## Conserved quantities in cosmology

Phillip Helbig ${ }^{1,2,3}$<br>. Thomas-Mann-Str. 9, 63477 Maintal, Germany<br>2. helbig@astro.multivax.de


#### Abstract

Lake pointed out that a certain combination (which he dubbed $\alpha$ ) of $\Omega$ and $\lambda$ is a constant of motion for evolutionary trajectories in the $\lambda-\Omega$ plane and used mapping between $\alpha$ and the $\lambda-\Omega$ plane to demonstrate the lack of a flatness problem for cosmological models with a positive cosmological constant which will expand forever. In such models, the conserved quantity corresponds to the product of $\lambda$ and the square of the mass of the universe. I investigate other quantities which correspond to $\alpha$ and other constants of motion in the $\lambda-\Omega$ plane.


Here, I consider only ideal Friedmann Robertson-Walker (FRW) models, because historically similar studies have been done within the context of those models and
the basic concepts carry over into morecomplicated models. I use notation such the basic concepts carry over into more-complicated models. 1 use notation such
that $\Omega=\frac{8}{3 \pi G F}$ refers to the density of matter ('dust') and $\lambda=\frac{1}{3 H H^{2}}$ is the normalized that $\Omega=\frac{34}{3 H}$ refers to the density of matter (dust ) and $\lambda=\frac{1 H}{}$ is the normalized
cosmological constant (with dimension time ${ }^{-2}$ so that $\Lambda$ has the same dimension
 where $R=\frac{c}{H \sqrt{K \mid}}$. The deceleration parameter $q=-\frac{\tilde{R}}{R A^{2}}=\frac{\Omega}{2}-\lambda$. The redshift

Evolutionary trajectories
In general, $\lambda$ and $\Omega$ change with time. Thus, the evolution of cosmological models


Figme : Evolutionary trajectories in the $\lambda-\Omega$ plane
points where two of $\lambda, \Omega$, and $k$ are 0 are stationary trajectories, i.e. cosmological modes which start there stay there. The lines $\lambda=0, \Omega=0$, and $k=0$ are also
trajectories (and thus also not crossed by others). The position of a point in the $\lambda \Omega$ plane (which thus determines a trajectory but also a relative time) can be Ised to classify cosmological models via the corresponding trajectories. A third,
dimensionful, parameter is needed in order to set the overall scale. As pointed out dimensionful, parameter is needed in order to set the overall scale. As pointed out by
Stabell and Refsdal (1966), such trajectories are useful for classifying cosmological models, which can be summarized as follows, with the numbering illustrated in Fig. 2:
odels which will collapse in the future (big-bang models which expand
to $R=R$. $\underline{\lambda}<0$
$\frac{k=-1}{\underline{n=0}}(-\infty<0 \leq 0)$
$\underline{n}(\alpha=0): 1$
$\underline{\Omega>0}(-\infty<\alpha<0): 2$
$=0(\Omega>1$
$k=0(\Omega>1, \alpha=-\infty$, and $q>0.5): 3$
$\frac{k=+1}{(\Omega>1,-\infty<\alpha<0, \text { and } q>0.5,): 4}$
$k=+1(\Omega>1, \alpha=0$, and $q>0.5$; preferred by Einstein after he had ( A ): 5
$>0$
$\underline{q>0.5}(k=+1, \Omega>1): 6$
$\frac{\lambda=0}{0.5)}$ (big-bang models which expand to $R=\infty$ at $t=\infty ; \alpha=0,0 \leq q \leq$


Lake's $\alpha: M^{2}$ and its importance
Lake (2005) pointed out that $\alpha$ is constant along a trajectory. What is the physical 14-19) is $M=\rho V$; the volume $V=2 \pi^{2} R^{3}$, thus
14ter

$$
M=\rho\left(2 \pi^{2}\right)\left(\frac{c}{H}\right)^{3}|K|^{-\frac{1}{2}}
$$

$$
\begin{aligned}
& \Omega \text { and, since } k=1 \text { and thus } K= \\
& M=\left(\frac{3 H^{2} \Omega}{8 \pi G}\right)\left(2 \pi^{2}\right)\left(\frac{c}{H}\right)^{3} K^{-\frac{3}{2}}
\end{aligned}
$$

