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Abstract

Several authors (including myself) have made claims, none of which has been convincingly rebutted,
that the flatness problem, as formulated by Dicke and Peebles, is not really a problem but rather a
misunderstanding. In particular, we all agree that no fine-tuning in the early Universe is needed in
order to explain the fact that there is no strong departure from flatness, neither in the early Universe
nor now. Nevertheless, the flatness problem is still widely perceived to be real, since it is still routinely
mentioned in papers and books as an outstanding (in both senses) problem in cosmology. Most of
the arguments against the idea of a flatness problem are based on the change with time of the density
parameter Ω and normalized cosmological constant λ (often assumed to be zero before there was strong
evidence that it has a non-negligible positive value) and, since the Hubble constant H is not considered,
are independent of time scale. In addition, taking the time scale into account, it is sometimes claimed
that fine-tuning is required in order to produce a Universe which neither collapsed after a short time
nor expanded so quickly that no structure formation could take place. None of those claims is correct,
whether or not the cosmological constant is assumed to be zero. Since I have been at most moderately
successful in convincing the community of the lack of existence of the flatness problem, I highlight some
similar claims from various authors better known than myself.

Introduction

Here, I consider only ideal Friedmann–Robertson–Walker (FRW) models, because

historically fine-tuning claims have been discussed within the context of those mo-

dels, and the issues remain even in more-realistic models. Note that the flatness

problem is different from another problem of classical cosmology, the isotropy or

horizon problem. The latter does not exist, by definition, in an ideal FRW universe,

while the point of the former is that even given the fact that the Universe is de-

scribed by an FRW model (why that is the case is, of course, a different question),

there is something puzzling about the values of the cosmological parameters which

are observed.

I use notation such that Ω = 8πGρ
3H2 refers to the density of matter (‘dust’) and

λ = Λ

3H2 is the normalized cosmological constant (with dimension time−2 so that

Λ has the same dimension as Gρ); the subscript 0 refers to the current value of a

time-dependent parameter. K = Ω + λ − 1 and k = sign(K). There are various

notation schemes; mine closely follows that of Harrison (2000).

There are several, somewhat related, formulations of the flatness problem. The

two most common are referred to by Holman (2018) as the fine-tuning problem

(“there must be some reason why Ω = 1 to very high precision in the early universe”)

and the instability problem (“even given that Ω = 1 to very high precision in the

early universe, if Ω is not exactly 1, then it would be unlikely to observe Ω ≈ 1”).

Both are concerned with the change (or lack thereof) of Ω (and λ) with time.

However, due to lack of the Hubble constant H, the time scale is irrelevant. Taking

the time scale, and thus at least implicitly H, into account, another claim is that

(near-)flatness is necessary to prevent the Universe from, after a short time, having

collapsed or expanded so quickly that no structure could form; that claim is also

incorrect. Note that Dicke (1970) (in total two paragraphs on the flatness problem)

mentions the fine-tuning and time-scale problems while Dicke and Peebles (1979)

mention all three aspects of the flatness problem (again in two paragraphs).

Arguments against the fine-tuning problem

The first argument in the literature against the flatness problem in FRW models

appears to have been by Cho and Kantowski (1994), concentrating on the fine-

tuning problem but also touching on the time-scale problem, well after the papers

by Dicke and Peebles (1979) and Guth (1981). Putting “The Flatness Problem”

in scare quotes makes their point already in the title. The last sentence of their

abstract sums up their argument well: “It is a distorted distribution of Ω

values that sometimes misleads the casual observer to conclude that

Ω must be exactly equal to 1.” Kantowski is of course a major figure in the

fields of general relativity and cosmology and the work was published in Physical

Review D, hardly an obscure journal. Quite frankly I wonder why that article

didn’t put an end to the idea of the flatness problem once and for all.

