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Enriquez T, Colinet H. Cold acclimation triggers lipidomic and
metabolic adjustments in the spotted wing drosophila Drosophila
suzukii (Matsumara). Am J Physiol Regul Integr Comp Physiol 316:
R751–R763, 2019. First published April 3, 2019; doi:10.1152/ajp-
regu.00370.2018.—Chronic cold exposure is detrimental to chill sus-
ceptible insects that may accumulate chill injuries. To cope with
deleterious effects of cold temperature, insects employ a variety of
physiological strategies and metabolic adjustments, such as produc-
tion of cryoprotectants, or remodeling of cellular membranes. Cold
tolerance is a key element determining the fundamental niche of
species. Because Drosophila suzukii is an invasive fruit pest, origi-
nating from East Asia, knowledge about its thermal biology is ur-
gently needed. Physiological mechanisms underlying cold tolerance
plasticity remain poorly understood in this species. Here, we explored
metabolic and lipidomic modifications associated with the acquisition
of cold tolerance in D. suzukii using Omics technologies (LC- and
GC-MS/MS). In both cold-acclimated males and females, we ob-
served physiological changes consistent with homeoviscous/homeo-
phasic adaptation of membranes: reshuffling of phospholipid head
groups and increasing unsaturation rate of fatty acids. Modification of
fatty acids unsaturation were also observed in triacylglycerides, which
would likely increase accessibility of lipid reserves. At the metabolic
level, we observed clear-cut differentiation of metabolic profiles with
cold-acclimated metabotypes showing accumulation of several poten-
tial cryoprotectants (sugars and amino acids). Metabolic pathway
analyses indicated a remodeling of various processes, including purine
metabolism and aminoacyl tRNA biosynthesis. These data provide a
large-scale characterization of lipid rearrangements and metabolic
pathway modifications in D. suzukii in response to cold acclimation
and contribute to characterizing the strategies used by this species to
modulate cold tolerance.

cold tolerance; homeoviscous adaptation; lipids; metabolic profiles;
thermal plasticity

INTRODUCTION

Because of their viscous character, cellular membranes are
thermosensitive structures (7). Extremely low temperatures can
compromise their integrity by inducing the transition of mem-
brane’s phospholipid (PL) bilayer from a fluid, liquid-crystal-
line phase to a more rigid, lamellar-gel phase (53). These
changes in membrane fluidity mechanically alter activity and
function of membrane-bound enzyme (18, 41, 53), which may
contribute to symptomatic loss of hydric and ionic homeostasis
across membrane’s bilayers at cold temperatures (59, 60, 69,

73). Consequences might include neuromuscular dysfunc-
tions, chill coma, and, in the most extreme cases, death (44,
63, 72, 108). This is especially true for poikilothermic
organisms, such as insects, as their body temperatures di-
rectly depend on their surrounding environment, and stress-
ful thermal events, such as cold shock, can severely impair
their physiological functioning (23).

Ectotherms can survive stressful low temperatures using
physiological plasticity, such as cold acclimation (i.e., acquired
cold tolerance subsequent to pre-exposure to cold tempera-
tures). One of the most conserved physiological responses of
ectotherms to low temperature is the preservation of membrane
fluidity, referred to as homeoviscous adaptation of cell mem-
branes (41, 92) or avoidance of membrane phase transition,
referred to as homeophasic adaptation (42). These adjustments
rely on remodeling the membrane’s PL, for instance, by re-
structuring polar head groups, shortening fatty acid (FA)
chains, or increasing FA unsaturation (53). Such modifications
help maintain membrane’s fluidity and functioning under cold
temperature, by inducing modification of van der Waals forces
within membrane PL bilayer (16, 64). Similar modifications
occur in stored lipids, such as in triacylglycerides (TAG), in
response to cold (57, 77, 102). Because TAG represents the
major energy reserve in insects it plays an important role in
overwintering and cold survival (36, 77, 91).

Cold acclimation is often correlated with recruitment of low
molecular mass compounds (29, 56, 71, 103). These compat-
ible osmolytes (traditionally sugars, polyols, and amino acids)
are well known for their colligative effects at high concentra-
tions (95, 109), but they may also play roles at low concen-
trations, for instance by stabilizing structures and integrity of
proteins and membrane bilayers (5, 8, 20, 107). Cold acclima-
tion may also induce large-scale changes in many enzyme
activities, and therefore, metabolic pathways are putatively
remodeled (71), such as pathways of central metabolism (12,
65, 66, 90).

The spotted wing drosophila, Drosophila suzukii, is an alien
species in Europe (6) and North and South America (39, 62).
Contrary to the common species Drosophila melanogaster,
which lays its eggs in ripening fruits, D. suzukii females
oviposit exclusively under the skin of mature fruits, which their
larvae then consume. This fly is highly polyphagous and can
exploit a large number of wild hosts (50), but it also feeds on
a wide variety of cultivated fruit crops, including stone fruits,
causing extensive loss of harvest and economic costs (32).

