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Influence of a nonlinear reference temperature profile on oscillatory Be´nard-Marangoni convection
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1Universitéde Liège, Institut de Physique B5a, Alle´e du 6 Aouˆt 17, B-4000 Lie`ge 1, Belgium

2UniversitéLibre de Bruxelles, Service de Chimie Physique E.P., 50, Avenue F. Roosevelt, Code Postal 165/62,
B-1050 Bruxelles, Belgium

~Received 27 March 2002; revised manuscript received 14 July 2003; published 31 December 2003!

We analyze oscillatory instabilities in a fluid layer of infinite horizontal extent, heated from above or cooled
from below, taking into account the nonlinearity of the reference temperature profile during the transient state
of heat conduction. The linear stability analysis shows that a nonlinear reference temperature profile can have
a strong effect on the system, either stabilizing or destabilizing, depending on the relative importance of
buoyancy and surface tension forces. For the nonlinear analysis we use a Galerkin-Eckhaus method leading to
a finite set of amplitude equations. In the two-dimensional~2D! case, we show the solution of these amplitude
equations are standing waves.
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I. INTRODUCTION

It is well known that, in a horizontal fluid layer heate
from below, two mechanisms can be responsible for the
set of convection: the variation of density with temperatu
~buoyancy, or the Rayleigh-Be´nard effect! and the variation
of surface tension with temperature~thermocapillary, or the
Marangoni-Be´nard effect!. In general, both effects combine
and give rise to the so-called Be´nard-Marangoni instability
@1–7#.

In the case of a fluid layer heated from above, the sit
tion drastically changes. For a long time, an unconditiona
stable situation was predicted~both buoyancy and ther
mocapillary effects are stabilizing!, but recent works~@8,9#!,
show that the conductive reference state may actually
come unstable to oscillatory disturbances for sufficien
high temperature gradients and provided the buoyancy e
is sufficiently important with respect to the thermocapilla
effect. Rednikovet al. @8# explained the appearance of su
oscillatory instabilities by the linear interaction of intern
and surface waves, which may lead to amplification. Th
calculated the marginal stability curves, corresponding to
cillatory perturbations when heating from above, show
that instabilities appear for very high values of the M
rangoni number~of order 106), such values being reachab
for liquids of low viscosity ~note that our Marangoni an
Rayleigh numbers are proportional to the temperature dif
ence between the top and the bottom of the fluid layer
are thus positive when the temperature at the top is hig
than at the bottom as it is the case in this paper!. They found
that contrary to the situation when heating is from belo
instability here requires the simultaneous action of b
buoyancy and thermocapillary effects. For a given flu
there is an optimal depth at which the system is most
stable. Furthermore, the system is shown to be always st
for shallow layers, for which surface tension dominates o
buoyancy. In another paper, Bragardet al. ~@10,9#! found by
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an asymptotic analysis that the system may be unstable,
in the purely surface-tension-driven case~no buoyancy!, pro-
vided one takes into account the nonlinearity of the refere
temperature profile.

Another motivation of the present work is related to t
recent experiments of Wierschemet al. @11#. In their setup, a
fluid absorbs another overlying fluid with much lower de
sity and surface tension and waves are observed at the
beginning of the equilibration process. It is important to no
here that the equations governing mass and heat tran
have the same form when effects specific to mass tran
such as accumulation and energy barriers are not taken
account in the interfacial boundary conditions. Thus the
merical results found in this paper on heat transfer are a
applicable to mass transfer experiments~@12#!. Wierschem
et al. observed the appearance of waves at the beginnin
the adsorption process, where the Marangoni numbe
clearly below the critical value for oscillatory instability a
found by Rednikovet al. @8#. As these waves appear at th
very beginning of the absorption process, one can think
the discrepancy between the experimental Marangoni n
ber and the value predicted by Rednikovet al. can be due to
the fact that the reference concentration~or temperature! pro-
file is not yet linear when the instability takes place.

