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• Computational homogenization (FE2)

– Microstructured materials

– Two problems are solved concurrently

• Macro-scale: seen as a continuum

• Micro-scale: Representative Volume Element (RVE)

– cell, grains, inclusions…

• Advantage

– Account for directly micro–structural parameters 

(microstructure, constitutive behavior) with high accuracy.

• Drawback

– Computational time & memory:

• Iterations at macro-scale BVP

• Sub-iterations at meso-scale BVPs

• Solution

– Surrogate model of the microscopic BVP

Introduction
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• Surrogate model of the microscopic BVP

– Define a surrogate model

– Off-line:

• Construct  off-line data-base (using RVE simulations)

• Train surrogate model

– On-line:

• Use the trained surrogate model during analyses

Introduction
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• Deep material networks (DMN)

– Proposed by Liu et al.  (2019)

– Hierarchical laminate building blocks

– Applicable for different kind of microstructures

• Multiphase composites, polycrystalline materials, etc.

• Limitations

– The solution is not provided under a closed form

– The original DMN is still limited for porous microstructures

Deep material network
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Liu, Z., Wu, C.T. and Koishi, M., 2019. Computer Methods

in Applied Mechanics and Engineering, 345, pp.1138-1168.

Revisit the DMN with interactions

Interaction-based material network:

• A network of interaction mechanisms

• General framework for (porous) microstructured materials



• FE2 full-field model

• Virtual polyhedral decomposition

– Weights

– Each polyhedral sub-volume

Interaction-based material network
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• Virtual polyhedral connectivity

– Each polyhedral sub-volume:

– Define M interaction mechanisms:

– Constraints from strain averaging

– Weak form from Hill-Mandel

Interaction-based material network – Interaction mechanism
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Interaction-based material network - summary
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• Linear elastic training

– The tangent at zero strain is considered:

– At zero strain, the elastic homogenized tensor predicted by the material can be expressed as a function of the 

elastic tangent tensors of  𝑃 underlying phases and fitting parameters

– Offline data provided by elastic simulations

• RVE & microscopic boundary condition

• Inputs: which can be artificially randomly generated

• Outputs:                                                    computed by computational micromechanics

– A loss function is defined to characterize the accuracy of the prediction  of the material network.

– Gradient-descent optimizer to minimize this loss function

• Nonlinear training

– Consider history dependent

– Offline data provide by paths

• RVE & microscopic boundary condition

• Inputs: strain paths                                                             which can be artificially randomly generated

• Output: stress paths                                                               is computed by computational micromechanics

– A loss function is defined to characterize the accuracy of the prediction  of the material network.

– Gradient-descent optimizer to minimize this loss function

Interaction-based material network - training
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• Trainable parameters:

– satisfying

• How to define architecture?

– Each interaction includes several nodes 

– Hierarchical architecture 

Interaction-based material network
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• Mechanistic building blocks: Laminate

– Interaction 𝒱𝑗 as a laminate

– Tuning parameters

• Weight: 

• Unique direction for an interaction 𝒱𝑗: 

• Constraints:

Interaction-based material network
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• Mechanistic building blocks: Full interaction

– Interaction 𝒱𝑗 as a full interaction

• Mechanism j is a full interaction if satisfying

– Tuning parameters

• Weight: 

• Unique direction for an interaction 𝒱𝑗: 

• Coefficients: 

• Constraints:                                        are enforced during training iterations

Interaction-based material network
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• Online stage on a particle-reinforced composite

– Properties

• Elastic inclusions

• Elasto-plastic matrix

– Laminate as mechanistic building blocks

– Linear elastic training

Interaction-based material network as surrogate model 
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• Online stage on a porous material

– Properties

• Elasto-plastic matrix

• Small strain

– Full interactions as mechanistic building blocks

– Non-linear training

– Uniaxial tension

Interaction-based material network as surrogate model 
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• Online stage on a porous material

– Properties

• Elasto-plastic matrix

• Small strain

– Full interactions as mechanistic building blocks

– Non-linear training with Material 1, on-line material 2

– Random loading

Interaction-based material network as surrogate model 
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• Online stage on a porous material

– Properties

• Elasto-plastic matrix

• Small strain

– Full interactions as mechanistic building blocks

– Non-linear training

– Thermodynamically consistent

Interaction-based material network as surrogate model 
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• Multiscale simulation

– Comparison FE2 vs. Material network-surrogate

– Full interactions as mechanistic building blocks

– Non-linear training

Interaction-based material network as surrogate model 
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• Multiscale simulation

– Stress-strain distribution at point A

– For 25 material nodes

– Full interactions as mechanistic building blocks

– Non-linear training

Interaction-based material network as surrogate model 
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• Multiscale simulation

– Stress-strain distribution at point B

– For 25 material nodes

– Full interactions as mechanistic building blocks

– Non-linear training

Interaction-based material network as surrogate model 
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• Interaction-based material network 

– A general framework to build surrogate models for micro-structured materials

– Satisfy all requirements of a truly microscopic boundary value problem including the stress and strain averaging 

principles and the Hill–Mandel energetically consistent condition

– Efficient training procedures

– Trained material networks with the ones of the direct numerical simulations in both contexts of virtual testing and 

multiscale simulations.

• Future works

– Interaction-based material network for dame and fracture

Conclusions and perspectives
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Thank you for your attention


