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Abstract

Lake pointed out that a certain combination (which he dubbed α) of Ω and λ is a constant of motion
for evolutionary trajectories in the λ–Ω plane and used mapping between α and the λ–Ω plane to
demonstrate the lack of a flatness problem for cosmological models with a positive cosmological constant
which will expand forever. In such models, the conserved quantity corresponds to the product of λ and
the square of the mass of the universe. I investigate other quantities which correspond to α and other
constants of motion in the λ–Ω plane.

Introduction

Here, I consider only ideal Friedmann–Robertson–Walker (FRW) models, because

historically similar studies have been done within the context of those models and

the basic concepts carry over into more-complicated models. I use notation such

that Ω = 8πGρ
3H2 refers to the density of matter (‘dust’) and λ = Λ

3H2 is the normalized

cosmological constant (with dimension time−2 so that Λ has the same dimension

as Gρ); the subscript 0 refers to the current value of a time-dependent parameter.

K = Ω + λ − 1, k = sign(K), and α = 27kΩ2λ
4K3 . The Hubble constant H = Ṙ

R ,

where R = c

H
√

|K|
. The deceleration parameter q = − R̈

RH2 =
Ω

2
− λ. The redshift

z = R0
R − 1.

Evolutionary trajectories

In general, λ and Ω change with time. Thus, the evolution of cosmological models

can be illustrated by trajectories in the λ–Ω plane. Trajectories never cross. The
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Figure 1: Evolutionary trajectories in the λ–Ω plane

points where two of λ, Ω, and k are 0 are stationary trajectories, i.e. cosmological

models which start there stay there. The lines λ = 0, Ω = 0, and k = 0 are also

trajectories (and thus also not crossed by others). The position of a point in the

λ–Ω plane (which thus determines a trajectory but also a relative time) can be

used to classify cosmological models via the corresponding trajectories. A third,

dimensionful, parameter is needed in order to set the overall scale. As pointed out by

Stabell and Refsdal (1966), such trajectories are useful for classifying cosmological

models, which can be summarized as follows, with the numbering illustrated in

Fig. 2:

models which will collapse in the future (big-bang models which expand

to R = Rmax at t = tmax/2 and have α < 1 and q > 0)

λ < 0

k = −1 (−∞ < α ≤ 0)

Ω = 0 (α = 0): 1

Ω > 0 (−∞ < α < 0): 2

k = 0 (Ω > 1, α = −∞, and q > 0.5,): 3

k = +1 (Ω > 1, −∞ < α < 0, and q > 0.5, ): 4

λ = 0

k = +1 (Ω > 1, α = 0, and q > 0.5; preferred by Einstein after he had

abandoned Λ): 5

λ > 0

0 < α < 1

q > 0.5 (k = +1, Ω > 1): 6

models which will not collapse in the future (λ ≥ 0 and α > 0)

λ = 0 (big-bang models which expand to R = ∞ at t = ∞; α = 0, 0 ≤ q ≤
0.5)

k = −1 (0 ≤ q < 0.5)

Ω = 0 (the general-relativistic equivalent of the Milne model; q = 0): 7

Ω > 0 (Ω < 1) 0 < q < 0.5, : 8

k = 0 (Ω = 1 and q = 0.5; the Einstein–de Sitter model; Ṙ → 0 for t →
∞): 9

λ > 0 (0 < α ≤ ∞)

k = −1 (big-bang models which expand to R = ∞ at t = ∞; 0 ≤ Ω < 1,

0 < λ < 1, and −1 < q < 0.5)

Ω = 0 (α = 0 and q < 0): 10

Ω > 0 (Ω < 1): 11

k = 0 (α = ∞)

Ω = 0 (the de Sitter model; has a big-bang at t = −∞; λ = 1 and

q = −1): 12

Ω > 0 (big-bang models which expand to R = ∞) at t = ∞; 0 < λ < 1,

0 < Ω < 1, and −1 < q < 0.5): 13

k = +1

α > 1 (big-bang models which expand to R = ∞) at t = ∞; Ω > 0): 14

α = 1

∞ > q > 0 (big-bang model which expands forever, but approaches a

finite R and hence approaches Ṙ = 0; Ω > 1 and q > 0.5): 15

q = ±∞ (the static Einstein model): 16 λ = ∞, Ω = ∞;

