sex). Flies were placed in empty
glass test tubes (10 per tube) and directly exposed to chilling in
an ice-water slurry at 0°C for 8 h. This temperature and exposure
time were chosen according to previous work on the thermal tol-
erance of D. suzukii (Enriquez and Colinet, 2017). Following
chronic cold treatment, all individuals were transferred to an
incubator (MIR-154-PE, Panasonic, Healthcare Co., Ltd.) main-
tained at rearing conditions in food vials. Like in the acute cold
tolerance assay, the number of survivors was counted 48 h later.
Chronic cold tolerance assays were performed twice in two
successive generations (i.e. n total per starvation treatment and
sex = 200 flies).

Gravimetric measurements

For each starvation treatment, fresh mass of 30 randomly chosen
males and females (n = 30) was quantified with 0.001 mg accuracy
using an XP2U microbalance (Mettler Toledo International Inc.,
Greifensee, Switzerland). Flies were briefly anaesthetized with
CO2 during the procedure. Next, adults were placed individually
in 1.5 ml microcentrifuge tubes and stored at −80°C for approxi-
mately 2 h. The flies were then dried in a universal oven
(UNE 200, Memmert GmbH & Co. KG, Schwabach, Germany)
at 80°C for 48 h. Afterwards, all flies were reweighed to determine
their dry mass. The body water content of each individual was
then calculated as the difference between the fresh and dry
mass and quantified as a percentage of fresh mass.

Lean dry mass was measured by the addition of 1.5 ml Folch
mixture ( = 2:1 chloroform:methanol) to the tubes containing
the dried flies, after which the tubes were placed horizontally
on a shaker (Polymax 1040, Heidolph Instruments GmbH &
Co. KG, Schwabach, Germany). Three days later, the liquid
phase containing total lipids was removed and flies were redried
in the oven at 80°C for 24 h. Samples were reweighed to quantify
the lean dry mass. The total lipid content of the individual corre-
sponds to the dry mass subtracted by its lean dry mass and
divided by its fresh mass, respectively.

Triglyceride and glycerol quantification

For each starvation treatment and sex, eight biological replicates,
each consisting of a pool of five adults (n = 8) were used to detect
triglyceride (TAG) and glycerol concentrations by means of a col-
ourimetric assay with triglyceride reagent (Sigma-Aldrich, France;
T2449) as described by Tennessen et al. (2014). This method is
commonly used to quantify TAG. However, it should be kept in
mind that this colourimetric assay not only releases glycerol
from triglycerides but also from mono- and diglycerides. Flies
were snap-frozen and homogenized in liquid nitrogen using a pel-
let pestle to obtain a fine powder. This powder was then diluted in
200 μl of PBST buffer solution (phosphate-buffered saline (PBS)
+ 0.05% Tween). After heat inactivation of the enzymes (10 min
at 70°C), two sets of aliquots were taken from each sample. Free
glycerol reagent (Sigma-Aldrich; F6428) was added to all aliquots,
while triglyceride reagent, containing a lipoprotein lipase that
cleaves glycerides into glycerol and fatty acids, was only added
to one set of aliquots. The optical density of these samples was
measured at 540 nm using a 96-well plate reader (VersaMax
Microplate Reader, Molecular Devices, Sunnyvale, CA, USA).
Conversion of the absorbance in each sample to its total glycerol
concentration was done based on the triolein-equivalent standard
curve (0–1 mgml−1 range) (Sigma-Aldrich; G7793). The total
amount of glycerides was then calculated by subtracting the
glycerol concentration in the aliquots containing triglyceride
reagent from that in the aliquots without triglyceride reagent
(i.e. the initial concentration of free glycerol). Finally, TAG and
glycerol levels were converted and expressed as quantities (μg)
per adult fly.

