Challenges for the (scale-resolved) simulation of transonic turbines

VKI online workshop on Next-Generation High-Speed Low-Pressure Turbines 21-23 November 2022

K. Hillewaert^{1,2} contributions by A. Bilocq¹, M. Boxho^{1,2,3}, M. Rasquin², T. Toulorge² Université de Liège¹, Cenaero² and Université catholique de Louvain³ koen.hillewaert@uliege.be/cenaero.be

LIÈGE

Outline

Introduction

Shock capturing

Generic reference data sets for turbulence modeling

Confidence intervals on statistical data

Ongoing work and perspectives

Introduction Context and motivation

Use of DNS and LES for fundamental studies of turbomachinery

- numerical wind-tunnel: phenomenological understanding
- design of measurement devices
- reference data sets for calibration and improvement of turbulence models

DNS and LES complementary to experiments

- + complete control of (boundary) conditions (-- inlet turbulence)
- + all quantities available everywhere
- computational cost: statistical convergence and storage of data

Enablers

- Fast-pacing increase in computational power
- high accuracy and highly scalable numerical techniques
- (co-processed) powerful data analysis: machine learning, UQ ...

Lucia (Cenaero) - 4 PFlops

Introduction Discontinuous Galerkin Method

System of conservative equations

Elementwise expansion

$$q pprox u = \sum_{i} u_{i} \phi_{i} \ , \ \phi_{i} \in \mathcal{V}$$

Galerkin variational formulation General conservative system ${\bf g}$

$$\begin{split} \sum_{e} \int_{e} v \frac{\partial u}{\partial t} \ dV &- \sum_{e} \int_{e} \nabla v \cdot \mathbf{g} \ dV \\ &+ \sum_{f} \int_{f} \gamma(u^{+}, u^{-}, v^{-}, v^{+}, \mathbf{n}) \ dS = \mathbf{0} \ , \ \forall v \in \mathcal{V} \end{split}$$

Ideal method for DNS and LES on complex geometry

- FEM (ϕ_i, v) : accuracy independent mesh quality
- γ impose weak continuity/bc: stability, convergence
- high computational efficiency
- high scalability

Introduction Discontinuous Galerkin Method

System of conservative equations

Elementwise expansion

$$q pprox u = \sum_{i} u_{i} \phi_{i} \ , \ \phi_{i} \in \mathcal{V}$$

Galerkin variational formulation $% \left({{\rm Convection\ subsystem:}} \right)$ FEM-like extension of FVM

$$\begin{split} \sum_{e} \int_{e} v \frac{\partial u}{\partial t} \ dV &- \sum_{e} \int_{e} \nabla v \cdot \mathbf{f} \ dV \\ &+ \sum_{f} \int_{f} (v^{+} - v^{-}) \mathcal{H}(u^{+}, u^{-}, \mathbf{n}) \ dS = 0 \ , \ \forall v \in \mathcal{V} \end{split}$$

with ${\mathcal H}$ "FVM" upwind flux Ideal method for DNS and LES on complex geometry

- FEM (ϕ_i, v) : accuracy independent mesh quality
- \blacktriangleright ${\mathcal H}$ FVM upwind flux: stability, convergence and conservation
- high computational efficiency
- high scalability

Introduction Need for high resolution methods: DNS

LIÈGE

Consoro

▶ implicit LES (Carton et al. 2015)

Introduction Need for high resolution methods: LES

▶ implicit LES (Carton et al. 2015)

Shock capturing Impact on DNS/LES

HIT through shock (Larson 2006)

Shock capturing Approaches: no treatment

Aliasing of HOT Taylor expansion \rightarrow Gibbs oscillations

Shock capturing Approaches: Artificial viscosity

► LIÈGE

Consero 10

Regularized shock representable by FEM

- shock detector
- additional dissipation in troubled cells

Shock capturing Approaches: impact on TKE balance

Hillewaert et al., CTR Summer programme 2016

Shock capturing Approaches: Entropy stable (Gassner 2015)

Consoro

10

Energy controlled Gibbs oscillations

- no dissipation
- energy conservation/destruction built-in FEM formulation

Elements (Harten, Tadmore, Barth, ...; Carpenter, Gassner, ...)

