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Abstract: The complex topologies of large multi-domain globular proteins make the study of their
folding and assembly particularly demanding. It is often characterized by complex kinetics and
undesired side reactions, such as aggregation. The structural simplicity of tandem-repeat proteins,
which are characterized by the repetition of a basic structural motif and are stabilized exclusively by
sequentially localized contacts, has provided opportunities for dissecting their folding landscapes.
In this study, we focus on the Erwinia chrysanthemi pectin methylesterase (342 residues), an all-β
pectinolytic enzyme with a right-handed parallel β-helix structure. Chemicals and pressure were
chosen as denaturants and a variety of optical techniques were used in conjunction with stopped-
flow equipment to investigate the folding mechanism of the enzyme at 25 ◦C. Under equilibrium
conditions, both chemical- and pressure-induced unfolding show two-state transitions, with average
conformational stability (∆G◦ = 35 ± 5 kJ·mol−1) but exceptionally high resistance to pressure
(Pm = 800 ± 7 MPa). Stopped-flow kinetic experiments revealed a very rapid (τ < 1 ms) hydrophobic
collapse accompanied by the formation of an extended secondary structure but did not reveal stable
tertiary contacts. This is followed by three distinct cooperative phases and the significant population
of two intermediate species. The kinetics followed by intrinsic fluorescence shows a lag phase,
strongly indicating that these intermediates are productive species on a sequential folding pathway,
for which we propose a plausible model. These combined data demonstrate that even a large repeat
protein can fold in a highly cooperative manner.

Keywords: protein folding; parallel β-helix; repeat proteins; circular dichroism; high pressure; kinetic
intermediate; sequential pathway; contact order; dry molten globule

1. Introduction

Proteins are synthesized on ribosomes, in the form of long amino acid chains, with
the sequence coding for their three-dimensional structure [1,2]. Unraveling the details of
the mechanisms by which a disordered polypeptide chain folds so rapidly to a specific and
functional structure, not only in the test tube but also, and most remarkably, in the crowded
environment of the cell [3,4], remains a fundamental challenge in modern structural biol-
ogy. The refolding of proteins in vitro from inclusion bodies [5] for biotechnological and

Biomolecules 2021, 11, 1083. https://doi.org/10.3390/biom11081083 https://www.mdpi.com/journal/biomolecules

https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com
https://orcid.org/0000-0001-8280-9783
https://doi.org/10.3390/biom11081083
https://doi.org/10.3390/biom11081083
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/biom11081083
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com/article/10.3390/biom11081083?type=check_update&version=1


Biomolecules 2021, 11, 1083 2 of 26

biomedical applications remains a major bottleneck in commercial and academic laborato-
ries, and, moreover, the misfolding and aggregation of several proteins into toxic species
is a hallmark of some of the most devastating human diseases [6]. In either situation,
understanding what goes wrong in folding can be just as important as understanding how
the right fold is achieved [7].

Most of the information available to date has been gathered using small soluble
globular proteins (i.e., generally less than circa 100–150 residues), which often fold fast via
two-state kinetic mechanisms [8–14], without a significant population of partially folded
species, although complexities in some reactions have been observed [14–21]. Thus, despite
the wide variety of native structures examined, common principles have emerged [22–30]
and a unifying mechanism for protein folding has been proposed [31]. An important
finding is that the folding rate of many proteins is inversely correlated to the average
sequence distance between residues that form native contacts (known as “contact order”)
in the native state [32,33]. Thus, the folding of large, multi-domain proteins, which are
characterized by intricate topologies and numerous interactions between residues distant
in the sequence (i.e., long-range interactions), is relatively slow in comparison with that
of small, single-domain proteins. Although the high cooperativity of protein globular
structures arises in part from long-range interactions, large proteins often fold and unfold
through partially folded intermediate species. These are prone to aggregation and render
the study of these proteins very difficult. However, proteins made up of more than
150 residues constitute the major fraction of all proteomes [4] and thus, there is a need for a
better description of the stability and folding of medium-to-large-size globular proteins [34],
and also of their self-assembly into macromolecular complexes [35].

As an alternative to globular proteins, repeat proteins [36] offer an attractive model
to investigate the folding and stability of large proteins [37–46]. They show a distinctive
modular nature, characterized by the succession of homologous structural motifs (termed
repeats or coils), which stack up to form generally elongated, non-globular structures. In
contrast with typical globular proteins, repeat proteins display the architectural simplicity
of their repeats and are dominated by short-range interactions. In particular, all-β repeat
proteins have not been characterized in as much detail as all-α and mixed α/β repeat
proteins, and it will be interesting to compare them with globular proteins and see how
they differ in their folding properties [45].