The purpose of this work is to perform a linear and
nonlinear study of oscillatory instabilities, and to analyze t
influence of a nonlinear reference temperature profile on
behavior of the system. We first confirm the abov
mentioned asymptotic results by Bragardet al. ~@10,9#!. Fur-
thermore, we show that, more generally, a nonlinear re
ence temperature profile can have either a stabilizing o
destabilizing effect on the system, depending on the ratio
buoyancy to surface-tension forces, on the way the temp
ture gradient is initially applied, on the time after the expe
ment is run, etc. Given that at the beginning of a Be´nard
experiment, the reference temperature profile is in gen
nonlinear, these results show that the effective critical M
rangoni number can in some cases be much lower than
one calculated by using a linear reference profile. This me
that the value of the temperature difference giving rise to
oscillatory instability can be much lower for a nonlinear re
i-
©2003 The American Physical Society10-1
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erence temperature profile than for a linear one.
In our approach, we assume that the temperature of

fluid layer is uniform fort,t0. Then, att5t0, a temperature
difference is imposed across the layer. The reference t
perature profile we use for our stability analysis is then
time dependant solution of the heat equation in the fl
layer at rest, which is thus nonlinear at each time. The
quasisteady stability analysis is carried out by assuming
the temperature profile can be ‘‘frozen’’ at each specifi
instant before analyzing the time evolution of infinitesim
perturbations with respect to the reference solution. T
quasistatic approximation has already been used by m
authors in the context of linear stability analyses~see, for
example,@13–15#! and will also be justifieda posteriori for
our nonlinear study.

We consider both cases of heating from above and coo
from below. The quasisteady linear stability analysis is p
formed by using a normal mode technique, allowing t
separation of variables, combined with a spectral T
Chebyshev method. We also extend our analysis to the n
linear regime, to determine the nature and the stability of
patterns formed above the linear stability threshold. Our
proach is a generalized amplitude equations method ada
to the oscillatory problem using an iterative procedure t
controls the smallness of the slaved amplitudes@16#. An ana-
lytical stability analysis of the typical wave patterns whi
appears in the 2D case is performed.

The paper is organized as follows. We introduce
physical system, define some dimensionless parameters
establish the basic equations in Sec. II. The linear problem
treated in Sec. III, yielding the instability threshold as a fun
tion of the nonlinearity of the reference temperature pro
i.e., as a function of the ‘‘conductive’’ time after which th
temperature difference is applied! and for different values of
the ratio of buoyancy and surface tension effects. In Sec
we derive the nonlinear amplitude equations and we st
the stability of the solutions found in the two dimension
case. Conclusions are drawn in Sec. V.

II. PROBLEM FORMULATION

The system under study is represented in Fig. 1. We c
sider a fluid layer of infinite horizontal extent and of thic
nessd. The system is confined between a lower rigid co

FIG. 1. System under study.
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ductive plate whose temperatureT0 is fixed and a flat upper
free surface. To model heat transfers across this upper
face, we use the well-known Newton’s law of cooling:

2K
dT

dz
5h~T2T`! ~1!

whereK is the thermal conductivity of the liquid andh is the
heat transfer coefficient;T is the temperature at the interfac
z is the vertical coordinate of a Cartesian reference fra
with its origin at the bottom of the layer and its vertical ax
pointing from the lower plate to the free surface andT` is
the temperature far away.

As explained in the Introduction, a temperature differen
is imposed att5t0 across the layer which was previously
a uniform temperatureTt,t0

. The reference temperature pro
file for the stability analysis is the time dependent solution
the heat equation. This profile can only be determined b
numerical approach and is represented in Fig. 2 for differ
values of the ‘‘conductive’’ timet r . Both the heating from
above (T`.T05Tt,t0

) and the cooling from below (Tt,t0
5T`.T0) cases are depicted. For sufficiently large valu
of t r , both profiles become linear and the two situations
equivalent.

We present now the equations governing the perturbat
with respect to this reference solution. First, note that we
working in the framework of the Boussinesq approximati
and the mass density and surface tension are assumed
linear functions of the temperature:

r5r02aT~T2T0!, ~2!

s5s02gT~T2T0! ~3!

whereaT andgT are constant coefficients.

FIG. 2. Reference temperature profiles for different values of
dimensionless timet r . Left figure: heating from above. Right fig
ure: cooling from below (Bi50.01).
0-2
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INFLUENCE OF A NONLINEAR REFERENCE . . . PHYSICAL REVIEW E 68, 066310 ~2003!
In our stability analysis we consider that the~nonlinear!
reference temperature profile is ‘‘frozen’’ at a given instant
time t r ; the reference temperature profile is unchanging d
ing the application of the stability analysis. This quasista
approximation is valid for the linear stability analysis sin
we are only concerned with whether or not the perturbati
grow at any stage of the evolution of the reference temp
ture profile~see@13–15#!. Concerning the nonlinear analys
we will discuss at the end of Sec. IV the domain where
quasistatic approximation is valid.

