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Abstract

Advanced manufacturing technologies (AMTs) are more and more used by

firms to perform repetitive tasks in the production processes. As opting for

an ATM represents an important investment for firms, several methodologies

have been suggested to help firm decision-makers selecting the best one. A

popular concept in that context is the cross-efficiency technique. In short, it

endogenously selects the best ATM by computing scores using linear program-

mings. In this paper, we extend the cross-efficiency technique by adding a new

feature: we model ATMs as multi-task processes. The multi-task approach

presents two main advantages. One, it naturally gives the option to allocate

inputs/costs and indicators/attributes to every task, yielding to a more realist

modelling of the AMT processes. Two, AMTs can be compared for every task

separately, increasing the discriminatory power of the selection process. As a

consequence, the overall performances can be better understood, and, in par-

ticular, the reasons for declaring a specific AMT to be best can be investigated.

We demonstrate the usefulness of our approach by considering a numerical ex-

ample and two applications. In each case, we demonstrate the practical and

managerial usefulnesses of our approach.
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�HEC Liège, Université de Liège, Belgium. email: barnabe.walheer@uliege.be.

1



1 Introduction

An increasing number of production processes are using advanced manufacturing tech-

nologies (AMTs). The benefits of opting for AMTs are clear for firms: AMTs can be

programmed to keep a constant speed and a predetermined quality when performing

one or several tasks repetitively, even if the work conditions are not sustainable for

humans. As such, AMTs increase the flexibility, improve product quality, reduce pro-

duction and delivery delay, save labour costs, and so on; with the ultimate benefits of

reducing costs and increasing profit. Examples of AMTs include group technologies,

industrial robots, computer numerical control machines, flexible manufacturing sys-

tems, intelligent integrated manufacturing technologies, incremental manufacturing

technologies, and cellular manufacturing systems.

The popularity of AMTs implies that several types/models are available. There-

fore, the natural question for firms is how to decide which one to buy? In other words,

how to select the best or the most efficient one? Answering these questions, while of

crucial importance for firms since AMTs represent an important investment, is not

an easy task in practice. Indeed, AMT selection is generally a multi-criteria decision-

making process. That is, AMTs are measured by various quantitative and qualitative

performance attributes/indicators representing the different tasks. As such, to rank

the different AMTs that are available in order to select the best one, the first step is

to aggregate the various attributes by defining weights.

In general, selecting the weights is difficult for firms, and when they can define

values for the weights, it induces the presence of subjectivity into the selection process.

As a consequence, the best AMT could be different for different firms. Clearly, this

is not very attractive. An alternative is to rely on endogenous weights; that is,

weights determined by a specific method. Amongst the methods used in this context,

Data Envelopment Analysis (DEA) has gained in popularity. DEA, introduced by

Charnes, Cooper, and Rhodes (1978), has become popular both as an analytical

research instrument and as a practical decision-support tool. In practice, efficiency

scores are provided by the DEA approach making the ranking between the ATMs

easy. Nevertheless, as it is not guaranteed that only one ATM obtains the highest

efficiency score, the concept of DEA cross-efficiency has been introduced by Doyle

and Green (1994).

In this paper, we present a new DEA-based multi-task cross-efficiency approach.
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The main idea is to keep the advantages of the DEA cross-efficiency while offering a

more realistic modelling of the ATM production process. Indeed, to date, AMTs are

modelled as overall processes that use inputs/costs to perform one or several tasks.

Alternatively, we suggest modelling AMTs by considering each task individually. This

offers two main advantages: it increases the realism of the modelling by giving the

option to allocate the inputs/costs and the indicators/attributes to each task; and

AMTs can be compared for every task. All in all, the multi-task approach does

not alter the advantages of the cross-efficiency technique but only add a new useful

feature.

The rest of the paper is structured as follows. In Section 2, we present a brief

literature review of the models used to classify ATMs. In Section 3, we introduce the

multi-task approach for cross-efficiency. In Section 4, we present an illustration and

two applications. In Section 5, we present our conclusions.

2 Literature review

The multi-task cross-efficiency approach is directly related to the concept of cross-

efficiency and to the multi-output approach for efficiency analysis. Before explaining

our contribution, we propose a brief literature review of these two concepts. This

allows us to better posit our approach in the relevant literature.

2.1 Cross-efficiency

We can regroup existing methods to classify ATMs into two categories: exogeneous

methods that induces the presence of subjectivity into the selection process; and

endogenous weights; that is, weights determined by a specific method. Examples of

methods include scoring models, analytic hierarchy processes, techniques for order

preference by similarity to ideal solution, outranking methods, goal programming

models, stochastic methods, fuzzy MCDM methods, and life-cycle cost models. For

applications, see, for example, Ghandforoush, Huang, and Taylor (1985), Imany and

Schlesinger (1989), Sambasivarao and Deshmukh (1997), Parkan andWu (1999, 2000),

Braglia and Gabbrielli (2000), Karsak (2002), Karsak and Ahiska (2005, 2008), Amin

and Emrouznejad (2007), Folgado, Pecas, and Henriques (2010), Kreng, Wu, and

Wang (2011), Ghazinoory, Daneshmand-Mehr, and Azadega (2013), Oztaysi (2014),
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and Ren and Lutzen (2015).

One technique that has gained popularity as an analytical research instrument

and as a practical decision-support tool is DEA, introduced by Charnes, Cooper, and

Rhodes (1978). The goal of such analysis is to compare the performances of Deci-

sion Making Units (DMUs; in our context, the DMUs are the AMTs) by evaluating

their efficiency. The increasing attention of DEA for AMT selection contexts could

be explained by two main reasons. One, the weights are given by solving mathemat-

ical models. Two, DEA does not make any assumptions regarding the relationship

between the inputs/costs and the attributes/indicators representing the tasks.

Nevertheless, DEA-based methods are not built to select only one AMT. Indeed,

these methods are built to evaluate efficiency of DMUs, but nothing guarantees that

only one DMU is set as efficient. In fact, in general, several DMUs are declared as

efficient. In the context of selecting the best AMT, this feature of DEA is clearly not

attractive. To overcome this drawback, Doyle and Green (1994) suggested using the

concept of cross-efficiency, introduced by Sexton, Silkman, and Hogan (1986), in the

DEA models. In words, cross-efficiency evaluation uses a peer-evaluated approach

for efficiency evaluation of the DMUs. As such, DEA-based cross-efficiency methods

guarantee that only one AMT is set as the best one, while DEA-based methods cannot

guarantee this feature. This model has received a lot of attention as it is easy to use

and to interpret in practice. For applications and extensions, see, for example, Doyle

and Green (1995), Green, Doyle, and Cook (1996), Baker and Talluri (1997), Shang

and Sueyoshi (1995), Talluri and Yoon (2000), Anderson, Hollingsworth, and Inman

(2002), Sun (2002), Ertay and Ruman (2005), Liang et al. (2008a, b), Wu, Liang, and

Chen (2009), Wu, Liang, and Yang (2009), Wang and Chin (2010), Jahanshahloo et al

(2011), Wu et al (2011), Contreras (2012), Lim (2012), Macro et al (2012), Maddahi

et al (2014), Cook and Zhu (2014), Du et al (2014), Lim, Oh, and Zhu (2014), Cui

and Li (2015), and Wu et al (2016a, b).