Since, from the definition of $\lambda, H=\sqrt{(A) /(3 \lambda)}$

$$
M=\left(\frac{\Lambda \Omega}{8 \pi G \lambda}\right)\left(2 \pi^{2}\right)\left(\frac{3 c^{2} \lambda}{\Lambda}\right)^{\frac{3}{2}} K^{-\frac{3}{2}}
$$

$$
M^{2}=\left(\frac{\Lambda \Omega}{8 \pi G \lambda}\right)^{2}\left(2 \pi^{2}\right)^{2}\left(\frac{3 c \lambda}{\Lambda}\right)^{3} K^{-3}
$$

Placing
$\Lambda M^{2}=\left(\frac{\Omega}{8 \pi G \lambda}\right)^{2}\left(2 \pi^{2}\right)^{2}\left(3 c^{2} \lambda\right)^{3} K^{-3}$
$\Lambda M^{2}=\left(\frac{2 \pi^{2} \Omega}{8 \pi G}\right)^{2}\left(27 c^{6} \lambda\right) K^{-3}$
Sorted differently, we have
$\Lambda M^{2}=\left(\frac{27}{16}\right)\left(\frac{\pi^{2} c^{6}}{G^{2}}\right)\left(\frac{\Omega^{2} \lambda}{K^{3}}\right)$
$\Lambda M^{2}=\left(\frac{\pi^{2} c^{6}}{4 G^{2}}\right) \alpha$
Thus , we to a constent, $A M^{2}=a$

Other conserved quantities nflection
An obvious conserved quantity for types 11,13 , and 14 , since they cross the $q=0$ line, is the point of inflection which occurs when that line is crossed, when
$\vec{R}=0$. At such a point, $q=\lambda-\Omega / 2=0$ and hence $\Omega=2 \lambda$. Since $\rho \sim R^{-3}$ and $\lambda \sim R^{0}$, it follows that $\left(R_{0} / R_{\text {mit }}\right)^{3}=\Omega_{0} / 2 \lambda_{0}$. Thus

$$
R_{\mathrm{min}}^{3}=R_{0}^{3}\left(\frac{\Omega_{0}}{2 \lambda_{0}}\right)
$$

From the definition of $R$ follows

$$
R_{\text {inif }}^{3}=\left(\frac{c}{H_{0}}\right)^{3}\left|K_{0}\right|^{-\frac{3}{2}}\left(\frac{\Omega_{0}}{2 \lambda_{0}}\right)
$$

Trivially,

$$
R_{\operatorname{minf}}^{6}=\left(\frac{c}{H_{0}}\right)^{6}\left|K_{0}\right|^{-3}\left(\frac{\Omega_{0}}{2 \lambda_{0}}\right)^{2}
$$

$$
\text { From the definition of } \lambda \text { we have } H^{2}=(\Lambda) /(3 \lambda) \text {, thus }
$$

$$
R_{\text {man }}^{6}=\left(\frac{c^{6}(3 \lambda)^{3}}{\Lambda^{3}}\right)\left|K_{0}\right|^{-3}\left(\frac{\Omega_{0}}{2 \lambda_{0}}\right)^{2}
$$

$$
R_{\inf }^{6} \Lambda^{3}=\left(\frac{\left(27 \Omega_{0}^{2} \lambda_{0} c^{6}\right.}{4\left|K_{0}\right|^{3}}\right)
$$

(13)

Since $\alpha=\operatorname{sign}(K)\left(27 \Omega^{2} \lambda\right) /\left(4 K^{3}\right)$ is constant along a trajectory and thus holds for all values of $\lambda, \Omega$, and $K$ along a trajectory, not only for the current values
$\left(\alpha=\operatorname{sign}\left(K_{0}\right)\left(27 \Omega_{n}^{2} \lambda_{0}\right) /\left(4 K_{1}^{3}\right)\right)$. $\left(\alpha=\operatorname{sign}\left(K_{0}\right)\left(27 \Omega_{0}^{2} \lambda_{0}\right) /\left(4 K_{0}^{3}\right)\right)$