Erwinia chrysanthemi is responsible for soft-rot diseases in a wide range of plant
species [47]. Pectin methylesterase (PemA) (EC 3.1.1.11) from E. chrysanthemi 3937 is a
large monomeric enzyme of 342 residues (Mr 36953), which catalyzes the essential first
step in the bacterial invasion, namely the deesterification of the methylated α-(1-4)-linked
D-galacturonosyl residue component in the pectin molecule of the plant cell wall [48,49].
The X-ray structure of PemA [49,50] reveals a right-handed parallel β-helix fold (Figure 1),
with a deep cleft on the surface of the enzyme, where the two conserved catalytic aspartate
residues, at positions 178 and 199, are found. The polypeptide backbone folds into three
parallel β-sheets, with the strands of successive repeats stacking on top of each other, which
form the β-helix core of the protein, and several loops of variable lengths, resulting in a
large elongated right-handed coil.

The right-handed parallel β-helix architecture is common in both secreted and membrane-
bound microbial proteins that mediate diverse interactions with the extracellular medium.
In particular, it has been discovered in bacterial, fungal, and viral adhesins, and also in
various enzymes involved in the degradation and modification of carbohydrates, some as
a virulence factor [36,50–53]. Furthermore, the naturally occurring right-handed parallel
β-helix fold was proposed [54–56] as a plausible model to describe primordial amyloid
fibril structure (for a comprehensive review on amyloid formation and structure, see [6])
but this was ruled out on the basis of X-ray fiber diffraction data [57].



Biomolecules 2021, 11, 1083 3 of 26Biomolecules 2021, 11, x 3 of 25 
 

 
Figure 1. Schematic ribbon representation of the structure of Erwinia chrysanthemi 3937 pectin methylesterase (2NSP, [49]). 
The secondary structure elements are shown with (A) the hydrophobic residues in blue and the catalytic aspartate residues 
in red, (B) the three β-sheets in yellow (PB1), green (PB2), and red (PB3), and the tryptophan residues in purple. A closer 
view on the aromatic stacks in the central part of the β-helix is shown from (C) side and (D) top views. N and C indicate 
the N- and C-terminal ends of the polypeptide chain, respectively, and T1, T2, and T3 correspond to the turns following 
the three β-sheets. The figure was drawn using the open-source molecular graphics system PyMOL. 
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peat of a parallel β-helix are called PB1, PB2, and PB3 (highlighted in Figure 1B), and the 
connecting regions (turns or loops) following the β-strands are termed T1, T2, and T3 (Fig-
ure 1D), respectively. As with other β-helical proteins (see e.g., the pectate lyase PelC [59], 
the P22 tailspike protein (TSP) [60], and P69 pertactin [61]), the structure of PemA [49,50] 
reveals that the β-helix itself is compact and mostly hydrophobic inside, while long flexi-
ble peripheral T1 and T3 loops are found towards the C-terminal end of the protein. PemA 
displays an α-helix at the N-terminal end of the β-helix, and capping structures are found 
at both extremities, which protect the hydrophobic core from the solvent and prevent oli-
gomerization between the monomers [62]. It has a deep active-site cavity along the paral-
lel β-helix, formed by the T3-PB1-T1 region that contains the most conserved residues in 
pectin methylesterases [49,50]. Finally, PemA shows the distinctive extensive side-chain 
stacking observed with all parallel β-helix proteins [50,52,53,58,59]. Thus, aromatic stacks 
of phenylalanine and tyrosine (Figure 1C,D) are found between β-strands of different re-
peats in the central part of the parallel β-helix domain, which most likely contribute to the 
correct folding and the conformational stability of the protein [53,63–65]. In addition, an 
external asparagine stack of three residues is present [50] and a disulfide bridge between 
Cys192 and Cys212 might occur [50,53]. Interactions between repeats have been shown to 
play a critical role in the stability and cooperativity of repeat proteins [42]. 

TSP [60] is a large trimeric protein that arises from the assembly of identical 666-
residue-long polypeptide chains. The major part (residues 143–540) of the protein shows 
a typical parallel β-helix fold [60], whereas both the N- and C-terminal domains display 
anti-parallel β-sheets. TSP was the first protein for which in vivo partially folded interme-
diates could be identified [66], and in vivo and in vitro folding could be directly compared 

Figure 1. Schematic ribbon representation of the structure of Erwinia chrysanthemi 3937 pectin methylesterase (2NSP, [49]).
The secondary structure elements are shown with (A) the hydrophobic residues in blue and the catalytic aspartate residues
in red, (B) the three β-sheets in yellow (PB1), green (PB2), and red (PB3), and the tryptophan residues in purple. A closer
view on the aromatic stacks in the central part of the β-helix is shown from (C) side and (D) top views. N and C indicate the
N- and C-terminal ends of the polypeptide chain, respectively, and T1, T2, and T3 correspond to the turns following the
three β-sheets. The figure was drawn using the open-source molecular graphics system PyMOL.