D. suzukii overwinters as adult in Northern America (99)
and Europe (84). According to the definition of cold tolerance
strategies (79), this fly is considered as chill susceptible.
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Indeed, it does not tolerate mild chilling (21, 26, 51, 88) and
dies at temperatures well above its supercooling point (45).
The overwintering success of D. suzukii likely relies on two
main strategies: 1) migration to favorable and buffered micro-
habitats, such as forests; indeed, underneath the forest mulch
temperatures remain positive in winter (89, 111); and 2)
acquisition of cold tolerance via plastic responses (90). Several
studies have shown that this fly is able to enhance its cold
tolerance thanks to various cold acclimation types, such as
rapid cold hardening (28, 101), adult gradual acclimation (45,
104), or developmental acclimation (90, 101, 105). Recently,
cold-acclimated D. suzukii flies have been shown to survive
temperatures as cold as �7.5°C (94). Using RNA sequencing,
Shearer et al. (90) showed that a winter-acclimated phenotype
of D. suzukii exhibits an upregulation of genes involved with
ion transport, carbohydrate metabolism, and glycolysis. In a
previously targeted time-series analysis (27), we investigated
metabolic adjustments during cold acclimation in D. suzukii
and showed that acclimation was associated with metabolic
robustness during cold stress and recovery period. Despite
recent progress in understanding the thermal biology of D.
suzukii, physiological strategies underlying its cold tolerance
plasticity remain poorly understood. Consequently, the aim of
the present study was to investigate the impact of cold accli-
mation on physiological traits of importance regarding insect
cold tolerance: composition of the membrane, lipid reserves,
and metabolic responses. In this study, we combined develop-
mental and adult cold acclimation to produce a cold-tolerant
phenotype and then used lipidomic and metabolomic holistic
approaches to explore physiological correlations associated
with cold acclimation response in D. suzukii. We hypothesized
that cold acclimation would increase cold tolerance in D.
suzukii and predicted that cold acclimation will induce major
physiological adjustments, such as PL changes consistent with
homeoviscous or homeophasic adaptations (41), remodeling of
TAG’s carbon chains to increase their accessibility (87, 102),
and metabolic pathway reorganizations to allow energy ho-
meostasis and support cryoprotectants synthesis (e.g. sugars
and amino acids) (11, 27, 56, 58, 71, 106).

MATERIALS AND METHODS

Flies Rearing and Acclimation Protocol

The D. suzukii line used in our experiments originated from wild
flies collected from infested blueberries and raspberries in Thorigné
Fouillard, France (48.0616N, �1.2387E) in September 2016. Flies
were maintained under laboratory conditions for approximatively 20
generations before experiments. Flies were reared in glass bottles (100
ml) and supplied with a carrot-based food (in 1 liter of water: 15 g
agar, 50 g sucrose, 50 g carrot powder, 30 g brewer yeast, 20 g
cornmeal, 8 g kalmus, 8 ml Nipagin). Control flies were produced by
placing bottles containing eggs in an incubator (model no. MIR-154-
PE; Panasonic, Healthcare, Gunma, Japan) at 25°C, and a 12-h
light/12-h dark cycle. After emergence, adults were maintained at
25°C for 7 days. To generate cold-acclimated flies, control adult flies
(~50) were allowed to lay eggs in bottles for 24 h at 25°C. Then
bottles with eggs were placed at 10°C (10-h light/14-h dark, same
reference of incubator) to allow hatchling to develop into adults. After
emergence, adults were kept at 10°C for 7 days. Consequently, flies
were cold-acclimated during both development and at adult stage.
Seven-day-old control or cold-acclimated flies were randomly taken
from the rearing stock and used for subsequent experiments. All
experiments were conducted on both females and males. Males were

visually separated from females with an aspirator without CO2 to
avoid anesthesia stress (13).

Acute Stress

From each treatment group, flies were randomly taken and
distributed in 10 replicates of 10 males or 10 females and subjected
to �5°C for 100 min, using glass vials immersed in a glycol
solution cooled by a cryostat (model Cryostat Lauda ECO RE 630;
Lauda, Lauda-Königshofen, Germany). After cold exposure, flies
were allowed to recover in 40-ml food vials maintained at 25°C
(12-h light/13-h dark). Survival was assessed by counting the
number of dead and living individuals in each vial at 4, 24, and 48
h after cold stress.

Critical Thermal Minimum

We used a glass knockdown column to estimate the critical thermal
minimum (Ctmin) of D. suzukii. The column was a vertical, jacketed
glass column (52 � 4.7 cm) containing several cleats to help flies not
fall out the column while still awake. The column was linked to a
cryostat (Cryostat Lauda ECO RE 630) to regulate internal tempera-
ture at 18°C. Temperature inside the column was continuously
checked using a thermocouple K, placed at mid height in the center of
the column, connected to a Tempscan C8600 scanning thermometer
(Comark Instruments, Norwich, Norfolk, UK). Approximatively 60
flies of each treatments were introduced to the top of the column. Flies
were allowed to equilibrate in the device for a few minutes, and then
the temperature was decreased to �5°C at 0.5°C/min. At each fly
passing out and falling out of the column the Ctmin (°C) was recorded.

Chill Coma Recovery Time

Chill coma recovery time (CCRT) is defined as the resurgence time
of motor activity after a cold knockdown (22). To induce a chill coma,
we subjected 40 control and 40 acclimated flies of both sexes to 0°C
for 12 h, using food vials placed in a cooled incubator (model no.
MIR-154-PE; Panasonic, Healthcare). Immediately after exposure to
cold stress, flies were rapidly transferred into a 25°C regulated room,
and we scattered them individually on a large plane surface. As each
fly was able to stand up, the recovery time was recorded. This
experiment ended after 120 min, and nonrecovered flies were then
counted.

Omics Analyses

For each treatment and sex, five independent replicates (each
consisting of a pool of ~40 seven-day-old flies) were snap-frozen in
liquid N2. Frozen samples were then sent to MetaSysX (Potsdam-
Golm, Germany) where a coupled lipidomic and metabolomic non-
targeted analysis was performed. Extraction of samples was per-
formed according to MetaSysX standard procedure, a protocol mod-
ified from Giavalisco et al. (31).

LC-MS measurements, data processing, and annotation (hydro-
philic and lipophilic analytes). The samples were measured with a
Waters ACQUITY reversed phase ultraperformance liquid chroma-
tography (Waters, Milford, MA) coupled to a Q Exactive mass
spectrometer, which consists of an electrospray ionization source and
an Orbitrap mass analyzer (Thermo Fisher Scientific, Bremen, Ger-
many). C8 and C18 columns were used for the chromatographic
separation of lipophilic and hydrophilic compounds, respectively. The
mass spectra were acquired in full-scan MS positive and negative
modes (mass range 100�1,500).

Extraction of the LC-MS data was accomplished with the software
REFINER MS 10.5 (GeneData, https://www.genedata.com). Align-
ment and filtration of the LC-MS data were completed using in-house
metaSysX software. After extraction of the peak list from the chro-
matograms, the data were processed, aligned, and filtered. Only
features which were present in at least four out of the five replicates
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of at least one of the sample groups were selected. At this stage in the
process, an average retention time and an average mass-to-charge
ratio values were given to the features. The alignments were per-
formed for each platform independently (polar phase positive mode,
polar phase negative mode, lipophilic phase positive mode, and
lipophilic phase negative mode).