$$
R_{\mathrm{inf}}^{2} \mathrm{~A}=c^{2} \sqrt[3]{\alpha}
$$

In a universe which collapses in the future, $R_{\max }$ is obviously constant along a rrajectory, and so could be interpreted as a constant of motion, though that is more interesting if expressed as a fundamental cosmological parameter. At $R=R_{\text {maxs }}$, of $R$ for which $R=0$ ) of the universe at maximum expansion for types $1-6$ and 15. That involves solving a cubic equation, and the actual expression depends on the model type. Although that solution depends on quantities such as $\Omega /(2 \lambda)$ and $K /(3 \lambda)$ (the square of the first divided by the cube of the second is, with the
additional factor of $\operatorname{sign}(K)$, the definition of $\alpha)$, I amm not aware of any simple additional factor of $\operatorname{sign}(K)$, the definition of $\alpha), 1$ am not aware of any simple
expression relating $\alpha$ and $R_{\max }$, even though $R_{\max }$ is obviously constant along a trajectory. However, there are analytic solutions in special cases.
For the model $1, \alpha=0$ since $\Omega=0$ and thus we cannot expect any constant of motion expressed in terms of physical quantities to involve $\alpha$. It thus makes sense
to express $R_{\max }$ in terms of $\Lambda$ by using the definition of $\lambda$ to eliminate $H_{0}$ and $\lambda_{0}$, to express $R_{\max }$ in terms of $\Lambda$ by using the definition of $\lambda$ to eliminate $H_{0}$ and $\lambda_{0}$,
resulting in $R_{\max }=\left(3 c^{2}\right) / \Lambda$. For the model $3, \alpha=\infty$ since the radius of curvature is infinite. If we set $R_{0}=c / H_{0}$, as is commonly done in such cases, then, via reasoning similar to that
above, one obtains $R^{6} \Lambda^{3}=27 c^{5} \Omega^{2} \lambda$ or, up to the constant $c^{6}, R^{6} \Lambda^{3}=4 \alpha K_{0}^{3}$. Of course, that is rather meaningless since $\alpha K_{0}=\infty * 0$ and results from using $R_{0}=c / H_{0}$ instead of $R_{0}=c /\left(H_{0} \sqrt{K_{0}}\right)$. However, $R^{6} \Lambda^{3}=4 \alpha$ is in some sense the limit for $K_{0} \rightarrow 0$.
For the model 5 .
motion expressed in terms of physical quantities to involve $\alpha$. It thus makes sense
(3) to express $R_{\max }$ in terms of $M$, since such models have $k=+1$ and hence a finite volume and finite masss. M is calculated above and $R_{\max }=\left(c / H_{0}\right)\left(\Omega /(\Omega-1)^{2}\right)$,
thus $R=(4 M M) /\left(3 c^{2}\right)$. thus $R=(4 G M) /\left(3 \pi c^{2}\right)$
(4) Model 15 asymptotically approaches the static Einstein model (16). It thus

Eq. (8) applies here as well. One can also think of it as an inflection point, though strictly speaking it is an asymptotic limit of models 15 and 17 and thus the static phase never actually occurs in those models. However, ealculating it in the
same way as described above, one obtains the result $R^{2} \Lambda=c^{2} \sqrt[2]{\alpha}=\sqrt[3]{1}=1$ which is compatible with the well known relations $R^{2}=c^{2} /(4 \pi G \rho)$ and $\Lambda=4 \pi G \rho$ $R_{\text {min }}$
At $R=R_{\min } \dot{R}=0$, so one can calculate the scale factor (corresponding to the largest value of $R$ for which $R=0$ ) of the universe at minimum contraction in the
bounce models $(18-19)$ and the Eddington model (17). As with $R$, there seems to be no simple relation between $R_{\min }$ and $\alpha$.
For $\alpha=1$, similar arguments apply as for model 15. (One can in some sense think of models 15,16 , and 17 as one trajectory, though it spends an infinite annount of time on each side of and at, 16. One otainn
$R^{2} \Lambda=c^{2} \sqrt[3]{\alpha}=\sqrt[3]{1}=1$, and thus $z_{\max }=\sqrt{2 \lambda / \Omega}-1$.
For the model 19, arguments similar to those for model 1 lead to the same $\sqrt{\text { essult: } R_{\max }^{2}}=\left(3 c^{2}\right) /$. Thus, the maximum redshift in this model is $z_{\max }$