Glucose and protein quantification

For each starvation treatment and sex, free glucose levels were
determined using the Glucose Oxidase (GO) assay kit
(Sigma-Aldrich; GAGO-20), following the protocol described by
Tennessen et al. (2014). For this colourimetric assay, eight
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biological replicates, each consisting of five pooled adults, were
homogenized into a fine powder using liquid nitrogen and a pellet
pestle (n = 8). After adding 100 μl of PBS, samples were incubated
at 70°C for 10 min, and diluted 1:8 in PBS. Then, 30 μl of clear
supernatant was transferred to a 96-well microplate. To each well,
100 μl of GO reagent consisting of glucose oxidase and peroxidase
(Sigma-Aldrich; G3660), and o-dianisidine (Sigma-Aldrich;
D2679) was added. These samples were incubated at 37°C for
30 min, after which time the enzymatic reaction was stopped by
the addition of 100 μl of 12N sulphuric acid. The optical density
was measured at 540 nm using a 96-well plate reader (VersaMax
Microplate Reader, Molecular Devices), with the intensity of the
colour being proportional to the original glucose concentration
in the sample. Quantification was done using the calibration
curve from the glucose standard solution (0−0.16 mgml−1

range) (Sigma-Aldrich; G3285) and converted to μg per adult fly.
To measure the soluble protein content, 10 μl of the homoge-

nized samples from the glucose assay was subjected to low-spin
centrifugation (500 × g, 5 min, 4°C) to allow gentle sedimentation
of cell debris. From each sample, 5 μl of clear supernatant was
taken, diluted three times in PBS and transferred to a 96-well
microplate, together with 250 μl of Bradford micro-assay reagent
(Sigma-Aldrich; B6916) for measurement of the optical density at
595 nm (VersaMax Microplate Reader, Molecular Devices). The
quantity of soluble proteins was determined based on a standard
curve using a bovine serum albumin standard (Sigma-Aldrich;
P0834 and P0914) (0–1.25 mgml−1 range) and converted to μg
per adult fly.

Statistical analysis

All analyses were performed in R version 3.4.4 (R Core Team,
2018). To determine if there was a significant difference between
the two replicated experiments of cold tolerance, a generalized lin-
ear model (GLM) was fitted to the data, with ‘repetition’ as a fac-
tor. When data between both replicated experiments did not
differ significantly (P > 0.05), they were pooled, and a GLM was
used to describe the effects of ‘sex’, ‘starvation’ (i.e. fed or starved
for various durations, coded as a categorical variable) and ‘sex by
starvation’ interaction. When a significant difference was found
between the two repeated experiments, a generalized linear
mixed-effects model (GLMM) was fitted to the data (‘glmer’ func-
tion in ‘lme4’ package) via restricted maximum likelihood
(REML), with ‘repetition’ as a random effect. For acute and
chronic cold survival data, regression models with binomial
error distribution and logit link function were used to analyse
the data. For survival data, we specified the number of failures
(i.e. dead) as well as the numbers of successes (i.e. alive) in a two-
vector binomial response variable. As individuals from the same
starvation treatment were divided into ten vials during the expo-
sures, we build a first GLMM model with ‘vial’ as a random factor
to account for any uncontrolled variability among the vials. We
also build a classical GLM model without this random factor,
and next, we compared both models using the ‘model.sel’ func-
tion from the ‘MuMin’ package. Based on smaller AIC, the
GLM models were chosen. For the continuous and positive data
(i.e. CTmin and CCRT), a significant difference was found between
the two repeated experiments, hence a GLMM was used, with γ
error distribution and identity link. For all models, the statistical
significance of each variable was determined by an analysis of
deviance via the ‘Anova’ function implemented in the ‘car’ pack-
age (Fox and Weisberg, 2011). Differences among groups of

‘starvation’ or ‘sex by starvation’ variables were computed using
estimated marginal means (EMMs) in ‘emmeans’ package
(Lenth, 2018) and were considered significantly different when
P≤ 0.05.

Data obtained from gravimetric measurements and TAG, gly-
cerol, glucose and soluble protein were checked for normality and
homogeneity of variances. When these assumptions were not ful-
filled, data were log-transformed or non-parametric tests were
used. Total lipid, glucose and TAG were analysed with (paramet-
ric) ANOVA with ‘starvation’, ‘sex’ and ‘sex by starvation’ inter-
action as factors. Post-hoc tests were then conducted on
significant terms via EMMs. Due to heteroscedasticity of var-
iances, the data of lean dry mass and body water were analysed
with Welch’s ANOVA, using the ‘oneway.test’ function imple-
mented in the ‘stats’ package (R Core Team, 2018). Pairwise com-
parisons of starvation groups were done with the Games–Howell
post hoc test using ‘posthocTGH’ function in ‘userfriendlyscience’
package (Peters, 2017). The Kruskal–Wallis test was applied to
analyse the data of fresh mass, dry mass, glycerol and soluble pro-
tein content, and Dunn’s post-hoc tests were used to determine
differences among all the ‘sex by starvation’ combinations (in
‘Dunn.test’ package). The Kruskal–Wallis test cannot be applied
to a factorial structure, hence, when these tests were used, we
did not report separate effects of ‘starvation’, ‘sex’ and their ‘inter-
action’. Outliers were identified based on the interquartile range
criterion and removed if present.

