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Abstract 
Classification of homozygous-by-descent (HBD) segments or ROH in different age-related 
groups based on their length is useful for several applications. Here we compare the 
partitioning obtained with our newly developed multiple-HBD classes hidden Markov model 
(HMM) with an alternative approach consisting of length-based clustering of ROH. When the 
HMM was applied to simulated data sets, autozygosity was concentrated in the HBD-class 
associated with the ancestors causing inbreeding. This was however not observed for the 
ROH-classes corresponding to the expected length of ROH transmitted from these ancestors. 
On real cattle data, autozygosity was maximized with the HMM in the HBD-class matching 
the inferred period of reduced Ne. In summary, while ROH-based classifications must be 
interpreted cautiously, our newly developed multiple HBD-classes HMM seems promising to 
provide a better picture of the age-based partitioning of individual genomic inbreeding.  
  
Introduction  
Inbreeding is common in cattle populations as a consequence of intense selection of elite sires 
or due to their recent demographic history often characterized by declining effective 
population sizes or recent bottlenecks. Homozygous-by-descent (HBD) segments, genomic 
segments inherited twice and through different paths from a common ancestor, are present at 
high frequency in such inbred populations. HBD segments result in long stretches of 
homozygous genotypes referred to as run-of-homozygosity (ROH), the length of which being 
a function of the number of generations to the common ancestor. The distribution of HBD 
segment lengths is thus informative about the past demographic history of a population and is 
often summarized, in empirical studies, by grouping observed ROH in several discrete length 
classes; long/short ROH-classes being considered as resulting from recent/ancient inbreeding. 
Such classifications are valuable to understand past demographic events from the population, 
to monitor evolution of inbreeding levels, to infer the mating structure when pedigrees are 
unknown, to determine how deleterious variants are purged across generations, to compare 
the effects of recent and ancient inbreeding on phenotypes or even to estimate mutation rates. 
As an alternative approach, we recently developed an HMM with multiple-HBD classes to 
partition autozygosity in different age-related HBD classes (Druet and Gautier, 2017). We 
herein assess the accuracy and robustness of such partitioning of autozygosity based on 
simulated data sets and genotyping data available for three cattle populations with contrasted 
recent demographic histories, and compare these classifications with those obtained with 
ROH-based approaches.  
 
 
 
 
Materials & Methods  
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Classification approaches. The joint identification and classification of HBD segments was 
first realized with RZooRoH (Bertrand et al., 2019) and a model with 12 HBD classes. In this 
multiple HBD-classes model, several nested layers of ancestors are successively modelled 
(Druet and Gautier, 2021). In each layer, the genome is described as a mosaic of HBD and 
non-HBD segments with an HMM. The length of HBD and non-HBD segments is 
exponentially distributed with a rate Rc specific to the layer c and related to the number of 
generations to the common ancestors (approximately 0.5*Rc generations). The frequency of 
HBD segments within layer c is defined by a parameter ρc, that can be interpreted as the 
inbreeding coefficient accumulated over the generations included in the layer. The non-HBD 
classes are modelled as a mixture of HBD classes from earlier generations and shorter non-
HBD segments. Genotype probabilities in different states (HBD / non-HBD) are obtained 
from the allele frequencies and the genotyping error rates. 
A ROH-based approach was additionally used. The clustering of ROH was carried out with 
GARLIC (Szpiech et al., 2017) that automatically selects the optimal number of SNPs per 
window. GARLIC was also ran with 12 classes by selecting ROH boundaries matching HBD-
classes. More precisely, the boundary between ROH class c-1 and c corresponded to the 
ROH-length for which the exponential distributions with rates Rc-1 and Rc have equal 
probability. 
 
Simulated data sets. To evaluate the classification approaches, we simulated 500 genomes as 
mosaics of HBD and non-HBD segments using different values of ρ, corresponding to the 
inbreeding coefficient F. Their length was exponentially distributed with a rate Rc. The 
genome consisted of 25 chromosomes 100 cM long, and individuals were genotyped for a 
total of 25,000 SNPs. We subsequently used Argon (Palamara, 2016) to simulate more 
realistic data under a Wright-Fisher model. In these simulations, bottlenecks occurred 16 or 
64 generations ago and effective population size (Ne) dropped to 20 or 50.  
 
Real cattle data sets.  Identification and classification of HBD segments or ROH was applied 
to three cattle data sets with distinct recent demographic history (i.e., decline, severe 
bottleneck and expansion, respectively): i) 145 Dutch Holstein (HOL) individuals (Alemu et 
al., 2021); ii) 18 individuals from the feral cattle population of Amsterdam Island (TAF), and 
iii) 22 Zebus from Magadascar (ZMA) (Magnier et al., 2021). After quality filtering, the 
samples were respectively genotyped for 37,675, 23,679 and 531,967 SNPs. Past Ne was first 
estimated with GONE (Santiago et al., 2020).  
 