Data alignment was followed by the application of various filters to
refine the data set, among them removal of isotopic peaks, removal of
in-source fragments of the analytes (due to the ionization method),
and removal of additional lower intense adducts of the same analyte
to guarantee the quality of the data for further statistical analyses. The
annotation of the sample content was accomplished by matching
extracted data from chromatograms with metaSyX library of reference
compounds and with metaSyX database of lipids in terms of accurate
mass and retention time.

MS/MS lipid annotation. Chromatograms were recorded in the
dd-MS2 Top-3 mode (data-dependent tandem mass spectrometry)
with the following settings: full scan MS mode (mass range
100�1,500), NCE 25 (normalized collision energy). Acyl composi-
tion of di- and triacylglycerids was established from the [M�H]�

precursor ion fragmentation with detection of [Acyl�NH4]� neutral
losses in positive ion mode with further combinatorial calculation of
the acyl composition. Acyl composition of phosphoglycerolipids was
determined from the detection of [Acyl-H]� fragments of the corre-
sponding precursors in the negative ion mode. Acyl composition of
sphingolipids was established from the fragmentation pattern of
[M�H]� precursor ions in the positive ionization mode.

GC-MS measurements data processing and annotation. The sam-
ples were measured on an Agilent Technologies gas chromatograph
coupled to a Leco Pegasus HT mass spectrometer, which consists of
an electron-impact ionization source and a time of fly mass analyzer
(Leco, St. Joseph, MI). Column: 30 meter DB35; starting temperature:
85°C for 2 min; and gradient: 15°C per min up to 360°C. NetCDF files
exported from the Leco Pegasus software were imported to “R” (R
3.4.3, R Core Team, 2016). The bioconductor package “Target-
Search” was used to transform retention time to retention index, to
align the chromatograms, to extract peaks, and to annotate them by
comparing the spectra and the retention index to the Fiehn Library and
to a user created library. Annotation of peaks was manually confirmed
in Leco Pegasus. Analytes were quantified using a unique mass.

Lipidomic and metabolomic data processing. Data from the five
platforms were normalized to sample fresh weight and to the median
intensity of 1,000 features per replicate group (including all the
annotated features and highly abundant features with unknown name).
Subsequently, the normalized data of annotated features from all five
platforms were merged to the final data matrix.

Statistical Analyses

Cold tolerance. Analyses of acute cold survival and Ctmin were
performed using R 3.4.3. We modeled acute cold survival by speci-
fying a generalized linear mixed-effects model with a logistic link
function for proportional outcomes (i.e., number of dead/alive per
vial). The response variable was dependent on treatment type (cold
acclimation vs. control), sex, time to survival measurement, time �
treatment and time � sex interactions. As survival rate was repeatedly
measured after 4, 24, and 48 h post-cold stress per vial, vial number
was included in a generalized linear mixed-effects model as a random
effect to account for repeated measurements. We analyzed the effects
of variables with an ANOVA function using the “car” package (30).
Ctmin values were compared using two-way ANOVA with treatment
and sex as factors. CCRT data were analyzed using survival analyses
with the software GraphPad Prism5. We made pairwise comparisons
between each of the recovery curve using Gehan-Breslow-Wilcoxon
tests. The � level of significance for survival analyses was adjusted
with a Bonferroni correction (� � 0.008).

Lipidomic profiling. Lipidomic data were divided into three data
sets: PL, TAG, and other lipids that included ceramides, free lipids,
and free FA. For PL and TAG data sets, between-class principal
component analysis (PCA) (96) were run, using the “ade4” package in
R (25). Monte Carlo tests were performed after each PCA to examine
the significance of difference found among the classes (based on 1,000
simulations). Next, we independently calculated the following five
indices for PL and TAG: 1) ratio of unsaturation [UFA/SFA, i.e.,
cumulative percentage of all unsaturated FA (UFA) divided by the
cumulative percentage of all saturated FA (SFA)]; 2) ratio of poly-
unsaturation [PUFA/MUFA, i.e., cumulative percentage of polyunsat-
urated FA (PUFA) divided by the cumulative percentage of monoun-
saturated FA (MUFA)]; 3) unsaturation index (UI):

�
n * �%fatty acids with n double bonds�

100
;

4) cumulative percentage of all 16C FA divided by the cumulative
percentage of all 18C FA (ratio 16C/18C); and 5) cumulative percent-
age of short FA (�16C) divided by the cumulative percentage of long
FA (�16C) (ratio short/long). Lipids composition and the five calcu-
lated indices were analyzed in R, using two-way ANOVAs with sex,
treatment (i.e., cold-acclimated vs. control) and their interaction as
factors.

Metabolic Profiling

Metabolic compositions of flies were compared using between-
class PCA in the “ade4” package in R (25). Monte Carlo tests were
performed to examine the significance of the difference among the
classes (based on 1,000 simulations). To identify the variables (i.e.,
metabolites) contributing the most to the PCA structure separation, the
correlations to the principal components (PCs) were extracted and
integrated into correlation circles.

In addition to multivariate analyses, we performed Student’s t-tests
on each identified metabolite to compare mean relative abundances
(i.e., normalized area under the curve values, AUC) between cold-
acclimated and control flies, independently for males and females.
The list of all significantly affected metabolites (P � 0.05) (available
in Supplemental Table S1) (https://figshare.com/articles/Supplementary_
Tables_xls/7688354) was used to run Metabolite Set Enrichment Analysis
(MSEA) in Metaboanalyst 4.0 (10), based on D. melanogaster reference
metabolome. A hypergeometric test was used as over-representation analy-
ses, and relative-betweenness centrality was used to analyze pathway topol-
ogy. To confirm and ensure consistency of MSEA results, we also used
another pipeline (Reactome: https://reactome.org/) to conduct metabolic
pathways analysis.