Results

Critical thermal minimum

Fasting significantly affected the CTmin of adults (GLMM, χ2

= 44.60 df = 3, P < 0.001), whereas sex did not (GLMM, χ2 =
1.69, df = 1, P = 0.19). No significant interaction was detected
between sex and starvation (GLMM, χ2 = 3.40, df = 3, P = 0.334),
therefore EMMs were not performed on the interaction between
starvation and sex. Males and females starving for periods
of 12, 24 or 36 h had a higher CTmin (on average 5.2, 5.4 and
5.4°C, respectively) than control flies fed ad libitum (4.8°C)
(EMMs, P < 0.001 for all treatments) (fig. 1). Even if fasting glo-
bally increased CTmin compared to control only, comparisons of
CTmin within the starved flies (i.e. 12, 24, 36 h) were not different
(EMMs, P > 0.05) (fig. 1).

Chill coma recovery time

Starvation had a global significant effect on CCRT (GLMM, χ2 =
20.69, df = 3, P = 0. 0001, fig. 2), However, no clear pattern was
observed among the different starvation treatments for males. Yet,
females starved for 36 h needed more time to recover from chill
coma than those fasting for 12 h (EMMs, P = 0.011) or 24 h
(EMMs, P < 0.001) (fig. 2). Males had globally a higher CCRT
than females (GLMM, χ2 = 8.17, df = 1, P = 0.004), especially when
flies were starved for 12 or 24 h (EMMs, all P values < 0.001)
(fig. 2). A small, but significant interaction between the duration
of starvation and sex (GLMM, χ2 = 8.85, df = 3, P = 0.031) indicated
that the effect of starvation on CCRT differed between sexes.

Acute cold tolerance assay

Starvation significantly increased acute cold survival (GLM, χ2 =
36.73, df = 3, P < 0.001). There was only a marginal overall
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difference between sexes (GLM, χ2 = 3.79, df = 1, P = 0.05), and
survival was affected by the interaction between starvation and
sex (GLM, χ2 = 12.85, df = 3, P = 0.005). A fasting period of 36 h
resulted in female flies being more resistant to acute cold exposure
than females that were starved for 12 or 24 h or that were fed ad
libitum (EMMs, P < 0.05 for all treatments) (fig. 3). Results also

showed that males starved for 12, 24 and 36 h were more cold tol-
erant than controls and >90% were still alive after the cold treat-
ment (EMMs, all P values < 0.05) (fig. 3). Overall, males appeared
to slightly better cope with acute cold exposure than females;
the survival rates being different between sexes for flies starved
for 12 h (EMMs, P < 0.001) and 24 h (EMMs, P = 0.001) (fig. 3).

Figure 1. Boxplots of the critical thermal minimum
(CTmin) of Drosophila suzukii following a starvation per-
iod of 0, 12, 24 and 36 h in females (n = 134, 124, 135 and
117, respectively; dark grey) and in males (n = 137, 120,
130 and 129, respectively; light grey). The data com-
bined two replicated experiments. Observations within
the 25–75 percentile range are represented by the
boxes. The horizontal lines inside the boxes display
the medians and the crosses represent the means.
Boxes with different letters indicate differences among
the starvation periods (i.e. significant effect of ‘starva-
tion period’ followed by EMMs post-hoc tests, P≤ 0.05).

