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INTRODUCTION

RANS simulations are the reference in the industry for tur-

bomachinery design due to their low computational cost. Even

if progress has been made towards more accurate closure mod-

els for RANS, they still fail at off-design conditions due to

their inherent assumptions. At those conditions, different flow

regimes occur in blade passages where complex flow features

coexist, including secondary flows and flow separation.

Direct Numerical Simulations (DNS) provide a reliable pre-

diction of such a flow physics. However, they require a consid-

erable amount of computational resources that overcome the

current capabilities of modern clusters and hence they cannot

be used for the actual complex geometries and high Reynolds

number flows tackled by industry. Even wall-resolved Large

Eddy Simulations (wrLES), which aims to resolve at least 80%

of the turbulent energy spectrum while modeling the effect on

the small unresolved scales on the resolved ones, remains too

expensive at high Reynolds numbers.

Since the inner part of the boundary layer is the most de-

manding in terms of resolution, the LES community came up

with the idea of modeling this part rather than resolving it.

Such wall-modeled LES (wmLES) require much less compu-

tational resources, yet the modeling errors are larger and may

become unacceptable. Indeed, most wall models assume that

the flow is attached, fully turbulent, aligned, and at equilib-

rium. Hence, they fail at predicting complex flow features. In

the case of flow separation, treated in this work, these assump-

tions do not hold, and the wall model must be reformulated.

Since DNS and LES perform well on academic configura-

tions and several industrial configurations, coupled with the

recent improvement in the Machine Learning community, we

have the opportunity to construct databases to train deep

neural networks afterwards. Our work is based on the uni-

versal approximation capabilities of deep neural networks. A

wall model can be seen as a high-dimensional regression prob-

lem that takes as inputs (a) instantaneous volume fields (e.g.,

velocity, pressure gradients) and (b) geometry notions, and

that outputs the two components of the wall shear stress, τw.

Three databases, obtained using a high-order Discontinuous

Galerkin (DG) flow solver, are composed of a channel flow

at a friction Reynolds number of 950 and the two walls (i.e.,

the flat upper surface and the curved lower one) of the two

dimensional periodic hill at a bulk Reynolds number of 10595.

The next sections present: (i) which stencil is taken as input

for the data-driven wall model, (ii) how are the three databases

normalized to train the network on a unified and consistent

database and (iii) which neural networks are picked.

TEST CASES

Two test cases are considered for the present study. One

of them is a channel flow at Reτ = 950 [1]. The walls are

separated by a distance 2δ and the channel is periodic and

homogeneous in the streamwise and spanwise direction, re-

spectively of size Lx/δ = 2π and Lz/δ = π. A uniform

pressure gradient drives the flow. A compressible wrLES using

a DG flow solver is performed at Mach number of 0.1 to ensure

a fair comparison with the incompressible flow reference. The

second test case is the periodic hill flow [8], a geometry used for

the development of wall models, and that consists of a channel

with a hill (of height h). There is a massive flow separation

from the hill top, followed by a reattachment and flow recov-

ery on the flat part. The flow is then strongly re-accelerated

on the ascending part of the next hill. The bulk Reynolds

number Reb is 10, 959 and is controlled using a uniform pres-

sure gradient. The control procedure is inspired by the work

of Benocci and Pinelli [2], and further modified by Carton de

Wiart et al. [3] to take into account compressibility. Note that

the flat top wall is subjected to a non-uniform pressure gra-

dient generated by the flow contraction and the separation on

the hill top but the flow on that wall does not separate.

INPUTS STENCIL

The input of the wall model is a mix between flow field and

geometry data. For the flow fields, the velocity and the pres-

sure gradients are considered. These fields are interpolated

from a high-order solution to a probe grid and then projected

on the local frame of reference following the wall; the data

are therefore expressed in curvilinear coordinates (ξ, η, z). A

crucial information for the wall model is the wall normal dis-

tance at which the flow fields are extracted, defined as hwm.

The curvature K of the wall is also added and has drastically

improved the prediction of the τw on the curved wall.

To answer the question (i), the choice of stencil is based on a

deep analysis of space-time correlations between instantaneous

flow fields and the two components of τw [9]. In Machine

Learning, this step is called feature selection. Our work has
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shown that, near the separation, the high correlation domain

is shifted downstream (δξ/h ≃ 0.5), indicating that, at a given

time, the information should be sought downstream to better

characterize the relationship with τw. Finally, a stencil going

from −0.5 δξ/h to 0.5 δξ/h relatively to the location where

τw is predicted is adopted. As multiple spatial positions are

considered, the relative positions are introduced as input.