2.2 Multi-output efficiency

The multi-output DEA approach for evaluating the efficiency of production processes

considers that each output can be modelled individually. In other words, there ex-

ists output-specific production processes. This is different from more standard DEA

models that consider an overall productions processes for all outputs and all inputs
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only. The multi-output modelling dates to Samuelson (1966), Lau (1972), Hall (1973),

Kohli (1983, 1985), van den Heuvel (1986), and has been considered, more recently,

by Fernandez, Koop, and Steel (2000, 2002, 2005), Ferreira and Steel (2007), Cher-

chye et al (2013), Cherry et al (2014), Cherchye, De Rock and Walheer (2015, 2016),

Walheer (2016a, b, 2018b, c, f), and Walheer and Zhang (2020).

The multi-output approach offers two main advantages. First, it offers a more re-

alistic modelling of the output productions by giving the option to allocate the inputs

to the outputs. Different types of inputs have been considered such as joint inputs,

private inputs, output-specific inputs, sub-joint inputs, and proportional inputs. See,

for example, Salerian and Chan (2005), Despic, Despic, and Paradi (2007), Cher-

chye, De Rock, and Vermeulen (2008), Färe and Grosskopf (2000), Färe, Grosskopf

and Whittaker (2007), Tone and Tsutsui (2009), Cherchye, De Rock, and Walheer

(2015), and Walheer (2018e) for more discussion. These authors consider that avail-

able information about the production process can be used to allocate the inputs to

the outputs.

A second advantage of the multi-output setting is that it naturally provides more

detailed information about the (in)efficiency behaviour of the production processes.

Contrary to more standard DEA models that only provide an overall efficiency score,

multi-output DEA models also provide efficiency score for each output. These output-

specific efficiency scores allow us to better understand the overall (in)efficiency be-

haviour.

2.3 Multi-task cross-efficiency

In this paper, we suggest to consider AMTs as multi-task processes. This offers several

advantages. Firstly, it increases the realism of the modelling by giving the option to

allocate the inputs/costs and the indicators/attributes for each task. Indeed, while

some inputs/costs are used to perform all tasks, some other inputs/costs could be

used for specific tasks. Also, it could be that some indicators measure some specific

tasks. Next, AMTs can be compared for every task. Indeed, by modelling each

task separately, cross-efficiency can be evaluated for each task. As a consequence,

the overall performances can be better understood, and, in particular, the reasons of

declaring a specific AMT to be best can be investigated. Therefore, more detailed

information can be provided to firms when selecting their ideal AMT. This allows

5



them, for example, to select the AMTs given their relative preferences for each task.

In other words, the discriminatory power of the technique is improved.

One immediately appreciates the conceptual similarity between the multi-output

modelling for efficiency analysis and the multi-task approach for cross-efficiency anal-

ysis. The main difference is that the multi-task modelling is more complex, as each

task is composed of several indicators/attributes. Moreover, in production contexts,

it is not generally required to declare only one DMU as the best one. All in all, these

two similarities imply that the multi-task setting is more general than the multi-

output setting and that our modelling is not limited to AMT selection problems (see,

Section 4.3 for an application to selecting R&D projects).

3 Methodology

We consider that K AMTs are available, and that the aim is to find the best one/the

most efficient one. We asume that AMTs are built to do N tasks. Also, we assume

that P inputs/costs, captured by x = (x1, . . . , xP )
′ ∈ RP

+, are used by the AMTs

to perform the tasks, and that the tasks are proxied by Q indicators/attributes,

captured by y = (y1, . . . , yQ)
′ ∈ RQ

+.
1 In the following, we consider the aggressive

cross-efficiency model introduced by Doyle and Green (1994). It is straightforward

to extend to the beneficent counterpart (in fact, it suffices to change min by max

in Step 3), or to alternative secondary goals (as those of, for example, Liang et al

(2008), Wang and Chin (2010), Jahanshahloo et al (2011), and Contreras (2012)).

We consider the aggressive cross-efficiency model given its popularity for practical

applications.

3.1 Multi-task production process

Before presenting the multi-task approach, we briefly explain how the cross-efficiency

technique introduced by Doyle and Green (1994), and used in most of the following

papers (see the citations in the Introduction), model the AMTs. This allows us to bet-

ter position the new approach. In Doyle and Green’s (1994) approach, the distinction

between tasks do not exist. As such, they consider AMTs as overall processes that use

1Note that, in general, the number of indicators/attributes exceed the number of tasks, i.e.
Q ≥ N , but this is not required by the multi-task approach.
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inputs/costs to perform the tasks, proxied, by the indicators/attributes. This implies

that the links between inputs/costs and tasks, and between attributes/indicators and

tasks are not taken into account. In other words, the inputs are used simultaneously

to perform all the tasks, and the attributes/indicators are not related to the tasks.

Doyle and Green’s (1994) approach for the AMT process is displayed in Figure 1(a).

As shown in this Figure, all the inputs are used simultaneously to perform the tasks,

and tasks and indicators are considered together.

Inputs

Task 1
Task 2

.

.

.

.
Task N

Indicator 1
Indicator 2

.

.

.

.
Indicator Q

(a) Overall approach

Task-specific inputs 1

Task-specific inputs 2

Task-specific inputs N

...

Multi-task inputs

Task 1

Task 2

Task N

........

Indicators 1

........

Indicators 2

Indicators N

(b) Multi-task approach

Figure 1: AMT processes

On the contrary, the multi-task approach does not consider the AMT as an overall

process that uses inputs/costs to perform several tasks, but rather, models each task

individually. As a consequence, the inputs/costs can be allocated to each task, and
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the indicators/attributes can be related to every task. The multi-task approach for

AMT is displayed in Figure 1(b). Two different types of inputs are considered in the

multi-task approach. On the one hand, multi-task inputs are those used to perform

all tasks. On the other hand, task-specific inputs are those used for a specific task.

Also, the indicators/attributes are related to the task they actually measure. At this

point, it should be clear that indicators are vectors (from 1 to N) in Figure 1(b),

while they are numbers (from 1 to Q) in Figure 1(a).

To facilitate the presentation of the multi-task approach, we introduce two extra

notations: the inputs used to perform a specific task n, denoted by xn = (xn
1 , . . . , x

n
P )

′ ∈
RP

+, and the indicators proxying task n, denoted by yn = (yn1 , . . . , y
n
Q)

′ ∈ RQ
+. At-

tractively, these two concepts could be directly connected to the initial definitions of

inputs/costs (x), and indicators/attributes (y).

The inputs used to perform task n are defined, for every AMT k, as follows:

xn
pk =

{
xpk, for p a multi-task input,

anpkxpk, for p a task-specific input.
(1)

anpk represents, for each AMT k, the share of task-specific input p used to perform

task n. By construction anpk are non-negative and sum to 1 over tasks:
∑N

n=1 a
n
pk = 1.