Figure 2. Boxplots of the chill coma recovery time
(CCRT) of Drosophila suzukii following a starvation per-
iod of 0, 12, 24 and 36 h in females (n = 100; dark grey)
and in males (n = 100; light grey). The data combined
two replicated experiments. Observations within the
25–75 percentile range are represented by the boxes.
The horizontal lines inside the boxes display the med-
ians and the crosses represent the means. Boxes with
different letters indicate differences among all the com-
bined treatments (i.e. significant ‘sex by starvation’
interaction followed by EMMs post-hoc tests, P≤ 0.05).
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Chronic cold tolerance assay

Starvation globally affected chronic cold tolerance (GLM, χ2 = 33.91,
df = 3, P < 0.001), and overall survival differed between sexes
(GLM, χ2 = 4.79, df = 1, P = 0.028). Females that were starved
for 24 or 36 h had significantly higher chronic cold survival than
control females (EMMs, P < 0.05 for all treatments) (fig. 4).
In males, starvation for 12 and 24 h increased survival, but
these changes were not significant, and a 36 h starvation caused
lower survival than a 12 h starvation (EMMs, P = 0.038) (fig. 4).
Fasting for 36 h resulted in more females surviving than males
(EMMs, P = 0.008), but such sex difference was not found in
the other starvation treatments or the control group (fig. 4).
These differences between males and females were highlighted
by a significant ‘sex by starvation’ interaction (GLM, χ2 = 25.68,
df = 3, P < 0.001).

Gravimetric measurements

Fresh weight was affected by starvation (Kruskal–Wallis, χ2 = 167.61,
df = 7, P < 0.001). Among the different starvation treatments,
only 36 h of fasting distinctly reduced male and female fresh
weight (Dunn tests, all P values < 0.05) (table 1). The same
response was observed for the dry mass (Kruskal–Wallis, χ2 =
166.85, df = 7, P < 0.001) and lean dry mass (Welch’s ANOVA,
F(7, 94.4) = 89.98, P < 0.001). Body weight measurements, i.e.
fresh, dry and lean dry mass, indicated that females were on
average heavier than males in all treatment groups, as expected
(P < 0.001 for all pairwise comparisons of fresh and dry mass
(Dunn post-hoc tests), and lean dry mass (Games–Howell post-
hoc tests)).

Water content was significantly affected by starvation (Welch’s
ANOVA, F(7, 94.3) = 17.06, P < 0.001). The water content of females
that starved for 24 h or more was slightly higher than that of fed
females (Games–Howell, all P < 0.001). Furthermore, with the

exception of the 12 h starvation group, both starved and non-
starved males contained significantly more water than females
(i.e. 72 vs. 70%) (Games–Howell, P values < 0.05) (table 1).

For the total lipid content, the parametric ANOVA indicated
that all factors had a significant effect (F3, 221 = 12.46, P < 0.001;
F1, 221 = 165.66, P < 0.001; F3221 = 3.06, P = 0.029 for starvation,
sex and their interaction, respectively). Starvation for 24 and
36 h resulted in females having lower body lipid content than
controls (EMMs, P≤ 0.01) (table 1). Males that fasted for 24 or
36 h contained less lipids compared to 12 h starved males
(EMMs, P < 0.05 for both pairwise comparisons), but not to con-
trols (EMMs, P values > 0.05) (table 1). In all treatments, females
had a markedly higher lipid content than males (EMMs, all
P values < 0.001) (table 1).

Triglyceride and glycerol quantification

Starvation and sex affected TAG quantity, but there was a signifi-
cant interaction between these two factors (ANOVA, starvation:
F3, 53 = 29.81, P < 0.001; sex: F1, 53 = 190.03, P < 0.001; sex by star-
vation: F3, 53 = 1.04, P = 0.380). The longer the starvation period,
the lower the TAG level (EMMs, P < 0.05 for both males and
females) (table 2). Triglycerides were detected in significantly
higher amounts in females than in males, and this for both
starved and non-starved flies (EMMs, all P values < 0.001).
Females contained between 43.7 and 72.1% more TAG compared
to males (table 2).

For glycerol, although Kruskal–Wallis test showed significant
differences among all the combined groups (Kruskal–Wallis,
χ2 = 44.824, df = 7, P < 0.001), the amount of glycerol in males
and females was not noticeably impacted by increased starvation
time within each sex group (Dunn tests, P > 0.05 for all pairwise
comparisons) (table 2). This difference was due to the females
that typically contained more glycerol than males (table 2).