According to the common nomenclature [58], the three β-strands that make each
repeat of a parallel β-helix are called PB1, PB2, and PB3 (highlighted in Figure 1B), and
the connecting regions (turns or loops) following the β-strands are termed T1, T2, and
T3 (Figure 1D), respectively. As with other β-helical proteins (see e.g., the pectate lyase
PelC [59], the P22 tailspike protein (TSP) [60], and P69 pertactin [61]), the structure of
PemA [49,50] reveals that the β-helix itself is compact and mostly hydrophobic inside, while
long flexible peripheral T1 and T3 loops are found towards the C-terminal end of the protein.
PemA displays an α-helix at the N-terminal end of the β-helix, and capping structures are
found at both extremities, which protect the hydrophobic core from the solvent and prevent
oligomerization between the monomers [62]. It has a deep active-site cavity along the
parallel β-helix, formed by the T3-PB1-T1 region that contains the most conserved residues
in pectin methylesterases [49,50]. Finally, PemA shows the distinctive extensive side-chain
stacking observed with all parallel β-helix proteins [50,52,53,58,59]. Thus, aromatic stacks
of phenylalanine and tyrosine (Figure 1C,D) are found between β-strands of different
repeats in the central part of the parallel β-helix domain, which most likely contribute to
the correct folding and the conformational stability of the protein [53,63–65]. In addition,
an external asparagine stack of three residues is present [50] and a disulfide bridge between
Cys192 and Cys212 might occur [50,53]. Interactions between repeats have been shown to
play a critical role in the stability and cooperativity of repeat proteins [42].

TSP [60] is a large trimeric protein that arises from the assembly of identical 666-
residue-long polypeptide chains. The major part (residues 143–540) of the protein shows a
typical parallel β-helix fold [60], whereas both the N- and C-terminal domains display anti-
parallel β-sheets. TSP was the first protein for which in vivo partially folded intermediates
could be identified [66], and in vivo and in vitro folding could be directly compared [67–73].
The folding of PelC [74–76] and pertactin [77,78], two other proteins with a classical β-helix
structure [59,61], has also been studied in some detail. Thus, with both proteins, equilibrium
folding was reported to deviate from a two-state model and kinetic analysis indicated a
multistep process with a significant population of on-pathway partially folded species.

In this work, the chemical- and pressure-induced unfolding transitions of PemA
were studied using a combination of spectroscopic techniques. This analysis provides an
estimate of the unfolding free energy of the protein and reveals a remarkable resistance
to high pressure. Furthermore, kinetic data obtained with the help of a stopped-flow
instrument indicate sequential folding, with significant population of productive partially
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folded species. In particular, the fluorescence experiments provide support for the transient
formation of at least two on-pathway kinetic species. This study brings further insights into
the cooperativity of repeat-protein folding and the effect of native-state topology in protein
folding as a whole. Moreover, it highlights structural aspects linked to the absence of long-
range contacts and the simple topology of repeat proteins, which breaks the correlation
between the rate of folding and the density of direct interactions between residues distant
in sequence (i.e., contact order), as found for small globular proteins.

2. Materials and Methods
2.1. Chemicals

Ultrapure guanidinium chloride (GdmCl), pectin from citrus peel (76280), acrylamide,
8-anilino-1-naphtalene-sulfonic acid (ANS), and bromocresol purple were purchased from
Sigma Chemical Co. All other chemicals were reagent grade.

2.2. Molecular Biology

Standard procedures for recombinant DNA technology were used as described by
Sambrook and Russell [79]. The pBCKSpemA plasmid [49] was used as a template to amplify
the PemA gene coding for Erwinia chrysanthemi 3937 pectin methylesterase, with its own 24
amino acid residue signal sequence. The forward (pemANdeI; 5′-ATTCATATGTTAAAAA-
CGATCTCTGGAACC-3′) and reverse (pemAXhoI; 5′-ATTCTCGAGCGTCAGGGTAATG-
TCGGCG-3′) primers contained sites for NdeI (CATATG) and XhoI (CTCGAG) restriction
enzymes, respectively. A polymerase chain reaction (PCR) using Taq polymerase was
performed for amplification, as follows: initial denaturation of the DNA at 94 ◦C for 4 min
with subsequent amplification for 25 cycles of incubation at 94 ◦C for 1 min, 55 ◦C for 30 s,
and 72 ◦C for 3 min; for the last cycle, incubation at 72 ◦C was extended to 7 min. The PCR
product was purified and ligated to the pJET1.2 cloning vector (CloneJET PCR Cloning
Kit, Fermentas). The presence of the insert within the pJET1.2 plasmid was checked by
colony-PCR on randomly selected transformants, and plasmids from colonies carrying an
insertion were amplified and extracted. Their sequences were determined by the Sanger
method at the GIGA GenoTranscriptomics technology platform (Liège, Belgium).

To achieve a high level of expression, the PemA gene was cloned into the expression
vector pET20b(+), containing the ampicillin-resistance gene, using the NdeI and XhoI
restriction endonucleases. Finally, Escherichia coli DH5-α competent cells (Invitrogen,
Paisley, UK) were transformed by the pET20bpemA vector and spread out on LB (lysogeny
broth) agar plate with 100 µg·mL−1 of ampicillin (Sigma). Transformed E. coli DH5-α
cells were grown on lysogeny broth (LB) medium containing 100 µg·mL−1 ampicillin.
The recombinant plasmid was extracted and purified from DH5-α cells before use for
protein expression.