Summation By Parts (SBP): "discrete" Gauss theorem equivalent removes quadrature inconsistencies

$$\int_e \nabla \cdot \mathbf{g} \ dV \equiv \oint_f \mathbf{g} \cdot \mathbf{n} \ dS$$

FVM: Entropy S and entropy variables $w = S_q$

$$w\left(\frac{\partial q}{\partial t} + \nabla \cdot \mathbf{f}\right) = 0 \qquad \qquad \underset{w\mathbf{f}_q = \mathcal{F}_q}{\Rightarrow} \qquad \qquad \frac{\partial S}{\partial t} + \frac{\partial \mathcal{F}}{\partial q} \cdot \nabla \mathbf{q} = 0 \qquad \Rightarrow \qquad \qquad \frac{\partial S}{\partial t} + \nabla \cdot \mathcal{F} = 0$$

• Entropy stable schemes (ES): Use entropy variables as solution $u = S_q$ For v = u

$$\sum_{e} \int_{e} v \frac{\partial q}{\partial t} dV - \sum_{e} \int_{e} \nabla v \nabla \cdot \mathbf{f} dV + \sum_{f} \int_{f} (v^{+} - v^{-}) \mathcal{H}(u^{+}, u^{-}, \mathbf{n}) dS = 0$$

$$\Rightarrow \sum_{e} \int_{e} u \frac{\partial q}{\partial t} dV - \sum_{f} \int_{f} (u^{+} - u^{-}) \left(\mathcal{H}(u^{+}, u^{-}, \mathbf{n}) - \mathbf{f}(\tilde{u}) \cdot \mathbf{n} \right) dS = 0 \qquad \Rightarrow \qquad \sum_{e} \int_{e} \frac{\partial S}{\partial t} \leq 0$$

entropy stability since $\mathcal{H}(,,)$ is an entropy-consistent flux (e-flux)

Challenges for DNS/LES of transonic turbines

Cenaero 13

Shock capturing Entropy stable - computational cost

SBP requires that $\mathcal{H}(,,)$ computed for all combinations of solution points

- very high computational const for pure SBP
- reduce cost by using SBP/ES only near shocks
- ► develop dedicated shock sensor → PhD

Shock capturing Biperiodic shear layer $Re = \infty$, $M_1 - M_2 = 0.6$, $\rho_1/\rho_2 = 4$

Shock capturing Biperiodic shear layer $Re = \infty$, $M_1 - M_2 = 0.6$, $\rho_1/\rho_2 = 4$

AV

ES

Shock capturing Biperiodic shear layer $Re = \infty$, $M_1 - M_2 = 0.6$, $\rho_1/\rho_2 = 4$

AV

ES

Shock capturing Conclusions

Work of PhD thesis of A. Bilocq

- ▶ SBP and ES allows to treat (mild) shocks without stabilisation
- maintains order and precision
- ▶ has much higher cost per degree of freedom, increases very fast with order
- current ongoing work
 - efficient shock detectors
 - load balancing
 - porting on curved elements

Generic reference data sets for turbulence modeling ensemble Reynolds and Favre average

Reynolds \overline{a} and Favre \widetilde{a} averages of a statistically stationary quantity a

$$\overline{a} = \lim_{T \to \infty} \frac{1}{T} \int_0^T a dt \qquad \qquad \widetilde{a} = \frac{\overline{\rho a}}{\overline{\rho}}$$

Fluctuations

 $a' = a - \overline{a}$ $a'' = a - \widetilde{a}$

Generic reference data sets for turbulence modeling Reynolds-averaged Navier-Stokes equations

