

Annual Congress of the RBSPRM

NERVOUS EXCITABILITY STUDY

Maëlle Tyberghein François Wang

Clinical neurophysiology department CHU, Liège

Why study axonal excitability?

Basic principles

Excitability actors

Basic principles

Neuron = parallel RC circuit

Membrane = capacity (C)

Capacitance = capacity to stock electric charges (depends on membrane surface)

- node : low capacitance (quick charge)
- internode : large capacitance (slow charge)

Ion channels = resistance (R)

Resistance variable :

- open channels : low resistance
- closed channels : high resistance

Nodal membrane potential increase and decrease depending on exponential kinetics characterized by time of constant = RC= T_m (time to change the potential of 63% of it's final value) \simeq chronaxie

Basic principles

The action potential

- Opening of Na nodal channels

 -> intrance of positives charges in the axone
 = incoming ionic current (Na⁺)
- Longitudinal axonal ionic current (K⁺, Cl⁻, Na⁺)
- Outgoing capacitative current in nodes where Na channels are closed
 > node depolarization -> opening of nodal sodium channels

How to study axonal excitability?

- 1. Strentgh-duration curves
- 2. Axonal excitability recovery cycle
- 3. Stimulus-response curves
- => Node excitability
- 4. Threshold tracking
- => Internodal accomodation

How to study axonal excitability?

Louis Lapicque 1866 - 1952 Sorbonne, Paris

In 1909, Lapicque defines:

Rheobase = estimated threshold current for a stimulus of infinitely long duration

Chronaxie = minimum stimulus duration for a current twice rheobase to stimulate a muscle.

Chronaxie (τ) = time of constant = time it takes for the change in potential to reach 63% of its final value

- <u>Passive composant</u> : 50 µs Node surface
- <u>Active composant</u>: 300-400 µs
 Leak Channels open at resting membrane potential Na_p

Rhéobase :

- Inversely proportional to nerve excitability
- Due to passive property of the node (capacity)
- Increased when there is damage in the myelin sheet
- Depends also of extraneural parameters

0,5

1

-1

In peripheral neuropathies

- Demyelinating neuropathies (CMT1A, CIDP, GBS), the rheobase is increased due to passive membrane property. (Kiernan *et al.*, 2019)
- There is a relationship between survival and chronaxie in ALS. (Kanai et al, 2012)
- CIDP, one of direct action mechanism of intravenous immunoglobulin could depend of Nap Channel. (Boërio *et al.*, 2010)

	Chronaxia	Rheobase
ALS	increased	normal
CMT1a	normal	increased
GBS	normal	increased
CIDP	decreased	increased

How to study axonal excitability?

- 1. Strentgh-duration curves
- 2. Axonal excitability recovery cycle
- 3. Stimulus-response curves
- => Node excitability
- 4. Threshold tracking
- => Internodal accomodation

1952 Hodgkin & Huxley -> ionic channels

Joseph Bergmans (ca. 1970)

Figure 55. The influence of ischaemia on the recovery after single activation.

DEPARTMENT OF NEUROLOGY AND NEUROSURGERY CATHOLIC UNIVERSITY OF LOUVAIN, BELGIUM

The physiology of single human nerve fibres

by J. BERGMANS

Chercheur Qualifié du Fonds National de la Recherche Scientifique

vander - éditeur MUNTSTRAAT 10, LOUVAIN 21, RUE DEFACQZ, BRUXELLES 5 1970

Double shock

2 successive stimuli with 2 different intensities

- Conditioning stimulus (supramaximal)
- Test stimulus (i40)

Variation of the interstimulus interval between 1-200 ms

Absolute refractory period : Nodal Na_t inactivation Relative refractory period: Nodal Na_t gradual reactivation

Superexcitable period:

During the action potential, there is a large influx of Na ions at the node which spread over nodal and internodal axolemma. After the action potential, there is a reflow of current coming from the large capacitance of the internode which depolarized the node.