In a similar vein, the indicators that proxy task n can be obtained, for each AMT

k, from the initial set of indicators as follows:

ynqk =

{
yqk, if indicator q measures task n,

0, if indicator q does not measure task n.
(2)

At this point, we emphasize that, in the following, we assume that the allocation of

the inputs and of the indicators to tasks are observed (that is xn
k , and yn

k are observed

for every n and k). It could be that, in some settings, this information is not or only

partially observed, at both the task or AMT levels. In that case, it would only

complicate the computational aspect, and not impact the advantages of the proposed

approach. In particular, the programs explained in Section 3.2 would be non-linear.

In that case, transformations of the variables in the programs or assumptions about

the allocation could be used to make the programs linear. One way to proceed is

to try to recover the allocating factors. Inspiration could be found, for example, in

Beasley (2003), Li, Yang, Liang, and Hua (2009), Yu, Chern, and Hsiao (2013) and
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Du, Cook, Liang, and Zhu (2014). Those works have discussed how to recover the

allocation of inputs to outputs in production contexts. Another way is to assume

that all the inputs are multi-task inputs. For the attributes, we could, for example,

rely on correlations to allocate those concepts to the tasks.

Also, it is worth noting that the allocation of inputs/costs and indicators/attributes

to tasks is only an advantage of the multi-task approach. Indeed, even when no allo-

cation is assumed, multi-task modelling gives the advantage of providing task-specific

efficiency and cross-efficiency measurements. See Section 4.2 for an illustration.

As a final remark, it is important to note that the definitions of our concepts of

inputs allocated to task and of indicators/attributes measuring specific tasks could

be extended to match applications. For example, we could consider the case of inputs

that are used to perform a sub-set of tasks. Next, we could consider the case of shares

(conceptually similar to the anpk’s defined for the inputs) for the indicators/attributes.

3.2 Linear programmings

Our objective is to obtain cross-efficiency scores to evaluate the ATMs while recog-

nizing the multi-task nature of the AMTs. As explained before, we use a DEA-based

approach as it does not require a subjective judgment but rather use endogenous

weights. The algorithm consists of five main steps. First, efficiency scores for each

task of every ATM are computed. This is done by, first, solving DEA-based linear

programs (Step 1) and, second, computing task-specific efficiency scores (Step 2).

Next, cross-efficiency scores for each task of every ATM are computed. Again, two

steps are needed: first, DEA-based linear programs are used (Step 3), and, second,

task-specific cross-efficiency scores are computed (Step 4). Note that the task-specific

efficiency scores are needed to compute the task-specific cross-efficiency scores (see

(C-3) of (5)). Note that the task-specific scores are independent: it is possible that

an ATM has a high score for a specific task and a low score for another task. Fi-

nally, cross-efficiency scores for each ATM are obtained as a weighted sum of the

task-specific counterparts (Step 5).

The linear programs for the multi-task approach are very similar to the ones pro-

posed by Doyle and Green (1994) to compute cross-efficiency of AMTs.2 The main

2Linear programmings are easy to solve and deal with. This represents an advantage of the
suggested methodology. Note that in these programs the value of ϵ has to be selected by the
practitioners. Usually a small enough number is picked (Podinovski and Bouzdine-Chameeva, 2017).
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difference is that the constraints are defined for each task individually, while in Doyle

and Green’s (1994) approach, the constraints are defined for all tasks simultaneously.

In fact, both approaches coincide when there is only one task (N = 1) for the AMT

process. Indeed, in one-task contexts, all the inputs are used for that task, and all

indicators also measure that specific task. When there is more than one task, the two

approaches no longer coincide. One advantage of the multi-task approach is to pro-

vide task-specific performance indicators, while this is not possible when considering

Doyle and Green’s (1994) approach. Also, the multi-task approach gives the extra

advantage of giving the option to allocate inputs, and relate indicators/attributes to

every task. All in all, the multi-task approach, while remaining consistent with Doyle

and Green’s (1994) approach, gives the advantages of providing more detailed results

and improving the realism of the modelling of the AMT process.

Step 1. Solve the following linear program for each AMT k ∈ {1, . . . , K}:

max
un
qk (q∈{1,...,Q},n∈{1,...,N}),vnpk (p∈{1,...,P},n∈{1,...,N})

N∑
n=1

Q∑
q=1

un
qky

n
qk

s.t. ∀n ∈ {1, . . . , N}, the following holds:

(C-1) :

∑Q
q=1 u

n
qky

n
qs∑P

p=1 v
n
pkx

n
ps

≤ 1, for s = 1, . . . , K,

(C-2) : un
qk ≥ ϵ, for q = 1, . . . , Q,

(C-3) : vnpk ≥ ϵ, for p = 1, . . . , P,

(C-4) :
N∑

n=1

P∑
p=1

vnpkx
n
pk = 1. (3)

Step 2. Compute the task-specific efficiency scores for each AMT k ∈ {1, . . . , K}:

θnk =

∑Q
q=1 u

n∗
qky

n
qk∑P

p=1 v
n∗
pkx

n
pk

, for n = 1, . . . , N, (4)

Finally, it is worth mentioning that, in some cases, multiple optimal solutions could be found in
models (3) and (5). In that case, this would lead to several cross-efficiency scores and thus a
difficulty to find the best ATM. More discussions and potential solutions are provided, for example,
in Appa (2002) and Oral et al. (2015). We also refer to Charnes, Cooper, and Rhodes (1978) for
more discussion about the multiplicative DEA models and their features (e.g. feasibility, objective
function, linearization).
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where un∗
qk , for q = 1, . . . , Q, and vn∗pk , for p = 1, . . . , P , are the optimal values found

after solving (3).

Step 3. Solve the following linear program for each AMT k ∈ {1, . . . , K}:

min
νnqk (q∈{1,...,Q},n∈{1,...,N}),µn

pk (p∈{1,...,P},n∈{1,...,N})

N∑
n=1

Q∑
q=1

νn
qk

(
K∑

s=1,s ̸=k

ynqs

)
s.t. ∀n ∈ {1, . . . , N}, the following holds:

(C-1) :

∑Q
q=1 ν

n
qky

n
qs∑P

p=1 µ
n
pkx

n
ps

≤ 1, for s = 1, . . . , K,

(C-2) :
N∑

n=1

P∑
p=1

µn
pk

(
K∑

s=1,s ̸=k

xn
ps

)
= 1,

(C-3) :

∑Q
q=1 ν

n
qky

n
qk

θnk
∑P

p=1 µ
n
pkx

n
pk

= 1,

(C-4) : νn
qk ≥ ϵ, for q = 1, . . . , Q,

(C-5) : µn
pk ≥ ϵ, for p = 1, . . . , P. (5)

Step 4. Compute the task-specific cross-efficiency scores for each AMT k ∈ {1, . . . , K}
with respect to AMT s ∈ {1, . . . , K}:

γn
ks =

∑Q
q=1 ν

n∗
qs y

n
qk∑P

p=1 µ
n∗
psx

n
pk

, for n = 1, . . . , N, (6)

where νn∗
qs , for q = 1, . . . , Q, and µn∗

ps , for p = 1, . . . , P , are the optimal values found

after solving (5) for every AMT s ∈ {1, . . . , K}.