► LIÈGE

Reynolds averaged Navier-Stokes equations

$$\begin{aligned} \frac{\partial \overline{\rho}}{\partial t} + \nabla \cdot \overline{\rho} \widetilde{\boldsymbol{v}} &= 0\\ \frac{\partial \overline{\rho} \widetilde{\boldsymbol{v}}}{\partial t} + \nabla \cdot \overline{\rho} \widetilde{\boldsymbol{v}} \widetilde{\boldsymbol{v}} + \nabla \overline{\rho} &= \nabla \cdot (\boldsymbol{\tau} - \boldsymbol{\mathcal{R}})\\ \frac{\partial \overline{\rho} \widetilde{\boldsymbol{E}}}{\partial t} + \nabla \cdot \overline{\rho} \widetilde{\boldsymbol{H}} \widetilde{\boldsymbol{v}} &= \nabla \cdot \widetilde{\boldsymbol{v}} \cdot (\overline{\boldsymbol{\tau}} - \boldsymbol{\mathcal{R}}) + \nabla \cdot (\overline{\boldsymbol{q}} - \boldsymbol{\mathcal{Q}}) + \nabla \cdot \left(\overline{\boldsymbol{v}'' \cdot \boldsymbol{\tau}} - \frac{1}{2} \overline{\rho} (\boldsymbol{v}'' \cdot \boldsymbol{v}'') \boldsymbol{v}''\right) \end{aligned}$$

Closing the equations involves

adapting constitutive equations

$$\widetilde{h} = \mathcal{C}_{\rho} \widetilde{T} \qquad \qquad \widetilde{p} = \overline{\rho} R \widetilde{T} \qquad \qquad \widetilde{H} = \widetilde{h} + \frac{1}{2} \widetilde{\boldsymbol{v}} \cdot \widetilde{\boldsymbol{v}} + \frac{1}{2} \overline{\boldsymbol{v}}'' \cdot \boldsymbol{v}'' = \widetilde{h} + \widetilde{\mathcal{E}}_k + \mathcal{E}_k^t$$

- modeling Reynolds stress $\mathcal{R} = \overline{\rho \mathbf{v}'' \mathbf{v}''} = \overline{\rho} \ \widetilde{\mathbf{v}'' \mathbf{v}''}$ and turbulent heat flux $\mathcal{Q} = \overline{\rho \mathbf{v}'' h''} = \overline{\rho} \ \widetilde{\mathbf{v}'' h''}$
- approximating constitutive equations to use available Favre averages

$$\overline{\boldsymbol{\tau}} = \mu \left(\nabla \overline{\boldsymbol{v}} + \nabla \overline{\boldsymbol{v}}^{\mathsf{T}} - 2/3 \nabla \cdot \overline{\boldsymbol{v}} \,\mathcal{I} \right) \approx \mu \left(\nabla \widetilde{\boldsymbol{v}} + \nabla \widetilde{\boldsymbol{v}}^{\mathsf{T}} - 2/3 \nabla \cdot \widetilde{\boldsymbol{v}} \,\mathcal{I} \right) \qquad \overline{\boldsymbol{q}} = \kappa \nabla \overline{\mathcal{T}} \approx \kappa \nabla \widetilde{\mathcal{T}}$$

Generic reference data sets for turbulence modeling Reynolds-stress modeling

Exact Reynolds stress budget

$$\frac{\partial \boldsymbol{\mathcal{R}}}{\partial t} + \nabla \cdot \tilde{\boldsymbol{v}} \boldsymbol{\mathcal{R}} = \underbrace{-\boldsymbol{\mathcal{R}} \cdot (\nabla \tilde{\boldsymbol{v}} + \nabla \tilde{\boldsymbol{v}}^{\mathsf{T}})}_{\boldsymbol{\mathcal{P}}} + \underbrace{(\boldsymbol{v}^{"} \nabla \boldsymbol{\rho}) + (\boldsymbol{v}^{"} \nabla \boldsymbol{\rho})^{\mathsf{T}}}_{\boldsymbol{\mathcal{R}}_{\boldsymbol{\rho}}} + \underbrace{(\boldsymbol{v}^{"} \nabla \cdot \boldsymbol{\tau}) + (\boldsymbol{v}^{"} \nabla \cdot \boldsymbol{\tau})^{\mathsf{T}}}_{\boldsymbol{\mathcal{R}}_{\boldsymbol{\tau}}} - \underbrace{\nabla \cdot \boldsymbol{\rho} \boldsymbol{v}^{"} (\boldsymbol{v}^{"} \boldsymbol{v}^{"})}_{\boldsymbol{\mathcal{R}}_{\boldsymbol{v}}}$$