RESULTS

Cold Tolerance

Figure 1A illustrates survival probability of control and
cold-acclimated flies 4, 24, and 48 h after cold shock. Cold-
acclimation promoted survival to �5°C in comparison with
control conditions [	2 � 140.90, degrees of freedom (df) � 1,
P � 0.001, Fig. 1A], leading to 100% survival at 48 h after
stress in cold-acclimated females. Globally, survival de-
clines over time after cold stress (	2 � 41.67, df � 1, P �
0.001, Fig. 1A), but this decline was more pronounced in
control flies than in cold-acclimated flies (treatment � time
interaction: 	2 � 14.88, df � 1, P � 0.001, Fig. 1A). There
was no difference between male and female survival
(	2 � 1.05, df � 1, P � 0.30, Fig. 1A).

Figure 1B represent mean Ctmin values. Mean Ctmin was
much lower in cold-acclimated flies than in control flies
(�1.55 
 0.17°C vs. 5.16 
 0.05°C; F(1,229) � 966.14, P �
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0.001, Fig. 1B). Ctmin did not differ between males and fe-
males, nor did the interaction between treatment and sex
[F(1,229) � 1.61, P � 0.20; F(1,229) � 0.384, P � 0.53, respec-
tively].

CCRT curves are displayed in Fig. 1C. In control flies, chill
coma recovery progressively started after 40 min; however,
20% of males and females were still in a coma after 120 min.
Acclimated flies took only three and nine minutes to recover
for females and males, respectively (Fig. 1C). As a result, there
were significant differences between recovery curves for con-
trol and acclimated flies for both sexes (males: 	2 � 64.00,
df � 1, P � 0.008; females: 	2 � 64.00, df � 1, P � 0.008).
However, there were no differences in recovery times be-
tween males and females from both treatment groups (con-
trol group: 	2 � 0.11, df � 1, P � 0.73; cold-acclimated
group: 	2 � 0.18, df � 1, P � 0.66).

Omics Analyses

Raw data from GC- and LC-MS/MS are available in the Supp-
lementary Data set 1 (https://figshare.com/articles/Supplementary_
data_set_1_-_GCMS-LCMS_Data_xls/7688351).

Lipidomic Profiles

Coupled GC- and LC-MS/MS analyses resulted in 313
annotated lipid features. After discarding features containing
NA values, we retained 109 PL, 109 TAG, and 51 other
features (diacylglycerols, ceramides, free FA, and free lipids).
In subsequent analyses, we focused only on PL and TAG data
sets. Figure 2, A and B, presents the results of the PCAs
showing the ordination of classes within the first plane for PL
and TAG, separately. In both cases, the PCA revealed four

clearly distinct, nonoverlapping lipidotypes. Differences be-
tween control and cold-acclimated flies were mainly explained
by the first axis of the PCAs (PC1 � 67.5% of total inertia for
PL and 60.58% for TAG). Sexes differentiated along the
second axis with 21.59% of total inertia for PL and 31.53% for
TAG (PC1 � PC2 � 89.39% for PL and 92.11% for TAG).
Correlation values with PC1, PC2, and PC3 for each lipidomic
feature are available in Supplementary Table S2 for PL and
Table S3 for TAG (https://figshare.com/articles/Supplementary_
Tables_xls/7688354). Differences between lipidotypes were con-
firmed with Monte Carlo randomizations (observed P � 0.001
for both PL and TAG).

PL abbreviations of the various families are available in
Supplemental Table S4 (https://figshare.com/articles/Supple-
mentary_Tables_xls/7688354). Relative proportions of the PL
families relative to thermal treatments and sexes are shown
in Fig. 3, A-G. Relative proportions were calculated as the
sum of AUC of each PL divided by the sum of AUC of all
lipid features. We also calculated the ratio of PE/PC (phos-
phatidylethanolamine/phosphatidylcholine), which is dis-
played in Fig. 3H. Cold-acclimated flies were characterized
by a higher relative proportion of lysoPC, lysoPE, and PG
(Fig. 3 A, B, and E, F(1,16) � 6.91, P � 0.05; F(1,16) � 7.78,
P � 0.05; F(1,16) � 24.99, P � 0.001), whereas PC were
more abundant in control flies (Fig. 3C, F(1,16) � 7.13, P �
0.05). PS were relatively more abundant in cold-acclimated
flies, but in females only (Fig. 3G, treatment � sex inter-
action: F(1,16) � 5.12, P � 0.05). A similar difference was
observed for PE in cold-acclimated females, while males
followed the opposite trend (Fig. 3D, treatment � sex
interaction: F(1,16) � 14.29, P � 0.01). Consequently, this

Fig. 1. Cold tolerance assays on control and
cold-acclimated Drosophila suzukii males
and females. A: acute cold stress survival
after cold shock at �5°C for 100 min. Sur-
vival was measured 4, 24, and 48 h after cold
shock (n � 10 replicates of 10 flies per sex
and per condition). Bars represent survival
probability means 
 SE. Letters indicate
differences between widespread effects of
thermal treatments (GLMM Binomial, link
Logit). B: critical thermal minimum (Ctmin).
Temperature declined from 18°C to �5°C at
�0.5°C/min and Ctmin have been recorded
for each fly individually (n � 60 flies per
sex and per condition). Each point repre-
sents an individual Ctmin and bars repre-
sent mean Ctmin in °C. Letters indicate
differences between global effects of ther-
mal treatments (two-way ANOVA). C: chill
coma recovery time (CCRT). Flies were sub-
jected to 0°C for 12 h, and then their
individual CCRT was recorded at 25°C.
Each point corresponds to the CCRT of
one fly (n � 40 flies per sex and per
condition). Letters indicate significant dif-
ferences (P � 0.008, Gehan-Breslow-Wil-
coxon Test). CtrlM, control males; CtrlF,
control females; CAM, cold-acclimated
males; CAF, cold-acclimated females.
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pattern reverberated on a PE/PC ratio, which was higher in
cold-acclimated females than in control females but lower in
cold-acclimated males than in control males (Fig. 3H, treat-
ment � sex interaction: F(1,16) � 8.18, P � 0.05). Although we
also compared the relative proportions of TAG between cold-
acclimated and treated flies, we did not observe any differences
(control females: 0.84 
 0.005%; control males: 0.82 
 0.002%;
acclimated females: 0.82 
 0.006%; acclimated males: 0.85 

0.002%; effect of thermal treatment: F(1,16) � 1.10, P � 0.31;
effect of sex: F(1,16) � 3.02, P � 0.10).

