
GBOML: A Structure-Exploiting Optimization Modelling Language

in Python

Bardhyl Miftari1, Mathias Berger1, Guillaume Derval1, Quentin Louveaux1, and
Damien Ernst1,2

1University of Liège, Belgium;
2LTCI, Telecom Paris, Institut Polytechnique de Paris, France

ARTICLE HISTORY

Compiled September 8, 2023

ABSTRACT
Mixed-Integer Linear Programs (MILPs) have many practical applications. Most
modelling tools for MILPs fall in two broad categories. Indeed, tools such as al-
gebraic modelling languages allow practitioners to compactly encode models using
syntax close to mathematical notation but usually lack support for special struc-
tures, while other tools instead provide predefined components that can be easily
assembled but modifying or adding new components is difficult. In this work, we
present the inner workings of the Graph-Based Optimization Modelling Language
(GBOML), an open-source modelling tool implemented in Python combining the
strengths of both worlds. GBOML natively supports special structures that can be
encoded by a hierarchical hypergraph, offers syntax close to mathematical nota-
tion and facilitates the modular construction and reuse of time-indexed models. We
detail design choices enabling these features and show that they simplify problem
encoding, lead to faster instance generation times and sometimes faster solve times.
We benchmark the times taken by GBOML, JuMP, Plasmo, Pyomo and AMPL to
generate instances of a structured MILP. We find that GBOML outperforms Plasmo
and Pyomo, is tied with JuMP but is slower than AMPL. With parallel model gen-
eration, GBOML outperforms JuMP and closes the gap with AMPL. GBOML has
the smallest memory footprint.

KEYWORDS
Optimization; Linear Programming; MILP; Graph; Structure; Exploitation;
Modelling; Tool;

1. Introduction

Many real-life problems can be represented and tackled as mathematical
programs[12, 16, 33]. In particular, Mixed-Integer Linear Programming (MILP)
often provides an exact representation of many problems or enables one to approx-
imate some nonlinear problems via piecewise-affine approximations of nonlinear
functions. Applications for which MILP is particularly suitable include energy system
planning and control as well as supply chain management[4, 39, 50].

Working with mathematical programs often involves four basic steps. First, a
practitioner must come up with an abstract mathematical representation of the

CONTACT: Bardhyl Miftari. Email: bmiftari@uliege.be

problem, which is often referred to as a formulation, and is composed of parameters,
variables, constraints and objectives. Second, this abstract representation must be
encoded in a format intelligible by a computer, which is typically done via a modelling
tool. Then, the encoded problem is passed to a solver which solves it. Finally, the
results of the solution provided by the solver are retrieved and post-processed.

This paper focuses on the second aforementioned step, namely modelling tools.
Modelling tools are widely used by practitioners in the field of mathematical program-
ming [45] and they have also been gaining momentum in related fields where their use
was traditionally limited. For instance, in the field of constraint programming, where
the problem formulation was traditionally linked directly to a solver, more generic
modelling tools such as Essence[22], CMPpy[24], MiniZinc[40] and XCSP3[8] have
emerged.

Most modelling tools for mathematical programming are used to perform four
essential tasks: encoding a high-level mathematical representation of a model,
transforming it into a lower-level representation suitable for numerical computing,
communicating with solvers and processing the solution. During the encod-
ing, the user writes their problem in a modelling language or framework provided
by the modelling tool. The encoded problem is then converted to a lower-level
representation that is suitable for numerical computing, usually in the form of
a collection of matrices. The modelling tool then communicates this lower-level
representation to a solver, along with other information such as parameters used
for tuning algorithms. Finally, if a solution is found by the solver, it is retrieved
and processed into standard file formats and output. If no solution is found, the
modelling tool retrieves and returns information about the status of the model and
solver.

Modern modelling tools for mathematical programming typically fall into two
broad categories: Algebraic Modelling Languages (AMLs) and what we refer to as
Object-Oriented Modelling Environments (OOMEs). On the one hand, AMLs are
tools that enable the encoding of a broad class of mathematical problems (such as
mixed-integer non-linear programs) with syntax close to the mathematical notation.
They enable models to be encoded using mathematical expressions involving param-
eters and variables, from which the constraints and objectives of a given problem
are defined. On the other hand, OOMEs adopt a more object-oriented approach by
providing the users with a library of generic pre-existing components that are easy to
manipulate, reuse and assemble in order to build larger models, in a fashion similar
to simulation tools such as Simulink[44] or Modelica[38]. Some OOMEs rely them-
selves on AMLs. In the next two paragraphs, we explain each category in greater detail.

AMLs, in addition to offering syntax that is expressive and close to standard
mathematical notation, can either be available as stand-alone tools or directly
embedded in a programming language. Embedded AMLs usually come in the form of
a package that can be imported in scripts or code that use data structures already
available in the programming language. By contrast, stand-alone AMLs define their
own language and grammar. Stand-alone AMLs rely on a custom lexer and parser to
read the information contained in a file defining a model. Some well-known AMLs are
JuMP[36], Pyomo[11], AMPL[18], GAMS[10] and Mosel[26]. JuMP[36] is an open-
source embedded AML implemented in Julia[6]. It deals with linear, mixed-integer,

2

second-order cone, semidefinite, and nonlinear programming1 with set programming
and Mixed Complementarity Problems (MCP) modelling capabilities enabled via
extensions. Pyomo[11] is also an open-source AML embedded in Python[49] that
deals with linear, quadratic and nonlinear programming for both continuous and
mixed-integer variables. AMPL[18] and GAMS[10] are well-established commercial
stand-alone modelling tools that deal with a similar class of problems as Pyomo.
AMPL also supports constraint programming[20]. The previous tools all communicate
with various solvers, enabling the user to try different algorithms and solvers to find
a solution to their problems. By contrast, Mosel[26] is a commercial stand-alone
AML that communicates with only one solver, namely FICO Xpress[35]. It deals with
MILP, convex quadratically constrained quadratic programming and second-order
cone programming.

The second category is the OOMEs. OOMEs’ main features are the easy and
modular construction of models via the combination of predefined components or
the reuse of models. Typically, the predefined components are application-specific
and often contain some data (e.g., some reference or default parameter values for a
system) that can be updated. Often, users do not have direct access to the model
that underpins predefined components. Introducing new components or substantially
modifying predefined ones is usually cumbersome. Notable OOMEs for energy systems
and supply chain management are Calliope[41], PyPSA[9] and MISPT[28]. Calliope
is a multi-scale energy system modelling framework. It revolves around four types
of components: technologies, carriers, locations and resources. Models are defined in
YAML files by providing instances of these components. PyPSA is a toolbox for power
system optimization. PyPSA relies on Pyomo and defines power systems as networks
made up of components such as buses, lines, transformers, generators, storage units
and loads. Power system planning and operation are common use cases of PyPSA.
MISPT is a MILP production planning tool. It is typically useful for mixed-time
models (i.e., a combination of continuous and discrete-time models) and multistage
multi-product production problems.

Both AMLs and OOMEs suffer from certain drawbacks. For a start, in their basic
form, AMLs usually fail to expose and exploit the structures that naturally arise in
some MILPs or allow any kind of reuse of sub-parts (or whole parts) of models. More
specifically, most AMLs fail to expose the special structure that exists in many MILPs
encountered in practical applications to specialized solvers. Then, OOMEs lack
expressiveness and the models that underpin existing components are often difficult
to access, making the modification or addition of new components complicated. In
addition, OOMEs often rely on AMLs themselves, in which case they also inherit
their drawbacks.

Nonetheless, there exist extensions to AMLs such as SAMPL[48] (for AMPL) or
Extended Mathematical Programming (EMP)[14] that enable AMLs to capture and
expose special problem structures. SAMPL is an extension designed to handle stochas-
tic programming. It enables the encoding of structure through stages of optimization
and interfaces with structure-exploiting methods. EMP is a general framework that
uses specific annotations to automatically reformulate classes of problems such as
stochastic programming, disjunctive programming or complementarity problems

1https://jump.dev/JuMP.jl/stable/

3

into equivalent problems and facilitate modelling and the use of specialized solvers.
At present, there is only one specific EMP implementation that extends GAMS.
In its stochastic reformulation, EMP supports the definition of stages similarly to
SAMPL. In addition to these extensions, a few modelling tools such as Plasmo[30]
and SMS++[21] also try to bridge the gap between AMLs and OOMEs by combining
modularity, expressiveness and support for special problem structures. Plasmo[30] is
an open-source embedded modelling framework built on top of JuMP. It uses a graph
abstraction to build hierarchical models while still benefiting from the expressiveness
of JuMP. It exposes the block structure of models by enabling the encoding of nodes
and edges. SMS++[21] is an embedded open-source structured modelling system for
optimization models, implemented in C++. Specifically, it enables the modelling of
hierarchical block-structured models by using the AbstractBlock class, also exposing
the block-decomposable structure to specialised solvers and algorithms. However,
none of these tools natively supports the straightforward reuse of model components,
which is the core feature of OOMEs.