Figure 3. Mean survival ratio of Drosophila suzukii 48 h
after an acute cold exposure (1 h at −5°C) according to
sex and starvation group (n = 200 individuals for each
bar). Error bars represent standard errors of the
means. Bars with different letters indicate differences
among all the treatment combinations (i.e. significant
‘sex by starvation’ interaction followed by EMMs post-
hoc tests, P≤ 0.05).
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Glucose and protein quantification

Glucose content was significantly influenced by sex and starva-
tion, but not by their interaction (ANOVA, sex: F1, 55 = 69.29,
P < 0.001; starvation: F3, 55 = 26.10, P < 0.001; starvation × sex:
F3, 52 = 0.734, P = 0.537). Starvation led to decreased glucose
contents in both sexes. This inverse relationship was significant
for flies starved for 24 or 36 h (EMMs, all P < 0.05) (table 2). In
general, glucose fractions differed markedly between males and
females, with the latter having a 26.4–57.6% higher glucose
content than males (EMMs, all P values < 0.001) (table 2).

Fasting also affected the protein content of D. suzukii
(Kruskal–Wallis, χ2 = 46.25, df = 7, P < 0.001). Fasting for 24 h
caused males to lose a distinct quantity of soluble proteins com-
pared to controls (Dunn test, P = 0.027), but no such loss was
detected in females (table 2). Although no other significant

differences were found between treatments in both sexes, the
mean soluble protein content tended to diminish gradually
with increasing starvation periods (table 2). Females contained
considerably more soluble protein than males (Dunn tests, all
P values < 0.05), except for those starved for 36 h (Dunn test,
P = 0.056) (table 2).

Discussion

In the present study, we assessed the effect of food deprivation on
subsequent cold tolerance of D. suzukii adults. Starvation resulted
in decreased body weights in both males and females, demonstrat-
ing clearly that flies had experienced a nutritional shortage.
Similarly, lipid and glucose stores dropped because of starvation,
and 12 h of fasting were already sufficient to significantly reduce

Figure 4. Mean survival ratio of Drosophila suzukii 48 h
after a chronic cold exposure (8 h at 0°C) according to
sex and starvation group (n = 200 individuals for each
bar). Error bars represent standard errors of the
means. Bars with different letters indicate differences
among all the treatment combinations (i.e. significant
‘sex by starvation’ interaction followed by EMMs post-
hoc tests, P ≤ 0.05).

Table 1. Body weight, water and lipid content of non-starved and starved male and female Drosophila suzukii adults

Sex
Starvation
duration (h) n1

Fresh
mass (μg)

Dry
mass (μg)

Lean dry
mass (μg)

Water
content (%)

Lipid
content (%)

Females 0 27 1641.0 ± 24.3 a 523.0 ± 10.5 a 399.7 ± 7.0 a 68.6 ± 0.3 e 7.6 ± 0.3 a

12 30 15754 ± 51.7 a 487.5 ± 20.1 a 378.4 ± 15.9 a 69.1 ± 0.4 de 6.6 ± 0.3 ab

24 28 1619.5 ± 24.4 a 468.5 ± 9.0 a 388.1 ± 8.2 a 70.6 ± 0.3 cd 5.6 ± 0.2 bc

36 29 1297.0 ± 26.1 c 383.0 ± 8.2 d 306.3 ± 6.3 b 70.7 ± 0.2 bc 6.0 ± 0.2 b

Males 0 28 1123.5 ± 33.8 b 328.0 ± 11.6 b 265.1 ± 9.8 cd 72.0 ± 0.4 ab 4.4 ± 0.2 de