Coles and Ellis (1997) state clearly that “there is no flatness problem

in a purely classical cosmological model” [emphasis in the original]. Fol-

lowing Jaynes (1968), they advocate choosing a prior based on the principle of

maximum information entropy, which contradicts the assumption of a constant

prior for Ω. Kirchner and Ellis (2003) also use Jaynes’s principle to “solve the

flatness problem” (direct quotation). Carroll (2014), describing his work with

collaborators (Carroll and Tam, 2010; Remmen and Carroll, 2013, 2014), notes that

“flatness isn’t a problem at all”, “[t]he flatness problem, meanwhile,

turns out to be simply a misunderstanding”, “the flatness problem

really isn’t a problem at all; it was simply a mistake, brought about

by considering an informal measure rather than one derived from

the dynamics”. A conclusion of Carroll and Tam (2010) is a good summary

of this section: “The flatness problem, as conventionally understood,

does not exist; it is an artifact of informally assuming a flat measure

on the space of initial cosmological parameters” and “is not intrinsic

to the standard Big Bang model”.

The fine-tuning argument is wrong basically because Ω is not the appropriate

parameter to use (e.g . Cho and Kantowski, 1994; Coule, 1995; Evrard and Coles,

1995; Coles and Ellis, 1997; Kirchner and Ellis, 2003; Adler and Overduin, 2005;

Gibbons and Turok, 2008; Roukema and Blanlœil, 2010; Helbig, 2012); that is

most easily seem by studying the change in λ and Ω during the evolution of the

universe as a dynamical system (e.g . Stabell and Refsdal, 1966; Ehlers and Rindler,

1989; Goliath and Ellis, 1999; Uzan and Lehoucq, 2001; Coley, 2003; Wainwright

and Ellis, 2005), some such studies explicitly pointing out that this point of view

demonstrates the lack of a flatness problem in classical cosmology (e.g . Kirchner

and Ellis, 2003; Lake, 2005; Helbig, 2012).

Arguments against the instability problem

The first suggestion that the flatness problem could be avoided via a relative time-

scale argument seems to be due to Tangherlini (1993), though not in the context

of an FRW universe. Rindler (2001) points out that “the so-called ‘flatness

problem’—the alleged improbability of finding the value of Ω0 even

within a factor of 10 of unity” seems unproblematic for two reasons, first that

“at the big bang (R = 0), Ω always starts at one and then wanders

away from that value unless k = Λ = 0” (thus disputing the fine-tuning

problem) and second that, in FRW models with λ = 0 and Ω > 1, “Ω < 10 . . .

is true for fully 60 per cent of the entire time interval” (thus disputing

the instability problem, which has to do with relative time scales). The second

point is also obvious from figure 5 in Sandage (1968) (keeping in mind that Ω = 2q

for Λ = 0). Rindler was of course also a major figure in the fields of cosmology and

general relativity and surely many have read various editions of his textbooks. But

his argument against the flatness problem seems to have, for the most part, fallen

on deaf ears. (Although he explicitly discusses the λ = 0 case, his argument also

applies for general FRW models which collapse in the future (Helbig, 2012).)

It appears that our Universe has a positive cosmological constant and will ex-

pand forever. For such models with k = +1, Lake (2005) demonstrates that the

instability argument does not hold because λ and Ω are large and the universe

significantly non-flat only in the case that they are fine-tuned in the sense that

α = k(27Ω2λ)/(4K3) ≈ 1. (Note that α is a constant of motion, i.e. its value is

constant along an evolutionary trajectory in the λ–Ω plane; physically it is propor-

tional to the square of the mass of the universe and the cosmological constant Λ.

See my other poster for more on that topic.) Note that this is the opposite of the

claim that fine-tuning is required in order to have a flat universe (though, as noted

above, that claim is false). Lake suggests that α, which has a fixed value through-

out the life of the universe, is what should be used to characterize model universes.

In the words of Lake (2005) (his Ω is my Ω + λ): “. . . it is shown that for

the cosmological constant Λ > 0 there exist non-flat FLRW models

for which the total density parameter Ω remains ∼ 1 throughout the

entire history of the universe. Further, it is shown that in a precise

quantitative sense these models are not finely tuned. . . . The flat-

ness problem involves the explanation of [Ω0 ∼ 1] given [Ω = Ω(t)].

The problem can be viewed in two ways. First, one can take the

view that there is a tuning problem in the sense that at early times

Ω must be finely tuned to 1 [references to Dicke and Peebles (1979)

and Peacock (1999), the latter as an example of a standard argu-

ment in then current cosmological texts]. However, this argument

is not entirely convincing since all standard models necessarily start

with Ω exactly 1.” [Emphasis in the original.]