The Graph-Based Optimization Modelling Language (GBOML) [37] is a stand-
alone open-source modelling tool for MILPs implemented in Python that combines the
strengths of AMLs and OOMEs. More precisely, the tool supports special structures
that can be encoded by a hierarchical hypergraph, offers syntax close to mathe-
matical notation and facilitates the modular construction and reuse of time-indexed
models. It also interfaces with various commercial and open-source solvers, including
structure-exploiting ones. In this paper, we present the key objectives behind the
development of GBOML, the key design choices that enable the aforementioned
features and the inner workings of the tool. In particular, we discuss the benefits
of maintaining a symbolic representation of models, exploiting their underlying
structures and resorting to delayed evaluation. We also illustrate the use of GBOML
with different examples and benchmark its performance against well-established
optimization modelling tools.

This paper is structured as follows. The design aims of GBOML are first sum-
marized in Section 2. Then, in Section 3, the hierarchical hypergraph abstraction of
mixed-integer linear programs that underpins GBOML is discussed. Next, the inner
workings of GBOML are explained in Section 4 to better understand how it represents
problems internally and enables a key set of features. Two examples are provided in
Section 5. We discuss the main features in addition to a benchmark of Plasmo[30],
JuMP[36], Pyomo[11], AMPL[18] and GBOML[37] on a realistic energy system plan-
ning problem[4] in Section 6. The paper ends with a conclusion and a brief discussion
of future work avenues in Section 7.

2. Aims and Requirements

Modelling tools are all about ease of use and convenience[32]. Indeed, modelling
tools for mathematical programming were originally created to ease the burden of
implementing and solving models for practitioners [19]. With this in mind, in the
following, we explain the core aims and features that drove the development of
GBOML.

4

Mixed-Integer Linear Programming

As mentioned before, MILP is applied to tackle a large range of problems that arise in
various fields such as energy system planning and supply chain management. GBOML
allows users to encode any MILP using syntax resembling that of traditional AMLs. In
other words, defining parameters, variables, constraints or objectives is straightforward
to do and relies on syntax close to standard mathematical notation.

Stand-Alone and Lightweight

GBOML focuses on a restricted set of key features that are easy to use and main-
tain. Its core is as simple as possible. Specifically, GBOML is designed to deal with
structured Mixed-Integer Linear Programming and the aim is to do that well rather
than extending to other classes of problems. Being stand-alone has both advantages
and disadvantages. On the one hand, it does not benefit from the expressiveness and
functionalities of an existing AML on top of which it could be built (e.g., that already
interfaces with a broad range of solvers), and developing a stand-alone tool thus re-
quires more implementation work. On the other hand, being stand-alone gives more
freedom at the design stage as well as greater control over the implementation and
maintenance of the tool.

Model Reuse and Modular Construction

GBOML implements features similar to those of OOMEs by allowing any element
defined in a GBOML file to be reused elsewhere. It supports the reuse of models in
parts or as a whole. More precisely, one core feature is that any block defined could
be easily imported and reused in another model in a library-like manner. Combining
blocks of models or full models into a larger one is of primary importance. Therefore,
the definition of these entities is as self-contained as possible to enable their easy
manipulation. It should be noted that no two models are usually exactly identical and
there is a need for the elements and models to be slightly adapted to one particular
use case by enabling, for instance, a change in the values of parameters.

Structured Models

Many real-life problems possess a time dimension and a natural block structure wherein
a component (e.g., a power plant) of a large system (e.g., the power system) can be
seen as a block [4]. The tool allows the representation of block structures that can
be encoded by a hierarchical hypergraph, and its core revolves around these so-called
blocks. Structure is defined via special language constructs and can be exploited during
model generation and solving by exposing it to specialised algorithms. In addition, the
tool facilitates the encoding and generation of time-indexed models. In Section 3, we
provide a more detailed formulation of the problems that we consider.

Solvers

Interfaces to both commercial and open-source solvers are provided. GBOML commu-
nicates with a wide range of solvers and has an intermediate representation sufficiently
generic so that it can be adapted to fit the format expected by various solvers. Com-

5

mercial solvers are the state-of-the-art, with the likes of Gurobi[25], CPLEX[29] and
Xpress[35] being amongst the fastest solvers, but their price is often a barrier for a
lot of users. In order to be used by everyone, free open-source alternatives also ex-
ist for solvers, such as HiGHS[27] and CBC[17]. Furthermore, in order to exploit the
structure, interfaces to structure-exploiting solvers that implement methods such as
the Dantzig-Wolfe and Benders algorithms have been implemented.

Open-source and Language

In order to promote transparency and to make it widely accessible, GBOML is released
under the MIT Licence[46]. It is indeed paramount that both academics and industry
practitioners have access to GBOML. Furthermore, releasing its source code enables
practitioners to study and modify the software in order to enhance it or customize it
to better suit their needs. Hence, providing full open access can also improve the tool’s
reliability. The tool was implemented in Python, owing to its ease of use, its object-
oriented nature (which facilitates the implementation of key features of the tool) and
the fact that it has a very broad user base spanning both industry and academia.

3. Structure Formalization

Let us first provide a concise reference describing the notation. We denote a scalar
with a standard-font symbol a or A (uppercase for constants), a vector with a bold
lowercase letter a, a matrix with a bold uppercase letter A, a set with a calligraphic
uppercase letter A and a tuple or graph-related object with a sans-serif letter a or A.
The ith element of a vector x is noted x[i].

Node

Internal vars External vars

Hyperedge

 (imported from)

Constraints /

Top-layer hypergraph

Hypergraph

Objectives

Node

Internal vars External vars

Constraints /

Hypergraph

Objectives

Node

Internal vars External vars

Constraints /

Hypergraph

Objectives

Node Node

Internal vars External vars External vars Internal vars

Constraints / Constraints /Objectives Objectives

Hypergraph Hypergraph

Hyperedge

Figure 1. The hypergraph Gg is the top layer hypergraph made up of three nodes A, B and C and one
hyperedge D. The node A contains a hypergraph GA made-up of two nodes X and Y and a hyperedge E.

In this work, we focus on time-indexed mixed-integer linear problems containing
a block-decomposable structure where each block has its own variables, constraints

6

and objectives. Each block can itself contain other blocks, in a tree-like fashion. The
blocks are interconnected by constraints that link a subset of the variables of several
blocks. To formalize the problems, we take a hierarchical hypergraph abstraction.

We consider a hypergraph G = (N , E) where N denotes a set of nodes, each
node represents a block that can itself contain a hypergraph and E the hyperedges
connecting these blocks. The highest level hypergraph, the one that is not contained in
a node, is also called the top-layer hypergraph Gg composed of the so-called top-layer
nodes Ng and hyperedges Eg. All nodes and hyperedges that do not belong to the
top-layer are called subnodes and sub-hyperedges, i.e. nodes and hyperedges that
belong to a hypergraph contained in another node, their definition being otherwise
identical. An example of hierarchical hypergraph is given in Figure 1.

Each node n is defined as a tuple < vextn ,vintn ,Gn,Hn,Gn,On > where:

• vextn and vintn respectively denote the external and internal vector variables such
as their concatenation is denoted vn = vextn ⊕ vintn ,

• Gn ∈ Rψn×(1+|vn|) and Hn ∈ Rηn×(1+|vn|) denote the inequality and equality
constraints where ψn is the number of inequality constraints in node n and ηn
the number of equality constraints, such that

Gn

[
1
vn

]
≤ 0, Hn

[
1
vn

]
= 0,

• Gn is the hypergraph (Nn, En) contained in node n where Nn represents the set of
subnodes of the hypergraph contained in node n and En the set of sub-hyperedges,

• and the matrix On ∈ Rσn×(1+|vn|) represents the objective function to minimize
with σn representing the number of objectives defined in node n,

min 11×σn On

[
1
vn

]
,

11×σn being the matrix filled with ones of size (1× σn).

It should be noted that the variables of each node are not necessarily independent
from the variables of its subnodes. In other words, if we note by n1 a parent node and
n2 its child node, there can exist a variable v such that v = vn1

[i] and v = vn2
[j] where

i and j are not necessarily equal. We say that n1 imports the variable from n2.

The hyperedges e ∈ Eg and sub-hyperedges e ∈ En connect the external variables
vextn of several nodes Ne of a given layer. Each hyperedge is defined as a tuple <
Ne,Ge,He > where Ne is the set of nodes concerned by the hyperedge e. All the
nodes in Ne belong to the same hypergraph G. For ease of writing, let us note ve =⊕

n∈Ne
vextn . Ge ∈ Rψe×(1+|ve|) denotes the inequality constraints and He ∈ Rηe×(1+|ve|)

the equality constraints such as

Ge

[
1
ve

]
≤ 0, He

[
1
ve

]
= 0.

In order to state the overall problem, let us define the following recursive functions,

7

• the function f that takes a set of nodes N as input and returns the sum of the
objectives of the nodes and their subnodes recursively,

f(N) =
∑
n∈N

(
11×σn On

[
1
vn

]
+ f(Nn)

)
.

• the Boolean-valued function g that takes a hypergraph G = (N , E) as input and
returns,

g(G) =

[
Ge

[
1
ve

]
≤ 0 ∀e ∈ E

]
∧
[(

Gn

[
1
vn

]
≤ 0 ∧ g(Gn)

)
∀n ∈ N

]
.