FA Compositions of Carbon Chains

The metrics used to characterize FA compositions of PL and
TAG are shown in Fig. 4. The list of abbreviations for these ratios
is available in Supplemental Table S4 (https://figshare.com/
articles/Supplementary_Tables_xls/7688354). Cold-acclimated flies
showed a higher UFA/SFA ratio than control flies in both PL and
TAG (Fig. 4A), F(1,16) � 143.20, P � 0.001; F(1,16) � 2448.91,
P � 0.001, respectively). Likewise, cold-acclimated flies had a
higher PUFA/MUFA ratio than controls in PL and TAG (Fig. 4B,

Fig. 2. Principal component analyses (PC1 vs. PC2) on A: the 109 phospholipids (PL) and B: the 109 triacylglycerides (TAG) identified in control and acclimated
flies. Differences between lipidotypes were confirmed with Montecarlo randomizations (observed P � 0.001 for both PL and TAG). CtrlM, control males; CtrlF,
control females; CAM, cold-acclimated males; CAF, cold-acclimated females.

Fig. 3. A–G: relative proportions of the var-
ious families of phospholipids following the
different thermal treatments. H: ratio of the
relative proportion of PE on PC. a,bDiffer-
ences between global effects of thermal
treatments; *interactive effect between sexes
and thermal treatments (two-way ANOVA);
open circles, outliers. CtrlM, control males;
CtrlF, control females; CAM, cold-acclimated
males; CAF, cold-acclimated females; lysoPC,
lyso phosphatidylcholine; lysoPE, lyso phos-
phatidylethanolamine; PC, phosphatidylcho-
line; PE, phosphatidylethanolamine; PG, phos-
phatidylglycerol; PI, phosphatidylinositol; PS,
phosphatidylserine.
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F(1,16) � 89.51, P � 0.001; F(1,16) � 43.48, P � 0.001, respec-
tively). UI was relatively higher in cold-acclimated flies than in
control flies for TAG (Fig. 4C), F(1,16) � 1742.17, P � 0.001),
whereas for PL, it was higher only in cold-acclimated females
than control females, which resulted in a significant treatment �
sex interaction effect (Fig. 4C), F(1,16) � 21.63, P � 0.001).
Carbon chains lengths ratios were globally lower in cold-
acclimated flies than in control flies, except for TAG, which
showed no variation in 16C/18C ratio (16C/18C: Fig. 4D,
PL: F(1,16) � 104.35, P � 0.001; TAG: F(1,16) � 1.80, P �
0.20; Short/long: PL: Fig. 4E, F(1,16) � � 97.95, P �
0.001; TAG: F(1,16) � 56.86, P � 0.001).

Metabolic Profiling

Coupled GC-MS/LC-MS analyses produced 312 metabolic
features, among which 239 features were identified. From these
239 metabolites, 53 were discarded because they contained
missing values. The relative concentrations of the 186 remain-
ing metabolites, relative to treatments are available in Supple-
mental Fig. S1 (https://figshare.com/articles/Figure_S1_pdf/
7688357).

Abbreviations and chemical classes to which these metabo-
lites belong are displayed in Supplemental Table S5 (https://

figshare.com/articles/Supplementary_Tables_xls/7688354).
Metabolites were attributed to chemical classes based on the
Human Metabolome Data Base (http://www.hmdb.ca/).

The PCA of metabolomic samples, relative to thermal
treatments and sex is shown in Fig. 5A. The ordination of
classes within the first plane of the PCA showed four
distinct nonoverlapping metabotypes (i.e., the metabolic
compositions resulting from each phenotype). Differences
between cold-acclimated and control flies were mainly ex-
plained by PC1, which accounted for 58.64% of total inertia.
Sexes were opposed along PC2 which accounted for 30.26%
of total inertia (PC1 � PC2 � 88.9% of total inertia).
Differences between metabotypes were confirmed with
Monte Carlo randomizations (observed P � 0.001). Free
amino acids, carbohydrates, and analogs of purine and
pyrimidine were the main metabolite classes of the data set.
To increase visibility, the projections of these variables into
correlation circles are shown separately in Fig. 4, B–D.
These three correlation circles resulted from the same PCA.
In addition, the list of all correlation values associated with PC1
and PC2 for the 186 metabolites are available in Supp-
lementary Table S5 https://figshare.com/articles/Supplementary_
Tables_xls/7688354). The levels of several amino acids were

Fig. 4. A–E: ratios and unsaturation index calculated on fatty acid chains of phospholipids (PL) and triacylglycerides (TAG). Refer to MATERIALS AND METHODS

for the calculation of the different ratios and indexes. a,bDifferences between global effect of thermal treatments; *interactive effect between sexes and thermal
treatments (two-way ANOVA); open circles, outliers; CtrlM, control males; CtrlF, control females; CAM, cold-acclimated males; CAF, cold-acclimated females;
TAG, triacylglycerides; SFA, saturated fatty acids; UFA, unsaturated fatty acids; MUFA, mono-unsaturated fatty acids; PUFA, poly-unsaturated fatty acids; UI,
unsaturation index; 16C or 18C, chains with 16 or 18 carbon atoms; short: FA carbons chains � 16C; long: carbon chains � 16C.
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positively correlated with PC1 (i.e., relatively more abundant
in cold-acclimated flies) (Ser, Asn, Phe, Tyr, Met, Leu, etc.)
(Fig. 4B). The relative concentrations of several sugars were
also positively correlated with PC1, such as fructosylsucrose,
Pan, Raf, and Fru, whereas control flies were linked with
several polyols (xylitol, erythritol, glycerol; Fig. 4C). Finally,
the relative concentrations of the majority of purines and
pyrimidines were negatively correlated with PC1 (i.e., rela-
tively more abundant in controls), and only a few metabolites
of this class, such as deoxyinosine, uracil, and GMPC, were
positively correlated with PC1 (Fig. 4D).