with P the production term. Grouping of unclosed terms in \mathcal{R}_p , \mathcal{R}_τ , \mathcal{R}_ν following Gerolymos and Vallet (2001)

$$rac{\partial \mathcal{R}}{\partial t} +
abla \cdot \widetilde{oldsymbol{
u}} \mathcal{R} = \mathcal{P} + \mathcal{D} + \Phi - \epsilon + rac{2}{3} \overline{p'
abla \cdot oldsymbol{
u}'' \mathcal{I}} + \mathcal{K}$$

with unclosed terms:

- $\blacktriangleright \quad diffusion: \ \mathcal{D} = -\overline{\nabla \cdot \rho \mathbf{v}''} \left(\mathbf{v}'' \mathbf{v}'' \right) + \overline{(\nabla \cdot \tau' \mathbf{v}'')} + (\nabla \cdot \tau' \mathbf{v}'')^{\mathsf{T}} \overline{(\nabla \rho' \mathbf{v}'')} + (\nabla \rho' \mathbf{v}'')^{\mathsf{T}}$
- ► redistribution/pressure-strain: $\Phi = \overline{p'\left((\nabla \mathbf{v}'') + (\nabla \mathbf{v}'')^{\mathsf{T}} \frac{2}{3}\nabla \cdot \mathbf{v}''\mathcal{I}\right)}$

• dissipation:
$$\epsilon = \overline{(\boldsymbol{\tau}' \cdot \nabla \boldsymbol{v}'') + (\boldsymbol{\tau}' \cdot \nabla \boldsymbol{v}'')^{\mathsf{T}}}$$

• density fluctuation effects: $\mathcal{K} = -\overline{(\mathbf{v}'' (\nabla \overline{p} - \nabla \cdot \boldsymbol{\tau})) + (\mathbf{v}'' (\nabla \overline{p} - \nabla \cdot \boldsymbol{\tau}))^{\mathsf{T}}} \approx 0$

Generic reference data sets for turbulence modeling Reynolds-stress modeling

Exact Reynolds stress budget

$$\frac{\partial \mathcal{R}}{\partial t} + \nabla \cdot \tilde{\boldsymbol{v}} \mathcal{R} = \underbrace{-\mathcal{R} \cdot (\nabla \tilde{\boldsymbol{v}} + \nabla \tilde{\boldsymbol{v}}^{\mathsf{T}})}_{\mathcal{P}} + \underbrace{(\boldsymbol{v}^{"} \nabla \boldsymbol{p}) + (\boldsymbol{v}^{"} \nabla \boldsymbol{p})^{\mathsf{T}}}_{\mathcal{R}_{p}} + \underbrace{(\boldsymbol{v}^{"} \nabla \cdot \boldsymbol{\tau}) + (\boldsymbol{v}^{"} \nabla \cdot \boldsymbol{\tau})^{\mathsf{T}}}_{\mathcal{R}_{\tau}} - \underbrace{\nabla \cdot \boldsymbol{\rho} \boldsymbol{v}^{"} (\boldsymbol{v}^{"} \boldsymbol{v}^{"})}_{\mathcal{R}_{v}}$$

with **P** the production term. Grouping of unclosed terms in \mathcal{R}_{p} , \mathcal{R}_{τ} , \mathcal{R}_{ν} following Knight (1997)

$$rac{\partial oldsymbol{\mathcal{R}}}{\partial t} +
abla \cdot \widetilde{oldsymbol{arkappa}} oldsymbol{\mathcal{R}} = oldsymbol{\mathcal{P}} + oldsymbol{\mathcal{D}} + oldsymbol{\Phi} - oldsymbol{\epsilon}$$