The variables are expressed in dimensionless fo
lengths are scaled by the thicknessd of the layer, time by
d2/k, with k the heat diffusivity of the liquid, velocityv
5(u,v,w) by k/d ~vectors are written in bold characters!,
pressurep by knr0 /d2, with n the kinematic viscosity of the
liquid, and temperatureT by DT5(Ti2T0), whereTi is the
temperature at the upper free surface in the reference s
calculated numerically at each time stept r of the evolution
of the reference temperature profile.

The Prandtl, Rayleigh, Marangoni, and Biot nondime
sional numbers are defined, respectively, by (g the accelera-
tion due to gravity!:

Pr5
n

k
, ~4!

Ra5
gaTd3DT

kn
, ~5!

Ma5
gTdDT

knr0
, ~6!

Bi5
hd

K
. ~7!

In addition, as an alternative to the usual Marangoni a
Rayleigh numbers, we have defined two different dimensi
less numbersa andl by

~12a!
Ra

Ra0
5a

Ma

Ma0
~8!

and

l5
Ra

Ra0
1

Ma

Ma0
~9!

where Ra0 and Ma0 are two arbitrary constants which ar
respectively, fixed at 669 and 79.607 in the following. T
parametera is a measure of the relative importance of t
buoyancy effect with regard to the thermocapillary effect a
can vary between zero and one (a50 corresponds to pure
thermocapillarity anda51 to pure buoyancy!. This param-
eter is related to the well-known dynamic Bond numb
Bod5Ra/Ma through the following relation:

Bod5
Ra0a

Ma0~12a!
. ~10!
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Parameterl is directly proportional to the temperature gr
dient (l.0 when the temperature at the top is higher than
the bottom!. We now define the temperature, velocity, a
pressure perturbationsu, v8 andp with respect to the con-
ductive reference solution, as

T5Tre f1u, v5vre f1v85v85~u8,v8,w8!,

p5pre f1p.

Under our assumptions, it is possible to neglect the te
]Tre f /]t in the heat equation, and the dimensionless eq
tions governing the evolution of the perturbations~for con-
venience the primes have been dropped! are given by

“•v50 ~continuity! ~11!

] tv1v•“v5Pr~2“p2Rauez1¹2v! ~momentum!
~12!

] tu1v•“u52w]zTre f1¹2u ~energy!. ~13!

The boundary conditions~lower rigid conductive plate and
nondeformable upper free surface with the Newton’s law
cooling and Marangoni effect! are given by

u5v5w5u50 ~14!

at the bottomz50, and

]zu2Ma]xu5]zv2Ma]yu5]zu1Bi u5w50 ~15!

at the topz51.

III. LINEAR STABILITY ANALYSIS

To study the stability of the reference state we use a n
mal mode technique in horizontal directions, combined w
a spectral Tau-Chebyshev method to solve the resul
equations for the vertical dependencies. First, Eqs.~11!–
~13! are linearized, the pressure fieldp is eliminated by ap-
plying “3“3 to Eq. ~12!. Then, the temperature and ve
locity perturbations are written as the superposition of pla
waves~normal modes! of the form

~v,u!5„V~z!,Q~z!…ei (kxx1kyy)est ~16!

wheres is the complex growth rate of the perturbations a
kx andky are the components of the horizontal wave vec
k. After standard calculations, we find the following equ
tions:

s~D22k2!W2Pr~D22k2!2W5Pr Ra0alk2Q, ~17!

sQ2~D22k2!Q52WD~Tre f!, ~18!

whereD5]z , W is the vertical component ofV(z) and the
boundary conditions are

W5Q5DW50 ~19!

at the bottom, and
0-3
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FIG. 3. kc ~first column!, lc ~second column!,
andvc ~third column! as functions of timet r for
different values of parametera @first row: domi-
nant buoyancy (a50.7); last row: dominant
thermocapillarity (a50.2)] in the case ofheat-
ing from above.
ia
na

er
-

.

