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Introduction
Context and motivation

Use of DNS and LES for fundamental studies of turbomachinery

▶ numerical wind-tunnel: phenomenological understanding

▶ design of measurement devices

▶ reference data sets for calibration and improvement of turbulence models

DNS and LES complementary to experiments

+ complete control of (boundary) conditions (−− inlet turbulence)

+ all quantities available everywhere

– computational cost: statistical convergence and storage of data

Enablers

▶ Fast-pacing increase in computational power

▶ high accuracy and highly scalable numerical techniques

▶ (co-processed) powerful data analysis: machine learning, UQ ...
Lucia (Cenaero) - 4 PFlops
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Introduction
Discontinuous Galerkin Method

System of conservative equations

∂q

∂t
+∇·g = 0

Elementwise expansion

q ≈ u =
∑
i

uiϕi , ϕi ∈ V

Galerkin variational formulation General conservative system g

∑
e

∫
e
v
∂u

∂t
dV −

∑
e

∫
e
∇v · g dV

+
∑
f

∫
f
γ(u+, u−, v−, v+, n) dS = 0 , ∀v ∈ V

Ideal method for DNS and LES on complex geometry

▶ FEM (ϕi , v): accuracy independent mesh quality

▶ γ impose weak continuity/bc: stability, convergence

▶ high computational efficiency

▶ high scalability
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Introduction
Discontinuous Galerkin Method

System of conservative equations

∂q

∂t
+∇·g = 0

Elementwise expansion

q ≈ u =
∑
i

uiϕi , ϕi ∈ V

Galerkin variational formulation Convection subsystem:
FEM-like extension of FVM∑

e

∫
e
v
∂u

∂t
dV −

∑
e

∫
e
∇v · f dV

+
∑
f

∫
f
(v+ − v−)H(u+, u−, n) dS = 0 , ∀v ∈ V

with H “FVM” upwind flux Ideal method for DNS and LES on

complex geometry

▶ FEM (ϕi , v): accuracy independent mesh quality

▶ H FVM upwind flux: stability, convergence and
conservation

▶ high computational efficiency

▶ high scalability
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Introduction
Need for high resolution methods: DNS

Figure: DNS

▶ dissipation error → TKE budget

▶ dispersion error → Kolmogorov cascade

▶ high order → larger part of resolved scales for same dof

▶ implicit LES (Carton et al. 2015)
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Introduction
Need for high resolution methods: LES

Figure: (I)LES

▶ dissipation error → TKE budget

▶ dispersion error → Kolmogorov cascade

▶ high order → larger part of resolved scales for same dof

▶ implicit LES (Carton et al. 2015)
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Shock capturing
Impact on DNS/LES

Shock turbulence interaction HIT through shock (Larson 2006)
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Shock capturing
Approaches: no treatment

Aliasing of HOT Taylor expansion → Gibbs oscillations
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Shock capturing
Approaches: Artificial viscosity

Regularized shock representable by FEM

▶ shock detector

▶ additional dissipation in troubled cells
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Shock capturing
Approaches: impact on TKE balance

Transonic HIT Mt = 0.6 No SCM Artificial viscosity

Hillewaert et al., CTR Summer programme 2016
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Shock capturing
Approaches: Entropy stable (Gassner 2015)

Energy controlled Gibbs oscillations

▶ no dissipation

▶ energy conservation/destruction built-in FEM formulation
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Shock capturing
Energy stable formulations

Elements (Harten, Tadmore, Barth, . . . ; Carpenter, Gassner, . . . )

▶ Summation By Parts (SBP): “discrete” Gauss theorem equivalent removes quadrature inconsistencies∫
e
∇·g dV ≡

∮
f
g · n dS

▶ FVM: Entropy S and entropy variables w = Sq

w

(
∂q

∂t
+∇·f

)
= 0 ⇒︸︷︷︸

w fq=Fq

∂S
∂t

+
∂F
∂q

· ∇q = 0 ⇒
∂S
∂t

+∇·F = 0

▶ Entropy stable schemes (ES): Use entropy variables as solution u = Sq For v = u∑
e

∫
e
v
∂q

∂t
dV −

∑
e

∫
e
∇v∇·fdV +

∑
f

∫
f
(v+ − v−) H(u+, u−, n)dS = 0

⇒
∑
e

∫
e
u
∂q

∂t
dV −

∑
f

∫
f
(u+ − u−)

(
H(u+, u−, n)− f(ũ) · n

)
dS = 0 ⇒

∑
e

∫
e

∂S
∂t

≤ 0

entropy stability since H(, , ) is an entropy-consistent flux (e-flux)
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Shock capturing
Entropy stable - computational cost

