

Interaction-based material networks for efficiently estimating the homogenized behavior of microstructured materials

Van-Dung Nguyen* Ludovic Noels**

Computational & Multiscale Mechanics of Materials <u>http://www.ltas-cm3.ulg.ac.be</u> University of Liège, Belgium

> <u>*vandung.nguyen@uliege.be</u> <u>**I.noels@uliege.be</u>

Introduction

- Computational homogenization (FE²)
 - Microstructured materials
 - Two problems are solved concurrently
 - Macro-scale: seen as a continuum
 - Micro-scale: Representative Volume Element (RVE)
 - cell, grains, inclusions...
- Advantage
 - Account for directly micro-structural parameters (microstructure, constitutive behavior) with high accuracy.
- Drawback
 - Computational time & memory:
 - Iterations at macro-scale BVP
 - Sub-iterations at meso-scale BVPs
- Solution
 - Surrogate model of the microscopic BVP

Micro-scale

Introduction

- Surrogate model of the microscopic BVP
 - Define a surrogate model
 - Off-line:
 - Construct off-line data-base (using RVE simulations)
 - Train surrogate model
 - On-line:
 - Use the trained surrogate model during analyses

Interaction-based material network

Deep material network

 $\overline{\mathbf{D}}^r$

• Deep material networks (DMN)

- Proposed by Liu et al. (2019)
- Hierarchical laminate building blocks
- Applicable for different kind of microstructures
 - Multiphase composites, polycrystalline materials, etc.
- Limitations
 - The solution is not provided under a closed form
 - The original DMN is still limited for porous microstructures

Revisit the DMN with interactions

Interaction-based material network:

- A network of **interaction mechanisms**
- General framework for (porous) microstructured materials

Liu, Z., Wu, C.T. and Koishi, M., 2019. *Computer Methods in Applied Mechanics and Engineering*, *345*, pp.1138-1168.

Interaction-based material network

• **FE**² full-field model

• Virtual polyhedral decomposition $V_0 = \cup_i V_{0i}$

– Weights
$$W_i = rac{V_{0i}}{V_0} ext{ with } i=0,;\ldots,N-1$$

- Each polyhedral sub-volume V_{0i}

3/27/2022

$$\mathbf{N}_{i}^{5} \qquad \mathbf{F}_{i} = \frac{1}{V_{0i}} \int_{V_{0i}} \mathbf{F} \, dV = \mathbf{F}_{M} + \frac{1}{V_{0i}} \int_{\partial V_{0i}} \mathbf{w} \otimes \mathbf{N} \, dA$$

$$\mathbf{F}_{i} = \mathbf{F}_{M} + \sum_{k} \frac{\Gamma_{i}^{k}}{V_{0i}} \mathbf{\bar{w}}_{i}^{k} \otimes \mathbf{N}_{i}^{k}$$

$$\mathbf{W} = \mathbf{X} - \mathbf{F}_{M} \cdot \mathbf{X} : \text{ fluctuation field}$$

$$\mathbf{\bar{w}}_{j}^{k} : \text{ average fluctation on } \Gamma_{j}^{k}$$

Averaging strainAveraging stress $\mathbf{F}_M = \frac{1}{V_0} \int_{V_0} \mathbf{F} \, dV$ $\mathbf{P}_M = \frac{1}{V_0} \int_{V_0} \mathbf{P} \, dV$ Hill-Mandel condition $\mathbf{P}_M : \delta \mathbf{F}_M = \frac{1}{V_0} \int_{V_0} \mathbf{P} : \delta \mathbf{F} \, dV$

$$\mathbf{P}_i = \frac{1}{V_{0i}} \int_{V_{0i}} \mathbf{P} \, dV$$

Averaging strainAveraging stress
$$\mathbf{F}_M = \sum_{i=0}^{N-1} W_i \mathbf{F}_i$$
 $\mathbf{P}_M = \sum_{i=0}^{N-1} W_i \mathbf{P}_i$ Hill-Mandel condition $\mathbf{P}_M : \delta \mathbf{F}_M = \sum_{i=0}^{N-1} W_i \mathbf{P}_i : \delta \mathbf{F}_i$

Interaction-based material network – Interaction mechanism

• Linear elastic training

- The tangent at zero strain is considered: $\mathbf{L}_M = \frac{\partial \mathbf{P}_M}{\partial \mathbf{F}_M}$ at $\mathbf{F}_M = \mathbf{I}$
- At zero strain, the elastic homogenized tensor predicted by the material can be expressed as a function of the elastic tangent tensors of *P* underlying phases $\mathbf{L}_0, \ldots, \mathbf{L}_{P-1}$ and fitting parameters \mathcal{L}

$$\square \qquad \mathbf{L}_{M} = \mathbf{L}_{M} \left(\mathbf{L}_{0}, \dots, \mathbf{L}_{P-1}, \mathcal{L} \right)$$

- Offline data provided by elastic simulations
 - RVE & microscopic boundary condition
 - Inputs: $\mathbf{L}_0^k, \ldots, \mathbf{L}_{P-1}^k$ with $k = 0, \ldots, N_s 1$ which can be artificially randomly generated
 - Outputs: \mathbf{L}_{M}^{k} with $k = 0, \dots, N_{s} 1$ computed by computational micromechanics
- A loss function is defined to characterize the accuracy of the prediction of the material network.
- Gradient-descent optimizer to minimize this loss function