Step 5. Compute the cross-efficiency scores for each AMT k ∈ {1, . . . , K}:

γn
k =

1

K

K∑
s=1

γn
ks, for n = 1, . . . , N. (7)

3.3 Overall efficiency and cross-efficiency measurements

When selecting the best AMT, it is also important to provide efficiency and cross-

efficiency measurements when considering all tasks together. Those measurements al-
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low us to compare AMTs overall, while the task-specific efficiency and cross-efficiency

allow us to rank AMTs for each task individually. Given the task-specific efficiency

and cross-efficiency measurements defined previously in (4), (6) and (7), natural coun-

terparts at the overall level are given for every AMT k ∈ {1, . . . , K} by:

θk =

∑N
n=1

∑Q
q=1 u

n∗
qky

n
qk∑N

n=1

∑P
p=1 v

n∗
pkx

n
pk

=
N∑

n=1

Q∑
q=1

un∗
qky

n
qk. (8)

γks =

∑N
n=1

∑Q
q=1 ν

n∗
qs y

n
qk∑N

n=1

∑P
p=1 µ

n∗
psx

n
pk

, for s = 1, . . . , K. (9)

γk =
1

K

K∑
s=1

γks. (10)

Attractively, those overall efficiency and cross-efficiency measurements are directly

related to the task-level definitions. We obtain the following relationship for the

efficiency measurements:

θk =

∑N
n=1

∑Q
q=1 u

n∗
qky

n
qk∑N

n=1

∑P
p=1 v

n∗
pkx

n
pk

,

=

∑N
n=1

∑Q
q=1 u

n∗
qky

n
qk∑N

n=1

∑P
p=1 v

n∗
pkx

n
pk

×
∑P

p=1 v
n∗
pkx

n
pk∑P

p=1 v
n∗
pkx

n
pk

,

=
N∑

n=1

∑P
p=1 v

n∗
pkx

n
pk∑N

n=1

∑P
p=1 v

n∗
pkx

n
pk

×
∑Q

q=1 u
n∗
qky

n
qk∑P

p=1 v
n∗
pkx

n
pk

,

=
N∑

n=1

ωn
k × θnk . (11)

In a similar vein, we obtain the following relationship for the cross-efficiency mea-
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surements:

γks =

∑N
n=1

∑Q
q=1 ν

n∗
qs y

n
qk∑N

n=1

∑P
p=1 µ

n∗
psx

n
pk

,

=

∑N
n=1

∑Q
q=1 ν

n∗
qs y

n
qk∑N

n=1

∑P
p=1 µ

n∗
psx

n
pk

×
∑P

p=1 µ
n∗
psx

n
pk∑P

p=1 µ
n∗
psx

n
pk

,

=
N∑

n=1

∑P
p=1 µ

n∗
psx

n
pk∑N

n=1

∑P
p=1 µ

n∗
psx

n
pk

×
∑Q

q=1 ν
n∗
qs y

n
qk∑P

p=1 µ
n∗
psx

n
pk

,

=
N∑

n=1

ωn
ks × γn

ks. (12)

In words, the weights ωn
k and ωn

ks reveal how the efficiency (θnk ) and cross-efficiency

(γn
ks) measurements of each task n contribute, respectively, to the overall efficiency

(θk) and cross-efficiency measurements (γks). As such, those weights allow us to

investigate how each task contributes to the overall performances. Putting differently,

(11) and (12) provide a decomposition of the overall measurements into task-specific

counterparts.

These weights are attractive as they are natural, given by the model, and fit with

economic intuition. Also, they are consistent with recent works that have consid-

ered the disaggregation of overall efficiency (or efficiency-related) measurements into

output-specific measurements (see, for example, Cherchye et al (2013), Cherchye, De

Rock, and Walheer (2016), and Walheer (2016a, b, 2017)), and also with works that

have considered the aggregation of DMU-specific efficiency (or efficiency-related) mea-

surements to obtain group counterparts (see, for example, Färe and Zelenyuk (2003),

Zelenyuk (2006, 2016), Mayer and Zelenyuk (2014), Färe and Karagiannis (2017),

and Walheer (2018a, 2019)).

We end this part with two remarks. Firstly, other weights could be used at this

stage to obtain the overall efficiency and cross-efficiency measurements. For example,

weights taking the preferences of the firms for every task into account. Next, weight re-

strictions could be used to improve the realism of the computed weights, and to avoid

extreme weights (see, for example, Allen et al (1997), Pedraja-Chaparro, Salinas-

Jimenez, and Smith (1997), and Kuosmanen, Cherchye, and Sipilainen (2006)). Refer

to Section 4.1 for more discussion about extreme weights.
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4 Illustrations

We illustrate how the multi-task approach works in practice by considering a nu-

merical example, an application to a robot selection problem, and an application of

selecting the best R&D project. This last application demonstrates that the multi-

task approach is not limited to AMT selection, but could be used in various contexts.

Robot selection problem is a typical example of ATM section problem. Robots

present several advantages over humans such as increasing the flexibility, improving

product quality, reducing production and delivery delay, and saving labour costs. For

the firm decision makers, opting for a robot represents an important investment while

the profit increase is not guaranteed (Karande, Zavadskas and Chakraborty, 2016).

Also, it is important to be sure to select the best robot when several are available. The

main question is therefore: how to select the best robot ? Usually, robots are defined

in terms of several quantitative and qualitative performance attributes/indicators

representing the different tasks (Mondal and Chakraborty, 2013).

R&D project section problem is, in nature, complicated by many factors, interre-

lated selection criteria and multiple interrelated resources (Danila, 1989; Schmidt and

Freeland, 1992). As robot selection problem, R&D project problem implies limited

resources to a plethora of candidate projects (Henriksen and Traynor, 1999). Select-

ing the best R&D project is crucial for the firm decision makers as it determines

the technology strategies and impact the long-term success of the firms. In some

cases, selecting the best R&D project has a high impact on the probability to stay

in business as innovation is directly related to competitiveness (Meade and Presley,

2002).

For each case, we compare our measurements θk and γk, respectively, with the

efficiency measurement of Charnes, Cooper, and Rhodes (1978) and with the (ag-

gressive) cross-efficiency measurement of Doyle and Green (1994). We refer to these

models as CCR and Cross-CCR . Our task-specific measurements θnk and γn
k , for every

task n, cannot be compared, for the simple reason that those measurements are not

provided in previous works. As such, we rather focus our discussion about what they

add to the investigation of the best AMT.
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4.1 Numerical example

We consider that a firm plans to buy a new AMT amongst six available on the market.

Also, we assume that the AMTs are designed to perform two tasks (N = 2). Four

attributes/indicators are measured for each AMT (Q = 4), denoted by y1, y2, y3, and

y4, respectively. We assume that y1 and y2 measure task 1, while y3 and y4 measure

task 2. Two inputs (P = 2), denoted by x1 and x2, are involved in the process. The

fictional data are displayed in Table 6. We consider two different settings. In setting

1, the two inputs are both multi-task. In setting 2, we assume that the first input is

a multi-task input, while the second input is a task-specific input. We assume that

the allocation factors are observed for all ATMs. As such, setting 1 is probably less

extreme for the comparison with existing methods than setting 2. Using the notation

of Section 3.1, we obtain, for every AMT k = 1, . . . , 6, when considering setting 1:

y1
k =


y1k

y2k

0

0

 ;y2
k =


0

0

y3k

y4k

 ; and x1
k =

[
x1k

x2k

]
;x2

k =

[
x1k

x2k

]
. (13)

Setting 2 is very similar to setting 1. In fact, only the input side differs:

x1
k =

[
x1k

a12kx2k

]
and x2

k =

[
x1k

a22kx2k

]
. (14)

By definition, we have that a12k + a22k = 1, for every AMT k (see our discussion

of (1)). The allocation factors, different for each AMT, are given in Table 7. The

efficiency measurements for all specifications are given in Table 1.