Late subexcitable period :

Slow openning of nodal Ks => post potentiel hyperpolarization

In peripheral neuropathies

- CMT1a and CIDP, refractory period and superexcitable period reduction is due to passive membrane property. (Kiernan *et al.*, 2019)
- AMAN, the refractory period is increased suggesting that nodal sodium channels are impaired by anti-ganglioside antibodies. (*Pyun et al., 2017*)
- MMN, the supernormal period is increased below the conduction bloc reflecting membrane hyperpolarization (overacivation of NaKATPase pumps ?). (Kiernan *et al*, 2002)

	Refractory period	Superexcitable period
ALS	reduce	increase
CMT1a	reduce	reduce
AMAN	increase	reduce
CIDP	reduce	reduce

CMT1a

Refractory period reduced Superexcitability period reduced

GBS

Refractory period reduced Superexcitability reduced Improvement with time

Lewis & Sumner

Membrane hyperpolarization

- Refractory period reduced
- Superexcitability increased (especially in ischemia)

How to study axonal excitability?

- 1. Strentgh-duration curves
- 2. Axonal excitability recovery cycle
- 3. Stimulus-response curves
- => Node excitability
- 4. Threshold tracking
- => Internodal accomodation

(Cappelen-Smith et al, 2001)

iMAX the minimal intensity needed to evoke a maximal response

Clinical Neurophysiology 133 (2022) 20-28

Contents lists available at ScienceDirect
Clinical Neurophysiology

journal homepage: www.elsevier.com/locate/clinph

iMAX: A new tool for assessment of motor axon excitability. A multicenter prospective study

Maelle Tyberghein^a, Aude-Marie Grapperon^b, Olivier Bouquiaux^c, Angela Puma^d, Shahram Attarian^b, François Charles Wang^{a,*}

^a Centre Hospitalier Universitaire de Liège. Department of Neurophysiology. Sart Tilman B35, 4000 Liège, Belgium
^b APHM, Timone University Hospital, Referral Center for Neuromuscular Diseases and ALS, Filnemus, Euro-NMD, Marseille, France
^c CNRF, Neurologic Center, Fraiture, Belgium

^d Université Côte d'Azur, Peripheral Nervous System & Muscle Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, Nice, France

	Shift of the curve	Slope
CMT1a	Right +++	
GBS	Right +	-
CIDP	Right ++	

Like the rheobase, the stimulus response curve depends

on passive property of the membrane

- + impedance of electrodes
- + resistance of the extraneural tissue

Great variability of results (Boërio *et al*, 2008) We need to control the impedance

How to study axonal excitability?

- 1. Strentgh-duration curves
- 2. Axonal excitability recovery cycle
- 3. Stimulus-response curves
- => Node excitability
- 4. Threshold tracking
- => Internodal accomodation

4. Threshold Tracking (1990-2010)

First row from left: Inger Rudvin, Neshat Golparian, Kjeld Andersen, Hugh Bostock, David Burke Second row: Sture Hansson, John Smale Lunderno, Per Martin Roos, Christer Swerup, John Wilson, Anita Herigstad, Matthew Kiernan, Kari Todnem, Martin Ballegaard, Esa Kaupplia, John-Anker Zwart. Other participants: Trond Sand, Ole Støren.

Typical Equipment Setup for DS5/QtracW Installation

INVITED REVIEW

Muscle Nerve 21: 137–158, 1998

THRESHOLD TRACKING TECHNIQUES IN THE STUDY OF HUMAN PERIPHERAL NERVE

HUGH BOSTOCK, PhD, 1* KATIA CIKUREL, BSc, MRCP, 2 and DAVID BURKE, MD, DSc 3

Study of the internode

David Burke

Matthew Kiernan

4. Threshold tracking

- Target : CMAP = 40-50% maximale CMAP
- Threshold : stimulation intensity needed to reach the target => depends on membrane potential
- Conditionning stimuli of long duration
 - depolarising de 100-200 ms
 - hyperpolarising de 100-200 ms
 - intensity: 20% et 40% of the threshold
- Threshold variations = membrane potential variation

- S2: threshold increase (K_s nodal and internodal)

I hyperpolarising (40% of the threshold) - F : fast increase of the threshold (nodal hyperpolarisation) - S1 : threshold increase more slowly

(hyperpolarisation diffusion in the internode, limited by **Ih current**)

Study of membrane polarity Depolarization/hyperpolarization

Ischemia = NaKATPase inactivation

- => depolarisation
- Post-ischémia = NaKATPase overactivation
- => hyperpolarisation

Stimulus – Response curves

Study of membrane polarity Depolarization/hyperpolarization