Nonlinear training

- Consider history dependent \square $\mathbf{P}_{M}(t) = \mathbf{P}_{M}(\mathbf{F}_{M}(\tau) \text{ for } \tau \in [0, t]; \mathcal{L})$
- Offline data provide by paths
 - RVE & microscopic boundary condition
 - Inputs: strain paths $[\mathbf{F}_{M}(t)]_{k}$ with $k = 0, \dots, N_{s} 1$ which can be artificially randomly generated
 - Output: stress paths $[\mathbf{P}_{M}(t)]_{k}$ with $k = 0, ..., N_{s} 1$ is computed by computational micromechanics
- A loss function is defined to characterize the accuracy of the prediction of the material network.
- Gradient-descent optimizer to minimize this loss function

• Trainable parameters: $\mathcal{L} = [W_i, \alpha_{ij}, \mathbf{G}_j \text{ with } i = 0, \dots, N-1, j = 0, \dots, M-1]$

satisfying
$$\sum_{i=0}^{N-1} W_i \alpha_{ij} = 0 \; \forall j$$

- How to define architecture?
 - Each interaction includes several nodes $\rightarrow \alpha_{ij} = 0$ if node *i* does not participate interation *j*
 - Hierarchical architecture

Example for a 2-phase material with 10 material nodes & 8 interactions

- Mechanistic building blocks: Laminate
 - Interaction \mathcal{V}^{j} as a laminate

- Tuning parameters
 - Weight: W_i with $i = 0, \ldots, 9$
 - Unique direction for an interaction \mathcal{V}^j : $\mathbf{G}_j \implies \mathbf{N}_j$ with $j = 0, \dots, 7$
 - Constraints: N-1

 $\sum_{i=0}^{N-1} W_i \alpha_{ij} = 0 \ \forall j \implies \alpha_{ij} \text{ from node weights in mechanism } j$

- Mechanistic building blocks: Full interaction
 - Interaction \mathcal{V}^{j} as a full interaction
 - Mechanism j is a full interaction if satisfying

$$\sum_{i=0}^{N-1} W_i \alpha_{ij} = 0$$

- Tuning parameters
 - Weight: W_i with $i = 0, \ldots, 9$
 - Unique direction for an interaction \mathcal{V}^j : $\mathbf{G}_j \longrightarrow \mathbf{N}_j$ with $j = 0, \dots, 7$

• Coefficients:
$$\alpha_{ij}$$
 with $i \in \mathcal{V}^j$ and $j = 0, \dots, 7$

• Constraints: $\sum_{i=0}^{N-1} W_i \alpha_{ij} = 0 \ \forall j$ are enforced during training iterations

- Online stage on a particle-reinforced composite
 - Properties
 - Elastic inclusions
 - Elasto-plastic matrix
 - Laminate as mechanistic building blocks
 - Linear elastic training

- Online stage on a porous material
 - Properties
 - Elasto-plastic matrix
 - Small strain
 - Full interactions as mechanistic building blocks
 - Non-linear training
 - Uniaxial tension

- Online stage on a porous material
 - Properties
 - Elasto-plastic matrix
 - Small strain
 - Full interactions as mechanistic building blocks
 - Non-linear training with Material 1, on-line material 2
 - Random loading

- Online stage on a porous material
 - Properties
 - Elasto-plastic matrix
 - Small strain
 - Full interactions as mechanistic building blocks
 - Non-linear training
 - Thermodynamically consistent

- Multiscale simulation
 - Comparison FE² vs. Material network-surrogate
 - Full interactions as mechanistic building blocks
 - Non-linear training

Off-line	FE ²	FE-DMN
Data generation	-	0.04 (linear) – 3.5 (non- linear) hourcpu
Training	-	0.16-20 hourscpu
On-line	FE ²	FE-DMN
Simulation	7200 h- cpu	0.1 to 1 h-cpu

- Multiscale simulation
 - Stress-strain distribution at point A
 - For 2⁵ material nodes
 - Full interactions as mechanistic building blocks
 - Non-linear training

 $\bar{\varepsilon}_{yy}$ $\bar{\varepsilon}_{yy}$ Multiscale simulation 0.15 0.15 Stress-strain distribution at point B - For 2⁵ material nodes 0.06 0.06 Full interactions as mechanistic building blocks _ -0.03 -0.03 Non-linear training _ FE - DMN FE² 60 $\bar{\sigma}_{\mathrm{yy}}$ $\bar{\sigma}_{\mathrm{yy}}$ 40 2 2 Reaction force $ar{F}_{y}$ (N) 20 -64 -64 0 FE^2 FE-MN, $N_{levels} = 3$ -20 FE-MN, $N_{levels} = 4$ -132 -132 FE-MN, $N_{levels} = 5$ -40.... FE² FE - DMN $0.000 \ 0.025 \ 0.050 \ 0.075 \ 0.100 \ 0.125 \ 0.150$ Prescribed displacement \bar{u}_{y} (mm)

٠

Interaction-based material network

- A general framework to build surrogate models for micro-structured materials
- Satisfy all requirements of a truly microscopic boundary value problem including the stress and strain averaging principles and the Hill–Mandel energetically consistent condition
- Efficient training procedures
- Trained material networks with the ones of the direct numerical simulations in both contexts of virtual testing and multiscale simulations.

• Future works

- Interaction-based material network for dame and fracture

Thank you for your attention