2.3. Enzyme Expression and Purification

The recombinant PemA gene, cloned in a pET20b(+) plasmid, was transformed into
E. coli BL21(DE3) cells (Novagen Inc., Madison, WI, USA). Cells were transformed with
pET20bpemA plasmid and spread out on a LB agar plate with 100 µg·mL−1 of ampicillin
and 0.2% of glucose (w/v) for 48 h at 28 ◦C. Transformed E. coli BL21(DE3) cells were
grown overnight at 28 ◦C in 100 mL of yeast extract tryptone (YT) medium containing
100 µg·mL−1 of ampicillin and 0.2% of glucose (w/v). Following inoculation with 8 mL
of an approximately 16 h preculture, the enzyme was expressed in 2 L bottles containing
500 mL of YT medium and 100 µg·mL−1 of ampicillin. The 6 L culture was grown at
28 ◦C, and cell development was followed by absorbance measurements at 600 nm. At an
absorbance of circa 0.6, the temperature was fixed at 18 ◦C, and cell growth was allowed to
proceed for an additional 12–14 h. The periplasmic proteins were then extracted by osmotic
shock as described [80]. The supernatant containing the periplasmic proteins was filtered
on a 0.22 µm membrane and dialyzed against 13 L of 20 mM MES, pH 6 (buffer A). The
sample was then loaded onto a 25 mL SP Sepharose Fast Flow column (GE Healthcare),
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equilibrated in buffer A. PemA was eluted with a linear NaCl gradient (0–190 mM) in
buffer A, and fractions containing the protein (identified by SDS-PAGE) were pooled
together to be dialyzed in 20 mM HEPES, pH 7 (buffer B). A second purification step
was performed using a 1 mL MonoS HR 5/5 column (GE Healthcare), equilibrated in
buffer B. PemA was eluted with a linear NaCl gradient (0–63 mM) in buffer B, and the
purified protein was finally dialyzed against a 50 mM phosphate sodium buffer, pH 7. The
quality of the recombinantly produced PemA enzyme was assessed in line with the best
practice recommendations established by the ARBRE-MOBIEU and P4EU networks (see
https://arbre-mobieu.eu/guidelines-on-protein-quality-control/) (accessed on 11 May
2021). Thus, the purity of the sample was checked by SDS-PAGE and was found to be above
98%. The size homogeneity of the protein was assayed by size exclusion chromatography
(24 mL Superdex75 HR10/30; [PemA] = 50 µM, i.e., 1.85 mg·mL−1), and no significant
oligomerization (≤ 1% dimer and no larger oligomeric species) was observed. Identity was
confirmed by both intact protein mass determination (Mr 36954 ± 4; ESI-Q-TOF Ultima,
Micromass, Manchester, UK) and N-terminal amino acid sequencing (ATTYN; Applied
Biosystems 476A protein sequencer). The final PemA preparation (circa 30 mg) was stored
at −20 ◦C. The PemA concentration was determined through absorbance measurements
performed at 280 nm in a 1 cm pathlength cell, on the basis of the calculated [81] extinction
coefficient value (49975 M−1·cm−1).

2.4. PemA Activity Assay

Enzymatic activity was measured at 25 ◦C by a colorimetric assay using bromocresol
purple. This reagent is used as a pH indicator to follow the time-course of proton release
during the deesterification of pectin from citrus fruit. The assay was performed in a 0.5 mL
solution of 150 mM NaCl, pH 6, containing 0.75% pectin (w/v) and 37 µM bromocresol
purple. A standard curve was established by the titration of the assay solution with 100 mM
HCl, in order to correlate the change of absorbance measured at 590 nm with the amount
of protons released. Enzymatic activity measurements were performed by monitoring the
change in absorbance at 590 nm, following the addition of 4 µL of enzyme (0.3 − 1.5 µM,
final concentration).

2.5. Circular Dichroism Measurements

Far-UV circular dichroism (CD) spectra were recorded with a Jasco J-810 spectropo-
larimeter at 20 ◦C, using a 1 mm pathlength quartz Suprasil cell (Hellma), with protein
concentrations of circa 0.09 mg/mL. Five scans (10 nm/min, 1 nm bandwidth, 0.2 nm
data pitch, and 4 s DIT) were averaged, base lines were subtracted, and no smoothing was
applied. Data obtained with an applied high-tension voltage above 600 V were not con-
sidered. Data are presented as the molar residue ellipticity ([	]MRW) calculated using the
molar concentration of protein and the number of residues. Secondary structure analysis
was performed using the CDSSTR [82,83] algorithm provided in the DichroWeb analysis
server [84,85].