SBP requires that H(, , ) computed for all

combinations of solution points

▶ very high computational const for pure
SBP

▶ reduce cost by using SBP/ES only near
shocks

▶ develop dedicated shock sensor → PhD
A. BilocqChallenges for DNS/LES of transonic turbines 14



Shock capturing
Biperiodic shear layer Re = ∞, M1 −M2 = 0.6, ρ1/ρ2 = 4

AV ES

Challenges for DNS/LES of transonic turbines 15



Shock capturing
Biperiodic shear layer Re = ∞, M1 −M2 = 0.6, ρ1/ρ2 = 4
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Shock capturing
Biperiodic shear layer Re = ∞, M1 −M2 = 0.6, ρ1/ρ2 = 4

AV ES
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Shock capturing
Conclusions

Work of PhD thesis of A. Bilocq

▶ SBP and ES allows to treat (mild) shocks without stabilisation

▶ maintains order and precision

▶ has much higher cost per degree of freedom, increases very fast with order

▶ current ongoing work

▶ efficient shock detectors
▶ load balancing
▶ porting on curved elements
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Generic reference data sets for turbulence modeling
ensemble Reynolds and Favre average

Reynolds a and Favre ã averages of a statistically stationary quantity a

a = lim
T→∞

1

T

∫ T

0
adt ã =

ρa

ρ

Fluctuations

a′ = a− a a” = a− ã
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Generic reference data sets for turbulence modeling
Reynolds-averaged Navier-Stokes equations

Reynolds averaged Navier-Stokes equations

∂ρ

∂t
+∇·ρṽ = 0

∂ρṽ
∂t

+∇·ρṽ ṽ +∇p = ∇· (τ −R)

∂ρẼ

∂t
+∇·ρH̃ ṽ = ∇·ṽ · (τ −R) +∇· (q −Q) +∇·

(
v”·τ −

1

2
ρ (v”·v”) v”

)
Closing the equations involves

▶ adapting constitutive equations

h̃ = CpT̃ p = ρRT̃ H̃ = h̃ +
1

2
ṽ ·ṽ +

1

2
v”·v” = h̃ + Ẽk + E t

k

▶ modeling Reynolds stress R = ρv”v” = ρ ṽ”v” and turbulent heat flux Q = ρv”h” = ρ ṽ”h”
▶ approximating constitutive equations to use available Favre averages

τ = µ (∇v +∇v⊺ − 2/3∇·v I) ≈ µ (∇ṽ +∇ṽ⊺ − 2/3∇·ṽ I) q = κ∇T ≈ κ∇T̃
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Generic reference data sets for turbulence modeling
Reynolds-stress modeling

Exact Reynolds stress budget

∂R
∂t

+∇·ṽR = −R· (∇ṽ+∇ṽ⊺)︸ ︷︷ ︸
P

+(v”∇p)+ (v”∇p)⊺︸ ︷︷ ︸
Rp

+(v”∇·τ )+ (v”∇·τ )⊺︸ ︷︷ ︸
Rτ

−∇·ρv” (v”v”)︸ ︷︷ ︸
Rv

with P the production term. Grouping of unclosed terms in Rp , Rτ , Rv following Gerolymos and Vallet (2001)

∂R
∂t

+∇·ṽR = P +D +Φ− ϵ+
2

3
p′∇·v”I +K

with unclosed terms:

▶ diffusion: D = −∇·ρv” (v”v”) + (∇·τ ′v”) + (∇·τ ′v”)⊺ − (∇p′v”) + (∇p′v”)⊺

▶ redistribution/pressure-strain: Φ = p′
(
(∇v”) + (∇v”)⊺ − 2

3
∇·v”I

)
▶ dissipation: ϵ = (τ ′ · ∇v”) + (τ ′ · ∇v”)⊺

▶ density fluctuation effects: K = −(v” (∇p −∇·τ )) + (v” (∇p −∇·τ ))⊺ ≈ 0
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Generic reference data sets for turbulence modeling
Reynolds-stress modeling

Exact Reynolds stress budget

∂R
∂t

+∇·ṽR = −R· (∇ṽ+∇ṽ⊺)︸ ︷︷ ︸
P

+(v”∇p)+ (v”∇p)⊺︸ ︷︷ ︸
Rp

+(v”∇·τ )+ (v”∇·τ )⊺︸ ︷︷ ︸
Rτ

−∇·ρv” (v”v”)︸ ︷︷ ︸
Rv

with P the production term. Grouping of unclosed terms in Rp , Rτ , Rv following Knight (1997)

∂R
∂t

+∇·ṽR = P +D +Φ− ϵ

with

▶ diffusion: D = −∇·ρv” (v”v”) + (∇·τv”) + (∇·τv”)⊺ − (∇pv”) + (∇pv”)⊺

▶ pressure-strain: Φ = (p∇v”) + (p∇v”)⊺

▶ dissipation: ϵ = (τ · ∇v”) + (τ · ∇v”)⊺
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Generic reference data sets for turbulence modeling
Reference data for turbulence modeling ?

