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Introduction
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? Inspiration of architectured 

materials from nature 
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What can be defined as architecture? 

Intermediate structural arrangement bridging elementary building blocks (nm) and component size (cm):

Homogeneous (monolithic)

Architectured

Displacement
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Introduction

Cortical 

bone

Harvesian

canal

Lamellae

Cement line

Twisted plywood

arrangement

Fibril

Extrafibrillar 

mineral

Extrafibrillar 

matrix

Type I collagen

Hydroxyapatite 

nanocrystals

D-spacing: 67 [nm]

Intrafibrillar

matrix

Whole bone

~10’s [cm]

Osteonal

microstructure

~100’s [μm]

Lamellae

~1 [μm]

Extrafibrillar 

matrix

~100’s nm

Fibril

~10’s nm

cm μm nm

Adapted from Elizabeth A. Zimmermann et al. Sci Rep 6, 21072 (2016)

Our region 
of interest !
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Aims

3D printed samples

with programmable failure 

behavior

Dynamic FE analysis on 2D models 

to simulate programmable failure 

behavior

Combine 3D printing & computational modeling to explore the fracture behavior of osteon-inspired materials.
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Adapted from Elizabeth 

A. Zimmermann et al. 

Sci Rep 6, 21072 (2016)
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Experimental part: method
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Samples tested in tension with:

Grip 

Grip 

Fixed parameters:

• Samples dimensions

• Haversian canal dimensions

• Osteon dimensions

• Cement line thickness t = 1 [mm]

• Test speed: 1 [mm/min]

• Matrix material properties (Gray60)

Explored parameters:

• Crack vertical position (s)

• Cement line material properties
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Cement line

Scale 
up

Osteonal

microstructure

~100’s [μm]

Adapted from Elizabeth A. 

Zimmermann et al. Sci

Rep 6, 21072 (2016)
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Experimental part: results

First configuration: soft cement line (Shore95)

s = 0.3R s = 0.4R s = 0.5R s = 0.6R

Stable position: 

100% cases, crack 

reaching the hole

Unstable position: 

• 80% cases, crack reaching the hole

• 20% cases, crack crossing the osteon 

without entering the hole

Stable positions: 

100% cases, crack crossing the 

osteon without entering the hole
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s

R = inner radius of CL
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Experimental part: results

Second configuration: ultra-soft cement line (TangoBlack) 

s = 0.3R s = 0.4R s = 0.5R s = 0.6R

Stable position: 

100% cases, crack 

reaching the hole

Unstable position: 

• 37.5% cases, crack reaching the hole 

• 62.5% cases, crack trapped inside the 

cement line

Stable positions: 

100% cases, crack trapped 

inside the cement line
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s

R = inner radius of CL
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Computational part: method

Y

X

R = 25.05 [mm]

10.2 [mm]

t

Fixed parameters:

• Model dimensions

• Haversian canal dimensions

• Osteon dimensions

• Cement line thickness: t ~ 0.9 [mm]

• Displacement applied: 1 [mm/s]

• Matrix material properties

• Ductile damage parameters

• Perfectly square elements (0.15 [mm] side length)

Explored parameters:

• Crack vertical position (s)

• Cement line Young’s modulus and Yield stress
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75 [mm]

s

Top nodes blocked along x 

Bottom nodes blocked along x & y

Model simulated with:

7

Initial seam crack: 6 [mm]
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Computational part: method
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Damage initiation

Stress-strain curve with 
progressive damage degradation

Onset point 

of damage

D=0

Failure

D=1

Damage evolution and element removal

Damage initiation criterion based on an 

equivalent plastic strain at the onset of 

damage:

+

𝜔𝐷 = න
𝑑𝜀𝑝𝑙

𝜀𝐷
𝑝𝑙 ≥ 0

• 𝜔𝐷 ↗ monotonically with plastic deformation

• When 𝜔𝐷 = 1, damage initiation start

𝐷 =
𝐿𝜀𝑝𝑙

𝑢𝑓
𝑝𝑙 =

𝑢𝑝𝑙

𝑢𝑓
𝑝𝑙

𝑢𝑓
𝑝𝑙
=
2 𝐺𝑓

𝜎𝑦0
with

..