The left-hand side of the and operator ∧ represents the inequality constraints in
the set of hyperedges E whereas, the right-hand side the inequality constraints
of the set of nodes N and its sub-hypergraph Gn.

• the Boolean-valued function h that takes a hypergraph G = (N , E) as input and
returns,

h(G) =

[
He

[
1
ve

]
= 0 ∀e ∈ E

]
∧
[(

Hn

[
1
vn

]
= 0 ∧ h(Gn)

)
∀n ∈ N

]
.

A compact representation of the hierarchical hypergraph abstraction of a block de-
composable problem is given as,

min f(Ng)

s.t. h(Gg) is true
g(Gg) is true.

(1)

4. GBOML Implementation

In this section, we discuss the implementation of GBOML, which comes as a Python
package installable via PyPI[43] containing an executable and a Python library. The
executable directly takes GBOML text files as input, while the Python library enables
the handling of models encoded in GBOML files (e.g., importing blocks, combining
components, redefining parameters, etc.).

In the following, we first explain the general workflow of the tool by providing a high-
level view of its different components. Then, we provide a step-by-step explanation of
the different representations of a model, namely as encoded in the GBOML language,
as a syntax tree and as a collection of matrices, as well as the transition from one form
to the other. We explain how our design goals are attained along the way.

4.1. Overall Workflow

The GBOML workflow is divided into five main steps:

• Parsing: The goal of this step is to convert the plain information contained in
a text file written in the GBOML language into a syntax tree. To do so, the
executable calls the GBOML parser upon the file it reads. In terms of parsing,

8

we use an LALR(1) parser[1]. We use a lexer to convert the file in a stream of
predefined tokens and the LALR(1) parser to convert the stream of tokens to a
syntax tree.

• Analysis: In the second step, the syntax tree is checked and augmented with
further information. These checks ensure that all elements in the input are valid
(e.g., that the constraints and objectives are indeed linear).

• Evaluation: Once all the information has been gathered in a structured tree,
we proceed with the evaluation of the expressions in order to generate a matrix
representation of the problem.

• Solving: The matrix representation augmented with syntax tree information
(such as variable types, structure, ...) are passed to the solver, which solves the
problem and sends back the solution if it exists.

• Output: Once the solution has been retrieved, the output is stored in a standard
file format (CSV or JSON) reflecting the structure of the original model.

This division in different steps is one of the key design choices enabling crucial
features discussed in Section 2. It introduces a clear separation between the model
declaration and the building of the problem instance which needs to be evaluated,
analyzed and solved. In this sense, GBOML is a modelling language that follows the
precepts described in [19]. It generates a symbolic representation of the model before
creating an instance. In practice, this means that all the instructions are read at once
and added to the model. Then, everything is checked and the evaluation only occurs
after that step. To borrow the terms used in [32], the model ‘waits to be transformed
into another form’. We refer to the evaluation step as delayed, as opposed to the
immediate evaluations that occur in imperative modelling tools that are usually
embedded in an imperative programming language. Figure 2 illustrates the different
stages of the GBOML parser. In the following subsections, we explain the inner
workings of GBOML. More precisely, we explain the different representations of the
model shown in blue in Figure 2.

Parsing

Lexing

Parsing

Stream of Tokens

Evaluation

Factorization

Matrix
Generation

AST with

factorized expressions

Matrices
 &AST

Plain text

Analysis

Semantic Check

Tree
Augmentation

Augmented AST
Checked AST

(Abstract)

Syntax Tree

Solving

Solver API

Matrices &
 solver info

Solution

Output

Output
Generation

Solution

& AST

Solver

Standard

output

GBOML

Input File

Structured

Output

GBOML
Language Semantic Tree Building Matrices Solvers and Output

Figure 2. The inner workings of GBOML and the different representations of the model. The high-level
representation of models encoded in GBOML is written in blue.

4.2. GBOML Language

A model must first be encoded in the GBOML language, which is the first represen-
tation of the model that the tool works with, as shown in Figure 2. GBOML relies

9

on a hypergraph abstraction for block-structured time-indexed mixed-integer linear
programs. This abstraction is composed of nodes, hyperedges and a special time
index. Therefore, these three basic constructs of the language are implemented via the
#NODE, #HYPEREDGE and #TIMEHORIZON keywords. The basic blocks of a GBOML file
are given as follows:

1 #TIMEHORIZON ...
2
3 #NODE
4 // node definition
5
6 #NODE
7 // node definition
8 ...
9
10 #HYPEREDGE
11 // hyperedge definition

The #TIMEHORIZON block defines the optimization horizon T. In GBOML, defining the
optimization horizon T leads to the automatic definition of a special index t that can
be used throughout the file. Constraints and objectives that use t are automatically
expanded for every t ∈ {0, . . . , T − 1} (i.e., they are evaluated for each such value of
t). Each #NODE block is composed of its own set of parameters, variables, constraints
and objectives. Each #HYPEREDGE block is composed of its own set of parameters and
constraints that link variables defined in one or several nodes. The basic structure of
a #NODE is given by:

1 #NODE <node identifier >
2 #PARAMETERS
3 // parameter definitions
4 #VARIABLES
5 // variable definitions
6 #CONSTRAINTS
7 // constraint definitions
8 #OBJECTIVES
9 // objective definitions

and the structure of a #HYPEREDGE is given by:

1 #HYPEREDGE <hyperedge identifier >
2 #PARAMETERS
3 // parameter definitions
4 #CONSTRAINTS
5 // constraint definitions

Nodes can themselves be composed of several subnodes and sub-hyperedges, and they
therefore represent hierarchical hypergraphs. It should be noted that nodes contains all
the information related to the tuple < vextn ,vintn ,Gn,Hn,Gn,On > defined in Section
3 and augmented by parameters. The same stands for hyperedges, where the level
in which a hyperedge is defined determines the nodes that can be linked by that
hyperedge.

4.3. Semantic Tree

Once the model has been encoded in the GBOML language, the second step is to
take the file and convert it into a syntax tree, as shown in Figure 2. The parser

10

and lexer read the file line by line and convert it into a semantic tree which is an
in-memory representation of the problem. This subsection explains this representation
and explains the typical advantages of this representation that help one to better
understand the involvement of the internal representation for our goals.

The lexer[1] takes the file written in GBOML language and cuts it into a stream
of tokens, basically tuples of <type, value> where the type corresponds to special
language types such as number or identifier and value the value defined in the file.
The parser[1] takes the stream of tokens and matches a grammar to it in order to
build an abstract syntax tree.

Graph

+ TimeHorizon: int

+ Global Parameters: list <Parameter>

+ Nodes: list <Node>

+ Hyperedges: list <Hyperedge>

Node

+ Identifier: string

+ Parameters: list <Parameter>

+ Variables: list <Variable>

+ Constraints: list <Constraint>

+ Objectives: list <Objective>

+ Sub-Nodes: list <Node>

+ Sub-Hyperedges: list <Hyperedge>

Hyperedge

+ Identifier: string

+ Parameters: list <Parameter>

+ Constraints: list <Constraint>

Parameter

+ Identifier: string

+ Type: string

+ Expression: list <Expression>

+ Value: list <Float or Int>

Variable

+ Identifier: string

+ Type: string

+ size: Expression

Constraints

+ Identifier: string

+ Type: string

+ Right-handside Expression: Expression

+ Left-handside Expression: Expression

Objective

+ Identifier: string

+ Type: string

+ Expression: Expression

Figure 3. In-memory data structure of GBOML.

Various ways of building syntax trees exist. In our case, we wanted to keep our
core structure as simple as possible while also structuring the information to
correspond to our class of problems. The core of GBOML revolves around
expressions and time indices. Each GBOML model contains a time-horizon definition,
and a list of global parameters, nodes and hyperedges inside a structure named
Graph. When talking about a particular computer structure, the name of the
said structure is put in bold. The Graph outputted by the parser is a directed
acyclic graph (represented by a reference tree). The Node objects contain a unique
identifier, a list of parameters, a list of variables, a list of constraints, and a list
of objectives. They can also contain a Graph in the form of a list of sub-nodes

11

and sub-hyperedges that are simply a list of references to other Node objects. It
matches the definition made in Section 3 of a node < vextn ,vintn ,Gn,Hn,Gn,On >.
The Constraint object is a tuple of two expressions with a given comparison oper-
ator (either ≤, =, ≥). The Objective is a type (either min or max) and an expression.

The expressions are kept as Expression trees. The leaves are the terms (either an
identifier or a number) and the internal nodes are operators. It should be noted that
no evaluation is done at this stage and that every expression, value and name is kept
symbolic in an expression tree. Figure 4 shows the expression tree representation of
the expression a ∗ x+ b ∗ (y + z).

+

* *

a x b +

y z

Figure 4. Expression tree of the expression a ∗ x+ b ∗ (y + z).

The Hyperedge is also made-up of a unique identifier, a reference to its par-
ent, a list of parameters and a list of constraints, again corresponding to the set
< Ne,Ge,He > defined in Section 3.

Using an acyclic graph for Graph and trees make adding information such as
nodes, constraints, objectives, hyperedges, variables or parameters very easy as only
a reference needs to be added to the tree. The tree then passes a series of tests such
as the linearity and definition check which also augments the information contained
in the syntax tree, such as putting object references to link relevant information.