NORMALIZATION

This section answers the question (ii). The inputs described

in the previous section need to be normalized to train the neu-

ral network on a unified database. The inputs and outputs of

the wall model are summarized in Table 1. Recall that hwm is

the wall-normal distance at which the fields are measured and

fed to the model. We also define u∥ =
√
(u2

ξ+u2
z), the norm of

the wall-parallel velocity. The normalization of hwm is based

on the near wall scaling proposed by Duprat et al. [4] combined

to the work of Zhou et al. [5]. The near-wall scaling compati-

ble with separation uses yν,p = ν/uν,p with uν,p =
√
(u2

ν+u2
p)

where uν =
√
(ν u∥/hwm) and up =

∣∣(ν/ρ)∂ξp∣∣ 1/3. A natu-

ral normalization of the velocity field would be based on the

friction velocity uτ ; however, the friction velocity is undefined

near separation. An alternative is to use its extended defi-

nition uν,p defined above. Regarding the pressure gradient,

It is non-dimensionalised in an analogous way as the Clauser

parameter, using the adapted velocity scale uν,p, see Table 1.

Finally, the outputs are normalized following the definition of

the friction coefficient where the friction velocity is replaced

by the spatial averaging of uν,p. No normalization of the cur-

vature is used as it is already dimensionless.

Field Normalized

Velocity u u⋆ = u/uν,p

Pressure Gradients ∇p (∇p)⋆ =
(
hwm/

(
ρu2

ν,p

))
∇p

Length scale hwm h⋆
wm = ln (hwm/yν,p)

Curvature K

Relative pos. δξ (δξ)∗ = δξ/h

Wall shear stress τw τ⋆
w =

τw
1
2
ρ⟨u2

ν,p⟩ξ,z

Table 1: Inputs and output of the data-driven wall model.

NEURAL NETWORK ARCHITECTURE

This section aims to answer the question (iii). Since the

stencil includes multiple locations, convolutional neural net-

works (CNNs [7]) are preferred over multi-layer perceptrons.

Indeed, the translation-invariance (i.e., convolution) is encap-

sulated in the obtained model, which is a desirable prop-

erty. For attached flows, the space-time correlations study

has revealed that local and instantaneous data are sufficient

to describe the relationship with τw. The input stencil for

such flows is too big and should be reduced. Such a reduc-

tion can be seen as re-weighting of the input data through

a self-attention layer [6]. The hyperparameters (e.g., kernel

size, padding, stride, dilation, ...) of the model were adjusted

to obtain the optimal receptive field. The most successful

model (CNN-1D-SAL) contains two consecutive self-attention

layers, seven one-dimensional convolutional layers, and one

max-pooling layer. The model has been trained through the

Mean Square Error (MSE) loss. Such a model performs well

on average, but the variance of the outputs is not correctly pre-

dicted. One way to retrieve the first and second moment of the

output distribution is to use Gaussian Mixture Heads (GMHs).

These heads are connected at the end of the CNN (CNN-1D-

SAL-GMH) and aim to predict N means, standard deviations,

and mixture coefficients (µn, σn, πn). The loss function was

adapted accordingly. A third model (CNN-2D) composed of

two-dimensional convolutional layers was also tested, based on

an extended stencil in the spanwise direction.

DISCUSSION

The three models trained on various combinations of

databases are validated a priori. The obtained results were

very promising in the three cases. CNN-1D-SAL behaves well

on averaged while CNN-1D-SAL-GMH better predicts the first

and second moment of the output distribution. However, it

is not able to capture the skewness of the τw,ξ distribution.

CNN-2D retrieves better two-dimensional structures in the in-

stantaneous wall shear stress field, compared to its two 1D

counterparts. The second validation step, the a posteriori

one, aims to test the model into the flow solver. This vali-

dation is first performed on the same test cases as used for

the training. Then, the validation will be extended to other

Reynolds numbers to evaluate the capabilities of the model to

generalize. Those steps are on going work.
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Brugière. : A wall-layer model for large-eddy simulations of

turbulent flows with/out pressure gradient. Physics of Fluids,

23(1):015101, (2011-01). ISSN 1070-6631, 1089-7666.

[5]Zhideng Zhou, Guowei He, and Xiaolei Yang. : Wall model based

on neural networks for LES of turbulent flows over periodic hills.

Phys. Rev. Fluids, 6(5): 054610, (2021).

[6]Vaswani et al. : Attention Is All You Need, 31st Conference on

Neural Information, Processing Systems, NIPS, USA (2017).

[7]Sakshi Indolia, Anil Kumar Goswami, S.P. Mishra, Pooja Asopa :

Conceptual Understanding of Convolutional Neural Network- A

Deep Learning Approach, Procedia Computer Science (Vol.132),

pp.679-688 (2018).

[8]X. Gloerfelt and P. Cinnella : Investigation of the flow dynamics

in a channel constricted by periodic hills, In 45th AIAA Fluid

Dynamics Conference, AIAA (2015).

[9]Boxho et al. : Analysis of space-time correlations for the two-

dimensional periodic hill problem to support the development of

wall models, ETMM13 (2021).

2


