

Annual Congress of the RBSPRM

NERVOUS EXCITABILITY STUDY

Maëlle Tyberghein François Wang

Clinical neurophysiology department CHU, Liège

Why study axonal excitability?

Basic principles

Excitability actors

Basic principles

Neuron = parallel RC circuit

Membrane = capacity (C)

Capacitance = capacity to stock electric charges (depends on membrane surface)

- node : low capacitance (quick charge)
- internode : large capacitance (slow charge)

Ion channels = resistance (R)

Resistance variable :

- open channels : low resistance
- closed channels : high resistance

Nodal membrane potential increase and decrease depending on exponential kinetics characterized by time of constant = RC $=$ τ_{m} (time to change the potential of 63% of it's final value) ≃ chronaxie

Basic principles

The action potential

- Opening of Na nodal channels -> intrance of positives charges in the axone $=$ incoming ionic current (Na^+)
- Longitudinal axonal ionic current $(K^{\scriptscriptstyle +}, C^{\scriptscriptstyle +}, N\!a^{\scriptscriptstyle +})$
- Outgoing capacitative current in nodes where Na channels are closed > node depolarization -> opening of nodal sodium channels

How to study axonal excitability?

- 1. Strentgh-duration curves
- 2. Axonal excitability recovery cycle
- 3. Stimulus-response curves
- => Node excitability
- 4. Threshold tracking
- => Internodal accomodation

How to study axonal excitability?

Louis Lapicque 1866 – 1952 Sorbonne, Paris

In 1909, Lapicque defines:

Rheobase = estimated threshold current for a stimulus of infinitely long duration

Chronaxie = minimum stimulus duration for a current twice rheobase to stimulate a muscle.

Chronaxie (τ) = time of constant = time it takes for the change in potential to reach 63% of its final value

- Passive composant : 50 µs Node surface
- Active composant : 300-400 µs Leak Channels open at resting membrane potential Na_p

Rhéobase :

- Inversely proportional to nerve excitability
- Due to passive property of the node (capacity)
- Increased when there is damage in the myelin sheet
- Depends also of extraneural parameters

 Θ

-1 -0,5 0 0,5 1

0,5

In peripheral neuropathies

- **Demyelinating neuropathies (CMT1A, CIDP, GBS), the rheobase is increased due to passive membrane property. (Kiernan** *et al.***, 2019)**
- **There is a relationship between survival and chronaxie in ALS. (Kanai** *et al***, 2012)**
- **CIDP, one of direct action mechanism of intravenous immunoglobulin could depend of Nap Channel. (Boërio** *et al.***, 2010)**

How to study axonal excitability?

- 1. Strentgh-duration curves
- 2. Axonal excitability recovery cycle
- 3. Stimulus-response curves
- => Node excitability
- 4. Threshold tracking
- => Internodal accomodation

1952 Hodgkin & Huxley -> ionic channels

Joseph Bergmans (ca. 1970)

after single activation.

DEPARTMENT OF NEUROLOGY AND NEUROSURGERY CATHOLIC UNIVERSITY OF LOUVAIN, BELGIUM

> The physiology of single human nerve fibres

> > by J. BERGMANS

Chercheur Qualifié du Fonds National de la Recherche Scientifique

 \texttt{vander} - éditeur MUNTSTRAAT 10, LOUVAIN 21, RUE DEFACQZ, BRUXELLES 5 1970

Double shock

- **2 successive stimuli with 2 different intensities**
- **- Conditioning stimulus (supramaximal)**
- **- Test stimulus (i40)**

Variation of the interstimulus interval between 1-200 ms

Absolute refractory period : Nodal Na_t inactivation Relative refractory period: Nodal Na_t gradual reactivation

Superexcitable period:

During the action potential, there is a large influx of Na ions at the node which spread over nodal and internodal axolemma. After the action potential, there is a reflow of current coming from the large capacitance of the internode which depolarized the node.

