Voxel 3D Printing and Computer Simulations to Prototype Bimaterial Attachments Based on Local Interface Patterning

QUENTIN GROSSMAN

MECHANICS OF BIOLOGICAL AND

BIOINSPIRED MATERIALS LABORATORY

Davide Ruffoni

Belgium

Peter Varga

Bimaterial Attachments In Nature

University of Liège, Belgium

QUENTIN GROSSMAN - MRS FALL MEETING 2021

Bimaterial Interfaces with 3D Printing Technology

Stratasys Objet260 Connex2 :

- Droplets dimension : 40 μm
- Control on <u>local microstructure</u> and <u>mechanical properties</u>
- High geometrical freedom
- Allows Voxel 3D printing

Interfaces in Polyjet Printing as Weak Regions

Interface as weakness :

- Printing direction (y)
- Elastic contrast should not be too high

Aims

<u>Aim 3</u> :

Compute local stress inside stiff and compliant voxels

Methodology

Droplets mix

• Voxel size chosen is $420x420 \ \mu m^2$

Types of bimaterial attachments :

Minimal perturbation : < 10% length

- Flat interface (Reference case)
- Ordered Interface patterning (6 configurations)
- Random interface patterning (3 configurations)

<u>Methods</u> :

- Experimental testing on 3D printed bimaterial samples
- Voxel based finite element simulations

Zorzetto et al., Scientific Reports 2020

Results : Stress-strain

University of Liège, Belgium

Results : Apparent Stiffness & Strength

Strength increases significantly while apparent stiffness stays approximately constant

Von Mises Stress Distribution

- Minimal perturbations increase strength and failure resistance of bimaterial attachment.
- Ordered surface patterning are more performant than random patterning.
- Interface patterning induces more heterogeneous stress distribution in soft and stiff voxels.