4.4. Generating Matrices

Once the semantics of the language have been checked, the third stage is the con-
version of the syntax tree to its matrix equivalent as shown in Figure 2. The syntax
tree is converted to its matrix equivalent for the full problem. We create a problem
instance by evaluating all the expressions with the values of the parameters provided
by the user. To be more precise, we build the matrices On, Hn and Gn for each node n
and the matrices He and Ge for each hyperedge e during the delayed evaluation. First,
we build the vector x of all variables in all the nodes. To do so, to each variable in ev-
ery node we associate a start and an end index corresponding to its absolute index in x.

In order to generate the matrix representation, we have to convert the tree repre-
sentation of constraints and objectives to the matrices On, Hn, Gn, He and Ge by
using the parameters values provided. One must recall that constraints are made-up

12

of a right-hand-side expression tree, a left-hand-side expression tree and a comparison
operator. Often, as we work with time-indexed MILPs, an explicit index or/and a
condition are declared for the extension of that constraint but in the following we only
assume that the time index t is used as the other indices work in similar ways. First,
we factorize constraints in tuples of four elements :

Coefficients, Variables, Comparison Operator, Independent Term

By so doing, we decouple the coefficients’ vector from the independent term matrix
in the matrices Hn, Gn, He and Ge. The coefficients can depend on the time index t,
therefore, they are also expression trees. The variables are seen as tuples of the start
index associated with the variable and an expression tree corresponding to the offset
index. Once the constraints have been factorized, we evaluate the expression trees in
the factorization and aggregate all the coefficients - offset - comparison operators and
independent terms together to form the matrices.

To illustrate, let us consider the model,

1 #TIMEHORIZON T = 2;
2
3 #NODE Example
4 #PARAMETERS
5 a = import "profile1.csv";
6 b = import "profile2.csv";
7 #VARIABLES
8 internal: x[T];
9 internal: y[T];
10 internal: z;
11 #CONSTRAINTS
12 a[t]*x[t]+b[t]*y[t] <= 3;

First, absolute indexes are distributed to all the variables. In our case, the absolute
indexes of x, y, z are distributed as follows:

variable x[0] x[1] y[0] y[1] z
absolute index 0 1 2 3 4

Once the indexes have been fixed, the constraint a[t] ∗ x[t] + b[t] ∗ y[t] <= 3; is
converted to the tuples

[a[t], b[t]]︸ ︷︷ ︸
Coefficients

, [[0, t], [2, t]]︸ ︷︷ ︸
Variables

, <=︸︷︷︸
Comparison operator

, 3︸︷︷︸
Independent term

(2)

One must recall that coefficients and the independent term are expression trees and
that the tuples [0, t] and [2, t] respectively represent the variables x[t] and y[t] (the
first element is the start index, the second the expression tree of the offset). All the
expression trees need to be evaluated in order to extend this constraint to its matrix
form. Hence, we have to evaluate this factorization for every index t in [0 : T − 1]. We
get,

[a[0], b[0]], [[0, 0], [2, 0]], <=, 3 for t = 0

[a[1], b[1]], [[0, 1], [2, 1]], <=, 3 for t = 1

13

Written in matrix form, we get,

[
a[0] 0 b[0] 0 0
0 a[1] 0 b[1] 0

]
x[0]
x[1]
y[0]
y[1]
z

 ≤
[
3
3

]
.

Both constraint matrices are kept in the sparse Coordinate List format[47] which
represents matrices as a triplets of row, column and value, also called COO. In COO
form, we get,

[0, 0︸︷︷︸
t=0

, 1, 1]︸︷︷︸
t=1︸ ︷︷ ︸

Rows

, [0, 2︸︷︷︸
t=0

, 1, 3︸︷︷︸
t=1

]

︸ ︷︷ ︸
Columns

, [a[0], b[0]︸ ︷︷ ︸
t = 0

, a[1], b[1]]︸ ︷︷ ︸
t = 1︸ ︷︷ ︸

Coefficients

, <=, [3︸︷︷︸
t=0

, 3︸︷︷︸
t=1

]︸ ︷︷ ︸
Independent terms

Once all the constraints have been converted to this form, we aggregate them on
a node-per-node basis in the COO format by aggregating the coefficients, rows and
columns together. Then, we aggregate all the nodes and hyperedges together to create
one equality constraint matrix A1 and one inequality constraint A2, which take the
form shown in Figure 5 for a model with three nodes and two hyperedges with its Node
3 being a hierarchical node composed of three sub-nodes and two sub-hyperedges.
Every sub-node can itself be of the same form recursively.

Hyperedge 2

Hyperedge 1

Node 3

Node 2

Node 1
 Sub-Node
1

Sub-Node
2

Sub-Node
3

Sub-Hyperedge 1

Sub-hyperedge 2

Node Constraints

Variables Node 1
 Variables Node 2
 Variables Node 3
 Variables

sub-Node 1

Variables

sub-Node 2

Variables

sub-Node 3

Variables

Node 3

Figure 5. Matrix structure of GBOML.

A similar procedure is used to implement the objective matrix. In order to accelerate
the evaluation of syntax trees, we convert all the expressions that need evaluation into
Python’s syntax trees.

14

4.5. Solvers and Output

The matrix representation of the previous step is passed to each solver with additional
elements from the syntax tree to match its expected input format. This is the fourth
stage shown in Figure 2. The solver then solves the problem and sends back the
solution, if it exists. The solution can then be printed to CSV or JSON files, the
latter also reflecting the hierarchical structure in the original input.

In terms of solvers, GBOML interfaces with the commercial solvers CPLEX[29],
Gurobi[25] and Xpress[15, 35] and two open-source alternatives Highs[27] and
CLP/CBC[17]. CPLEX, Gurobi, Xpress implement the primal simplex, dual simplex
and barrier methods for LPs and branch-and-cut for MILPs. Highs implements the
primal simplex and (parallel) dual simplex algorithms as well as an interior point
method for LPs and a branch-and-price algorithm for MILPs. CLP and CBC are
two related software projects under the COIN-OR umbrella. CLP implements the
primal and dual simplex algorithms for LPs, while CBC implements a branch-and-cut
algorithm for MILPs.

GBOML also interfaces with Dantzig-Wolfe decomposition via DSP[34]. DSP is a
meta-solver which relies on Gurobi, CPLEX and SCIP[5] for implementing Benders
Decomposition[3], Dantzig-Wolfe decomposition[13] and Dual decomposition, three
structure-exploiting methods. GBOML also interfaces with Benders decomposition
via CPLEX. The partitions passed to structure-exploiting algorithms are the ones
provided by the user in the input file.

5. Examples

In this section, we provide two examples, one of a unit commitment problem and a
more generic investment problem, both defined in GBOML. The first one highlights
the reuse functionality of the language. The second one defines a generic investment
node that could for instance be used to replace two components in an energy systems
planning model.

Unit Commitment

In this example, we consider a manufacturer and some demand, and the goal is to
supply the demand while minimizing the overall production cost. First, let us define
a generic production machine. The PRODUCTION MACHINE node can, up to a certain
capacity, produce a number of goods for a marginal cost per unit produced, know-
ing that a fixed cost is linked to its use. Let us define this node in a file named
"production node.txt",

1 #NODE PRODUCTION_MACHINE
2 #PARAMETERS
3 marginal_cost = 10; // marginal cost per good produced
4 fixed_cost = 100; // fixed cost
5 maximum_capacity = 100; // maximum output if turned on
6 minimum_capacity = 1; // minimum output if turned on
7 #VARIABLES
8 external : produced_goods[T];
9 internal binary: is_used[T];

15

10 #CONSTRAINTS
11 produced_goods[t] >= minimum_capacity*is_used[t];
12 produced_goods[t] <= maximum_capacity*is_used[t];
13 #OBJECTIVES
14 min: marginal_cost*produced_goods[t]+ fixed_cost*is_used[t];

Second, let us define some demand in a file named "demand.txt":

1 #NODE DEMAND
2 #PARAMETERS
3 demand_profile = import "demand.csv";
4 #VARIABLES
5 external : demand[t];
6 #CONSTRAINTS
7 demand[t] == demand_profile[t];

Let us now consider a case where the manufacturer possesses three machines, named
M1, M2 and M3, respectively. Based on their forecast of the demand, the manufacturer
wants to know when to start producing with each machine. M1 has a fixed cost of 100
and a marginal cost of 10. M2 has a fixed cost of 200 but a marginal cost of 8.
Finally, M3 has a fixed cost of 500 but a marginal cost of 3. We consider that all three
machines have the same minimum and maximum capacity. In GBOML, one could
write the problem as follows:

1 #TIMEHORIZON T=100;
2
3 #NODE Producer
4 #NODE M1 = import PRODUCTION_MACHINE from "production.txt";
5 \\ no modification
6
7 #NODE M2 = import PRODUCTION_MACHINE from "production.txt" where
8 marginal_cost = 6;
9 fixed_cost = 200;
10
11 #NODE M3 = import PRODUCTION_MACHINE from "production.txt" where
12 marginal_cost = 2;
13 fixed_cost = 500;
14
15 #VARIABLES
16 internal : machine_1_production[T]<-M1.produced_goods[T];
17 internal : machine_2_production[T]<-M2.produced_goods[T];
18 internal : machine_3_production[T]<-M3.produced_goods[T];
19 external : total_production[T];
20
21 #CONSTRAINTS
22 total_production[t] == machine_1_production[t]+

machine_2_production[t] + machine_3_production[t];
23
24 #NODE Demand = import DEMAND from "demand.txt";
25 demand_profile = import "forecast.csv";
26
27 #HYPEREDGE Market
28 #CONSTRAINTS
29 Demand.demand[t] <= Producer.total_production[t];

Adapting and importing the node PRODUCTION MACHINE several times is made easy by
GBOML reuse feature, and the time horizon is adapted automatically as well. The
results of the problem are shown in Appendix A.1.