12 30 1095.0 ± 15.7 b 326.0 ± 7.4 b 275.5 ± 6.0 c 70.5 ± 0.4 bd 4.9 ± 0.2 cd

24 28 1125.0 ± 16.8 b 300.5 ± 6.3 bc 262.6 ± 4.8 c 72.4 ± 0.3 a 4.0 ± 0.2 e

36 29 971.00 ± 20.1 d 266.0 ± 6.7 c 225.6 ± 5.1 d 72.6 ± 0.3 a 3.8 ± 0.2 e

1Number of tested individuals (replicates).
Means (±SEM) or median within a column followed by the same letter are not significantly different (P > 0.05).
Post-hoc P values were determined with Dunn’s tests (for fresh mass, dry mass), Games–Howell tests (for lean dry mass, water content) or EMMs tests (for lipid content).
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glucose and glyceride levels. It is well known that a mixture of
different energy resources, mainly carbohydrates and lipids,
and occasionally proteins, are metabolized during starvation in
Drosophila flies (Oudman et al., 1994; Marron et al., 2003;
Schwasinger-Schmidt et al., 2012). Starvation in Drosophila mela-
nogaster flies initially leads to the catabolism of non-lipid reserves
(Lee and Jang, 2014). This may change after approximately 36–48
h (depending on the diet) when body fat resources become the
primary energy source (Lee and Jang, 2014). Starved flies may
ultimately die due to the complete depletion of their lipid reserves
(Rion and Kawecki, 2007; Lee and Jang, 2014). In our study, we
starved adults for various periods to generate mild stress pre-
treatments before the cold stress exposures; yet, the starvation
periods chosen were short enough to avoid significant mortality.
Since previous studies have shown that fasting has a robust hor-
metic effect on subsequent survival to cold in many D. melanoga-
ster genotypes (Le Bourg, 2013; Le Bourg and Massou, 2015), we
speculated it might also be the case for D. suzukii. From our data,
it was clear that flies had their physiological status and their
energy stores altered by starvation, and we thus expected this
pre-treatment to affect cold tolerance in some positive ways
(cross-tolerance and hormesis), as reported in other Drosophila
studies (e.g. Le Bourg, 2013; Le Bourg, 2015; Le Bourg and
Massou, 2015; Pathak et al., 2018). Genetic associations between
resistance to cold and starvation have been investigated in
laboratory-selected strains for different stressors in D. melanoga-
ster to find cross-tolerance effects (Bubliy and Loeschcke, 2005).

Our data showed that starvation affected cold tolerance in D.
suzukii but these effects were metric-dependent, as we observed
positive, negative or no effect of starvation according to the assay.
For instance, in starved adults, chill coma occurred at slightly
higher temperatures than in fed individuals (5.3 vs. 4.9°C).
Some studies have focused on the effect of starvation on the
cold tolerance of insects but a few have used CTmin as a metric for
low-temperature performance. Nyamukondiwa and Terblanche
(2009) assessed the influence of feeding status on the thermal
activity thresholds of two tephritid fruit flies and found similar
results as in our study: CTmin of both species increased as a result
of a 48 h starvation period, and no major sex-related variation was
detected. This slight increase in CTmin values could be due to the
depletion of energy reserves because of nutrient restriction.
Genetic experiments on lines of D. melanogaster, which were

selected either for increased starvation tolerance or for decreased
CCRT, revealed that starvation and cold resistance were negatively
correlated (Hoffmann et al., 2005). This could be due to the com-
petitive use of lipid storage. Moreover, tests performed on the tse-
tse fly Glossina pallidipes showed that individuals with the lowest
CTmin had the highest body lipid and water content, suggesting an
inverse relationship between energy resources and knockdown
temperature thresholds (Terblanche et al., 2008). This could, how-
ever, not be fully confirmed in our study, as the lowest CTmin

values were observed in ad libitum fed D. suzukii and increased
already after a 12 h starvation. On the other hand, total lipids
and body water mass only dropped markedly after 36 h of starva-
tion. Thus, in our case, D. suzukii adults with the highest lipid and
water levels did not necessarily have the lowest critical thermal
minima. The slight increase in CTmin of <1°C probably has a
very limited ecological impact on stress resistance in the field.

Fasting affected CCRT; however, patterns were rather erratic
and no clear pattern was observed among the different starvation
treatments. This cold tolerance metric is a highly variable trait at
the individual level (David et al., 1998), as noted in the present
study. There is relatively little information in the literature on
the influence of feeding or starvation on CCRT in insects but
positive, negative or no effects were reported. Fed locusts
(Locusta migratoria) had an increased CCRT compared to fasted
counterparts (Andersen et al., 2013). Similarly, in a study on
Drosophila immigrans, a beneficial effect of starvation on the
cold tolerance was found (Pathak et al., 2018). In that study,
flies that have fasted for 48 h had greater cold tolerance than
their fed counterparts (differences in CCRT and survival after
cold-shock), thus suggesting again a possible cross-tolerance
between starvation and cold tolerance. On the contrary, red
flour beetles (Tribolium castaneum) starved for 48 h recovered
slower from chill coma than fed beetles, although this detrimental
effect could also be attributed to the combined effect of starvation
and desiccation because no water source was available during the
starvation treatment (Scharf et al., 2016). Research on Ceratitis
capitata adults revealed no change in CCRT between ad libitum
fed flies and those deprived of food for 72 h (Mitchell et al.,
2017). Likewise, a 21-day fasting period did not significantly affect
CCRT of Myrmeleon hyalinus (Neuroptera: Myrmeleontidae) or
Vermileo sp. (Diptera: Vermileonidae), two ambush insect preda-
tors (Scharf et al., 2017). It thus appears that the effects of