2.6. Chemical-Induced Unfolding Transitions

Equilibrium folding was studied at 25 ◦C in a 50 mM sodium phosphate buffer, pH 7.
With GdmCl, native or fully unfolded samples incubated at various final denaturant concen-
trations were allowed to unfold or refold, respectively, and to equilibrate for at least 9 days
(under these conditions, equilibrium is reached throughout the transition; see the results).
In contrast, with urea, only fully unfolded samples, incubated for 3 h in 8 M denaturant,
were left to refold and equilibrate for 20 h. Under these conditions, equilibrium was also
reached throughout the transition, and the risk of protein carbamylation was minimized.
Unfolding and refolding transitions were obtained by monitoring the changes in intrinsic
fluorescence emission (λex = 280 nm; λem = 342 nm) and CD at 218 nm, using a Varian
Cary Eclipse spectrofluorimeter and a Jasco J-810 spectropolarimeter, respectively, both
equipped with a thermostatically controlled cell holder. With all samples, the data were cor-
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rected for the contribution of the solution (buffer + denaturant). Denaturant concentrations
were determined from refractive index measurements [86], using an Atago R5000 hand
refractometer. A protein concentration of 0.12 mg·mL−1 (3.3 µM) was used throughout.

ANS-bound fluorescence measurements were performed using the same samples, with
excitation at 350 nm, and emission spectra recorded from 420 to 600 nm. The fluorescence
spectra were corrected for the background fluorescence of ANS. The ANS concentration
(determined from the molar extinction coefficient of 4950 M−1·cm−1 at 350 nm; Merck Index,
Merck & Co., Whitehouse Station, NJ, USA) was 660 µM and hence, [ANS]/[PemA] = 200.

2.7. Quenching of Intrinsic Fluorescence by Acrylamide

All measurements were performed at 25 ◦C in a 50 mM sodium phosphate buffer,
pH 7, using a protein concentration of 0.10 mg·mL −1 (2.7 µM). Native (in the presence
of 0.4 M GdmCl) and unfolded (in the presence of 4 M GdmCl) PemA was diluted with
increasing concentrations of acrylamide (ranging from 0 to 250 mM), and fluorescence
emission spectra were recorded from 310 to 440 nm, following excitation at 295 nm. The
solvent accessibility of tryptophan residues was estimated according to the Stern–Volmer
equation [87]:

F0

F
= 1 + KSV[Q] (1)

where F0 and F are the fluorescence intensity of the protein in the absence and presence of
acrylamide, respectively; Ksv is the Stern–Volmer quenching constant, and [Q] is the molar
concentration of acrylamide.

2.8. Pressure-Induced Unfolding

PemA was dialyzed three times against 50 mM TrisDCl, pD 7.6, and concentrated
to 18 mg·mL−1 (0.49 mM). The sample was stored overnight at 25 ◦C to ensure that all
solvent-accessible protons were exchanged for deuterons. Just before measurement, the
sample was briefly centrifuged to remove any possible insoluble aggregated form of the
protein, although no evidence was found for aggregation of the enzyme. Pressure scans
were performed in a diamond anvil cell (Diacell Products, Leicester, UK) at 25 ◦C, and
IR spectra were recorded using a Bruker IFS66 FTIR spectrometer (Karlsruhe, Germany)
as described [88]. A smoothing of 17 points and baseline correction were applied to the
spectra before data analysis. Secondary structure content of the protein was determined as
described [89]. Fourier self-deconvolution was used before curve-fitting analysis.

2.9. Kinetics of Unfolding and Refolding

All experiments were performed at 25 ◦C in a 50 mM sodium phosphate buffer, pH 7,
using protein concentrations of 0.10 mg·mL−1 (2.7 µM) and 0.14 mg·mL−1 (3.7 µM) for
fluorescence and CD measurements, respectively. Refolding reactions were initiated by
a 10-fold dilution of PemA unfolded for circa 18 h in 4 M GdmCl (under these condi-
tions PemA unfolds with τ ≈ 10 s), with the refolding buffer containing various GdmCl
concentrations, yielding final concentrations in the 0.2 to 0.9 M range. Conversely, un-
folding reactions were initiated by a 10-fold dilution of native PemA with the same buffer
containing various amounts of GdmCl to yield final concentrations ranging from 2.5 to
4.5 M.

CD kinetics were monitored following the change in ellipticity at 218 nm in a 0.1 cm
pathlength cell, whereas intrinsic fluorescence data were collected using excitation and
emission wavelengths of 280 nm and 342 nm, respectively, in a 1 cm pathlength cell.

2.10. Stopped-Flow Experiments

All fast-mixing experiments were performed using a Bio-Logic (Claix, France) SFM-
400 stopped-flow device, coupled with a MOS-450/AF-CD spectrophotometer, as de-
scribed [90], with experimental dead times of ~3 ms and ~7 ms for fluorescence and CD
measurements, respectively. For fluorescence quenching experiments, acrylamide was
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added into the refolding buffer to yield a final concentration of 81 mM and total emission
fluorescence above 320 nm was measured following excitation at 295 nm. Binding of the
fluorescent dye ANS was performed as described [90]. ANS was included in the refolding
buffer, leading to final ANS concentration of 270 µM (thus, [ANS]/[PemA] = 100). In all
experiments, 6000 data points were sampled over the time course of one experiment.