W5D2W2Ma0~12a!lk2Q5DQ1Bi Q50 ~20!

at the top.
We decomposeW(z) and Q(z) in series of Chebyshev

polynomials ~spectral Tau-Chebyshev method!. Then after
projection of the equations on the Chebyshev polynom
and taking account of their orthogonality properties the fi
set of equations and boundary conditions can be written
the general form of an eigenvalue problem:

AX5lBX, ~21!

whereA andB are two matrices depending on the paramet
of the problem andX is the vector of the unknown coeffi
cients of Chebyshev polynomials definingW(z) and Q(z).
The eigenvaluel of the problem is a functionf of the pa-
rametersv, a, Pr, Bi, t r , and k, where v5Im(s) is the
06631
ls
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oscillation pulsation of the perturbations@Re(s)50 when
seeking for marginal states#. As l is real, we have
in fact two relations l5Re@ f (v,a,Pr,Bi,t r ,k)# and
Im@ f (v,a,Pr,Bi,t r ,k)#50, allowing us to find the pulsation
v and the corresponding value ofl for given values ofa,
Pr, Bi, t r , andk. The criticall, lc is defined by

lc5min
k

l~v,a,Pr,Bi,t r ,k!.

The wave number corresponding tolc is the critical wave
numberkc .

In Fig. 3, kc , lc , andvc are given as a function of time
t r for different values of the parametera ~the other param-
eters are fixed: Pr51, Bi50.01) in the case of heating from
above. Figure 4 concerns the case of cooling from below
FIG. 4. kc ~first column!, lc ~second column!,
andvc ~third column! as a function of timet r for
different values of parametera @first row: domi-
nant buoyancy (a50.7); last row: pure ther-
mocapillarity (a50)] in the case ofcooling from
below.
0-4
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INFLUENCE OF A NONLINEAR REFERENCE . . . PHYSICAL REVIEW E 68, 066310 ~2003!
In the case of heating from above and for a low buoyan
effect (a<0.1) the system is stable, both for a linear ref
ence profile (t r>4) and a nonlinear one~small t r). For
higher values ofa, oscillatory instabilities become possib
as shown by Rednikovet al. @8# for a linear reference tem
perature profile. The case of a linear reference profile is
deed the most unstable one for not too strong buoyancy
fect. But with still increasing influence of the buoyanc
effect with respect to the surface tension effect (a>0.5) we
see that a nonlinear reference profile can have a destabil
effect, i.e., the system is more unstable at the beginning
the heat/mass diffusion process. In this case the effec
critical Ma ~or Ra, orl) can be much lower than the on
calculated using the assumption of a linear reference pro

It is well known that in a purely surface-tension-drive
situation (a50) and with a linear reference temperature p
file, oscillatory instabilities are not possible~@8,9#!. An
asymptotic analysis by Bragardet al. ~@10,9#! has shown that
such oscillatory instabilities become possible in the case
cooling from below and at sufficiently small timest r ~i.e.,
when the curvatureD2Tre f of the temperature profile nea
the interface is sufficiently high!. This result is confirmed by
our analysis as one can see from Fig. 4.

We indeed see that in the case of cooling from below~Fig.
4!, and without buoyancy (a50), the system is stable fo
high values oft r , but can be unstable for nonlinear referen
temperature profiles. With the increasing importance of
buoyancy effect (a>0.1), oscillatory instabilities appea
even for linear reference profiles, but the nonlinear profi
are still the most unstable ones. Then for even higher va
of a the case of a linear reference profile becomes the m
unstable situation.

To summarize, we can stress that in both the heating f
above or the cooling from below problem, the nonlinear
can have a destabilizing effect. In transient experiments s
as those reported by Wierschemet al. ~@11#! the instability
could appear for a forcing condition on the system tha
lower than the critical condition determined from th
asymptotic reference solution.

Note also the evolution of the critical wave numberkc and
the critical pulsationvc . The wave number increases witha
in both cases of heating from above and cooling from bel
The general tendency consists of an increase of the pulsa
with a, except that we observe a decrease of the pulsa
betweena50.2 anda50.3 for the case of heating from
above. The wave number generally increases~decreases!
with increasingt r in the case of heating from above~cooling
from below!.

Some numerical values oflc , kc , andvc corresponding
to Figs. 3 and 4 are given in Table I.

IV. NONLINEAR ANALYSIS

The linear analysis allows us to determine the critical M
rangoni~or Rayleigh, orl) number, i.e., the critical tempera
ture gradient above which the conductive state becomes
stable, the characteristic wave number of the flow patte
and the corresponding pulsation. But the actual shape o
pattern can be obtained only via a nonlinear analysis. For
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purpose, we use a Galerkin-Eckhaus method, which con
of expanding the unknown perturbation fields in series of
eigenfunctions of the linear problem, then to introduce th
expansions in the nonlinear equations and to project th
onto the eigenfunctions of the adjoint linear problem. T
infinite set of equations is then reduced to a finite numbe
ordinary differential equations by using a slaving princip
adapted to the oscillatory problem~see@9#!.