Results  
The expected length for a HBD segment associated with a common ancestor present G 
generations ago is L=100/(2G) cM, G is thus often estimated as 100/(2L) for a ROH of length 
L. However, we observed that classes with L > 100/(2L) had larger contributions to 
autozygosity, more so when simulated inbreeding levels were high (Figure 1). Conversely, 
with the HMM, the HBD-class with a rate Rc equal to 2G had the main contribution to 
autozygosity. Similar patterns were observed for simulations with different values of Rc. 
The behaviour of the two approaches was confirmed when populations that experienced a 
bottleneck were simulated under a Wright-Fisher model. With the HMM based approach, the 
HBD-class with a rate Rc equal to 2G (where G is the timing in generations of the bottleneck), 
and its neighbours, captured the HBD-segments associated to the bottleneck. On the other 
hand, with the ROH-based approach, ROH longer than 100/(2G) had the highest contributions 
to autozygosity, more so when the bottleneck was stronger and inbreeding levels were higher. 



 
Figure 1. Classification of simulated HBD segments inherited from ancestors living 4 
generations in the past (i.e., with an expected length L = 12.5 cM) with an ROH 
approach and with the multiple HBD-classes HMM (expected Rc = 8). 
 
This trend was also confirmed when analysing real data on three cattle populations with very 
different recent histories (HOL, TAF and ZMA) inferred with GONE and which were found 
consistent with our prior expectations (Figure 2): i) HOL presented a recent decline with 
current Ne being equal to 70; ii) TAF experienced a recent and severe bottleneck (17 to 25 
generations ago, Ne dropped to 5) in agreement with the historically reported introduction in 
the Amsterdam island of six founder individuals in 1861 followed by a rapid expansion of the 
population (up to Ne=1,300); and iii) ZMA is in expansion (100 generations ago, Ne = 100 up 
to a current Ne=3,000). The partitioning with the multiple HBD-classes model closely 
matches these demographic events (Figure 2). For instance, autozygosity is mainly associated 
with ancestors living around 16 generations in the past for TAF population, and around 100 
generations in ZMA, just before the expansion. In HOL, inbreeding levels were associated to 
more recent ancestors. The inbreeding levels estimated with GARLIC were highly correlated 
with those from ZooRoH (0.963, 0.938 and 0.996 for the three populations) although values 
were lower, indicating that the smaller HBD segments were not captured. By decreasing the 
minimal ROH size to 20 SNPs with GARLIC, inbreeding levels were closer to those obtained 
with ZooRoH (although this is a rather small number of SNPs and the optimal values 
estimated by GARLIC were higher). As for the analyses on simulated data sets, the ROH-
based approach associated most of autozygosity to classes with L > 100/Rc (Rc is the rate of 
HBD-classes with the main contribution to autozygosity). Interestingly, for lower inbreeding 
levels and more recent ancestors, classifications from both approaches were more concordant.  
 
Discussion  
In ROH-based approaches, the number of generations to the common ancestor of a given 
ROH is often estimated as G=100/(2L), based on the expected length of a ROH inherited from 
an ancestor living G generations ago. ROH are often classified according to their length and G 
is then estimated independently for each class. In simulations with ancestors present G 
generations ago, we observed that classes with L > 100/2G have larger contributions than 
classes with smaller ROH, leading to the incorrect interpretation that inbreeding might be 
associated with more recent ancestors. This result from the fact that ROH inherited from 
ancestors present G generations ago follow an exponential distribution and their length range 
spans generally over several classes, with only a subset of these ROH falling into the class 



 
Figure 2. Past effective population size and partitioning in different HBD or ROH-
classes for cattle populations with distinct demographic histories. 
  
centered around L. Such an approach thus fails to account for the possibility that ROH from 
different classes might come from the same group of founders. A better estimate may be 
derived by combining information from multiple ROH (from their average length), providing 
a single ancestor (or multiple ancestors living in the same generation) contributed to the 
individual inbreeding. The classification varied also as a function of the inbreeding level ρ, 
possibly because for higher ρ, the probability that two consecutive short and independent 
ROH appear as one unique long ROH increases, shifting the distribution towards classes with 
longer segments. Overall, ROH-based classifications should be interpreted very cautiously. 
By contrast, the HMM allows joint estimation of the parameters of a mixture of exponential 
distributions that would result in the observed distribution of HBD segment lengths. We are 
currently evaluating how precisely the age (in terms of generation to the common ancestor) of 
each HBD segments / ROH can be estimated with different approaches in more realistic 
demographic histories. For instance, if we want to understand the relationship between HBD 
class contributions and Ne, we should determine which past generations are captured by each 
HBD classes. We must also account for the fact that contributions from the most ancient 
classes might be swept by autozygosity associated with more recent ancestors. However, we 
showed that the parameters ρ did not require such corrections (Druet and Gautier, 2021). 
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