Adler and Overduin (2005) discuss various definitions of ‘nearly flat’, using es-

sentially using the same parameter as α used by Lake (2005), and arriving at the

same conclusion, namely that a significantly non-flat universe implies fine-tuning

in α. Their analogy, too long to quote in full here, is particularly convincing: “. . .

consider a test particle of mass m with total energy E falling into

the Netwonian gravitational field of a mass M . . . . Note that the

difference [between the ratio of the kinetic to potential energy and

1] becomes arbitrarily small as one approaches r → 0, in exactly the

same way that ΩT − 1 [their ΩT is my Ω + λ] does in cosmology as

t → 0. Yet one would hardly be justified in concluding from this

that E ‘must be’ zero on the grounds of naturalness.”

Arguments against the time-scale problem

There is less literature concerning this problem than concerning the fine-tuning

and instability problems, although it is often mentioned in casual discussions. The

usual formulation is that if one changed the density (or some other parameter) at

early times, then the Universe would have expanded or contracted so quickly that

it would be vastly different from that which we live in. The problem here is that it

makes no sense to imagine changing just one parameter; for the Friedmann equation

to remain an equation, at least two parameters have to be changed. However, in

general such minimal changes describe universes very different from our own, such

as a closed universe with a mass of one kilogram. Yes, such a universe might collapse

after a very short time, but that is irrelevant since it is not our Universe nor even

a slight perturbation of it in any meaningful sense. (See Helbig, 2020, for more

details.)

A red herring

The flatness problem as discussed here was formulated when it was known that Ω0

is within, say, an order of magnitude of 1, before it was known that Ω0+ λ0 ≈ 1 to

within a per cent or better. Not all of the arguments here can explain Ω0+ λ0 ≈ 1

to within a per cent or so (i.e. the instability problem), though that of Lake (2005)

perhaps can. (There is no such issue with the fine-tuning problem and the time-

scale problem. Note that the absence of the fine-tuning problem does not necessarily

imply the absence of the instability problem.) With regard to inflation, one should

not take the observed flatness as an indication that inflation must have happened.

On the other hand, either inflation happened or it didn’t, independently of the

question whether there is a flatness problem which must be solved. Note also that

when the flatness problem was originally formulated, it was assumed (at least by

those who formulated it) that λ = 0. Many of the arguments are the same whether

or not λ = 0 (in particular the discussion of the fine-tuning problem is the same,

since λ ≈ 0 at early times). However, the argument of Lake (2005) against the

instability problem depends on λ being large enough that the universe will expand

forever, but that is not a mark against his argument since we live in such a universe.

Conclusions

Most literature on the flatness problem can be traced back to Dicke and Peebles

(1979). Most people today probably connect it with inflation, though it had been

discussed long before the idea of inflation arose. It appears that Guth (1981) made

an extra effort in his paper to convince the community that the flatness problem

is indeed a problem (and thus that inflation offers a solution). In the appendix

to his article, Guth writes “This appendix is added in hope that some

skeptics can be convinced that the flatness problem is real.” For

almost thirty years, in the leading journals of the field, well known cosmologists

have made various arguments against its existence though such arguments seem to

have had little impact. As far as I know none of them has been rebutted.

Arguments against the flatness problem and their history are discussed in much

more detail by Helbig (2012, 2020, 2021) and Holman (2018) (Marc Holman is

also here at the conference). See also Brawer (1996) for an interesting historical

perspective, in particular her claim that the flatness problem was not considered to

be an important issue until inflation suggested a solution to it.

It might seem strange to some to claim that something which is believed by a

majority of the community is wrong. However, there are several examples where

the consensus was wrong until the community was convinced otherwise:

• the solution to Olbers’s paradox (e.g . Harrison, 1964, 1965, 1974, 1977, 1980,

1984, 1986, 1987, 1990a,b, 2000)

• Einstein’s rejection of the cosmological constant, now one of the most important

topics in cosmology (the fact that Einstein had rejected it probably caused many

to see it with too much scepticism, even though Einstein was often wrong in his

later years)

• the question whether black holes can form by known astrophysical processes

• the question whether gravitational waves transport energy

• cosmological horizons, a topic which was cleared up in a landmark paper by

Rindler (1956)

Still ongoing is the debate as to whether the cosmological-constant problem really

exists; my guess is that it is also based on confusion and misunderstanding—at

least I’m in good company (Bianchi and Rovelli, 2010a,b; Rovelli, 2021).
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