Table 1: Numerical example: efficiency

AMT CCR Setting 1 Setting 2
θk θ1k θ2k θk θ1k θ2k

1 1 0.8883 0.8885 0.7386 0.9991 1 0.5909
2 0.9844 0.9827 0.9840 0.3343 0.9980 1 0.2555
3 1 0.9994 0.6176 1 0.9992 1 0.6466
4 0.8601 0.6908 0.6912 0.5062 0.6241 0.5474 0.6243
5 1 0.9995 1 0.7059 0.9992 1 0.6000
6 1 0.9990 0.4118 1 0.9987 0.3500 1
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The CCR model declares four of the six AMTs as efficient. The multi-task ap-

proach reveals, when considering setting 1, AMT 5 as the best for task 1, and AMTs

3 and 6 as the best for task 2. These results demonstrate that there is no specific

link between the performances of the ATMs on the different tasks. When considering

setting 2, AMTs 1, 2, 3, and 5 are efficient for task 1, while only AMT 6 is efficient

for task 2. The overall scores show that AMT 5 is the best for setting 1, and AMTs

3 and 5 are the best for setting 2. As a consequence, for setting 1, AMT 5 should be

selected. For setting 2, it is unclear.

Two important remarks have to be made at this point. Firstly, when computing

the efficiency scores, we give full freedom to the program. That is, we do not impose

any restriction for the weights. As a result, the weights, displayed in Table 2, are very

extreme, i.e. close to 1 for one of the two tasks. Extreme weight issue is not specific

to our method, but holds true for most of the DEA-based techniques. As explained in

Section 3.2, this could be avoid by imposing weight restrictions. Next, it could seem

counterintuitive that no AMT is set as overall efficient. This is a direct consequence

of the high discriminatory power of the technique. To be fully efficient, AMTs have

to be efficient on all tasks.

Table 2: Numerical example: weights

AMT Setting 1 Setting 2
ω1
k ω2

k ω1
k ω2

k

1 0.9982 0.0018 0.9978 0.0022
2 0.9979 0.0021 0.9973 0.0027
3 0.0015 0.9985 0.9977 0.0023
4 0.9976 0.0024 0.0027 0.9973
5 0.9983 0.0017 0.9980 0.0020
6 0.0017 0.9983 0.0020 0.9980

The results for cross-efficiency are given in Table 3.

Cross-CCR reveals that AMT 5 is the best one. This is confirmed by the multi-

task approach when considering setting 1. Note that it is not always the case that

the multi-task approach and Cross-CCR give the same conclusion (see Section 4.3).

Also, note that cross-efficiency is not necessary to come with that conclusion, as, it

was clear from Table 1 (AMT 5 has the highest efficiency score). AMT 5 is the best

for task 1, while, for task 2, it is AMT 3. Cross-efficiency is needed for the latter

conclusion, as in Table 1, we found that both AMTs 3 and 6 are efficient for task 2.
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Table 3: Numerical example: cross-efficiency

AMT Cross-CCR Setting 1 Setting 2
γk γ1

k γ2
k γk γ1

k γ2
k

1 0.68 0.60 0.65 0.64 0.66 0.85 0.50
2 0.53 0.49 0.79 0.29 0.55 0.78 0.21
3 0.77 0.74 0.66 0.95 0.70 0.85 0.56
4 0.60 0.57 0.63 0.48 0.37 0.48 0.36
5 0.82 0.78 0.95 0.63 0.68 0.90 0.49
6 0.74 0.51 0.40 0.91 0.48 0.24 1

As a results, no AMT is the best for both tasks. Therefore, a natural question is why

AMT 5 is declared as the best? In a sense, the method makes a balance between the

cross-efficiency scores of both tasks to declare AMT 5 as the best. Clearly, a different

choice could be made by the firm. For example, if task 2 is seen as more important,

then AMT 3 should be chosen. As such, by providing task-specific efficiency and

cross-efficiency scores, our method gives the option to better understand why an

AMT is declared as the best, and, thus, give the possibility to firms to select the

AMTs given their relative preferences for the tasks. For setting 2, it is revealed that

AMT 5 is the best for task 1, and AMT 6 is the best for task 2 (this was known from

Table 1). Overall, AMT 3 is the best in that case (this was unknown from Table 1).

The same remarks made for setting 1 apply here. Of course, the allocation factors

have an important impact on the decision.

4.2 Robot selection

The problem consists of selecting the best robot amongst 12 possible robots. Four

indicators/attributes are observed for the robots (i.e. Q = 4): the handling coeffi-

cient (y1); the ability of the robot to return to the same point (y2), the maximum

transportable weight (y3), and the maximum attainable speed (y4). Also, the total

cost is observed (i.e. P = 1, denoted by x). This problem has been first considered by

Braglia and Petroni (1999), and studied, in, for example, Karsak and Ahiska (2005,

2008). The data are given in Table 8.

In our multi-task approach, we make a clear distinction between tasks. We could

consider that the robots are designed to perform four tasks (N = 4): handle capacity

(task 1), repeatability (task 2), load capacity (task 3), and velocity (task 4). As such,
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each task is measured by one indicator. Also, the only input is a multi-task input

as it is used to perform all tasks. At this point, it is worth noting that, while the

distinction between the two approaches seem small in this context, the multi-task

approach gives the advantage of providing task-specific results. Using the notation of

Section 3.1, we have, for every robot k = 1, . . . , 12:

y1
k =


y1k

0

0

0

 ;y2
k =


0

y2k

0

0

 ;y3
k =


0

0

y3k

0

 ;y4
k =


0

0

0

y4k

 ; and x1
k = x2

k = x3
k = x4

k = xk.

(15)

The results, for both the efficiency and cross-efficiency scores, are given in Table

4 (weights are provided in Table 9). CCR shows that AMTs 5, 8, and 12 are efficient,

and Cross-CCR shows that the best one is 12. This is confirmed by both the multi-

task efficiency and cross-efficiency scores. Also, the task-specific efficiency scores

reveal that AMT 12 is the best for tasks 2 and 4, AMT 5 is the best for task 1,

and AMT 8 is the best for task 3. In that context, the task-specific cross-efficiency

scores are not needed as the best AMTs are found for each task only with the efficiency

scores. This reveals, once more, the higher discriminatory power of the model. Finally,

the theoretical relationships described in Section 3.3 hold true for the results in Table

4. For example, let us illustrate how the relationship in (11) works for ATM 2:

θ2 = 0.65 = ω1
2 × θ12 +ω2

2 × θ22 +ω3
2 × θ32 +ω4

2 × θ42 = 0.76× 0.71+ 0.07× 0.38+ 0.09×
0.23 + 0.08× 0.70.