First we solve the linear equations~17!–~20! by fixing l
5lc and using the growth rates of the perturbations as
eigenvalue parameter. For each value of the wave numbk
there exits an infinite set of eigenvaluessp

k , with p being an
integer running from one to infinity. The negative grow
rates are ordered in such a way that 0>Re(sp

k).Re(sq
k) for

p,q. The corresponding eigenfunctions have the form

~vp
k ,up

k!5„Vp
k~z!,Qp

k~z!…ei (kxx1kyy) ~22!

The unknowns of the nonlinear problem~11!– ~15!are then
expanded as a series of these eigenfunctions,

~v,u!5 (
p51

`

(
k

Ap
k~ t !~vp

k ,up
k!, ~23!

whereAp
k are the time-dependent amplitudes andk can take

all possible directions and moduli. After inserting~22! and
~23! in the nonlinear equations~11!–~15!, projection onto the
eigenfunctions of the adjoint problem, integration by pa
and noticing that the eigenfunctions are biorthogonal, o
obtains the following general amplitude equations:

] tAp
k5sp

kAp
k1« (

q51

`

Mq,p
k Aq

k2 (
q,l 51

`

(
k1 ,k2

Nq,l ,p
k1 ,k2 ,kAq

k1Al
k2

~24!

TABLE I. Critical values corresponding to Figs. 3 and 4.@We
selected the points wherelc is at its maximum value and thos
where the reference temperature is linear (t r5`).#

a t r kc lc vc

Heating from above
0.2 ` 0.6 38 990 720
0.3 ` 1.1 3170 347
0.6 0.4 2.0 1830 513
0.6 ` 3.0 3390 843
0.7 0.24 2.3 1890 601
0.7 ` 4.6 14 040 2180

Cooling from below

0 0 2.0 30 18
0.3 0.4 1.85 142 86
0.3 ` 1.1 3170 347
0.4 2.2 2.0 990 305
0.4 ` 1.5 1570 332
0.7 ` 4.6 14 040 2180
0-5
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DONDLINGER, COLINET, AND DAUBY PHYSICAL REVIEW E68, 066310 ~2003!
where«5(l2lc)/lc is the relative distance to the thresho
and the matricesM andN are given by

Mq,p
k 5

2Ra0alc^wp
k* ,uq

k&1Ma0~12a!lc^]zwp
k* ,uq

k&z51

^Pr21vp
k* vp

k1up
k* up

k&
,

Nq,l ,p
k1 ,k2 ,k

5
Pr21^vp

k* ,vq
k1 .¹v l

k2&1^up
k* ,vq

k1 .¹u l
k2&

^Pr21vp
k* vp

k1up
k* up

k&
,

where the square brackets denote integration over the
volume and the asterisk denotes the eigenfunctions of
adjoint problem. This infinite number of ordinary differenti
equations for the amplitudesAp

k is then simplified by using a
slaving method. The principle of the method consists in se
rating the set of eigenmodes in a first setKc , containing the
most unstable~critical! modes, and a second setKs , contain-
ing the stable~slaved! modes. Since the real parts of th
growth rates of the critical modes are close to zero, while
ones of the slaved modes have finite negative values, we
assume that near the threshold the moduli of the amplitu
belonging to the critical set are higher than the moduli of
amplitudes belonging to the slaved set. Under these circ
stances we can rewrite Eq.~24! for the slaved modes, by
restricting the summation to critical modes, which allows
to express the slaved amplitudes as functions of critical
plitudes only~as explained in@9#!. We then obtain the equa
tions for the critical modes by separating the sums on crit
and slaved modes in the basic equations~24! and replacing
the slaved amplitudes by their expressions as a factor of c
cal ones. Neglecting terms of order higher than 3, we fina
get

] tAp
k5sp

kAp
k1« (

q

Aq
kPKc

Mq,p
k Aq

k

2 (
q,l ,k1 ,k2

A
q

k1 ,A
l

k2PKc

Nq,l ,p
k1 ,k2 ,kAq

k1Al
k2

2 (
q,m,n,k1 ,k3 ,k4

A
q

k1 ,A
m

k3 ,A
n

k4PKc

Zq,m,n,p
k1 ,k3 ,k4 ,kAq

k1Am
k3An

k4 ~25!

where

Zq,m,n,p
k1 ,k3 ,k4 ,k

5 (
r ,k5

A
r

k5PKc

~Nq,r ,p
k1 ,k5 ,k

1Nr ,q,p
k5 ,k1 ,k

!Nm,n,r
k3 ,k4 ,k5

3
1

i Im~sm
k31sn

k4!2s r
k5

.