DNS can provide all non-closed terms in RANS turbulence models, but

▶ Eddy Viscosity, Reynolds stress models, ... and more to come

▶ grouping of unclosed terms to ease modeling

▶ best combinations may not be independent of flow configuration
▶ correlations considered with τ and p in full, or split in τ = τ + τ ′ and p = p + p′

▶ implicit assumptions may not always hold in general case

▶ neglected terms due to near-incompressible v”
▶ use of ṽ and T̃ for τ and q

▶ formulations can not be converted in to one another . . .

▶ . . . but share many similar terms
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Generic reference data sets for turbulence modeling
Standardized DNS data sets (ERCOFTAC, HiFiTurb)

Turbulent terms can be decomposed in simple averages, e.g. Reynolds stress tensor

R = ρv”v” = ρvv − ρṽ ṽ = ρvv − ρv ρv/ρ

All known RANS models can be reconstructed using 180 basic averages

▶ level 1∗ - averaged Navier-Stokes equations

▶ level 2∗ - Reynolds stress equations and turbulent heat flux vector

▶ level 3 - TKE (solenoidal) dissipation

▶ level 3’ - Reynolds stress dissipation equations: TBD

Data sets∗ and best practices developed in HiFiTurb (H2020), part of ERCOFTAC KB Wiki 1

1
https://kbwiki-images.s3.amazonaws.com/8/80/List_of_desirable_and_minimum_quantities_to_be_entered_into_the_KB_Wiki.pdf
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Generic reference data sets for turbulence modeling
DNS verification: closed budget

Verification on channel Reτ = 180

(a)
√
Ruu,

√
Rvv ,

√
Rww (b) budget Ruv (c) budget dissipation ϵ

resolution 75x75x50 - p=3

Challenges for DNS/LES of transonic turbines 25



Generic reference data sets for turbulence modeling
DNS verification: closed budget

Verification on channel Reτ = 180

(a)
√
Ruu,

√
Rvv ,

√
Rww (b) budget Ruv (c) budget dissipation ϵ

resolution 75x75x50 - p=4
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Generic reference data sets for turbulence modeling
DNS verification: closed budget

Verification on channel Reτ = 180

(a)
√
Ruu,

√
Rvv ,

√
Rww (b) budget Ruv (c) budget dissipation ϵ

resolution 90x72x47 - p=4
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Generic reference data sets for turbulence modeling
Conclusions

▶ ERCOFTAC KB Wiki DNS

▶ standardized data set for level 1 and 2 RANS equations part of
▶ a number of additional statistics (e.g. rms of density)
▶ about 92 “basic” averages to be computed / stored / accumulated

▶ currently investigating generalised dissipation equations

▶ mesh and statistical convergence becomes harder with level ∼ correlation order

▶ third order derivatives in dissipation equation → at least 5th order accurate

▶ convergence verification ∼ budget closed ?

Direct Numerical Simulations of Turbine Blade Cascades for the Improvement of Turbulence Models through
Database Generation, M. Rasquin et al., submitted to ETC2023

Challenges for DNS/LES of transonic turbines 28



Confidence intervals on statistical data
Context

LES and DNS are increasingly used in complement to experiments for the
fundamental study of flows and the development of turbulence models.

DNS and LES results are typically not
accompanied by an error estimate,
i.c. confidence intervals on the sta-
tistical convergence of the averages.

The lack of convergence of statistical fields is
a source of error in the Reynolds stress tensor.

We can not apply statistical average error estimates commonly
used in experimental studies; need for alternative methods, having:

Low memory footprint Fast convergence Recurrence formula
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Confidence intervals on statistical data
Context

LES and DNS are increasingly used in complement to experiments for the
fundamental study of flows and the development of turbulence models.

DNS and LES results are typically not
accompanied by an error estimate,
i.c. confidence intervals on the sta-
tistical convergence of the averages.

The lack of convergence of statistical fields is
a source of error in the Reynolds stress tensor.