16

Generic Node

In this example, we consider a very generic investment node, defined in GBOML in a
file named "generic investment.txt" as,

1 #NODE Investment
2 #PARAMETERS
3 cost_per_unit_capacity = 600;
4 max_production_per_unit_installed = import "prod_profile.csv";
5 cost_per_unit_produced = 10;
6 max_capacity = 100;
7 #VARIABLES
8 internal: capacity;
9 external: production[T];
10 #CONSTRAINTS
11 capacity >= 0;
12 capacity <= max_capacity;
13 production[t] >= 0;
14 production[t] <= max_production_per_unit_installed[t] * capacity

;
15 #OBJECTIVES
16 min investment: capex * capacity;
17 min cost_per_timesteps: cost_per_unit_produced*production[t];

This Investment node can be used in modelling many investment problems and is
totally independent of the use case. For example, in Berger et al.[4], this node could
be directly used to replace the WIND and PV plants in the model, as shown in Appendix
A.2.

6. Discussion and Benchmarking

As shown in Section 4, GBOML relies on four basic concepts:

• Delayed Evaluation: The step of reading the model and the step of evaluating
the model are completely separated.

• Symbolic Representation: All the information read in a GBOML file is kept
symbolically.

• Structured Semantic Tree: The data structure supports the definition of
structured MILPs.

• Special Time Index: GBOML is particularly well-suited for time-indexed
MILPs. It makes a strong hypothesis about the shape of the constraints and
objectives that are considered.

Some key features of GBOML are reuse, vectorization, parallelization and in-
terfacing with structure-exploiting methods. In this section, we discuss these
features of GBOML and how they rely on these four basic concepts by illustrating
them on a realistic instance of an energy system planning and sizing problem, the
so-called remote renewable energy hub planning problem[4] and a problem from the
MIPLIB[7]. Second, we propose a benchmark of GBOML with respect to Plasmo[30]
and JuMP[36], two Julia AMLs, Pyomo[11], a Python AML, and AMPL, a stand-alone
commercial AML on the aforementioned energy planning problem.

17

6.1. Reuse

Reuse in itself is straightforward in GBOML. The parser reads a given file and builds
its symbolic structured semantic tree. As all the information is kept symbolically in
this tree without any evaluation, any component of the tree can be copied and reused
in another tree. The semantic tree is mostly made up of references to other objects,
therefore, reusing an object from a first semantic tree is as easy as copying its reference
into another semantic tree. Embedded AMLs are usually unable to do such things as
they usually suffer from the imperative nature of the language they are built on.

The language supports such an operation by writing,

1 #NODE new_identifier = import old_identifier from "filename ";

To illustrate, let us consider the DEMAND node in a file named "file1.txt",

1 #TIMEHORIZON T=10;
2
3 #NODE DEMAND
4 #PARAMETERS
5 demand = import "demand.csv";
6 #VARIABLES
7 external: consumption[T];
8 #CONSTRAINTS
9 consumption[t] == demand[mod(t, 24)];

In GBOML, reuse can simply be done by writing,

1 #TIMEHORIZON T = 24;
2
3 #NODE DEMAND = import DEMAND from "file1.txt";

in any other GBOML file. The full syntax tree of "file1.txt" is cached in memory
and the node DEMAND is copied into the appropriate location in the importing syntax
tree. Having a special time index enables models to automatically adapt to the T value
that has been defined in the new file as the indices are also kept symbolically. Very
general modifications can be performed on the syntax tree by manipulating the Python
objects. The main modifications one might want, such as parameter redefinition, are
supported by the language. This kind of ease in reuse and automatic adaptation of
the horizon is not possible in non-symbolic languages that do not possess a delayed
evaluation.

6.2. Vectorization

In this work, vectorization refers to the process of performing an operation on vectors
of values in a single instruction rather than several instructions on scalar values inside
a loop. More precisely, modern CPUs have larger registers (i.e. larger than the bit
representation of floats - int - etc.) on which they are able to perform a single instruc-
tion. The idea is therefore to stack several adjacent values in these registers[31]. To
illustrate let us consider the following small chunk of code,

1 for i in range(n):
2 x[i] = a[i] * b[i]

It means that first a[i], b[i] and the operator ∗ are loaded with most register
space remaining idle and the result is put to another register x[i]. This operation

18

10000 15000 20000 25000 30000 35000 40000 45000
Timehorizon in hours

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ti
m
e
to
 b
ui
ld
 th

e
m
at
rix

 in
 se

co
nd

s

GBOML without vectorization
GBOML with vectorization

Figure 6. Time needed to generate the model using GBOML with vectorization vs GBOML without vector-

ization on an instance of the remote renewable energy hub as the time horizon parameter T grows.

is repeated n times. The vectorized operation would put several adjacent values of a
and b to fill the register size and compute the corresponding x values inside one register.

GBOML is designed to support time-indexed MILPs. Building a matrix for time-
indexed MILPs is typically the type of problems where vectorization reduces the com-
putation time. Figure 6 and Table 1 show the time needed to generate the matrix
representation of an instance of the remote renewable energy hub from Berger et al[4].
Vectorization is enabled in GBOML thanks to its symbolic representation and is par-
ticularly useful to construct time-indexed MILPs.

Table 1. Time taken to generate an instance of the remote hub model with

and without vectorization as the time horizon parameter T grows, along with the

equivalent speedup in percentage.

Time Horizon T 8 760 17 520 26 280 35 040 43 800

GBOMLno−vectorization 3.771s 7.206s 10.730s 14.231s 17.900s
GBOMLvectorization 0.977s 1.683s 2.405s 3.115s 3.832s

Speedup 74.07% 76.63% 77.58% 78.11% 78.58%

6.3. Parallel Model Generation

Parallel model generation has already been discussed and motivated in Andreas and
Feng[2]. For very large models, the time to build the matrix representation can be sig-
nificant (several minutes); minimizing this duration can lead to significant speedups,
especially if the model must be generated and solved repeatedly. For example, when
performing sensitivity analyses, a model must be run several times with different pa-
rameters and sometimes constraints, which typically requires the matrix representation

19

0 5000 10000 15000 20000 25000 30000 35000 40000 45000
Timehorizon in hours

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ti
m
e
to
 b
ui
ld
 th

e
m
at
rix

 in
 se

co
nd

s

GBOML 1 process
GBOML 2 processes
GBOML 4 processes
GBOML 6 processes
GBOML 8 processes

Figure 7. Time to build the model for a given number of processes on an instance of the remote renewable

energy hub for a growing time horizon.

to be generated from scratch. GBOML enables the user to build models in parallel
thanks to its symbolic representation, the internal structure and its delayed evalu-
ation. Indeed, the constraints and objectives are kept symbolically and need to be
converted to their matrix form. On a per-node/per-hyperedge basis, the constraints
and objectives are independent from one another, given the variable indexes and pa-
rameters values and can therefore be extended in an embarrassingly parallel fashion.
This parallelization is typically interesting in order to generate the matrix represen-
tation faster, as shown in Figure 7 for the remote renewable energy hub defined in
Berger et al.[4]. For smaller models, we can see that there is a fixed cost associated
with dealing with a high number of processes. For larger models, on the other hand,
the more processes the better as the time to build the model is always reduced by
using parallelization.

6.4. Structure-Exploiting Methods

Thanks to the internal representation that captures some structure encoded in the
model, GBOML is able to interface with structure-exploiting solvers such as DSP[34]
and communicate the encoded structure directly. To illustrate the structure-exploiting
methods in GBOML, we consider the MIPLIB noswot problem[7]. The problem pos-
sesses a block-decomposable structure that can be exploited by the Dantzig-Wolfe
algorithm of DSP. The noswot problem was rewritten in GBOML in a file named
"noswot gboml.txt". It is solved via Gurobi by writing,

1 gboml noswot_gboml.txt --gurobi

and the solving takes 25.15 seconds. To use DSP’s Dantzig-Wolfe algorithm, one can
write,

20

1 gboml noswot_gboml.txt --dsp_dw

and the solving takes 2.277 seconds. Figure 8 shows the original and GBOML rep-
resentation of the constraint matrix of the noswot problem. In GBOML, the noswot
problem was defined with five nodes and a hyperedge as shown in Figure 8b, with the
structure directly encoded in the GBOML file.