with

- $\blacktriangleright \quad diffusion: \ \mathcal{D} = -\overline{\nabla \cdot \rho \mathbf{v}^{"} (\mathbf{v}^{"} \mathbf{v}^{"})} + \overline{(\nabla \cdot \tau \mathbf{v}^{"}) + (\nabla \cdot \tau \mathbf{v}^{"})^{\intercal}} \overline{(\nabla \rho \mathbf{v}^{"}) + (\nabla \rho \mathbf{v}^{"})^{\intercal}}$
- pressure-strain: $\Phi = \overline{(p \nabla v'') + (p \nabla v'')^{\mathsf{T}}}$
- dissipation: $\boldsymbol{\epsilon} = \overline{(\boldsymbol{\tau} \cdot \nabla \boldsymbol{v}^{"}) + (\boldsymbol{\tau} \cdot \nabla \boldsymbol{v}^{"})^{\mathsf{T}}}$

Generic reference data sets for turbulence modeling Reference data for turbulence modeling ?

DNS can provide all non-closed terms in RANS turbulence models, but

- ► Eddy Viscosity, Reynolds stress models, ... and more to come
- grouping of unclosed terms to ease modeling
 - best combinations may not be independent of flow configuration
 - correlations considered with au and p in full, or split in $au = \overline{ au} + au'$ and $p = \overline{p} + p'$
- implicit assumptions may not always hold in general case
 - neglected terms due to near-incompressible v"
 - use of \tilde{v} and \tilde{T} for $\overline{\tau}$ and \overline{q}
- formulations can not be converted in to one another ...
- ▶ ... but share many similar terms

Generic reference data sets for turbulence modeling Standardized DNS data sets (ERCOFTAC, HiFiTurb)

Turbulent terms can be decomposed in simple averages, e.g. Reynolds stress tensor

$$\boldsymbol{\mathcal{R}} = \overline{\rho \boldsymbol{v}^{"} \boldsymbol{v}^{"}} = \overline{\rho \boldsymbol{v} \boldsymbol{v}} - \overline{\rho} \widetilde{\boldsymbol{v}} \widetilde{\boldsymbol{v}} = \overline{\rho \boldsymbol{v} \boldsymbol{v}} - \overline{\rho \boldsymbol{v}} \ \overline{\rho \boldsymbol{v}} / \overline{\rho}$$

All known RANS models can be reconstructed using 180 basic averages

- level 1* averaged Navier-Stokes equations
- level 2* Reynolds stress equations and turbulent heat flux vector
- level 3 TKE (solenoidal) dissipation
- level 3' Reynolds stress dissipation equations: TBD

Data sets* and best practices developed in HiFiTurb (H2020), part of ERCOFTAC KB Wiki ¹

¹https://kbwiki-images.s3.amazonaws.com/8/80/List_of_desirable_and_minimum_quantities_to_be_entered_into_the_KB_Wiki.pdf

Generic reference data sets for turbulence modeling DNS verification: closed budget

Verification on channel $Re_{ au}=180$

resolution $75 \times 75 \times 50 - p=3$

Cenaero 25

Generic reference data sets for turbulence modeling DNS verification: closed budget

Verification on channel $Re_{ au} = 180$

resolution $75 \times 75 \times 50 - p=4$

Generic reference data sets for turbulence modeling DNS verification: closed budget

Verification on channel $Re_{ au} = 180$

resolution $90 \times 72 \times 47 - p = 4$

Generic reference data sets for turbulence modeling Conclusions

ERCOFTAC KB Wiki DNS

- standardized data set for level 1 and 2 RANS equations part of
- a number of additional statistics (e.g. rms of density)
- about 92 "basic" averages to be computed / stored / accumulated
- currently investigating generalised dissipation equations
- \blacktriangleright mesh and statistical convergence becomes harder with level \sim correlation order
- \blacktriangleright third order derivatives in dissipation equation \rightarrow at least 5 th order accurate
- convergence verification ~ budget closed ?