We can not apply statistical average error estimates commonly
used in experimental studies; need for alternative methods, having:

Low memory footprint Fast convergence Recurrence formula
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Confidence intervals on statistical data
Statistical framework

Consider we want statistical averages of a turbulent flow which is

statistically stationary ergodic
with realizations: xi = ρi , ρivi , pi , . . . in
time series with average µ and variance σ

Quantification of the maximum deviation between:

the actual average µ = E [x] the sample average xn = 1
n

∑n
i xi

Central theorem: xn is normally distributed N (µ, σxn )

Confidence interval: P (µ ∈ [xn − Nασxn , x + Nασxn ]) = α

Question: How can we estimate σxn in a practical way ?
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Confidence intervals on statistical data
Statistical framework

Consider we want statistical averages of a turbulent flow which is

statistically stationary ergodic
with realizations: xi = ρi , ρivi , pi , . . . in
time series with average µ and variance σ

Quantification of the maximum deviation between:

the actual average µ = E [x] the sample average xn = 1
n

∑n
i xi

Central theorem: xn is normally distributed N (µ, σxn )

Confidence interval: P (µ ∈ [xn − Nασxn , x + Nασxn ]) = α

Question: How can we estimate σxn in a practical way ?
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Confidence intervals on statistical data
Estimator of σx

Standard approach for non-correlated samples

σxn ≈
sn√
n − 1

where, s2n = 1
n

∑
i (xi − x)2

Difficulties specific to DNS and LES

▶ consecutive samples highly correlated → classical estimate not valid, correct for auto-correlation function (ACF)

▶ relatively short duration in physical time → fast convergence required, use as many data as possible

▶ the whole flow field and all statistical quantities → can not store whole time signal for estimation

Approach

▶ Development of three estimators based on short recurrences with m data points

▶ m will depend on the correlation time scale T .

▶ undersampling if m too large to limit the storage.
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Estimator of σx

Standard approach for non-correlated samples

σxn ≈
sn√
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where, s2n = 1
n

∑
i (xi − x)2
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Confidence intervals on statistical data
Variance of the sample mean Var (xn)

The sample mean is an unbiased estimator of µ,

xn =
1

n

n∑
t=1

xt

Its variance is computed as,

Var (xn) = E
[
(xn − µ)2

]
=

σ2

n

[
1 + 2

n−1∑
k=1

(
1−

k

n

)
ρk

]

The auto-correlation function (ACF) at τk is given by,

ρk = σ−2E [(x(t)− µ)(x(t + τk )− µ)]

How can we construct σxn knowing that σ and ρk
are unknown and hence need to be approximated ?
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Confidence intervals on statistical data
Variance of the sample mean Var (xn)

The sample mean is an unbiased estimator of µ,

xn =
1

n

n∑
t=1

xt

Its variance is computed as,

Var (xn) = E
[
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σ2
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(
1−

k

n

)
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Confidence intervals on statistical data
Variance of the sample mean Var (xn)

σ2

the variance of the process can be ap-
proximated with the sample variance:

s2n =
1

n − 1

∑n
t=1 (xt − xn)

2

ρk

the ACF can be approximated in various
ways using selected statistical quantities:

γ̂k , δ̂k , φ̂k

For instance, combining δ̂k with the sample variance one obtains an asymptotically unbiased estimator:

Var (xn) ≈ αE
[
βs2n −

∑m
k=1 δ̂k

]
, with α and β functions of n and m.

Truncation to the m first terms to reduce the memory storage.
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Confidence intervals on statistical data
Recurrence for sampled statistical data

All sample-based statistical data can be computed recursively, e.g. sample mean and the sample variance:

xn =
n − 1

n
xn−1 +

xn

n
s2n =

(n − 2)s2n−1 + (n − 1)x2n−1 + x2n − nx2n

n − 1

Advantages:

▶ minimal memory storage

▶ low computational effort

⇒ Storage ACF estimators ∼ m
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Confidence intervals on statistical data
Moving Block Bootstrap method

▶ Resampling algorithm used when the probability distribution of the data is unknown;

▶ Infer any statistics (e.g., mean, variance, ...), from a single time series;

▶ Initially proposed by [Efron, 1979];

▶ Extended by [Kunsch, 1989] to preserve correlations in time series.

c

x⋆bi
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Confidence intervals on statistical data
Moving Block Bootstrap method

1) Evaluate the optimal block size c

2) Construct of N − c + 1 random overlapping blocks of size c

3) Rrandomly concatenate N/c blocks to get a new data series x∗b,i

4) Compute the statistics of interest

6) Repeat the process B times

c

x⋆bi
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Confidence intervals on statistical data
Example: auto-regressive process

Auto-regressive (AR) process

xi =
n∑

k=1

αkxi−k + ϵi , where ϵi = N (0, σ2
ϵ) and αk ∈ R.

with n = 6 and x−5 = · · · = x0 = 0. We have generated 100 realizations of the process.