(a) Original Representation (b) GBOML representation

Figure 8. Constraint matrix of the noswot problem from MIPLIB.

In its current state, GBOML does not perform the partitioning but passes the
partition given by the user. As explained in [32], providing access to multiple solvers
enables the users to find the one algorithm or implementation that works best for their
problem. Allowing users to exploit their knowledge of the topology of a problem and
communicate it to specialized solvers could typically enable faster solve times.

6.5. Benchmarking

This section is divided in two. Subsection 6.5.1 provides a detailed explanation of the
experimental protocol followed in order to benchmark Pyomo, JuMP, Plasmo, AMPL
and GBOML. In Subsection 6.5.2, the results of the benchmarking are provided. The
aforementioned tools were benchmarked in terms of Maximum Resident Set Size, time
to generate the model and solve time with Gurobi.

6.5.1. Experimental Protocol

We benchmark our tool on an instance of a realistic problem taken from an energy sys-
tems application, namely the remote renewable energy hub planning problem analysed
by Berger et al.[4] (we consider the version with a weighted average cost of capital of
7%). We implemented this model in each of the five tools. This problem is a structured
time-indexed problem whose size grows with the optimization horizon parameter T.
To be more precise, the number of variables vn and the number of constraints cn are
given by

vn = 22 + 45 · T cn ≈ 8 + 74 · T

We consider an optimization horizon T going from one to five years on an hourly scale
(i.e., with 365∗24 = 8760 time periods per year). The exact problem size with respect
to the time horizon is given in Table 2.

21

Table 2. Size of instances of the remote hub model, as the time horizon parameter T

grows.

Time Horizon T 8 760 17 520 26 280 35 040 43 800

Number of constraints 648 234 1 296 474 1 944 714 2 592 954 3 241 194
Number of variables 394 222 788 422 1 182 622 1 576 822 1 971 022
Number of non-zeros 1 577 512 3 155 162 4 732 830 6 310 467 7 888 142

We benchmark the five tools on three points:

• Time taken to generate the model: time taken to build a model that can be
passed to a solver (without solving it).

• Maximum Resident Set Size (MRSS): the maximum amount of physical memory
assigned to the tool at any point in time for generating the model (without
solving the model).

• Time taken to solve the model: time taken by the solver to solve the model.

Benchmarking different tools across two programming languages and against
stand-alone executable is cumbersome. The goal of our benchmark is to be as fair as
possible to the different tools.

For the tools implemented in Julia (Plasmo and Jump), as Julia is precompiled,
we followed the guidelines provided by Julia2. We first ran the Julia prompt, we then
included the file containing the model, and we then timed the function that generates
the model once. We repeated this approach ten times and reported the average model
generation time on these ten runs for each value of T. We also computed the total
time taken to generate the model, which is included in our results as the so-called
compilation cost. In order to obtain the Maximum Resident Set Size, we used GNU’s
time command[23] and averaged over ten runs for each T. As Julia is precompiled, all
the packages included are also precompiled and kept in memory. In order to remove
this from the Maximum Resident Set Size (MRSS), we computed the MRSS including
only the packages without an instance of the model and obtained a maximum fixed
set size of 589 536 kB for JuMP and 591 232 kB for Plasmo over ten runs, which is
subtracted from our original estimate.

For Pyomo and GBOML, we used Python’s time function[42] to benchmark
the time taken to generate the model and GNU’s time command for the MRSS.
We repeated the experiment ten times and reported the average for each T. We
implemented a ConcreteModel for Pyomo without Pyomo parameters.

To the best of our knowledge, AMPL does not provide any feature that allows
practitioners to only generate an instance of a model without writing it in a file.
Hence, our protocol works as follows. First, AMPL’s times option is set to 1, and
we then read the model and display an element of the model, which presumably
leads AMPL to generate the full instance. The MRSS is given by GNU’s time command.

To obtain solve times, we ran Gurobi 9.5.1 on each model and reported its solve
time, also averaged over ten runs. The tests were made on a MacBook pro 2021 with
32GB of RAM 10 M1-cores with Python 3.9 and Julia 1.7.2. AMPL interfaces with

2https://docs.julialang.org/en/v1/manual/performance-tips/\#Measure-performance-with-[@time]

(@ref)-and-pay-attention-to-memory-allocation

22

a mac[rosetta2] version of Gurobi. Therefore, to enable a fair comparison to other
tools that run on mac[ARM], we generated an MPS file from the AMPL model and
solved it on the mac[ARM] version of Gurobi. The versions of Pyomo, GBOML, Julia,
Plasmo and AMPL are respectively v6.4.1, v0.1.1, v0.22.3, v0.4.3 and 20230228.

6.5.2. Results

Table 3 and Figure 9 show the time taken by the various tools to generate the model.
It should come as no surprise that AMPL is the fastest tool since it is implemented
in a low-level, high-performance language. JuMP and GBOML then follow and are
virtually tied. Next comes Plasmo and Pyomo is the slowest tool. We are interested in
the slopes of the different tools to understand how they evolve when the model grows.
AMPL, Pyomo, Plasmo, JuMP and GBOML take, respectively, approximately 0.15s
per 8760 time steps, 5s per 8760 time steps, 2s per 8760 time steps, 0.68s per 8760
time steps and 0.7s per 8760 time steps. When parallel model generation is used in
GBOML, it always outperforms all other tools except AMPL, even with as few as two
processes, both in terms of time taken for the largest models and in terms of slope.
In particular, GBOML with 8 processes has a slope of 0.17s per 8760 time steps and
closes the gap with AMPL. It should be noted that JuMP and Plasmo pay a fixed
start-up cost of 8s and 10s, respectively, which is not negligible in the case of a model
that is only run once.

Table 3. Time taken to generate an instance of the remote hub model as the

time horizon parameter T grows. GBOML2, GBOML4 and GBOML8 respectively

stand for GBOML with 2, 4 and 8 processes.

Time horizon T

Tool 8 760 17 520 26 280 35 040 43 800 Compilation cost

Plasmo 2.19s 4.06s 6.02s 8.18s 9.80s ≈ 10s
JuMP 0.91s 1.63s 2.31s 3.06s 3.72s ≈ 8s
Pyomo 5.06s 10.04s 15.11s 19.71s 24.70s 0s
AMPL 0.44s 0.60s 0.77s 0.90s 1.06s 0s
GBOML 0.98s 1.69s 2.41s 3.11s 3.83s 0s

GBOML2 0.95s 1.37s 1.79s 2.22s 2.69 0s
GBOML4 0.87s 1.10s 1.31s 1.54s 1.78s 0s
GBOML8 0.91s 1.09s 1.25s 1.43s 1.61s 0s

In terms of Maximum Resident Set Size, GBOML has the overall smallest foot-
print. For the one-year model, JuMP slightly outperforms GBOML. For larger models,
GBOML consistently outperforms the four other tools with JuMP being second for
smaller models and AMPL being second for larger ones. The slope of GBOML is the
smallest, as can be seen in Figure 10 and Table 4. As Plasmo is an abstraction layer
built on top of JuMP, the fact that it takes more memory to implement models should
come as no surprise. Pyomo and Plasmo have similar slopes and similar values when
it comes to RAM usage. As mentioned before, Plasmo and JuMP pay a fixed MRSS
cost respectively estimated at 591 232 kB and 589 536 kB, which is subtracted in this
benchmark.

In terms of time taken to solve the model, we solved the remote hub model for a
time horizon of one year (8760 time periods) with Gurobi. Solve times are shown in
Table 5. The five tools work with different representations of the problem and these
do not seem to affect the solver as solve times are very similar. Differences are indeed
too small to have any real significance, which is worth stressing, as one wouldn’t want
the representation to negatively impact solve times. As AMPL uses a different version

23

0 5000 10000 15000 20000 25000 30000 35000 40000 45000
Timehorizon in hours

0

5

10

15

20

25
Ti
m
e
to
 b
ui
ld
 th

e
m
at
rix

 in
 se

co
nd

s
JuMP
Plasmo
Pyomo
AMPL
GBOML 1 process
GBOML 2 processes
GBOML 4 processes
GBOML 8 processes

Figure 9. Time taken to generate an instance of the remote hub model with different tools as the time horizon

parameter T grows, including both sequential and parallel model generation with GBOML.

Table 4. Maximum Resident Set Size (MRSS, in kB) for each tool when generating an

instance of the remote hub model as the time horizon parameter T grows. The library footprint
is already removed from the figures given in the table.

Time horizon T

Tool 8 760 17 520 26 280 35 040 43 800 Library footprint

Plasmo 304 328 803 987 1 315 387 1 762 550 2 294 387 591 232
JuMP 145 736 360 486 579 785 822 032 1 290 654 589 536
Pyomo 519 571 983 292 1 499 801 1 927 784 2 512 660 neglected
AMPL 223 244 424 110 584 593 828 694 999 060 neglected
GBOML 173 238 288 376 430 643 557 144 677 020 neglected

24

0 5000 10000 15000 20000 25000 30000 35000 40000 45000
Time horizon in hours

0.0

0.5

1.0

1.5

2.0

2.5

Pe
ak

 R
AM

 u
sa

ge
 in

 G
B

JuMP
Plasmo
Pyomo
AMPL
GBOML

Figure 10. MRSS resulting from the generation of an instance of the remote hub model for all five tools as

the time horizon parameter T grows. The library memory footprint is subtracted for JuMP and Plasmo.

of Gurobi, it should be noted that we were forced to generate an equivalent MPS of
its representation.