Direct Numerical Simulations of Turbine Blade Cascades for the Improvement of Turbulence Models through Database Generation, M. Rasquin et al., submitted to ETC2023

LES and DNS are increasingly used **in complement to experiments** for the fundamental study of flows and the development of turbulence models.

LES and DNS are increasingly used **in complement to experiments** for the fundamental study of flows and the development of turbulence models.

DNS and LES results are typically **not accompanied** by an error estimate, *i.c.* confidence intervals on the statistical convergence of the averages.

The lack of convergence of statistical fields is a **source of error** in the Reynolds stress tensor.

► LIÈGE

Confidence intervals on statistical data Statistical framework

Consider we want statistical averages of a turbulent flow which is

statistically stationary ergodic	with realizations: $x_i = \rho_i, \rho_i \mathbf{v}_i, \mathbf{p}_i, \dots$ in time series with average μ and variance σ
----------------------------------	--

Confidence intervals on statistical data Statistical framework

Consider we want statistical averages of a turbulent flow which is

the actual average $\mu = \mathbb{E}[x]$

the sample average $\overline{x}_n = \frac{1}{n} \sum_{i=1}^{n} x_i$

Confidence intervals on statistical data Statistical framework

Consider we want statistical averages of a turbulent flow which is

Question: How can we estimate $\sigma_{\overline{x}_n}$ in a practical way ?

Confidence intervals on statistical data Estimator of $\sigma_{\overline{x}}$

Standard approach for non-correlated samples

$$\sigma_{\overline{x}_n} \approx rac{s_n}{\sqrt{n-1}}$$
 where, $s_n^2 = rac{1}{n} \sum_i (x_i - \overline{x})^2$

Difficulties specific to DNS and LES

- \blacktriangleright relatively short duration in physical time \rightarrow fast convergence required, use as many data as possible
- ▶ the whole flow field and all statistical quantities → can not store whole time signal for estimation

Confidence intervals on statistical data Estimator of $\sigma_{\overline{x}}$

Standard approach for non-correlated samples

$$\sigma_{\overline{x}_n} \approx rac{s_n}{\sqrt{n-1}}$$
 where, $s_n^2 = rac{1}{n} \sum_i (x_i - \overline{x})^2$

Difficulties specific to DNS and LES

- \blacktriangleright relatively short duration in physical time \rightarrow fast convergence required, use as many data as possible
- ▶ the whole flow field and all statistical quantities → can not store whole time signal for estimation

Approach

- Development of three estimators based on short recurrences with m data points
- *m* will depend on the correlation time scale \mathcal{T} .
- undersampling if m too large to limit the storage.

The sample mean is an **unbiased estimator** of
$$\mu$$
,
 $\overline{x}_n = \frac{1}{n} \sum_{t=1}^n x_t$

The sample mean is an **unbiased estimator** of
$$\mu$$
,

$$\overline{x}_n = \frac{1}{n} \sum_{t=1}^n x_t$$

$$\mathbb{Var}(\overline{x}_n) = \mathbb{E}\left[(\overline{x}_n - \mu)^2\right] = \frac{\sigma^2}{n} \left[1 + 2\sum_{k=1}^{n-1} \left(1 - \frac{k}{n}\right)\rho_k\right]$$

For instance, combining $\hat{\delta}_k$ with the sample variance one obtains an asymptotically unbiased estimator:

$$\operatorname{Var}(\overline{x}_n) \approx \alpha \mathbb{E}\left[\beta s_n^2 - \sum_{k=1}^m \hat{\delta}_k\right]$$
, with α and β functions of n and m .
Truncation to the m first terms to reduce the memory storage.

