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• The presence of aggregates greatly reduces the water permeability

• WRC: RAC ~= E-M > NAC

• The RAC has a greater exchange rate of moisture with its environment than the NAC.
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• E-M (1.45%)  > RAC (1.27%) > NAC (0.78%) of surface concentration

• The greater the mortar matrix content, the higher the concentration of chloride is at the threshold.

• Conduction: E-M (5808 Coulombs) > RAC (5290 Coulombs) > NAC (3141 Coulombs)
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Multiscale modelling
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2: Computation at the microscale*,
under permanent flow hypothesis
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is in the order of 
the centimetre
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• The substitution of NA by RCA increases the diffusivity of 
chloride ions, as well as worsen the water transfer 
properties;

• The microstructure can play the role of concrete using 
mortar properties, allowing easier study of aggregate’s 
influence.

This work is co-funded by the FNRS and the Wallonia Regional Government in the 
framework of a FRIA grant.
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• PSD: 2-4mm 48%, 4-5mm 22.9%, 5-6.3mm 20%, 6.3-
8mm 9.1%

• SF: 41% Volume/Surface for both NAC and RAC (mix 
hypothesis)

• AR: between 1.5 and 2.5

• % Adherent mortar in RCA (+-5%) : 50% for 2-4mm, 
45% for 4-5mm, 40% for 5-6.3mm, 35% for 6.3-8mm 
[de Juan & Gutiérrez, 2009][Akbarnezhad et 
al.,2013][Florea & Brouwers, 2013]. 
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RVE: RCA influence
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• Equal properties, except for RCA: 5x more diffusive
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Analytical solution for a 1D semi-infinite medium [Biver,1993]:
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[Angst, 2011]
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[Broomfield, 2007]

[Raupach & Büttner, 2014]
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