
GBOML: A MODELLING TOOL FOR STRUCTURED MILPS
Bardhyl Miftari1,∗, Mathias Berger1, Guillaume Derval1, Quentin Louveaux1, Damien Ernst1,2

∗bmiftari@uliege.be,1University of Liège, Belgium, 2LTCI, Telecom Paris, Institut Polytechnique de Paris, France

GBOML: A MODELLING TOOL FOR STRUCTURED MILPS
Bardhyl Miftari1,∗, Mathias Berger1, Guillaume Derval1, Quentin Louveaux1, Damien Ernst1,2

∗bmiftari@uliege.be,1University of Liège, Belgium, 2LTCI, Telecom Paris, Institut Polytechnique de Paris, France

Yet another modelling tool ?

GBOML aims to bridge the gap between AMLs and OOMEs.

&

Close to math
notation

Very
expressive

No structure
exploitation

Algebraic Modelling Languages (AMLs) Object-Oriented Modelling Environments (OOMEs)

Reusable
components

Component
assembling

Enable
structure
encoding

Difficult to
extend

The Graph-Based Optimization Modelling Language (GBOML)

Close to math
notation

Very
expressive

Component
assembling

Reusable,
easy to create
components

Exploits
structure

Focus on mathematical modelling Problem-specific modelling tools Mix of AMLs and OOMEs

Structured MILPs

• Arise in many applications such as energy system planning and supply
chain management problems

• Often possess a time-index

• Can often be seen as networks of components or units

• Can often be encoded by a hierarchical hypergraph

GBOML

Parsing

Lexing

Parsing

Tokens

Evaluation

Factorization

Matrix
Generation

Solving

Solver API

MatricesSolution

Output

Output
Generation

GBOML
Input File

Structured
Output

Analysis

Semantic
Check

Tree
Augmentation

Checked AST

AST

Solver

Matrices

AST++

The Graph-Based Optimization Modelling Language (GBOML)[1, 2]

• is open-source and coded in Python (available on PyPI)

• relies on a hierarchical hypergraph abstraction to capture structure

• interfaces with both commercial and open-source solvers

• exploits structure in

– model encoding via its hypergraph abstraction
– model generation via its inner representation, vectorization and parallel

model generation
– model solving by interfacing with structure exploiting methods (Dantzig-

Wolfe and Benders decomposition)

Benchmark

0 20000 40000
Timehorizon in hours

0

5

10

15

20

25

Ti
m
e 
ta
ke

n 
in 

se
co

nd
s

Model generation time

JuMP
Plasmo

Pyomo
AMPL

GBOML 1 process
GBOML 2 processes

GBOML 4 processes
GBOML 8 processes

0 20000 40000
Timehorizon in hours

0.0

0.5

1.0

1.5

2.0

2.5

Pe
ak

 R
AM

 u
sa

ge
 in

 G
B

Model generation RAM usage

Mathematical formulation

This work focuses on block-decomposable problems that can be encoded by
a hierarchical hypergraph G = ⟨�,▲⟩, where

• � is the set of nodes

• ▲ is the set of hyperedges linking these nodes.

sub-node sub-node

sub-node

Node Node

Node

Node

Node

variables
constraints
objectives

sub-hypergraph

Constraints

Hyperedge

Each node � ∈ � is made up of variables, objectives obj�, constraints cstr�
that need to be satisfied and a sub-hypergraph G� = ⟨��,▲�⟩.
Each hyperedge △ ∈ ▲ is made up of constraints cstr△ that connect nodes’
variables. The overall problem P(G) is written as,

P(G) ≡ min
∑
�∈�

f (�)

s.t. g(�) is true ∀� ∈ �

cstr△ is true ∀△ ∈ ▲

f (�) = obj� +
∑

o∈��

f (o),

g(�) = cstr� ∧
[
g(o) ∀o ∈ ��

]
∧
[
cstr△ ∀△ ∈ ▲�

]
Example

We consider a house that wants to minimize
its overall electricity bill by installing PV pan-
els. First, we model the PV panels in GBOML
by writing,

#NODE PV
#PARAMETERS

cost_invest = 120;
cost_op = 1;
irradiance = import "irradiance.csv";
max_capacity = 500.0;

#VARIABLES
internal: capacity;
external: electricity[T];

#CONSTRAINTS
electricity[t] <= irradiance[t] * capacity;
capacity <= max_capacity;
capacity >= 0;
electricity[t] >= 0;

#OBJECTIVES
min: cost_invest * capacity;
min: cost_op * electricity[t];

We can then import the node PV and write the overall problem as,

#TIMEHORIZON T = 24*365*5;

#NODE HOUSE
#PARAMETERS
demand = import "demand.csv";
energy_price = 2;

#NODE PV = import "PV" from "PV.gboml";
#VARIABLES
external: tobuy[T];
internal: panels[T] <- PV.electricity[T];

#CONSTRAINTS
tobuy[t] >= demand[t] - panels[t];
tobuy[t] >= 0;

#OBJECTIVES
min: tobuy[t];

[1] Bardhyl Miftari et al. “GBOML: A Structure-Exploiting Optimization Modelling Language in Python”. 2022. URL: https://gitlab.uliege.be/smart_grids/public/gboml.

[2] Bardhyl Miftari et al. “GBOML: Graph-Based Optimization Modeling Language”. In: Journal of Open Source Software 7.72 (2022), p. 4158. DOI: 10.21105/joss.04158. URL: https://doi.org/10.
21105/joss.04158.