2.11. Thermodynamic Analysis

The thermodynamic parameters for chemical- and pressure induced unfolding were
obtained on the basis of a two-state (N 
 U), according to [88,91], respectively.

2.12. Kinetic Analysis

Each kinetic trace resulted from the accumulation of approximately five and ten experi-
ments for fluorescence and CD measurements, respectively. The resulting multiple data sets
were fitted separately. These traces were analyzed according to a sum of exponential terms:

yt = y∞ + ∑ Aie−kit (2)

where yt is an observable parameter (i.e., CD or fluorescence); Ai and ki are the amplitude
and the rate constant of the ith phase, respectively; t is the time, and y∞ is the equilibrium
value of the observed property. The rate constants were obtained by averaging the data
sets, and errors were calculated as standard deviations throughout.

The dependence of the unfolding and folding rate constants on denaturant concentra-
tion was analyzed according to the following linear relationship [8,18,92–94]:

ln(kobs) = ln

(
kH2O

f e
−mk f

RT·[denaturant] + kH2O
u e

mku
RT·[denaturant]

)
(3)

where kobs is the rate of unfolding or refolding measured at various GdmCl concentrations;
kf

H2O and ku
H2O are the values for folding and unfolding, respectively, in the absence of

a denaturant; and mkf
/RT and mku /RT are proportionality constants which describe the

denaturant dependence. R is the gas constant, and T is the absolute temperature.
The difference in free energy between the folded and unfolded conformations was

also calculated using kinetic data:

∆G0(H2O)kinetic
NU = −RT· ln

 kH2O
f

kH2O
u

 (4)

The programs Sigmaplot 9.0 (SPSS Inc., Chicago, IL, USA), Bio-Kine 32 V4.45 (Bio-
Logic), and QtiPlot 0.9.97.10 (ProIndep Serv S.R.L., Craiova, Romania) were used for
nonlinear least-squares analysis of the data.

2.13. Analysis of the Folding Kinetics

For a sequential four-state reaction (scheme (5)), there are three macroscopic rate
constants (λ1, λ2, and λ3), which characterize the interconversion between the first and
second, second and third, and third and fourth species, respectively:

U
λ1
� I1

λ2
� I2

λ3
� N

(5)

An analytical solution [95,96] can be found for the time-course of the different species,
which is given by:

d[U]

dt
= A0e−λ1t (6)
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d[I1]

dt
= A0λ1

e−λ2t − e−λ1t

λ1 − λ2
(7)

d[I2]

dt
= −A0λ1λ2

(λ2 − λ3)e−λ1t + (λ3 − λ1)e−λ2t + (λ1 − λ2)e−λ3t

(λ1 − λ2)(λ2 − λ3)(λ3 − λ1)
(8)

d[N]

dt
= A0

(
1 +

λ2λ3(λ2 − λ3)e−λ1t + λ1λ3(λ3 − λ1)e−λ2t + λ1λ2(λ1 − λ2)e−λ3t

(λ1 − λ2)(λ2 − λ3)(λ3 − λ1)

)
(9)

The length of the lag phase (τlag, termed lag time), of any given species (e.g., I2), is
given by the abscissa at the inflection point of the corresponding kinetic curve [95]. This
parameter can be calculated by solving the following equation:

d2[I2]

dt2 = 0 (10)

The lag time also corresponds to the time necessary for the previous species in the
reaction (e.g., I1) to reaches its maximum concentration. This is given by:

d[I1]

dt
= 0 (11)

Similarly, the lag time for N (i.e., the time needed for I2 to reach its maximum concen-
tration) is given by:

d[I2]

dt
= 0 (12)

3. Results
3.1. Chemical-Induced Unfolding

The changes in secondary and tertiary structural content were followed as a function
of the GdmCl concentration by CD at 218 nm and by tryptophan fluorescence emission
at 342 nm. The five tryptophan residues in PemA, all located in peripheral loops of the
β-helix (Figure 1B), give rise to a single broad fluorescence emission band with a maximum
at 342 nm (data not shown), which is consistent with the partial burial of the indole groups
into the native structure [49,50] (see also acrylamide quenching experiments below). Upon
the addition of 2.5 M GdmCl, the intensity decreased by about ~75%, accompanied by
a red-shift of the maximum to 355 nm, indicating that stable tertiary contacts are lost,
and the tryptophan side chains are exposed to the solvent. The far-UV CD spectrum
(Figure 2A) of the native enzyme is typical for a protein with a high fraction of β-sheet
structure, as indicated by a broad minimum in molar ellipticity centered at circa 218 nm [97].
Deconvolution using CDSSTR [82,83] revealed a β-strand content of 37 ± 1 %, in good
agreement with the 38± 2 % found in the X-ray structure of PemA [49,50]. In 2.5 M GdmCl,
the band centered at 218 nm is lost and the CD spectrum indicates the formation of an
unordered structure (Figure 2A).