Confidence intervals on statistical data Recurrence for sampled statistical data

All sample-based statistical data can be computed recursively, e.g. sample mean and the sample variance:

Advantages:

- minimal memory storage
- Iow computational effort
- \Rightarrow Storage ACF estimators \sim m

Confidence intervals on statistical data Moving Block Bootstrap method

- Resampling algorithm used when the probability distribution of the data is unknown;
- Infer any statistics (e.g., mean, variance, ...), from a single time series;
- Initially proposed by [Efron, 1979];
- Extended by [Kunsch, 1989] to preserve correlations in time series.

Confidence intervals on statistical data Moving Block Bootstrap method

Confidence intervals on statistical data Example: auto-regressive process

Auto-regressive (AR) process

$$x_i = \sum_{k=1}^n lpha_k x_{i-k} + \epsilon_i, ext{ where } \epsilon_i = \mathcal{N}(\mathbf{0}, \sigma_\epsilon^2) ext{ and } lpha_k \in \mathbb{R}.$$

with n = 6 and $x_{-5} = \cdots = x_0 = 0$. We have generated 100 realizations of the process.

Confidence intervals on statistical data Example: auto-regressive process

- the three estimators are unbiased estimators of the mean.
- they coincide well with the estimator of [Beyhaghi et al., 2018] at moderate and large N
- MMB is not biased, it just converges more slowly.

Confidence intervals on statistical data Example: two-dimensional periodic hill

- ▶ **Bi-periodic** flow evolving between two walls featuring a streamwise constriction^[2]
- Controlled pressure gradient to match the bulk Reynolds number ($Re_b = 10,595$) combined with a low bulk Mach number $M_b = 0.1$

Label{Labelands}
Labelands = Labeland

Confidence intervals on statistical data Example: two-dimensional periodic hill

Near the separation:

- Location characterized by a thin boundary layer;
- Rapid and random displacement of the separation over the hill;
- The thee estimators are framed by the MBB (below) and the [Beyhaghi et al., 2018] (above) ones.

Confidence intervals on statistical data Conclusion

Part of PhD Margaux Boxho

Current results

- confidence intervals required for DNS, and therefore estimate of $\mathbb{V}ar(\overline{x}_n)$
- new estimators are required
 - high correlation in time series \rightarrow classical estimate based upon s_n^2 not usable
 - ▶ large data set ↔ current refined estimators (MBB, Beyaghi,) based upon full time history not practical

three new estimators are proposed

- correction with *m* correlation terms
- estimated in situ using dedicated statistical quantities
- computed using recursive formula
- Validation on
 - auto-regressive (AR) process,
 - stochastic solution of the Kuramoto-Sivashinsky (KS) equation,
 - velocity signals extracted on the two-dimensional periodic hill.
- number of terms *m* is automatically and locally refined \sim estimated correlation time scale T.

normally all timesteps are used but for long correlation times (e.g. reirculation bubble) m can be reduced Challenges for Plash by undersampling

Ongoing work and perspectives

Current development challenges

- integration of error estimators in co-processing
- Reynolds stress dissipation equation breakdown and implementation
- turbulence injection strategy

Applications in current projects

- development of wall models using machine learning on DNS / LES reference data (M. Boxho)
- shock capturing for DNS and LES and study of transonic turbulence (A. Bilocq)
- study of flow in spleen cascade without and with rotating bars (G. Lopes)
- LES of active turbulence grids (F. Bertelli)
- receptivity of boundary layer to passing wake (G. Pastorino)?

Ongoing work and perspectives DNS spleen cascade (collab. G. Lopes)

Clean inlet flow

- conditions $Re_{2s} = (70k, 120k) \times M_{2s} = (0.7, 0.9, 0.95)$
- ► RANS reference data: flow field, Reynolds stress, budgets
- ▶ blade $\overline{M_s}$, $\overline{C_f}$ distributions
- ▶ blade $\overline{p'^2}$, $\overline{\rho'^2}$ (and γ ?)
- wake distributions of p° , α , \mathcal{E}_k^t
- \blacktriangleright wake distributions of $\overline{\rho'^2}$ and length/time scales

Ongoing work and perspectives LES active grid (collab. F. Bertelli)