Metabolite Set Enrichment Analysis

Univariate analyses showed that the relative level of 177
metabolites differed significantly between control and cold-

acclimated flies in males, whereas 112 metabolites differed
significantly in females (Supplemental Table S1, https://
figshare.com/articles/Supplementary_Tables_xls/7688354).
To test for enrichment of biologically meaningful pathways,
MSEA was performed in males and females separately, using
the lists of differentially expressed compounds. MSEA identi-
fied eight significantly impacted pathways in males and three
in females. These pathways, as well as the metabolites in-
volved in them, are displayed in Table 1. Two pathways were
shared between males and females: aminoacyl-tRNA biosyn-
thesis, and purine metabolism. These patterns were confirmed
with the Reactome pipeline; outcomes of these analyses are
available in Supplementary Tables S6 and S7 for males and
females, respectively (https://figshare.com/articles/Supplementary_
Tables_xls/7688354).

Fig. 5. A: principal component analysis (PC1 vs. PC2) on the
186 metabolites identified in our control and cold-accli-
mated flies. Differences between metabotypes were con-
firmed with Montecarlo randomizations (observed P �
0.001). Correlation circles from the principal component
analysis on B, free amino acids; C, carbohydrates and sugar
alcohols; and D, purines, pyrimidines, and analogs. CtrlM,
control males; CtrlF, control females; CAM, cold-accli-
mated males; CAF, cold-acclimated females.
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DISCUSSION

Cold Acclimation Increases Cold Tolerance of D. suzukii

As hypothesized, combined developmental and adult cold
acclimation greatly promoted cold tolerance in both males and
females D. suzukii, and this was consistently observed with all
tested metrics (i.e., survival, CCRT, and Ctmin. See Fig. 1). The
basal cold survival of control flies measured after exposure to
�5°C for 100 min was similar to data reported by Jakobs et al.
(45), and Everman et al. (28), (i.e., 20% survival after 1 h at
�7°C and 10% after 1 h at �6°C, respectively), and cold
acclimation greatly promoted acute cold stress survival, as
previously reported (105). Shorter CCRT after adult acclima-
tion has also been reported by Jakobs et al. (45). Finally, as
observed here, Toxopeus et al. (101), also observed a clear
decrease in Ctmin after combined developmental and adult
acclimation.

Several studies have reported that cold tolerance is highly
plastic in D. suzukii (37), especially when flies are cold-
acclimated during both developmental and adult stages (90,
101, 105), which could in part explain the fly’s success at
overwintering. Furthermore, previous work showed that devel-
opmental cold acclimation of D. suzukii under laboratory
conditions resulted in relatively bigger, darker and more cold-
tolerant flies, similar to individuals captured during winter in
invaded areas (90, 101, 105). Recently, it was shown that
laboratory maintenance does not alter ecological (stress toler-
ance) and physiological patterns of Drosophila species (68).
Yet, caution should be exercised in the extrapolation of these

data to field reality because results were obtained from a
laboratory-adapted line exposed to controlled thermal environ-
ment. In natural environment, insects may be exposed to
multiple and repeated stresses that may affect patterns of cold
tolerance (52).

Cold Acclimation-Driven Phospholipidic Readjustments

The mechanisms underlying cold tolerance acquisition in D.
suzukii remain poorly understood and our goal here was to
explore lipidomic readjustments driven by cold acclimation.
Exposure to cold acclimation often induces marked alterations
in lipid composition and physical properties (fluidity) of mem-
branes, a response conserved among taxa (18, 33, 40, 41, 57,
83). We identified �100 different PL. The PL composition of
membranes was mainly dominated by PE and PC in D. suzukii
(see Supplemental Table S2 (https://figshare.com/articles/
Supplementary_Tables_xls/7688354), similarly to the mem-
brane composition of D. melanogaster (9, 15, 38, 46, 56). Cold
acclimation induced significant changes in PL composition that
resulted in a distinct differentiation among the lipidotypes (Fig.
2) and reshuffled the PL headgroups (Fig. 3). The major
changes induced by acclimation were observed in both males
and females, although responses were sometimes sex specific,
which might explain why lipidotypes of males and females did
not overlap. LysoPE and lysoPC were relatively more abun-
dant in cold-acclimated males and females. Even if LysoPL
represent only a minor proportion of membrane’s PL, they
seem to play important roles in membrane response to cold
temperatures in D. melanogaster (15). LysoPL have an in-

Table 1. Outcomes from pathway analysis using Metaboanalyst 4.0

Pathway Total Hits P Impact Decreased Metabolites Accumulated metabolites

Males
Histidine metabolism 7 4 �0.01 1 His; histamine; imidazoleacetic acid;

methylhistidine
Alanine, aspartate and glutamate

metabolism
23 7 �0.01 0.635 Asp; Gln; Glu; fumarate Arginiosuccinicate; Asn;

glucosamine
6-phosphate

Ascorbate and aldarate metabolism 6 3 �0.05 0.5 Myo-inositol; D-glucuronic acid; D-saccharic acid
Cysteine and methionine metabolism 25 6 �0.05 0.496 L-Cysteine; S-adenosyl methionine;

5=-methylthioadenosine
L-methionine;L-serine;

L-Cystathionine
Arginine and proline metabolism 37 10 �0.01 0.294 Gln; Cit; Asp; Pro; Glu; S-adenosylmethionine;

hydroxyproline; fumarate
argininosuccinicate; urea

Purine metabolism 64 14 �0.01 0.147 GDP; xanthine; Gln; AMPc; AMP;
deoxyadenosine monophosphate;
hypoxanthine; inosine; urate; guanosine;
GMPc; adenine; allantoate

Deoxynosine;
deoxyguanosine

Aminoacyl-tRNA biosynthesis 67 15 �0.01 0.137 His; Gln; Cys; Gly; Lys; Pro; Glu; Asp Ser; Met; Asn; Phe; Ile;
Leu; Tyr