−∞ < q < 0 (has a ‘big bang’ but at R > 0 (and hence a maximum

redshift) and expands to R = ∞ at t = ∞); Eddington model; λ > 1

and q < −1): 17

0 < α < 1

q < −1 (expands to R = ∞ at t = ∞ after having contracted from

R = ∞ to R = Rmin and thus has a maximum redshift; λ > 1,

Ω > 0, and q < −1): 18

α = 0 (expands to R = ∞ at t = ∞ after having contracted fromR = ∞
to R = 0; Lanczos model; λ > 1, Ω = 0, and q < −1): 19
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Figure 2: The 19 types of FRW models with (at most) dust and a cosmological constant

Lake’s α: M2 and its importance

Lake (2005) pointed out that α is constant along a trajectory. What is the physical

interpretation? The mass of (the dust in) a closed universe (models 4–6 and

14–19) is M = ρV ; the volume V = 2π2R3, thus

M = ρ
(

2π2
)





c

H





3

|K|−3
2 . (1)

From the definition of Ω and, since k = 1 and thus K = |K|, that leads to

M =









3H2Ω

8πG









(

2π2
)





c

H





3

K−3
2 . (2)

Since, from the definition of λ, H =
√

(Λ)/(3λ),

M =







ΛΩ

8πGλ







(

2π2
)









3c2λ

Λ









3
2

K−3
2 (3)

and thus

M 2 =







ΛΩ

8πGλ







2
(

2π2
)2







3cλ

Λ







3

K−3 . (4)

Placing the cosmologically relevant dimensionful variables on the left-hand side, we

have

ΛM 2 =







Ω

8πGλ







2
(

2π2
)2 (

3c2λ
)3

K−3 , (5)

or

ΛM 2 =









2π2Ω

8πG









2
(

27c6λ
)

K−3 . (6)

Sorted differently, we have

ΛM 2 =







27

16















π2c6

G2

















Ω2λ

K3









(7)

or

ΛM 2 =









π2c6

4G2









α . (8)

Thus, up to a constant, ΛM 2 = α.

Other conserved quantities

Inflection

An obvious conserved quantity for types 11, 13, and 14, since they cross the

q = 0 line, is the point of inflection which occurs when that line is crossed, when

R̈ = 0. At such a point, q = λ− Ω/2 = 0 and hence Ω = 2λ. Since ρ ∼ R−3 and

λ ∼ R0, it follows that (R0/Rinfl)
3 = Ω0/2λ0. Thus,

R3

infl = R3

0







Ω0

2λ0





 . (9)

From the definition of R follows

R3

infl =







c

H0







3

|K0|−
3
2







Ω0

2λ0





 . (10)

Trivially,

R6

infl =







c

H0







6

|K0|−3







Ω0

2λ0







2

. (11)

From the definition of λ we have H2 = (Λ)/(3λ), thus

R6

infl =









c6(3λ)3

Λ3









|K0|−3







Ω0

2λ0







2

. (12)

Thus,

R6

inflΛ
3 =









(27Ω0
2λ0c

6

4|K0|3









. (13)

Since α = sign(K)(27Ω2λ)/(4K3) is constant along a trajectory and thus holds

for all values of λ, Ω, and K along a trajectory, not only for the current values

(α = sign(K0)(27Ω0
2λ0)/(4K

3
0)),

R2

inflΛ = c2 3
√
α . (14)

Rmax

In a universe which collapses in the future, Rmax is obviously constant along a

trajectory, and so could be interpreted as a constant of motion, though that is more

interesting if expressed as a fundamental cosmological parameter. At R = Rmax,

Ṙ = 0, thus one can calculate the scale factor (corresponding to the smallest value

of R for which Ṙ = 0) of the universe at maximum expansion for types 1–6 and

15. That involves solving a cubic equation, and the actual expression depends

on the model type. Although that solution depends on quantities such as Ω/(2λ)

and K/(3λ) (the square of the first divided by the cube of the second is, with the

additional factor of sign(K), the definition of α), I am not aware of any simple

expression relating α and Rmax, even though Rmax is obviously constant along a

trajectory. However, there are analytic solutions in special cases.

For the model 1, α = 0 since Ω = 0 and thus we cannot expect any constant of

motion expressed in terms of physical quantities to involve α. It thus makes sense

to express Rmax in terms of Λ by using the definition of λ to eliminate H0 and λ0,

resulting in R2
max = (3c2)/Λ.

For the model 3, α = ∞ since the radius of curvature is infinite. If we set

R0 = c/H0, as is commonly done in such cases, then, via reasoning similar to that

above, one obtains R6Λ3 = 27c6Ω2λ or, up to the constant c6, R6Λ3 = 4αK0
3.

Of course, that is rather meaningless since αK0 = ∞ ∗ 0 and results from using

R0 = c/H0 instead of R0 = c/(H0

√
K0). However, R6Λ3 = 4α is in some sense

the limit for K0 → 0.