Table 2. Amounts of triglycerides, glycerol, glucose and soluble proteins of non-starved and starved Drosophila suzukii adults

Sex Starvation duration (h)
Triglycerides

(μg)
Glycerol
(μg)

Glucose
(μg)

Soluble proteins
(μg)

Females 0 38.9 ± 2.4 A (8) 2.4 ± 0.1 a (8) 8.6 ± 0.4 A (8) 103.3 ± 2.7 a (8)

12 39.7 ± 2.2 A (6) 1.9 ± 0.1ab (6) 7.25 ± 0.6 BA (8) 99.0 ± 4.9 ab (8)

24 30.5 ± 2.0 B (8) 1.9 ± 0.1 ab (8) 7.1 ± 0.4 B (8) 84.1 ± 3.4 abc (8)

36 23.6 ± 2.2 C (8) 1.9 ± 0.0 ab (8) 4.4 ± 0.3 C (6) 74.8 ± 4.0 abcd (7)

Males 0 18.2 ± 1.2 A (7) 1.6 ± 0.1 bc (7) 5.7 ± 0.3 A (8) 72.5 ± 4.1 bcd (8)

12 22.3 ± 1.2 A (8) 1.6 ± 0.0 bc (8) 5.3 ± 0.3 BA (8) 61.3 ± 4.8 cde (8)

24 16.0 ± 1.8 B (8) 1.5 ± 0.1 c (8) 4.1 ± 0.6 B (8) 51.2 ± 1.7 e (8)

36 6.6 ± 0.7 B (8) 1.4 ± 0.0 c (8) 1.9 ± 0.3 C (6) 56.722 ± 2.9 de (8)

The number of tested replicates, each containing five pooled individuals, is shown in parentheses.
Within a column, means (±SEM) or median followed by the same letters are not significantly different (P > 0.05). Lowercase letters correspond to comparisons among all conditions (Kruskal–
Wallis tests followed by Dunn’s post-hoc tests for glycerol and proteins). Uppercase letters correspond to comparisons among the four different starvation durations only (ANOVA followed by
EMMs post-hoc tests for triglycerides and glucose).
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starvation on non-lethal measures of cold tolerance are not uni-
versal and context-dependent. Here, we found that starvation
affected CCRT and CTmin differently, which is not so surprising
as these metrics have different underlying mechanisms, despite
both being related to chill coma (David et al., 2003; MacMillan
and Sinclair, 2011; Ransberry et al., 2011; Andersen et al.,
2015). Accordingly, in a study assessing different measures of
cold tolerance as predictors of the cold distribution limits of 14
drosophilid species, no significant correlation was detected
between CTmin and CCRT (Andersen et al., 2015).

We conclusively found that starved males and females had
higher survival rates than well-fed flies when they were subjected
to acute cold stress. Yet, this positive effect of short-term starva-
tion on acute cold tolerance occurred faster in males than in
females. These observations support the notion that starvation
can promote cold tolerance, particularly survival-related traits
(Le Bourg, 2013; Le Bourg, 2015; Le Bourg and Massou, 2015;
Pathak et al., 2018). Generally, males were more likely than
females to survive acute cold exposure, albeit significant differ-
ences between both sexes were merely found after 12 and 24 h
of fasting. Recent research on the basal heat and low-temperature
survival of D. suzukii also reported males to be less cold suscep-
tible than females when exposed to acute cold stress (Enriquez
and Colinet, 2017). Stephens (2015), on the contrary, observed
females to be more cold tolerant than males when subjected to
−5°C for 2 h. Again, such inconsistencies between studies may
be due to uncontrolled factors such as age, genotype, larval dens-
ity or even microbiota (Colinet et al., 2013; Gerken et al., 2015;
Henry and Colinet, 2018; Henry et al., 2018, 2020). In general,
it remains unclear if females are more cold tolerant than males
because results depend on the cold-tolerance metrics, as observed
in Toxopeus et al. (2016), as well as in the present study.