The full recovery of the optical and, most significantly, catalytic properties of PemA
after a complete unfolding/refolding cycle demonstrated unambiguously that unfolding
by GdmCl is fully reversible. For enzymatic measurements, we have developed a method
based on a colorimetric assay, using a pH indicator (i.e., bromocresol purple, pKa ~6.4) with
a pH transition zone of 6.8 to 5.2 (purple to yellow). The specific activity of the enzyme
was found to be (8 ± 1) × 103 µmoles·min−1·mg−1. This assay can normally be used in
this pH range for any reaction that leads to the release of protons.
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Both spectroscopic techniques (Figure 3) indicated that GdmCl induces a single co-
operative transition between the native and unfolded states. Data revealed, however,
that, following 20 h of GdmCl-induced unfolding and refolding, transition curves did not
coincide (hysteresis) for GdmCl concentrations in the range from 0.75 to 2 M (Figure 3,
insets), indicating that the samples had not yet reached equilibrium. Remarkably, unfold-
ing proved to be extremely slow under these conditions, as it took about 9 days to reach
equilibrium, while refolding was complete within 20 h.

Following circa 9 days of incubation in GdmCl (0 to 2.6 M), PemA was found to
unfold with full thermodynamic reversibility, and the coincidence of the transition curves
(Figure 3C) obtained by intrinsic fluorescence emission and far-UV CD measurements
indicated that secondary and tertiary structures were destabilized concomitantly. The dye
ANS binds preferentially to partially folded protein molecules with exposed hydropho-
bic patches [13,90,98–103]. We could not detect ANS binding in the transition region,
confirming that PemA unfolds cooperatively in a single two-state transition (N 
 U),
where only the native (N) and the unfolded (U) states are significantly populated, not any
partially folded intermediates. Therefore, we used a simple two-state model to calculate
the thermodynamic parameters for the PemA unfolding transition shown in Figure 3:
∆G◦(H2O)NU = 31± 2 kJ·mol−1, mNU =−30± 2 kJ·mol−1·M−1 and Cm = 1.0± 0.1 M. Note
that a ∆G◦(H2O)NU value identical within the error limits was obtained using urea as the
denaturant (pH 7, 25◦C; ∆G◦(H2O)NU = 39 ± 7 kJ·mol−1, mNU = −14 ± 2 kJ·mol−1·M−1

and Cm = 2.9 ± 0.1 M; data not shown).

3.2. Pressure-Induced Unfolding

FTIR spectroscopy was used in combination with pressure-induced unfolding for
measuring PemA stability. Very similar to other β-helix proteins [104], the FTIR spectrum
of native PemA (Figure 2B) displays a maximum of the amide I’ band at 1634 cm−1,
typical of β-sheet structure [105]. At 1100 MPa, the broadening of the amide I’ band
and the displacement of its maximum to around 1647 cm−1 revealed the formation of an
unordered structure [105]. Three parameters were considered in the analysis (Figure 4),
which provide details about the structural modifications of the protein upon pressure-
induced unfolding [88], i.e., the absorbance at a fixed wavenumber, the wavenumber
corresponding to the absorbance maximum of the amide band, and the width of the band.
Thus, as the pressure was raised up to 600 MPa (Figure 4) no significant change in the IR
spectrum was observed. In this pressure range, only a limited decrease in the wavenumber
of the band maximum occurred (Figure 4B), which probably results from the effect of
compression of the hydrogen bonds [106] and also from H/D exchange of the internal
hydrogens [107]. Above 600 MPa, a cooperative displacement of the band maximum
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towards higher wavenumber values (Figure 4B) took place, together with a broadening
of the band (Figure 4C) and significant changes in intensity. In particular, the decrease in
band intensity observed at 1634 cm−1 (Figure 4A) indicates the disappearance of the native
sheet structure and the shift of the band maximum from 1634 to 1647 cm−1 is consistent
with an increased number of unordered structures.

1 
 

 

  