In principle an infinite number of slaved modes should
considered to calculate the cubic coefficients in Eq.~25!, but
06631
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in practice the number of slaved modes which must be ta
into account for each value ofk to ensure good convergenc
is limited to four or five.

Here for illustration we write the final expressions of th
amplitude equations for the 2D case. We consider only t
critical eigenmodesA1

k1 andA2
k1, wherek15kcex is the criti-

cal eigenvector ands1
k151 ivc ands2

k152 ivc are the cor-
responding eigenvalues,vc being the critical pulsation. The
coefficients of the amplitude equations are calculated at
critical point lc . The slaved wave vectors arek05k12k1
50 and k25k11k152k1. To simplify notation we note
A1

k15A and A2
k15B and, from Eq.~25! we find the two

complex amplitude equations:

] tA5c«A2guAu2A2buBu2A, ~26!

] tB5c«B2guBu2B2buAu2B. ~27!

This is a quite general expression, where only the coe
cientsc, g, andb depend on the particularities of the pro
lem ~see, for example,@10#!. Constant amplitude solutions o
these amplitude equations are the conductive state (A5B
50), standing waves (uAu5uBuÞ0)and traveling waves (A
50,BÞ0 or AÞ0,B50). Traveling waves are stable if 0
,Re(c)« and 0,Re(g),Re(b), while standing waves are
stable if 0,Re(c)«, 0,Re(g) and 2Re(g),Re(b)
,Re(g) ~see@2#!.

In both cases~heating from above and cooling from be
low! and for any value ofa, we predict the appearance o
standing waves above the linear stability threshold. Even
ally, note that in all the cases investigated we recover
known results~@8,9#! for a linear reference profile (t r>4): in
this case the conductive solution is stable below some lim
ing value ofa and standing waves appear above this lim
which is a check of our calculation.

In both cases~heating from above and cooling from be
low! and for any value ofa, we predict the appearance o
standing waves above the linear stability threshold. Even
ally, note that in all the cases investigated we recover
known results~@8,9#! for a linear reference profile (t r>4): in
this case the conductive solution is stable below some lim
ing value ofa and standing waves appear above this lim
which is a confirmation of our calculation.

We close now this section with a detailed analysis of
validity of the quasistatic approximation in the context of o
nonlinear approach. For this approximation to be accepta
the dimensional time scale of the growth of the perturbatio
must be much smaller than the thermal diffusive time sc
(d2/k). Equations~27!, ~28! show that an estimate of th
nondimensional time scale of the growth of the perturbatio
is given by 1/Re(c)«. This quantity must thus be muc
smaller than one for the quasistatic approximation to
valid, which means that« must be large enough. Otherwis
stated, this means that the system must be sufficiently
from the threshold. But in that case, the amplitude meth
becomes questionable since its validity is, strictly speaki
limited to the close neighborhood of the linear stability lim
Even if it is well known that the qualitative results deduc
0-6
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from amplitude equations are generally valid rather far fr
the threshold~@16,17#! it is important to check in detail the
consistency of our study.

This consistency will be examined for two typical case
which have been selected because our results are sign
tively different from those corresponding to a linear refe
ence temperature profile. First, let us analyze the cas
heating from above witha50.7 and the situation for which
the instability threshold is reached att r50.09, lc57000,
kc51.53, andvc5975 ~see the dots in Fig. 3!.