While simple this robot selection problem reveals the managerial usefulness of the

multi-task approach. Indeed, by offering more detailed results our approach gives

the option to take a better decision. For instance, it make sense to select ATM 12

as it is the best performer as declared by all approaches in Table 4. Nevertheless,

the other approaches are silent about the reasons why this robot is the best one. As

shown by the task-specific scores, ATM 12 is the best performer for tasks 2 and 4.

If for any reasons tasks 1 and/or 3 that are the most important tasks for the firm

decision-makers, it is a better idea to select ATM 5 or 8. Such options are not offered

by the CCR and Cross-CCR techniques.
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Table 4: Robot selection: efficiency and cross-efficiency

AMT CCR θk θ1k θ2k θ3k θ4k Cross-CCR γk
1 0.65 0.51 0.57 0.53 0.12 0.44 0.52 0.41
2 0.82 0.65 0.71 0.38 0.23 0.70 0.62 0.59
3 0.95 0.82 0.89 0.20 0.63 0.57 0.75 0.67
4 0.95 0.81 0.83 0.36 0.43 0.78 0.74 0.68
5 1 0.92 1 0.27 0.75 0.34 0.83 0.74
6 0.56 0.45 0.49 0.48 0.23 0.25 0.46 0.44
7 0.68 0.56 0.58 0.64 0.16 0.23 0.54 0.53
8 1 0.91 0.64 0.11 1 0.65 0.68 0.54
9 0.77 0.63 0.67 0.28 0.50 0.65 0.62 0.55
10 0.71 0.62 0.49 0.71 0.16 0.42 0.52 0.51
11 0.91 0.82 0.73 0.91 0.41 0.32 0.75 0.72
12 1 0.98 0.83 1 0.80 1 0.98 0.88

4.3 R&D projects

Our last illustration considers the case of selecting the best R&D projects amongst

32 projects. We select that example to show that the multi-task approach could

also be used in other contexts that select the best AMT. Each project is measured

by five indicators: indirect economic contribution (y1), direct economic contribution

(y2), technical contribution (y3), social contribution (y4), and scientific contribution

(y5). The only input is total budget (x). This example has been introduced by Oral,

Kettani, and Lang, (1991), and used, in, for example, Green, Doyle, and Cook (1996),

Liang et al (2008b) and Wu et al (2016a). The data are shown in Table 10.

We can consider that the R&D project consist of 4 tasks (N = 4): creating eco-

nomic (task 1), technical (task 2), social (task 3), and scientific (task 4) contributions.

The first task consists of 2 indicators: indirect and direct economic contributions, the

second task of 1 indicator: technical contribution, the third task of 1 indicator: social

contribution, and the fourth task of 1 indicator: scientific contribution. The budget

is used for all tasks. As there is no detailed information on how the budget is used

for each task (i.e. to contribute to every domain), we assume that the budget is a

multi-task input. If such information was available, it could be incorporated in the

model as task-specific inputs.3 Using the notation of Section 3.1, we have, for every

3Our model could be extended to recover the share of the budget used for each task. Refer to
our discussion at the end of Section 3.1.
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project k = 1, . . . , 37:

y1
k =


y1k

y2k

0

0

0

 ;y2
k =


0

0

y3k

0

0

 ;y3
k =


0

0

0

y4k

0

 ;y4
k =


0

0

0

0

y5k

 ; and x1
k = x2

k = x3
k = x4

k = xk.

(16)

The results, for both the efficiency and cross-efficiency scores, are given in Table

5 (weights are provided in Table 11). The best project, based on Cross-CCR, is

number 38. Note that CCR points to two projects as efficient: 17 and 38. The

conclusion of the multi-task approach differs from the one of Cross-CCR. Indeed,

project 17 is the one that presents the highest efficiency (and cross-efficiency). This

is explained as this project presents the highest efficiency scores for tasks 2, 3, and 4.

Project 35 has the highest efficiency score for task 1 only. As such, it shows that, by

allocating the indicators/attributes to task, the conclusion could differ from Cross-

CCR . We believe that selecting project 17 is more accurate as it has the highest

scores for 3 of the 4 tasks. Of course, as discussed previously for the robot selection

problem in Section 4.2, the choice could be different if the most important task is

the economic contribution (task 1). In that case, project 35 should be picked. The

multi-task approach gives the option to better understand how the projects perform

for every task, and to make the choice given this extra valuable information. Finally,

let us illustrate how the relationship in (11) works for ATM 2: θ2 = 0.48275 =

ω1
2×θ12+ω2

2×θ22+ω3
2×θ32+ω4

2×θ42 = 0.96×0.48+0.01×0.40+0.02×0.26+0.01×0.33.

This is just one example, clearly all the theoretical relationships described in Section

3.3 hold true for the results in Table 5.

All in all, we see two important managerial implications of our results. First, by

correctly allocating the indicators/outputs and the costs/inputs to each task (here

objective) of the project, a better decision can be made. Indeed, it is often the

case that inputs/costs are allocated to the tasks and that indicators measure some

specific tasks. In a sense, we correctly take all the aspects of R&D projects into

account when using the multi-task approach. It is not the case for the CCR and

Cross-CCR techniques that may give bias or wrong conclusions as they ignore the

connections between the inputs, the outputs, and the tasks. Second, by providing
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Table 5: R&D projects: efficiency and cross-efficiency

AMT CCR θk θ1k θ2k θ3k θ4k Cross-CCR γk
1 0.65 0.59119 0.59 0.47 0.29 0.36 0.60 0.38
2 0.55 0.48275 0.48 0.40 0.26 0.33 0.51 0.32
3 0.34 0.32699 0.33 0.08 0.12 0.08 0.17 0.15
4 0.53 0.51672 0.52 0.20 0.17 0.19 0.44 0.27
5 0.51 0.47863 0.48 0.29 0.23 0.23 0.45 0.30
6 0.61 0.57769 0.58 0.25 0.17 0.19 0.51 0.28
7 0.51 0.44873 0.45 0.26 0.20 0.14 0.42 0.27
8 0.42 0.39396 0.39 0.33 0.15 0.27 0.40 0.22
9 0.52 0.42928 0.43 0.25 0.27 0.20 0.43 0.32
10 0.54 0.49840 0.50 0.43 0.14 0.40 0.51 0.24
11 0.56 0.53122 0.53 0.45 0.16 0.40 0.53 0.27
12 0.55 0.49803 0.50 0.44 0.12 0.41 0.52 0.23
13 0.50 0.44930 0.45 0.37 0.20 0.29 0.45 0.26
14 0.65 0.59875 0.60 0.40 0.23 0.36 0.60 0.34
15 0.65 0.63325 0.63 0.19 0.24 0.20 0.52 0.34
16 0.85 0.82757 0.83 0.67 0.24 0.61 0.76 0.40
17 1 0.99998 0.74 1 1 1 0.97 0.93
18 0.76 0.68089 0.68 0.54 0.12 0.55 0.69 0.28
19 0.52 0.49722 0.50 0.34 0.12 0.39 0.47 0.23
20 0.35 0.32860 0.25 0.30 0.09 0.33 0.30 0.14
21 0.60 0.50493 0.50 0.47 0.22 0.48 0.55 0.30
22 0.51 0.47910 0.48 0.38 0.24 0.40 0.46 0.30
23 0.68 0.60065 0.60 0.54 0.28 0.44 0.64 0.38
24 0.50 0.41978 0.42 0.39 0.23 0.40 0.47 0.29
25 0.40 0.35271 0.31 0.30 0.10 0.35 0.35 0.17
26 0.66 0.58123 0.58 0.54 0.24 0.44 0.62 0.34
27 0.74 0.65069 0.65 0.58 0.25 0.56 0.69 0.37
28 0.35 0.28716 0.28 0.29 0.17 0.29 0.32 0.20
29 0.58 0.51454 0.51 0.45 0.17 0.42 0.55 0.27
30 0.55 0.53064 0.53 0.41 0.10 0.35 0.52 0.23
31 0.95 0.83988 0.84 0.75 0.09 0.54 0.84 0.31
32 0.64 0.63917 0.64 0.40 0.05 0.36 0.59 0.21
33 0.43 0.38008 0.38 0.34 0.09 0.29 0.39 0.17
34 0.80 0.79720 0.80 0.42 0.08 0.22 0.67 0.26
35 1 0.99991 1 0.71 0.16 0.62 0.98 0.41
36 0.77 0.73827 0.74 0.57 0.16 0.51 0.74 0.33
37 0.74 0.73173 0.73 0.41 0.13 0.31 0.66 0.30
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detailed information about the performances of the R&D projects, the multi-task