Just as found in the acute cold survival assays, chronic cold tol-
erance assays also revealed that females starved for 24 or 36 h had
higher survival than fed flies. Furthermore, a 36 h starvation per-
iod seemed to have an adverse effect on the chronic cold survival
of males, although this was statistically detectable only when com-
pared to the 12 h starvation group. After 36 h of fasting, survival
of females was also higher than that of males. This could indicate
that, unlike for females, a 36 h starvation period might be a stress
too severe for males. Females of D. melanogaster have higher star-
vation resistance than males (Kubrak et al., 2017). The effect of
food deprivation on the resistance to long-term cold stress has
also been described in D. melanogaster (Le Bourg, 2013; Le
Bourg, 2015; Le Bourg and Massou, 2015). In these three studies,
1-week-old adults were starved for 24 h before being exposed to 0°
C for 16–48 h, and resulting data showed similar responses as
those observed here. Fasting increased the chronic cold tolerance
of young D. melanogaster females but had no effect or a deleteri-
ous effect on young males (Le Bourg, 2013; Le Bourg, 2015; Le
Bourg and Massou, 2015). In addition, a 2–6 h delay between star-
vation and cold exposure could further enhance the survival of
young flies, and this was the case for both sexes (Le Bourg,
2013; Le Bourg, 2015; Le Bourg and Massou, 2015). Age and tim-
ing thus also seem to play a role in the magnitude of the beneficial
effect of starvation on cold survival traits.

Overall, both acute and chronic cold survival of D. suzukii
were promoted by a starvation pre-treatment, though males and
females reacted slightly differently. The other performance-related
traits, such as knockdown and recovery, were affected by starva-
tion in some complex way that can hardly be conclusively linked
to starvation pretreatment. The mechanisms responsible for the

better tolerance to acute and chronic cold survival of fasting
flies are still unknown. Using RNA interference, Le Bourg and
Massou (2015) tested different genes involved in cold resistance
(Frost), the innate immune system (Dif1) and the metabolic path-
ways at play during starvation (autophagy (Atg7) and the insulin/
insulin-like growth factor 1 pathway (dFOXO)). However, none of
them could explain the augmented chronic cold tolerance of
starved D. melanogaster. The positive effect of starvation on
cold survival (chronic and acute) may result from a reduced gut
content. During exposure to sub-zero temperatures, ingested
food materials may act as ice nucleating agents. An empty gut
could prevent this and, hence, decrease the cold susceptibility of
freeze-intolerant insects to a certain extent (Salt, 1953; Danks,
1996; Chapman, 2013). For this reason, the ingestion of food
has been linked to higher supercooling points in various taxa
(Baust and Morrissey, 1975; Sømme and Conradi-Larsen, 1977;
Sømme, 1982; Sømme and Block, 1982; Leather et al., 1993;
Salin et al., 2000). Nevertheless, this principle could neither
explain the enhanced chronic cold survival, nor the enhanced
acute cold survival because spontaneous freezing occurs at
much lower temperatures than −5°C in D. suzukii (Toxopeus
et al., 2016). In our case, we believe that the beneficial effect of
starvation pre-treatment on acute and chronic cold tolerance of
flies may be related to changes in haemolymph osmolality and
altered ions or water balance, as observed in starved migratory
locusts (Andersen et al., 2013). Indeed, the maintenance of hydric
and ionic homeostasis is directly related to the cold tolerance of
insects (Overgaard and MacMillan, 2017).

In conclusion, we found that fasting D. suzukii adults had lower
body mass and energy reserves, especially when starvation periods
were longer than 12 h. Short-term starvation pre-treatment led to
an increased acute and chronic survival. Chill knockdown-related
metrics were either slightly affected. Our study suggests that metrics
of acute and chronic survival may rely on different physiological
responses than those responsible for chill coma onset and recovery.
The underlying mechanisms responsible for the beneficial impact of
short starvation on acute and chronic survival warrant further inves-
tigation. Our results suggest that the absence of food during short
periods can promote the cold survival of D. suzukii females.
Such food scarcity conditions may occur in the field for instance
in late fall, winter and early spring. As our study was conducted
under standardized laboratory conditions, further research is
required to elucidate the ecological significance of these results
in natural situations.
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