Table 5. Time taken to solve an instance of the remote
hub model with a one-year horizon generated by each

tool (8760 time periods) using Gurobi as solver.

Plasmo JuMP Pyomo AMPL GBOML

32.698s 33.156 s 30.733s 32,746s 32.286s

In summary, JuMP is ahead of GBOML by the thinnest of margins in terms of
time required to generate the model. However, JuMP has a high fixed cost and when
parallel model generation is used in GBOML, the latter significantly outperforms for-
mer, especially when using a high number of processes (more than twice quicker for
the largest model with eight processes). JuMP and GBOML significantly outperform
Plasmo and Pyomo with Pyomo being the slowest. In terms of MRSS, GBOML out-
performs the four other tools without having any fixed cost and without impacting the
solve time. JuMP and AMPL outperform Plasmo and Pyomo when it comes to MRSS.
AMPL has a smaller slope than JuMP and outperforms it for larger models. The dif-
ference in MRSS performance between Plasmo and Pyomo is difficult to evaluate due
to Plasmo’s fixed library cost.

7. Conclusion and Future Work

In this paper, we detail the inner workings of GBOML, an open-source modelling
language and tool for MILPs implemented in Python. We first provide a full overview

25

of the design aims of GBOML, which include supporting MILPs with special structures
that can be encoded by a hierarchical hypergraph, offering syntax close to standard
mathematical notation and facilitating the modular construction, reuse and generation
of time-indexed models. Then, we present the four basic concepts on which GBOML
relies that enable these features, namely delayed evaluation, symbolic representation,
structured semantic trees and the special time index, and discuss their implementation.
We provide a unit commitment example and a generic investment model to illustrate
the use of the language and tool. We also show that exploiting problem structure
can significantly reduce instance generation times as well as solve times for some
problems. Specifically, we benchmark the times taken by GBOML, JuMP, Plasmo,
Pyomo and AMPL to generate instances of a structured MILP taken from an energy
systems planning application. Results show that GBOML outperforms both Plasmo
and Pyomo, takes about the same time as JuMP but is slower than AMPL. With
parallel model generation, GBOML outperforms JuMP and closes the gap with AMPL.
Finally, GBOML has a smaller MRSS than the four other tools. In the future, we would
like to focus on the problem of identifying good partitions that can then be exploited
by specialised solvers in order to improve solve times.

Acknowledgements

The authors would like to thank Hatim Djelassi for his work on a previous version of
GBOML, his feedback and overall guidance and Benoit Legat for taking the time to
answer questions about the inner workings of JuMP.

Disclosure statement

The authors report there are no competing interests to declare.

Funding

The authors gratefully acknowledge the support of the Federal Government of Belgium
through its Energy Transition Fund and the INTEGRATION project.

References

[1] A.V. Aho, M.S. Lam, R. Sethi, and J.D. Ullman, Compilers: Principles, Techniques, and
Tools (2nd Edition), Addison-Wesley Longman Publishing Co., Inc., USA, 2006.

[2] G. Andreas and Q. Feng, Psmg-a parallel structured model generator for mathematical
programming, Optimization Online (2014).

[3] J. Benders, Partitioning procedures for solving mixed-variables programming problems.,
Numerische Mathematik 4 (1962/63), pp. 238–252. Available at http://eudml.org/doc/
131533.

[4] M. Berger, D. Radu, G. Detienne, T. Deschuyteneer, A. Richel, and D. Ernst, Remote
renewable hubs for carbon-neutral synthetic fuel production, Frontiers in Energy Research
9 (2021). Available at https://doi.org/10.3389\%2Ffenrg.2021.671279.

26

[5] K. Bestuzheva, M. Besançon, W.K. Chen, A. Chmiela, T. Donkiewicz, J. van Doornmalen,
L. Eifler, O. Gaul, G. Gamrath, A. Gleixner, L. Gottwald, C. Graczyk, K. Halbig, A. Hoen,
C. Hojny, R. van der Hulst, T. Koch, M. Lübbecke, S.J. Maher, F. Matter, E. Mühmer,
B. Müller, M.E. Pfetsch, D. Rehfeldt, S. Schlein, F. Schlösser, F. Serrano, Y. Shinano,
B. Sofranac, M. Turner, S. Vigerske, F. Wegscheider, P. Wellner, D. Weninger, and J.
Witzig, The SCIP Optimization Suite 8.0, ZIB-Report 21-41, Zuse Institute Berlin, 2021.
Available at http://nbn-resolving.de/urn:nbn:de:0297-zib-85309.

[6] J. Bezanson, A. Edelman, S. Karpinski, and V.B. Shah,
Julia: A fresh approach to numerical computing, SIAM Review 59 (2017), pp. 65–
98.

[7] R.E. Bixby, E.A. Boyd, and R.R. Indovina, MIPLIB: A test set of mixed integer
programming problems, SIAM News 25 (1992), p. 16.

[8] F. Boussemart, C. Lecoutre, and C. Piette, XCSP3: an integrated format for
benchmarking combinatorial constrained problems, CoRR abs/1611.03398 (2016). Avail-
able at http://arxiv.org/abs/1611.03398.

[9] T. Brown, J. Horsch, and D. Schlachtberger, Pypsa: Python for power system analysis,
Journal of Open Research Software 6 (2018).

[10] M.R. Bussieck and A. Meeraus, General Algebraic Modeling System (GAMS), Springer
US, Boston, MA, 2004, Available at https://doi.org/10.1007/978-1-4613-0215-5_8.

[11] M.L. Bynum, G.A. Hackebeil, W.E. Hart, C.D. Laird, B.L. Nicholson, J.D. Siirola, J.P.
Watson, and D.L. Woodruff, Pyomo–optimization modeling in python, 3rd ed., Vol. 67,
Springer Science & Business Media, 2021.

[12] E. Castillo, A. Conejo, P. Pedregal, R. Garćıa, and N. Alguacil, Building and Solving
Mathematical Programming Models in Engineering and Science, Pure and Applied Math-
ematics: A Wiley Series of Texts, Monographs and Tracts, Wiley, 2001, Available at
https://books.google.be/books?id=FdhyQgAACAAJ.

[13] G.B. Dantzig and P. Wolfe, Decomposition principle for linear programs, Operations
Research 8 (1960), pp. 101–111. Available at https://doi.org/10.1287/opre.8.1.101.

[14] M.C. Ferris, S.P. Dirkse, J.H. Jagla, and A. Meeraus, An extended mathematical
programming framework, Computers & Chemical Engineering 33 (2009), pp.
1973–1982. Available at https://www.sciencedirect.com/science/article/pii/

S0098135409001653, FOCAPO 2008 – Selected Papers from the Fifth International Con-
ference on Foundations of Computer-Aided Process Operations.

[15] FICO Xpress-Optimizer, Reference manual, http://www.fico.com/xpress. Accessed: 2022-
08-30.

[16] C. Floudas and P. Pardalos, Optimization in Computational Chemistry and Molecular
Biology: Local and Global Approaches, Vol. 40, Springer New York, NY, 2000 01.

[17] J. Forrest, T. Ralphs, H.G. Santos, S. Vigerske, J. Forrest, L. Hafer, B. Kristjansson,
jpfasano, EdwinStraver, M. Lubin, and et al., coin-or/cbc: Release releases/2.10.8 (2022).

[18] R. Fourer, D. Gay, and B. Kernighan, AMPL: A Modeling Language for Mathematical
Programming, Scientific Press series, Thomson/Brooks/Cole, 2003, Available at https:
//books.google.be/books?id=Ij8ZAQAAIAAJ.

[19] R. Fourer, Modeling languages versus matrix generators for linear programming, ACM
Trans. Math. Softw. 9 (1983), p. 143–183. Available at https://doi.org/10.1145/

357456.357457.
[20] R. Fourer and D.M. Gay, Extending an algebraic modeling language to support constraint

programming, INFORMS Journal on Computing 14 (2002), pp. 322–344. Available at
https://doi.org/10.1287/ijoc.14.4.322.2825.

[21] A. Frangioni, N. Iardella, and R.D. Lobato, The sms++ project: A structured modelling
system for mathematical models (2021). Available at https://smspp.gitlab.io/.

[22] A.M. Frisch, W. Harvey, C. Jefferson, B. Mart́ınez-Hernández, and I. Miguel, Essence:
A constraint language for specifying combinatorial problems, Constraints 13 (2008), p.
268–306. Available at https://doi.org/10.1007/s10601-008-9047-y.

[23] GNU Time, GNU Time (2022). Available at https://www.gnu.org/software/time.

27

[24] T. Guns, Increasing modeling language convenience with a universal n-dimensional array,
CPpy as python-embedded example, in Proceedings of the 18th workshop on Constraint
Modelling and Reformulation at CP (Modref 2019), Vol. 19. 2019.

[25] Gurobi Optimization, LLC, Gurobi Optimizer Reference Manual (2022). Available at
https://www.gurobi.com.