approach gives the option to better understand why a project is declared as the best

one (here project 17), but also lets the decision-makers adjust their decision in light

of their own preferences about the tasks. For example, it may make sense to select

project 35 if the economic task is set as the most important one. Again, this option

is not possible when using the CCR or Cross-CCR techniques.

5 Conclusion

Selecting the AMTs is of crucial importance for firms as buying an AMT represent

an important investment. In practice, the concept of cross-efficiency has been wide

used. In this paper, we suggest considering AMTs as multi-task processes. That is, we

model AMTs by considering each task individually. This offers several advantages.

On the one hand, it increases the realism of the modelling by giving the option

of allocating the inputs/costs and the indicators/attributes to each task. On the

other hand, AMTs can be compared for every task. Indeed, by modelling each task

separately, cross-efficiency can be evaluated for each task. As a consequence, the

overall performances can be better understood, and, in particular, the reasons for

declaring a specific AMT as the best can be investigated. Therefore, more detailed

information can be provided to firms when selecting the best AMT. Overall, our

methodology allows firms to take better decision.

We have applied our methodology to two selection problems faced by many firm

decision makers: robots and R&D projects. In both cases, taking the correct decision

is crucial as it involves allowing a limited firm resources while several candidates are

available. For the application to robots, the decision given by the multi-task approach

does not differ from the one of the more standard models. The added value of the

multi-task approach is, in that case, to give more details about the efficiency behaviour

of each task (this is, in fact, not possible when relying on more standard models). For

the application to the R&D projects, the multi-task approach allows us to consider a

more realistic modelling and it provides a more detailed efficiency analysis. In that

case, the decision differs from the one given by more standard models.

Our methodology can be extended in several directions. First, a natural extension

is to allow for more complex modelling. In a sense, our setting can be seen as a first

step in the direction of improving cross-efficiency. Indeed, our multi-task setting can,
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in principle, be applied to other cross-efficiency techniques (as those cited in Section

2). Next, giving the option to consider subjective or additional information about

the weights in the model is also a natural extension. Finally, considering a dynamic

setting, i.e. when firms have to take multiple decisions over time. As a final remark,

we once more emphasize that our multi-task approach could also be used in alternative

methods for selecting the best AMTs. There are thus several potential extensions.

23



References

[1] Allen R., Athanassopoulos A. D., Dyson R. G., Thanassoulis E., 1997, “Weight

restrictions and value judgements in DEA: Evolution, development and future

directions”, Annals of Operations Research 45, 2313-2316.

[2] Amin G.R., Emrouznejad A., 2007, “A note on DEA models in technology selec-

tion: an improvement of Karsak and Ahiska’s approach.”, International Journal

of Production Research 45, 2313-2316.

[3] Anderson T. R., Hollingsworth K. B., Inman L. B., 2002, “The fixed weighting

nature of a cross-evaluation model”, Journal of Productivity Analysis 18(1), 249-

255.

[4] Appa G., 2002, “On the uniqueness of solutions to linear programs”, Journal of

the Operational Research Society 53(10), 1127-1132.

[5] Baker R.C., Talluri S., 1997, “A closer look at the use of data envelopment

analysis for technology selection”, Computers and Industrial Engineering 32,

101-108.

[6] Beasley J. E., 2003, “Allocating fixed costs and resources via data envelopment

analysis”, European Journal of Operational Research 147, 198-216.

[7] Braglia M., Gabbrielli. R.., 2000, “Dimensional analysis for investment selection

in industrial robots”, International Journal of Production Research 38. 4843-

4848.

[8] Charnes A., Cooper W. W., Rhodes E., 1978, “Measuring the efficiency of deci-

sion making units”, European Journal of Operational Research , 2(4), 429-444.

[9] Cherchye L., Demuynck T., De Rock B. and De Witte K., 2014, “Nonparametric

analysis of multi-output production with joint inputs”, Economic Journal 124,

735-755.

[10] Cherchye L., De Rock B., Dierynck B., Roodhooft F., Sabbe J., 2013, “Opening

the Black Box of Efficiency Measurement: Input Allocation in Multi-Output

Settings”, Operations Research 61, 1148-1165.

24



[11] Cherchye L., De Rock B., Vermeulen F., 2008, “Cost-Efficient Production Be-

havior Under Economies of Scope: A Nonparametric Methodology”, Operations

Research 56, 204-221.

[12] Cherchye L., De Rock B., Walheer B., 2015, “Multi-output efficiency with good

and bad outputs”, European Journal of Operational Research 240, 872-881.

[13] Cherchye L., De Rock B., Walheer B., 2016, “Multi-Output Profit Efficiency And

Directional Distance Functions”, Omega 61(C), 100-109.

[14] Contreras I., 2012, “Optimizing the rank position of the DMU as secondary goal

in DEA cross-evaluation”, Applied Mathematical Modelling , 36(6), 2642-2648.

[15] Cook W. D., Hababou M., Tuenter H. J. H., 2000, “Multicomponent efficiency

measurement and shared inputs in data envelopment analysis: An application to

sales and service performance in bank branches”, Journal of Productivity Anal-

ysis 14, 209-224.

[16] Cook W. D., Zhu J., 2014, “DEA Cobb-Douglas frontier and cross-efficiency”,

Journal of the Operational Research Society, 65(2), 265-268.

[17] Cui Q., Li Y., 2015, “Evaluating energy efficiency for airlines: an application of

VFB- DEA”, Journal of Air Transport Management 44, 34-41.

[18] Danila N., 1989, “Strategic evaluation and selection of R&D projects”, R&D

Management19(1), 47-62.