The simplest cases
For the model 7, (the general-relativistic equivalent of) the Miline model, $\alpha=$ since $\lambda=0$ and $\Omega=0$. Note that, in contrast to all other cases except model ? (see below), this trajectory does not correspond to a set of models specified by an
additional parameter (e.g. A for type 1 ). but is only one model which evolves in time. In this model, $R=c t$. One can specify only the time since the big bang and quantities trivially related to it, e.g. $H \sim 1 /$. It is the only model in which $\Omega+\lambda$ is constant in time except for $k=0$ models (in which the sum is 1 ) and the static instein model ( 166 ) (in which the sum is $\infty$ ).
Model 9, the Einstein de Sitter
Model 9 , the Einstein- de Sitter model, which has $\Omega=1$ always, is a repulsor;
all trajectories in non-empty big-bang models start here. Thus, it does not make all trajectories in non-empty big-bang models start here. Thus, it does not make
sense to define a value of $\alpha$. Note that, in contrast to all other cases except model 7 (see above), this trajectory does not correspond to a set of models specified by an additional parameter (e.g. A for type 1), but is only one model which evolves in time. Thus, in such a model either the time or a time dependent quantity determines the
other, e.q. the scale factor $R$ is proportional to time as $t^{2 / 3}$ : the age of the universe other, e.g. the scale factor $R$ is proportional to time as $t^{2 / 3 / 3}$, the age of the universe
is $2 / 3$ the Hubble time $(R / R$, the inverse of the Hubble constant): the density in kg per $\mathrm{m}^{3}$ is given by $1 /\left(6 \pi G t^{2}\right)$ where $G$ is the gravitational constant and $t$ is the age per $\mathrm{m}^{\mathrm{j}}$ is given by $1 /\left(6 \pi G t^{2}\right)$ where $G$ is the gravitational constant and $t$ is the age
of the universe in seconds. For a generic trajectory, specifying the trajectory and a time-dependent quantity or the time still leaves some leeway, e.g. for type 15 only the product $\Lambda M^{2}$, not either individually. Thus, specifying a generic trajectory and, say, $\rho$ does not, without further information, determine the time, and vice
versa. The Einstein de Sitter model is spatially infinite and flat and will expand versa. The Einstein de Sitter model is spatially infinite and flat and will expand
forever (though the rate of expansion, and thus $H$, approaches 0 for $t \rightarrow \infty$ ), there is no maximum nor (non-zero) minimum scale factor nor point of inflection. There is no non-trivial constant of motion and no defining physical property
For the model 12 the de Sitter model which has $\lambda=1$ always in
For the model 12, the de Sitter model, which has $\lambda=1$ always, in contrast to the other point-trajectory models 7 and 9 discussed above, there is a set of models
determined bv $\Lambda . H=\sqrt{\Lambda / 3}$ and is thus constant in time $H$ is thus the constant determined by $\Lambda . H=\sqrt{\Lambda / 3}$ and is thus constant in time. $H$ is thus the constant
of motion in this model; the Hubble sphere the sphere with radius $c / H$ - is thus constant in time, which is not true in general. Also, the Hubble sphere is an event horizon (Rindler, 1956); in general the Hubble sphere is not associated with any pe of horizon (e.g. van Oirschiot et al., 2010)
The static Einstein model (17) being static, has $H=0$ and hence $\lambda$ and $\Omega$
are infinite. Like all other models except 79 there is by $\Lambda$. Equivalently, one can characterize those by the density $\rho$ or scale facto $R^{2}=c^{2} /(4 \pi G \rho)$; note that $\Lambda=4 \pi G \rho$. It can also be seen as the future (15) or past (17) limit of other models. Like all models with $k=+1$, Eq. (8) applies her as well; that can be verified by using the relations above.
Acknowledgements

## Services.

## References

Lake, K. 2005. The Flatness Problem and A. Phys. Rev. Lett. 94: 201102 Rindler, W. 1956. Visual horizons in world models. MNRAS 116: 662677
abell, R. and Refsdal, S. 1969
MNRAS 132: 379388
he 'cosmic horizon' is not a horizon G.FRPAS 404. 16331638