For the model 5, α = 0 since λ = 0 and thus we cannot expect any constant of

motion expressed in terms of physical quantities to involve α. It thus makes sense

to express Rmax in terms of M , since such models have k = +1 and hence a finite

volume and finite mass. M is calculated above and Rmax = (c/H0)(Ω/(Ω − 1)
2
2),

thus R = (4GM)/(3πc2).

Model 15 asymptotically approaches the static Einstein model (16). It thus

has a maximum scale factor at which not only Ṙ but also R̈ is zero. Of course,

Eq. (8) applies here as well. One can also think of it as an inflection point, though

strictly speaking it is an asymptotic limit of models 15 and 17 and thus the

static phase never actually occurs in those models. However, calculating it in the

same way as described above, one obtains the result R2Λ = c2 3
√
α = 3

√
1 = 1 which

is compatible with the well known relations R2 = c2/(4πGρ) and Λ = 4πGρ.

Rmin

At R = Rmin, Ṙ = 0, so one can calculate the scale factor (corresponding to the

largest value of R for which Ṙ = 0) of the universe at minimum contraction in the

bounce models (18–19) and the Eddington model (17). As with Rmax, there

seems to be no simple relation between Rmin and α.

For α = 1, similar arguments apply as for model 15. (One can in some sense

think of models 15, 16, and 17 as one trajectory, though it spends an infinite

amount of time on each side of, and at, 16.) One obtains the same result, namely

R2Λ = c2 3
√
α = 3

√
1 = 1, and thus zmax = 3

√

2λ/Ω− 1.

For the model 19, arguments similar to those for model 1 lead to the same

result: R2
max = (3c2)/Λ. Thus, the maximum redshift in this model is zmax =

√

λ/(λ− 1)− 1.

The simplest cases

For the model 7, (the general-relativistic equivalent of) the Milne model, α = 0

since λ = 0 and Ω = 0. Note that, in contrast to all other cases except model 9

(see below), this trajectory does not correspond to a set of models specified by an

additional parameter (e.g . Λ for type 1), but is only one model which evolves in

time. In this model, R = ct. One can specify only the time since the big bang and

quantities trivially related to it, e.g . H ∼ 1/t. It is the only model in which Ω+ λ

is constant in time except for k = 0 models (in which the sum is 1) and the static

Einstein model (16) (in which the sum is ∞).

Model 9, the Einstein–de Sitter model, which has Ω = 1 always, is a repulsor;

all trajectories in non-empty big-bang models start here. Thus, it does not make

sense to define a value of α. Note that, in contrast to all other cases except model

7 (see above), this trajectory does not correspond to a set of models specified by an

additional parameter (e.g . Λ for type 1), but is only one model which evolves in time.

Thus, in such a model either the time or a time-dependent quantity determines the

other, e.g . the scale factor R is proportional to time as t2/3; the age of the universe

is 2/3 the Hubble time (R/Ṙ, the inverse of the Hubble constant); the density in kg

per m3 is given by 1/(6πGt2) where G is the gravitational constant and t is the age

of the universe in seconds. For a generic trajectory, specifying the trajectory and a

time-dependent quantity or the time still leaves some leeway, e.g . for type 15 only

the product ΛM 2, not either individually. Thus, specifying a generic trajectory

and, say, ρ does not, without further information, determine the time, and vice

versa . The Einstein–de Sitter model is spatially infinite and flat and will expand

forever (though the rate of expansion, and thus H, approaches 0 for t → ∞), there

is no maximum nor (non-zero) minimum scale factor nor point of inflection. There

is no non-trivial constant of motion and no defining physical property.

For the model 12, the de Sitter model, which has λ = 1 always, in contrast to

the other point-trajectory models 7 and 9 discussed above, there is a set of models

determined by Λ. H =
√

Λ/3 and is thus constant in time. H is thus the constant

of motion in this model; the Hubble sphere—the sphere with radius c/H—is thus

constant in time, which is not true in general. Also, the Hubble sphere is an event

horizon (Rindler, 1956); in general the Hubble sphere is not associated with any

type of horizon (e.g . van Oirschot et al., 2010).

The static Einstein model (17) being static, has H = 0 and hence λ and Ω

are infinite. Like all other models except 7–9, there is a set if models determined

by Λ. Equivalently, one can characterize those by the density ρ or scale factor

R2 = c2/(4πGρ); note that Λ = 4πGρ. It can also be seen as the future (15) or

past (17) limit of other models. Like all models with k = +1, Eq. (8) applies here

as well; that can be verified by using the relations above.
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