[26] S. Heipcke and Y. Colombani, Xpress mosel: Modeling and programming features
for optimization projects, in Operations Research Proceedings 2019, J.S. Neufeld, U.
Buscher, R. Lasch, D. Möst, and J. Schönberger, eds., Operations Research Proceedings,
Springer, 2020, pp. 677–683.

[27] Q. Huangfu and J.A.J. Hall, Parallelizing the dual revised simplex method, Mathemati-
cal Programming Computation 10 (2018), pp. 119–142.

[28] M. Hästbacka, J. Westerlund, and T. Westerlund, Mispt: a user friendly milp mixed-time
based production planning tool, in 17th European Symposium on Computer Aided
Process Engineering, V. Pleşu and P. Şerban Agachi, eds., Computer Aided Chem-
ical Engineering Vol. 24, Elsevier, 2007, pp. 637–642. Available at https://www.

sciencedirect.com/science/article/pii/S1570794607801295.
[29] IBM ILOG Cplex, V12. 1: User’s manual for cplex, International Business Machines Cor-

poration 46 (2009).
[30] J. Jalving, S. Shin, and V.M. Zavala, A graph-based modeling abstraction for

optimization: Concepts and implementation in plasmo.jl (2020).
[31] J. Jeffers, J. Reinders, and A. Sodani, Intel Xeon Phi Processor High Performance

Programming: Knights Landing Edition 2nd Edition, 2nd ed., Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 2016.

[32] J. Kallrath, Modeling Languages in Mathematical Optimization, 1st ed., no. 978-1-4613-
0215-5 in Applied Optimization, Springer, 2004, Available at https://link.springer.
com/book/10.1007/978-1-4613-0215-5.

[33] J. Kallrath, Business Optimization Using Mathematical Programming, no. 978-3-
030-73237-0 in International Series in Operations Research and Management Sci-
ence, Springer, 2021 June, Available at https://ideas.repec.org/b/spr/isorms/

978-3-030-73237-0.html.
[34] K. Kibaek, Z. Victor, T. Christian, Z. Yingqiu, B. Geunyeong, and N. Hideaki, Dsp

(2022). Available at https://github.com/Argonne-National-Laboratory/DSP, Ac-
cessed: 2022-08-12.

[35] R. Laundy, M. Perregaard, G. Tavares, H. Tipi, and A. Vazacopoulos, Solving hard
mixed-integer programming problems with xpress-mp: A miplib 2003 case study, IN-
FORMS Journal on Computing 21 (2009), pp. 304–313.

[36] M. Lubin and I. Dunning, Computing in operations research using julia, INFORMS Jour-
nal on Computing 27 (2015), pp. 238–248.

[37] B. Miftari, M. Berger, H. Djelassi, and D. Ernst, Gboml: Graph-based optimization
modeling language, Journal of Open Source Software 7 (2022), p. 4158. Available at
https://doi.org/10.21105/joss.04158.

[38] Modelica Association, Modelica - a unified object-oriented language for physical
systems modeling. Tutorial (2000). Available at http://www.modelica.org/documents/
ModelicaTutorial14.pdf.

[39] L. Moretti, M. Milani, G.G. Lozza, and G. Manzolini, A detailed milp formulation for
the optimal design of advanced biofuel supply chains, Renewable Energy 171 (2021),
pp. 159–175. Available at https://www.sciencedirect.com/science/article/pii/

S0960148121002111.
[40] N. Nethercote, P.J. Stuckey, R. Becket, S. Brand, G.J. Duck, and G. Tack, MiniZinc:

Towards a Standard CP Modelling Language, in Principles and Practice of Constraint
Programming – CP 2007, C. Bessière, ed., Berlin, Heidelberg. Springer Berlin Heidelberg,
2007, pp. 529–543.

[41] S. Pfenninger and B. Pickering, Calliope: A multi-scale energy systems modelling
framework, Journal of Open Source Software 3 (2018), p. 825.

28

[42] Python Software Foundation, The Python Standard Library (2022). Available at https:
//docs.python.org/3/library/time.html.

[43] Python Software Fundation, PyPI (2022). Available at https://pypi.org/.
[44] Simulink Documentation, Simulation and model-based design (2020). Available at https:

//www.mathworks.com/products/simulink.html.
[45] J.M.G. Sánchez, Modelling in Mathematical Programming, Springer Cham, 2020.
[46] The Open Source Initiative, MIT License (2022). Available at https://opensource.org/

licenses/MIT.
[47] The SciPy community, COO format in Scipy (2022). Available at https://docs.scipy.

org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.html.
[48] C. Valente, G. Mitra, M. Sadki, and R. Fourer, Extending algebraic modelling languages

for stochastic programming, INFORMS Journal on Computing 21 (2009), pp. 107–122.
Available at https://doi.org/10.1287/ijoc.1080.0282.

[49] G. Van Rossum and F.L. Drake, Python 3 Reference Manual, CreateSpace, Scotts Valley,
CA, 2009.

[50] S. Wang and Q. Meng, Robust bunker management for liner shipping networks, European
Journal of Operational Research 243 (2015), pp. 789–797. Available at https://www.

sciencedirect.com/science/article/pii/S0377221714010674.

Appendix A. Complementary Information on Examples

In this appendix, we provide complementary information concerning the two examples
given in Section 5. In appendix A.1, we provide the results of the unit commitment
example. In appendix A.1, we show how the generic nature of the Investment node
can be used to replace two nodes from a practical example.

A.1. Example: Unit commitment

In this appendix, we provide the results of the unit commitment example showed in
Section 5. This example is trivial. In Figure A1, we plot the cost of production for
each machine, as the demand grows. We can see the results in the lower subplot. With
the demand between 1 and 24, M1 should be used. From 24 to 74, using M2 minimizes
the cost. And from 74 to 100, using M3 minimizes the cost.

A.2. Example: Generic Investment Node

In this appendix, we show how the generic nature of the Investment node can be used
to replace two nodes from a practical example. In Berger et al.[4], the WIND and PV

nodes are defined as,

1 #NODE SOLAR_PV_PLANTS
2 #PARAMETERS
3 full_capex = 380.0;
4 lifetime = 25.0;
5 annualised_capex = full_capex * global.wacc * (1 + global.

wacc)** lifetime / ((1 + global.wacc)** lifetime - 1); // MEur
6 fom = 7.25; // MEur/year
7 vom = 0.0;
8 capacity_factor_PV = import "pv_capacity_factors.csv"; //

Dimensionless
9 max_capacity = 500.0; // GW

29

0 20 40 60 80 100
0

200

400

600

800

1000
M1
M2
M3

0 20 40 60 80 100
0.0

0.5

1.0
M1.is_used
M2.is_used
M3.is_used

Figure A1. (Top) The evolution of the price of production for each machine with respect to the demand.

(Bottom) Value of the variable is used for each machine with respect to the demand.

10 #VARIABLES
11 internal: capacity;
12 external: electricity[T];
13 #CONSTRAINTS
14 electricity[t] <= capacity_factor_PV[t] * capacity;
15 capacity <= max_capacity;
16 capacity >= 0;
17 electricity[t] >= 0;
18 #OBJECTIVES
19 min: global.number_years_horizon * (annualised_capex + fom)

* capacity;
20 min: vom * electricity[t];
21
22 #NODE WIND_PLANTS
23 #PARAMETERS
24 full_capex = 1040.0;
25 lifetime = 30.0;
26 annualised_capex = full_capex * global.wacc * (1 + global.

wacc)** lifetime / ((1 + global.wacc)** lifetime - 1); // MEur
27 fom = 12.6; // MEur/year
28 vom = 0.00135; // MEur/GWh
29 capacity_factor_wind = import "wind_capacity_factors.csv";

// Dimensionless
30 max_capacity = 500.0; // GW
31 #VARIABLES
32 internal: capacity;
33 external: electricity[T];
34 #CONSTRAINTS
35 electricity[t] <= capacity_factor_wind[t] * capacity;

30

36 capacity <= max_capacity;
37 capacity >= 0;
38 electricity[t] >= 0;
39 #OBJECTIVES
40 min: global.number_years_horizon * (annualised_capex + fom)

* capacity;
41 min: vom * electricity[t];

Both nodes could be rewritten using the Investment node as follows,

1 #NODE SOLAR_PV_PLANTS = import Investment from "
generic_investment.txt" where

2 cost_per_unit_produced = 0.0; // Value of vom
3 cost_per_unit_capacity = global.number_years_horizon * (380*

global.wacc *(1+ global.wacc)**25/((1 + global.wacc)**25 - 1)
+7.25);

4 max_capacity = 500.0;
5 max_production_per_unit = import "pv_capacity_factors.csv";
6
7
8 #NODE WIND_PLANTS = import Investment from "generic_investment.

txt" where
9 cost_per_unit_produced = 0.00135; // Value of vom
10 cost_per_unit_capacity = global.number_years_horizon * (1040*

global.wacc *(1+ global.wacc)**30/((1 + global.wacc)**30 - 1)
+12.6);

11 max_capacity = 500;
12 max_production_per_unit = import "wind_capacity_factors.csv";

31