Damage variable:

(adapted from Abaqus 6.14 Documentation)
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Computational part: method
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Matrix material properties: (Based on 

Gray60 experimental results) 

• Young’s modulus: 𝐸 = 1500 [MPa]

• Yield strength: 𝜎𝑦 = 30 [MPa] 

• Yield strain: 𝜖𝑦 = 2% [-] 

• Ultimate strain: 𝜖𝑢 = 12% [-] 

Properties assumed:

• Strain hardening: ∆𝜎 = 

0.9 [MPa] (3% 𝜎𝑦) 

• Fracture energy per unit 

area: 𝐺𝑓= 0.01 

[mJ/mm2]

Cement line material properties 

defined based on matrix: 

Decrease E and yield stress Increase E and yield stress
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Computational part: results
Initial crack position ?

On the model without cement line, what corresponds to a switch of crack propagation behavior ?

Position selected for the 

next steps as initial position

Undamaged elements

Damage initiated elements 

(under plastic deformation)

Fully damaged elements 

R = inner radius of CL

s = 0.4R s = 0.3R s = 0.25R
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Notch is progressively 

moved downwards
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Computational part: results
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+ 0.15 [mm]
+ 0.3 [mm]

- 0.15 [mm]
- 0.3 [mm]

Initial position

Four cases of small perturbations for the crack position:

By moving vertically the crack with 

respect to the initial position by: 

Initial position

- 0.15 [mm] + 0.15 [mm]

- 0.3 [mm] + 0.3 [mm]

Example of 

study on the 

model without 

cement line
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Computational part: results

Factor 2: 

• 80% cases reaching the hole 

• 20% cases trapped in the CL

Factor 2.5: 100% cases 

trapped in the CL
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Initial position - 0.15 [mm] + 0.15 [mm] - 0.3 [mm] + 0.3 [mm]

CL’s Young’s modulus and yield stress decreased compared to matrix. 

Undamaged elements Damage initiated elements 

(under plastic deformation)
Fully damaged elements 
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Computational part: results

Factor 2: 100% cases 

reaching the hole 

Factor 3.5: 100% cases 

deflection along the CL
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Factors in between: 

unstable situation

• Factor 2.5: 40% reaching 

the hole 60% deflection

• Factor 3: 20% reaching 

the hole 80% deflection

CL’s Young’s modulus and yield stress increased compared to matrix. 

Initial position - 0.15 [mm] + 0.15 [mm] - 0.3 [mm] + 0.3 [mm]

Undamaged elements Damage initiated elements 

(under plastic deformation)
Fully damaged elements 
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Computational part: results
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Reaching the hole 

Animations of the main crack behaviors
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Computational part: results
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Reaching the hole Deflection along the CL

Animations of the main crack behaviors
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Computational part: results
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Reaching the hole Trapped in the CLDeflection along the CL

Animations of the main crack behaviors
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Conclusion

15

Asymmetry in crack propagation behavior observed for both parts:

Three behaviors observed for the experimental part:

• Crack reaching the hole if s ≤ 0.3R for both material

• Crack trapped in the CL if s ≥ 0.5R for the ultra-soft CL material 

• Crack crossing the osteon without entering the hole if s ≥ 0.5R  for the soft CL material

Three behaviors observed for the computational part :

• Crack reaching the hole if ↗ or ↘ E and yield stress stay under factor 2

• Crack trapped in the CL if ↘ E and yield stress is greater or equal to factor 2.5 

• Crack deflected along the CL if ↗ E and yield stress is greater or equal to factor 3.5

The soft material (experiment part) was not able to trap the crack compared to similar case in the computational part.

→ Printing the material in an architecture gave higher stiffness than expected from tested alone ?

https://www.wccm2022.org/index.html
https://www.wccm2022.org/index.html


19

Outlook

16

Introduction of several interlayers ? 
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Thank you for your attention!

Tim Volders



Printer specifications
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Stratasys

Objet260 Connex2 3D printer  

Resolutions:

• Along x = 42 [μm]

• Along y = 84 [μm]

• Along z = 32 [μm]

Printing 

Head 

x

y

z

Tray
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Simulation specifications
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• Number of intervals of output extraction (evenly spaced in time): 1000 extractions/s

• Simulation over 2 seconds.

• Incrementation set on automatic / stable increment estimator set on global 

• Linear bulk viscosity: 0.06 (by default) 

• Elements used: CPS4R (Four-node plane stress element)

• 297636 nodes and 296360 elements

• CPU times around 1-2 days

• The force and displacement outputs are filtered (during the simulations) using a second order Butterworth 

filter with a cut-off frequency of 150 [Hz]
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