0 200 400 600 800 1000
t

−100

−50

0

50

100

x
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Confidence intervals on statistical data
Example: auto-regressive process

102 103 104
N

101

102

2β
√
a
r( x

N
)

Estimator MBB
Beyhaghi et al.
Estimator 1
Estimator 2
Estimator 3
Exact

102 103 104 105
100

101

Estimator MBB
Exact

▶ the three estimators are
unbiased estimators of the
mean.

▶ they coincide well with the
estimator of [Beyhaghi et al.,
2018] at moderate and large
N

▶ MMB is not biased, it just
converges more slowly.
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Confidence intervals on statistical data
Example: two-dimensional periodic hill

▶ Bi-periodic flow evolving between two walls featuring a streamwise constriction[2]

▶ Controlled pressure gradient to match the bulk Reynolds number (Reb = 10,595) combined with a low bulk
Mach number Mb = 0.1

0 1 2 3 4 5 6 7 8 9
u/ub

0.0
0.5
1.0
1.5
2.0
2.5
3.0

y/
h

Argo-DG, Refined Mesh, M=0.1 Breuer et al. (2009) X. Gloerflt and P. Cinnella, M=0.1

2
https://www.kbwiki.ercoftac.org/w/index.php/Abstr:2D_Periodic_Hill_Flow
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Confidence intervals on statistical data
Example: two-dimensional periodic hill

103
N

10−1

4×10−2

6×10−2

2×10−1

3×10−1

2β
√
a
r( x

N
)

MBB estimator
Beyhaghi estimator
Estimator 1
Estimator 2
Estimator 3

4×103 5×103 6×1034×10−2

5×10−2

6×10−2

7×10−2

8×10−2 Near the separation:

▶ Location characterized by a thin
boundary layer;

▶ Rapid and random displacement
of the separation over the hill;

▶ The thee estimators are framed
by the MBB (below) and the
[Beyhaghi et al., 2018] (above)
ones.
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Confidence intervals on statistical data
Conclusion

Part of PhD Margaux Boxho

Current results

▶ confidence intervals required for DNS, and therefore estimate of Var (xn)

▶ new estimators are required
▶ high correlation in time series → classical estimate based upon s2n not usable
▶ large data set ↔ current refined estimators (MBB, Beyaghi, ....) based upon full time history not practical

▶ three new estimators are proposed
▶ correction with m correlation terms
▶ estimated in situ using dedicated statistical quantities
▶ computed using recursive formula

▶ Validation on
▶ auto-regressive (AR) process,
▶ stochastic solution of the Kuramoto–Sivashinsky (KS) equation,
▶ velocity signals extracted on the two-dimensional periodic hill.

▶ number of terms m is automatically and locally refined ∼ estimated correlation time scale T .

▶ normally all timesteps are used but for long correlation times (e.g. reirculation bubble) m can be reduced
reliably by undersampling

Next steps

▶ integration in flow solvers Argo and ForDGe

▶ use in statistical databases for RANS

▶ use for online machine learning of wall models

Economical and Asymptotically Unbiased Estimators of Statistical Uncertainty in DNS and LES, M.Boxho & K. Hillewaert (in preparation)
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Ongoing work and perspectives

Current development challenges

▶ integration of error estimators in co-processing

▶ Reynolds stress dissipation equation breakdown and implementation

▶ turbulence injection strategy

Applications in current projects

▶ development of wall models using machine learning on DNS / LES reference data (M. Boxho)

▶ shock capturing for DNS and LES and study of transonic turbulence (A. Bilocq)

▶ study of flow in spleen cascade without and with rotating bars (G. Lopes)

▶ LES of active turbulence grids (F. Bertelli)

▶ receptivity of boundary layer to passing wake (G. Pastorino)?
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Ongoing work and perspectives
DNS spleen cascade (collab. G. Lopes)

Clean inlet flow

▶ conditions Re2s = (70k, 120k)×M2s = (0.7, 0.9, 0.95)

▶ RANS reference data: flow field, Reynolds stress, budgets

▶ blade Ms , Cf distributions

▶ blade p′2, ρ′2 (and γ ?)

▶ wake distributions of p◦, α, E t
k

▶ wake distributions of ρ′2 and length/time scales
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Ongoing work and perspectives
LES active grid (collab. F. Bertelli)
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