[19] Despic O., Despic M., Paradi J., 2007, “DEA-R: ratio-based comparative effi-

ciency model, its mathematical relation to DEA and its use in applications”,

Journal of Productivity Analysis 28, 33-44.

[20] Doyle J. R., Green R. H., 1994, “fficiency and cross-efficiency in DEA: deriva-

tions, meanings and uses”, Journal of the Operations Research Society 45(5),

567-578.

[21] Doyle J. R., Green R. H., 1995, “Cross-evaluation in DEA: improving discrimi-

nation among DMUs”, INFOR 33(3), 205-222.

25



[22] Du J., Cook W. D., Liang L., Zhu J., 2014, “Fixed cost and resource alloca-

tion based on DEA cross-efficiency”, European Journal of Operational Research

235(1), 206-214.

[23] Ertay T., Ruman D., 2005, “Data envelopment analysis based decision model for

optimal operator allocation in CMS”, European Journal of Operational Research

164(3), 800-810.
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Appendix

Table 6: Illustrative example: data

AMT Indicator 1 Indicator 2 Indicator 3 Indicator 4 Input 1 Input 2
1 4 8 6 7 5 8
2 9 7 8 1 7 7
3 4 5 1 2 6 5
4 7 8 4 8 8 9
5 8 3 5 4 5 7
6 3 4 9 8 5 7

Table 7: Allocation factors for input 2

AMT Task 1 Task 2
1 0.25 0.75
2 0.23 0.72
3 0.20 0.80
4 0.56 0.44
5 0.43 0.57
6 0.86 0.14
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Table 8: Robot selection: data

Robot Cost Handling Load Repeatability Velocity
coefficient capacity

( US $) (index) (kg) (mm−1) (m/s)
1 100000 1.00 85.00 1.70 3.00
2 75000 0.93 45.00 2.50 3.60
3 56250 0.88 18.00 5.00 2.20
4 28125 0.41 16.00 1.70 1.50
5 46875 0.82 20.00 5.00 1.10
6 78125 0.66 60.00 2.50 1.35
7 87500 0.88 90.00 2.00 1.40
8 56250 0.63 10.00 8.00 2.50
9 56250 0.65 25.00 4.00 2.50
10 87500 0.75 100.00 2.00 2.50
11 68750 0.88 100.00 4.00 1.50
12 43750 0.63 70.00 5.00 3.00

Table 9: Robot selection: weights

Robot Handling Load Repeatability Velocity
coefficient capacity

1 0.70 0.10 0.10 0.10
2 0.78 0.08 0.08 0.08
3 0.83 0.06 0.06 0.06
4 0.92 0.03 0.03 0.03
5 0.86 0.05 0.05 0.05
6 0.77 0.08 0.08 0.08
7 0.09 0.74 0.09 0.09
8 0.06 0.06 0.83 0.06
9 0.83 0.06 0.06 0.06
10 0.09 0.74 0.09 0.09
11 0.07 0.79 0.07 0.07
12 0.04 0.04 0.04 0.87
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Table 10: R&D projects: data

Project Budget Indirect Direct Technical Social Scientific
economic economic contribution contribution contribution

contribution contribution
1 84.2 67.53 70.82 62.64 44.91 46.28
2 90.00 58.94 62.86 57.47 42.84 45.64
3 50.2 22.27 9.68 6.73 10.99 5.92
4 67.5 47.32 47.05 21.75 20.82 19.64
5 75.4 48.96 48.48 34.9 32.73 26.21
6 90.00 58.88 77.16 35.42 29.11 26.08
7 87.4 50.1 58.2 36.12 32.46 18.9
8 88.8 47.46 49.54 46.89 24.54 36.35
9 95.9 55.26 61.09 38.93 47.71 29.47
10 77.5 52.4 55.09 53.45 19.52 46.57
11 76.5 55.13 55.54 55.13 23.36 46.31
12 47.5 32.09 34.04 33.57 10.6 29.36
13 58.5 27.49 39.00 34.51 21.25 25.74
14 95.00 77.17 83.35 60.01 41.37 51.91
15 83.8 72.00 68.32 25.84 36.64 25.84
16 35.4 39.74 34.54 38.01 15.79 33.06
17 32.1 38.5 28.65 51.18 59.59 48.82
18 46.7 41.23 47.18 40.01 10.18 38.86
19 78.6 53.02 51.34 42.48 17.42 46.3
20 54.1 19.91 18.98 25.49 8.66 27.04
21 74.4 50.96 53.56 55.47 30.23 54.72
22 82.1 53.36 46.47 49.72 36.53 50.44
23 75.6 61.6 66.59 64.54 39.1 51.12
24 92.3 52.56 55.11 57.58 39.69 56.49
25 68.5 31.22 29.84 33.08 13.27 36.75
26 69.3 54.64 58.05 60.03 31.16 46.71
27 57.1 50.4 53.58 53.06 26.68 48.85
28 80.00 30.76 32.45 36.63 25.45 34.79
29 72.00 48.97 54.97 51.52 23.02 45.75
30 82.9 59.68 63.78 54.8 15.94 44.04
31 44.6 48.28 55.58 53.3 7.61 36.74
32 54.5 39.78 51.69 35.1 5.3 29.57
33 52.7 24.93 29.72 28.72 8.38 23.45
34 28.00 22.32 33.12 18.94 4.03 9.58
35 36.00 48.83 53.41 40.82 10.45 33.72
36 64.1 61.45 70.22 58.26 19.53 49.33
37 66.4 57.78 72.1 43.83 16.14 31.32
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Table 11: R&D projects: weights

Project Economic Technical Social Scientific
contribution contribution contribution contribution

1 0.96 0.01 0.02 0.01
2 0.96 0.01 0.02 0.01
3 0.98 0.01 0.01 0.01
4 0.97 0.01 0.01 0.01
5 0.96 0.01 0.01 0.01
6 0.96 0.01 0.02 0.01
7 0.96 0.01 0.02 0.01
8 0.96 0.01 0.02 0.01
9 0.95 0.02 0.02 0.01
10 0.96 0.01 0.01 0.01
11 0.96 0.01 0.01 0.01
12 0.98 0.01 0.01 0.01
13 0.97 0.01 0.01 0.01
14 0.95 0.02 0.02 0.01
15 0.96 0.01 0.02 0.01
16 0.98 0.01 0.01 0.01
17 0.01 0.98 0.01 0.00
18 0.98 0.01 0.01 0.01
19 0.96 0.01 0.01 0.01
20 0.02 0.01 0.01 0.97
21 0.96 0.01 0.01 0.01
22 0.96 0.01 0.02 0.01
23 0.96 0.01 0.01 0.01
24 0.95 0.01 0.02 0.01
25 0.02 0.01 0.01 0.96
26 0.97 0.01 0.01 0.01
27 0.97 0.01 0.01 0.01
28 0.02 0.95 0.01 0.01
29 0.96 0.01 0.01 0.01
30 0.96 0.01 0.02 0.01
31 0.98 0.01 0.01 0.01
32 0.97 0.01 0.01 0.01
33 0.97 0.01 0.01 0.01
34 0.99 0.00 0.01 0.00
35 0.98 0.01 0.01 0.01
36 0.97 0.01 0.01 0.01
37 0.97 0.01 0.01 0.01
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