It is important to recall that the distance to the thresh
varies with the conductive timet r since the reference tem
perature profile is not constant. In the case of heating fr
above, Fig. 2 shows thatTi increases with time, which mean
that « also increases from zero at the threshold to posi
values later on. Figure 5 allows us to study in detail t
growth rate 1/Re(c)« of the critical mode. The solid line is
the nondimensional temperature difference between the
and the bottom of the layer as a function oft r while the
dotted line represents the function oft r giving the value ofl
on the critical curve for a wave number always equal to
critical kc51.53. The relative distance between these t
curves is thus the value of« for the unstable mode define
by the dots in Fig. 3. This mode is actually excited fort r
larger than 0.09 and smaller than 0.52. The average valu
the distance to threshold between these two values oft r is
2.6. Since the calculation of the coefficient of the amplitu
equations gives Re(c)58.5 in the present situation, the a
erage time scale of the growth of the perturbation can
estimated to 0.045, which is indeed much smaller than
This means that in the present example, the quasistatic
proximation is valid and the amplitude of the unstable mo
has sufficient time to saturate before the reference temp
ture profile has notably changed.

The next delicate point is then the validity of our amp
tude method which is, strictly speaking, limited to the clo
neighborhood of the linear stability limit while the mea
value of « is equal to 2.6 in our problem. To examine th
question, we use pure numerical 2D calculations with a h
zontal Fourier decomposition and a finite difference meth
along the vertical coordinate. The results of these calc

FIG. 5. The nondimensional temperature differencel between
the top and the bottom of the layer as a function oft r is represented
by the solid lines, while the dotted curves represent the function
t r giving the value ofl on the critical curve for a wave numbe
always equal tokc . Left: heating from above,a50.7 and kc

51.53. Right: cooling from below,a50 andkc52.
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tions are given in Fig. 6 which clearly shows the appeara
of a standing wave, as predicted by the amplitude metho
detailed analysis of this picture also enables us to determ
the frequency of the wave. This frequency is seen to v
with time and we have checked that this numerical freque
is close to the frequency calculated along the solid line
Fig. 5. Eventually, one can also notice that, as expected,
standing wave progressively dies out when the two curve
Fig. 5 approach each other as time goes on.

As a second situation to check the validity of our qua
static approach, we consider the case of cooling from be
and a purely thermocapillary problem (a50). If the refer-
ence temperature profile were assumed linear, it is w
known that no instability is possible in this case. On t
other hand, Fig. 4 shows that in the case of a nonlin
evolving temperature profile an instability is predicted f
small values oft r while all perturbations should decay fo
large values of the time variable. The value of the nondim
sional temperature difference at the beginning of the exp
ment is assumed to be 300; the most unstable wave num
characterizing the critical mode is equal to 2 and the co
sponding frequency is given by 18. In this situation, Fig
shows that the critical mode is indeed excited for values ot r
smaller than 0.85. With Re(c)55.1 and a mean value of«
for 0,t r,0.85 equal to 2.7, the mean time scale for t
growth of the perturbation is equal to 0.072, which justifi
the application of the quasistatic analysis. Moreover, p
numerical calculations show that the standing waves p
dicted by the amplitude method actually appear for smalt r
and enventually die out fort r>;0.85.

In conclusion, we can assert the quasistatic approxim
tion, leading to the amplitude equations and the prediction
standing waves above the threshold can be considered
valid method to analyze the nonlinear evolution of our s
tem.

of

FIG. 6. Numerical standing waves in the case of heating fr
above (a50.7, l57000). A gray-scale plot of the temperatu
field is presented. The values oft r on the horizontal axis correspon
to the values in Fig. 5.
0-7
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V. CONCLUSIONS

We have presented in this paper a linear and nonlin
stability analysis of a system formed by a laterally infin
horizontal fluid layer with a nondeformable surface, comp
ing the cases of heating from above and cooling from be
and emphasizing the importance of the nonlinearity of
reference profile at the beginning of the experiment.

We showed in particular that when the layer is hea
from above, a nonlinear reference profile has a destabiliz
effect on the system, when buoyancy dominates over sur
tension.

On the other hand, in the case of cooling from below,
found confirmation of the asymptotic results of Braga
et al., who found that oscillatory instabilities can be trig
gered even without buoyancy, provided the reference pro
is sufficiently nonlinear. The nonlinear analysis of the p
terns formed in the two-dimensional case shows that sta
ing waves prevail over traveling waves in all cases inve
gated. Contrary to the case when considering a linear pro
we can find standing waves in the case of dominant sur
tension effects, at the beginning of the heat~or mass! transfer
experiment.
, J
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These results show that the assumption of a linear re
ence temperature profile can lead to wrong predictions, e
cially in the domain where surface tension effects are do
nant when cooling is from below. Note finally that pu
numerical calculations have also enabled us to prove the
lidity of the so-called quasistatic approximation that w
used in the stability analysis.
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