Late subexcitable period :

Slow openning of nodal Ks => post potentiel hyperpolarization

In peripheral neuropathies

- **CMT1a and CIDP, refractory period and superexcitable period reduction is due to passive membrane property. (Kiernan** *et al.***, 2019)**
- **AMAN, the refractory period is increased** suggesting that nodal sodium channels are impaired by anti-ganglioside antibodies. *(Pyun et al., 2017)*
- **MMN, the supernormal period is increased below the conduction bloc reflecting membrane hyperpolarization (overacivation of NaKATPase pumps ?). (Kiernan** *et al***, 2002)**

CMT1a

Refractory period reduced Superexcitability period reduced

GBS

Refractory period reduced Superexcitabiity reduced Improvement with time

Lewis & Sumner

Membrane hyperpolarization

- Refractory period reduced
- Superexcitability increased (especially in ischemia)

How to study axonal excitability?

- 1. Strentgh-duration curves
- 2. Axonal excitability recovery cycle
- 3. Stimulus-response curves
- => Node excitability
- 4. Threshold tracking
- => Internodal accomodation

(Cappelen-Smith *et al***, 2001)**

iMAX the minimal intensity needed to evoke a maximal response

iMAX: A new tool for assessment of motor axon excitability. A multicenter prospective study

Maelle Tyberghein^a, Aude-Marie Grapperon^b, Olivier Bouquiaux^c, Angela Puma^d, Shahram Attarian^b, François Charles Wang^{a,*}

^a Centre Hospitalier Universitaire de Liège, Department of Neurophysiology, Sart Tilman B35, 4000 Liège, Belgium ^b APHM, Timone University Hospital, Referral Center for Neuromuscular Diseases and ALS, Filnemus, Euro-NMD, Marseille, France ^c CNRF, Neurologic Center, Fraiture, Belgium

^d Université Côte d'Azur, Peripheral Nervous System & Muscle Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, Nice, France

Like the rheobase, the stimulus response curve depends

on passive property of the membrane

- **+ impedance of electrodes**
- **+ resistance of the extraneural tissue**

Great variability of results (Boërio *et al***, 2008) We need to control the impedance**

Median - Pulse duration: 0.50 ms

How to study axonal excitability?

- 1. Strentgh-duration curves
- 2. Axonal excitability recovery cycle
- 3. Stimulus-response curves
- => Node excitability
- 4. Threshold tracking
- => Internodal accomodation

4. Threshold Tracking (1990- 2010)

First row from left: Inger Rudvin, Neshat Golparian, Kjeld Andersen, Hugh Bostock, David Burke Second row: Sture Hansson, John Smale Lundemo, Per Martin Roos, Christer Swerup, John Wilson, Anita Herigstad, Matthew Kiernan, Kari Todnem, Martin Ballegaard, Esa Kaupplia, John-Anker Zwart. Other participants: Trond Sand, Ole Støren.

Typical Equipment Setup for DS5/OtracW Installation

INVITED REVIEW

Muscle Nerve 21: 137-158, 1998

THRESHOLD TRACKING TECHNIQUES IN THE STUDY OF HUMAN PERIPHERAL NERVE

HUGH BOSTOCK, PhD,^{1*} KATIA CIKUREL, BSc, MRCP,² and DAVID BURKE, MD, DSc3

Study of the internode

David Burke Matthew Kiernan

4. Threshold tracking

- Target : CMAP = 40-50% maximale CMAP
- Threshold : stimulation intensity needed to reach the target => depends on membrane potential
- Conditionning stimuli of long duration
	- depolarising de 100-200 ms
	- hyperpolarising de 100-200 ms
	- intensity: 20% et 40% of the threshold
- Threshold variations = membrane potential variation

- ${\sf S2}$: threshold increase (${\sf K}_{\sf S}$ nodal and internodal)

I hyperpolarising (40% of the threshold) - F : fast increase of the threshold (nodal hyperpolarisation) - S1 : threshold increase more slowly

(hyperpolarisation diffusion in the internode, limited by Ih current)

Study of membrane polarity Depolarization/hyperpolarization

Ischemia = NaKATPase inactivation

- => depolarisation
- Post-ischémia = NaKATPase overactivation
- => hyperpolarisation

Stimulus – Response curves

Study of membrane polarity Depolarization/hyperpolarization

