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Yet another modelling tool ?

GBOML aims to bridge the gap between AMLs and OOMEs.
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Structured MILPs

• Arise in many applications such as energy system planning and supply
chain management problems

• Often possess a time-index

• Can often be seen as networks of components or units

• Can often be encoded by a hierarchical hypergraph
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The Graph-Based Optimization Modelling Language (GBOML)[1, 2]

• is open-source and coded in Python (available on PyPI)

• relies on a hierarchical hypergraph abstraction to capture structure

• interfaces with both commercial and open-source solvers

• exploits structure in

– model encoding via its hypergraph abstraction
– model generation via its inner representation, vectorization and parallel

model generation
– model solving by interfacing with structure exploiting methods (Dantzig-

Wolfe and Benders decomposition)
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Mathematical formulation

This work focuses on block-decomposable problems that can be encoded by
a hierarchical hypergraph G = ⟨�,▲⟩, where

• � is the set of nodes

• ▲ is the set of hyperedges linking these nodes.
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Each node � ∈ � is made up of variables, objectives obj�, constraints cstr�
that need to be satisfied and a sub-hypergraph G� = ⟨��,▲�⟩.
Each hyperedge △ ∈ ▲ is made up of constraints cstr△ that connect nodes’
variables. The overall problem P(G) is written as,

P(G) ≡ min
∑
�∈�

f (�)

s.t. g(�) is true ∀� ∈ �

cstr△ is true ∀△ ∈ ▲

f (�) = obj� +
∑

o∈��

f (o),

g(�) = cstr� ∧
[
g(o) ∀o ∈ ��

]
∧
[
cstr△ ∀△ ∈ ▲�

]
Example

We consider a house that wants to minimize
its overall electricity bill by installing PV pan-
els. First, we model the PV panels in GBOML
by writing,

#NODE PV
#PARAMETERS

cost_invest = 120;
cost_op = 1;
irradiance = import "irradiance.csv";
max_capacity = 500.0;

#VARIABLES
internal: capacity;
external: electricity[T];

#CONSTRAINTS
electricity[t] <= irradiance[t] * capacity;
capacity <= max_capacity;
capacity >= 0;
electricity[t] >= 0;

#OBJECTIVES
min: cost_invest * capacity;
min: cost_op * electricity[t];

We can then import the node PV and write the overall problem as,

#TIMEHORIZON T = 24*365*5;

#NODE HOUSE
#PARAMETERS
demand = import "demand.csv";
energy_price = 2;

#NODE PV = import "PV" from "PV.gboml";
#VARIABLES
external: tobuy[T];
internal: panels[T] <- PV.electricity[T];

#CONSTRAINTS
tobuy[t] >= demand[t] - panels[t];
tobuy[t] >= 0;

#OBJECTIVES
min: tobuy[t];
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