Starch and sucrose metabolism 17 6 �0.01 0.129 Suc; Tre; Glc; D-glucuronic acid Fru, Mal
Taurine and hypotaurine metabolism 6 3 �0.05 0.5 Cys; taurine; hypotaurine

Females
Purine metabolism 64 11 �0.05 0.167 GDP; xanthine; AMPc; AMP; GMP; urate;

guanosine; allantoate; adenylsuccinic acid
Deoxynosine;

deoxyguanosine
Aminoacyl-tRNA biosynthesis 67 14 �0.01 0.137 His; Cys; Gly; Asp; Lys; Pro; Glu Asn; Phe; Ser; Met; Leu;

Trp; Tyr

Analysis was performed on pooled down- and upregulated metabolites. Total refers to the number of metabolites included in the respective pathways, and hits
refers to the number of metabolites from the input list Supplemental Table S1 (see https://figshare.com/articles/Supplementary_Tables_xls/7688354) identified
in the pathway. The P value resulted from metabolite set enrichment analysis (MSEA). Impact corresponds to the pathway impact value calculated from pathway
topology analysis. List of metabolites identified in each pathway are separated depending on their fold change in cold-acclimated flies in comparison with controls
(decreased or increased). Males and females have been analyzed separately.
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verted conical shape, which disrupts the tight packaging of PL
membranes, thus increasing their fluidity (53). Their precise
functions relative to cold tolerance, however, still need to be
clearly defined. Moreover, PG accumulated in response to cold
acclimation in both sexes, whereas PS accumulated only in
females. PG are common PL of cell membranes and play
important roles in response to environmental variations and in
membrane fluidity (67). PC declined after cold acclimation in
both sexes, while PE and the PE/PC ratio declined in cold-
acclimated males and increased in cold-acclimated females.
Changes in the PE/PC ratio is a common response to cold
temperatures in insects (33, 100). In males and females Dro-
sophila melanogaster, cold acclimation, or fluctuating cold
temperatures leads to an augmentation of the PE/PC ratio (15,
16, 83), but not rapid cold hardening (70). PC arbore a
cylindrical form, which provides membranes a highly orga-
nized, compact and rigid structure (53). Consequently, a de-
cline in PC at the expense of other PL is supposed to increase
membrane fluidity (40, 53).

Lipid restructuring was also visible at the scale of FA chains
of PL: we observed relative increases in the proportions of FA
unsaturation and polyunsaturation after cold acclimation (Fig.
4, A and B). As mentioned earlier, desaturation of FA is a
common response to cold in poikilotherms (53) and insects (3,
49, 57). In Drosophila species, several studies reported no
evidence of marked desaturation of FA in response to low
temperatures (15, 16, 70, 76, 83); however, other studies have
reported increases in unsaturation ratios in response to cold
selection (34) or temperature shifts (17). Desaturation of FA is
linked to fatty-acyl-CoA desaturase activity (19, 49). These
enzymes insert cis double bonds into carbon chains of FA,
resulting in a bend of ~30°. Therefore, UFA occupy more
space in the PL bilayer than do SFA, resulting in a reduction in
the tight packing of PL, which, in turn, increases membrane
fluidity (53).

Fatty acids of PL were also characterized by an increase of
their carbon chain lengths after cold acclimation (a decline in
the 16C/18C ratio and short/long ratio, (Fig. 4, D and E).
Usually in insects, cold hardiness is linked to FA shortening (1,
2, 74), but there are several cases where the opposite pattern
has been observed (3, 4, 54, 85). In Drosophila species, the
pattern varies, with some studies reporting an increase (15, 76,
78, 82), some a decrease (83), and some no change (81) in
16C/18C ratios in response to various low temperature treat-
ments. These incongruities may be due to the variety of cold
treatments applied and analyzed, ranging from short-term plas-
tic responses to cold to long-term cold adaption. Koštál (53)
suggested that desaturation of FA and shortening of carbon
chain length could occur alternatively in organisms to obtain a
similar result: an increase in membrane fluidity.

The overall PL adjustments resulting from gradual cold
acclimation in D. suzukii, (PL headgroup modifications and
desaturation of FA) are typical responses fitting with homeo-
viscous adaptation, thus confirming our hypothesis. These
modifications may contribute to the maintenance of membrane
fluidity and functions under cold temperatures and partly ex-
plain the enhanced cold tolerance of cold-acclimated flies.

In this work, we used a cold acclimation protocol similar to
that of Toxopeus et al. (101). These authors showed that female
flies exposed to this cold acclimation had arrested ovarian
development. Therefore, differences observed here between

cold-acclimated and control flies could also result, at least in
part, from differences in reproductive status of flies (35).
However, the fact that cold acclimation patterns were found in
both males and females suggests that differential oogenesis
was not a major confounding effect. Both lipidomic and
metabolomics profiles change with age and aging (14, 35, 43,
86). Since physiological age of acclimated flies could slightly
differ from that of control, this may partly account for differ-
ences between our treatment groups.

Changes in Stored Lipids

Cold acclimation did not induce changes in the relative
amount of TAG found in D. suzukii males or females, thus
confirming previous results (101). However, we noticed an
increase of the proportions of UFA and PUFA in TAG from
cold-acclimated flies (Fig. 4, A and B). TAG desaturation is
commonly observed before or on experiencing a decline in
body temperature among poikilotherms (41), including insects
(3, 36, 57, 102) such as drosophilids (76, 77). TAG represents
the major energy source in insect tissues (36, 91). Low tem-
peratures increase the viscosity of TAG, which tends to hamper
their accessibility for basal metabolism. As for desaturation of
FA in membrane PL, desaturation of TAG decreases their
melting point, thus increasing fluidity and accessibility at cold
temperatures (57, 87, 102).

Changes in Metabolic Composition

Through alteration of many metabolic pathways (Table 1),
cold acclimation resulted in metabotypes that were clearly
distinct from those of nonacclimated counterparts in both
males and females (Fig. 5A). Only two altered pathways were
shared between cold-acclimated males and females: purine
metabolism and aminoacyl-tRNA biosynthesis. The majority
of purines and pyrimidines were correlated with nonacclimated
controls (Fig. 5D). Changes in purine metabolites and purine
metabolism in insects in response to low temperatures have
been reported in previous studies (71, 106). In the psyllid
Diaphorina citri for example, it was evidenced that after 5 days
of exposure at 35, 20, or 5°C the nucleotides and sugar-
nucleotides were all correlated with warm temperatures, re-
flecting the pattern found in our present study. Purine and
pyrimidine nucleotides have essential functions: building
blocks of DNA and RNA, energy carriers, and cell signaling
molecules, and they play a central part in metabolism (47).
Because of these multiple roles, it would be premature to
speculate about the precise involvement of these molecules in
cold acclimation. However, we can assume that low tempera-
ture during acclimation may affect intracellular nucleotide
pools, which could consequently affect the kinetics of metab-
olism.

Purines are also directly involved in transcription and trans-
lation (47). Therefore, the alteration of purine metabolism, as
suggested by our data, could be linked to the alteration of the
aminoacyl-tRNA biosynthesis pathway (Table 1). RNA se-
quencing has revealed that aminoacyl-tRNA biosynthesis was
the most altered pathway after cold-acclimation in D. melano-
gaster (71). Similarly, in D. suzukii, RNA sequencing demon-
strated that cold acclimation resulted in the downregulation of
several functions and processes involved in DNA translation
(90). All these modifications could be linked with a global
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decline of the translational machinery due to low tempera-
tures (98).

We hypothesized that cold acclimation would be correlated
with mobilization of cryoprotectant molecules, specifically
amino acids (e.g., Pro, Arg) and sugars (e.g., Glc or Tre).
According to PCA, it appeared that metabolic profiles of
cold-acclimated flies were correlated with relative increases in
many amino acids (Ser, Asn, Phe, Tyr, Met, Leu, etc., Fig. 5B).
This was reflected in MSEA, which detected the involvement
of pathways related to several amino acids in cold-acclimated
males. Amino acids are known to act as cryoprotectants in
insects, especially Pro (56, 58, 61), Arg (55), and Ala (65, 75).
However, in this study, changes in Ala and Pro levels were
correlated with differences between sexes but not with thermal
treatments (Fig. 5B), although their metabolic pathways were
significantly altered in males (Arg and Pro metabolism; Ala,
Asp, and Glu metabolism, see Table 1). Other amino acids
(such as Val, Leu, Ser, Thr, Ile, Asn, His, or Glu) are known to
accumulate in response to cold in D. melanogaster (11, 56). In
a previous targeted study (27), we observed a similar mobili-
zation of amino acids after cold acclimation in D. suzukii.
Except from Pro and Arg that have strong and well-defined
cryoprotective roles in promoting cold/freeze tolerance in Dro-
sophila, many other amino acids can also show mild positive
effects at some concentrations, such as Val, Ile, Leu, and Asn
(55). Our previous results (27) showed that amino acids con-
centrations in acclimated flies did not exceed the nmol/mg. At
these concentrations it is unlikely that amino acids contribute
to cold tolerance through colligative effects, but they could still
act at low concentrations by protecting and stabilizing struc-
tures of macromolecules (107).

We also observed changes in the relative level of several
carbohydrates linked to cold-acclimated flies (e.g., Pan, Raf,
Fru, fructosylsucrose, Fig. 5C). In addition, the starch and
sucrose metabolism pathway was significantly altered in cold-
acclimated males (Table 1). Cold tolerance is associated with
increased carbohydrate concentrations in various insect species
(24, 110) and in D. melanogaster (11, 56, 80). Furthermore, in
D. suzukii and D. melanogaster, transcriptomic data suggest
that carbohydrates and starch and sucrose metabolism path-
ways were altered by cold acclimation (71, 90). Tre is one of
the carbohydrates that is most commonly correlated with cold
tolerance (48, 56, 95); but in the present study, Tre was not
linked with cold-acclimated flies. In a previous work, however,
we showed that several carbohydrates accumulate in D. suzukii
after cold acclimation, including Tre (27).

The protocol used in the present study was somewhat spe-
cific, as it combined juvenile and adult cold acclimation.
Physiological patterns may vary by using different acclimation
procedures (stage, temperature, or photoperiod for example).
In addition, it is conceivable that metabolic remodeling ob-
served after acclimation might result from nonadaptive
changes that are nonessential for cold tolerance acquisition.
Indeed, it is possible that some of these changes resulted for
moderate low temperature during cold acclimation, as cold
exposure is known to trigger metabolic alteration (11, 80, 97,
106). However, we previously showed that after a similar cold
acclimation procedure, D. suzukii flies were able to maintain
metabolic homeostasis after a cold stress, contrary to non-cold
acclimated individuals (27).

Perspectives and Significance

This study represents the first large-scale analysis of cold
acclimation response in the invasive pest D. suzukii, based on
combined lipidomic and metabolic approaches. We showed
that acquiring cold tolerance thanks to cold acclimation gen-
erated a phenotype that was clearly distinct from control
phenotypes at both the lipidomic and metabolic levels. This
suggests a system-wide reprogramming in response to cold
acclimation across a variety of metabolic pathways and lipidic
changes. We showed that acquired cold tolerance in D. suzukii
correlated with homeoviscous adaptations of membrane PL,
increased fluidity of stored lipids, and deep metabolic adjust-
ments involving compatible solutes, such as sugars and various
amino acids. The acclimated phenotype resulting from our
experiments was relatively similar to those observed in wild
flies captured in autumn and winter. These winter flies proba-
bly resulted from larvae and pupae that developed in fruits in
autumn (50). Hence, they may acclimate during both develop-
ment and as adult (28, 84, 90, 93, 101, 105). Therefore, it is
likely that wild D. suzukii can use physiological adjustments
similar to the ones we described here to enhance their cold
tolerance and successfully overwinter in invaded areas. Our
data provides novel information on D. suzukii cold physiology
and contributes to a better understanding of its thermal biology.
Future studies should analyze the physiological strategies used
by D. suzukii in nature during autumn and winter to assess if
they use strategies similar to what we identified in laboratory
cold-acclimated flies.
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