 
 Figure 3. GdmCl-induced equilibrium unfolding transitions of PemA at pH 7 and 25 ◦C, monitored by (A) the change
in fluorescence intensity at 342 nm and (B) the change in ellipticity at 218 nm. Closed symbols represent the addition
of a denaturant to a solution of native protein, whereas open symbols are for the dilution of unfolded protein (in 3 M
GdmCl) to the indicated concentrations of GdmCl. The samples were incubated at the indicated GdmCl concentra-
tions for 9 days before the measurements. Data were analyzed on the basis of a two-state model [91], and the lines
were drawn using (A) ∆G◦(H2O)NU = 32 ± 3 kJ·mol−1, mNU = −31 ± 3 kJ·mol−1·M−1 and Cm = 1.0 ± 0.1 M, and (B)
∆G◦(H2O)NU = 29 ± 4 kJ·mol−1, mNU = −28 ± 4 kJ·mol−1·M−1 and Cm = 1.0 ± 0.1 M. (C) Fractional change in signal [91]
as a function of GdmCl concentration. Triangles and circles represent fluorescence and far-UV CD data, respectively. The
line was drawn using the average value for the parameters obtained in fluorescence and CD experiments (see text). Insets in
(A,B) represent data obtained after circa 20 h of incubation (see text).
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Figure 4. Pressure-induced unfolding curves of PemA followed by FTIR spectroscopy at 25 ◦C,
through monitoring (A) the absorbance at 1634 cm−1, (B) the wavenumber corresponding to
the band maximum and (C) the amide I’ bandwidth. The solid lines represent the best fits of
Equation (3) in [88] to the data, yielding the following average apparent values for the parameters:
∆G◦(H2O)NU = 33 ± 4 kJ·mol−1, ∆V = −41 ± 5 mL·mol−1 and Pm = 800 ± 7 MPa.

Although the three parameters appeared to change cooperatively upon pressure in-
crease, suggesting a simple two-state unfolding process as observed in chemical unfolding
experiments, FTIR spectra (Figure 2B) indicated that pressure-induced unfolding of the
enzyme is not reversible. Indeed, following the release of the pressure, the spectrum of
PemA did not shift back to its original position and remained rather broad, indicating that
the enzyme was left largely unordered. Nevertheless, the apparently cooperative transition
between N and U was tentatively analyzed according to a two-state model (Figure 4),
yielding the apparent values for the thermodynamic parameters given in the legend to
Figure 4. Remarkably, the apparent unfolding free energy (∆G◦(H2O)NU = 33± 4 kJ·mol−1)
is identical within the error limits to that found using chemical denaturants (both GdmCl
and urea), indicating that the pressure-induced unfolding transition between N and U can
also be satisfactorily described according to a simple two-state equilibrium.

3.3. Fluorescence- and CD-Detected Folding Kinetics

The unfolding of the enzyme was monitored by fluorescence, in the presence of GdmCl
concentrations in the range of 2.5 to 4.5 M. Following manual mixing, single exponential
fluorescence decays were observed throughout and analyzed by using Equation (2) with
i = 1. The refolding kinetics of PemA at 0.4 M GdmCl, monitored by intrinsic fluorescence
and far-UV CD spectroscopy at pH 7.0, 25 ◦C, are shown in Figure 5. A sum of four and
three exponential functions (Equation (2)), respectively, was fitted to the data, yielding the
kinetic parameters in Table 1. Measurements of CD at 225 nm (Figure 5B) revealed that a
substantial part (~60%) of the CD native signal is restored within the dead time of mixing
(circa 7 ms). In the fluorescence measurements, however, a burst phase was not observed,
indicating that the tryptophan emission did not change within the mixing dead time (circa
3 ms). Thus, these kinetic experiments suggest that a transient intermediate accumulates in
the dead time of stopped-flow mixing, which shows a substantial amount of secondary
structure, as indicated by the presence of ~60% of the CD signal at 225 nm but lacks stable
tertiary contacts, as shown by the absence of changes in tryptophan fluorescence. After
this burst phase, three kinetic phases (numbered 2 to 4) could be resolved with the two
optical probes, which show identical time constants (see Table 1). The two slowest phases
(i.e., 3 and 4) could also be measured reproducibly, by the two methods, following manual
mixing (dead time ~10 s; time constants of 20 ± 5 s and 70 ± 20 s).
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Figure 5. Refolding kinetics of PemA at pH 7, 25 ◦C, in 0.4 M GdmCl and 50 mM sodium phosphate, monitored by (A) total
intrinsic fluorescence emission above 320 nm (after excitation at 295 nm), (B) CD at 225 nm, and (C) total ANS fluorescence
emission above 450 nm. A sum of four and three exponential functions (Equation (2)) has been fitted to the fluorescence
(both A,C) and CD data, respectively. Intrinsic fluorescence (A) and CD (B) data have been normalized to the total signal
difference between the native (1) and unfolded (0) proteins under refolding conditions, whereas extrinsic fluorescence
intensities in ANS binding kinetics (C) are expressed relative to the fluorescence of ANS in the presence of the unfolded
protein in 4 M GdmCl. The resulting time constants are indicated. (#) Signal extrapolated to zero time from the kinetic
data. Insets show the first 16 s of the reaction (note that intrinsic fluorescence data are displayed with both a linear and a
logarithmic time scale).

In contrast to far-UV CD measurements, which detect three visible kinetic phases only,
an additional exponential term was necessary to fit the stopped-flow fluorescence data sat-
isfactorily. This term corresponds to the fastest detectable process (phase 1; τ1 = 1.0 ± 0.3 s)
and, remarkably, the sign of its amplitude (negative, see comment in the footnote to
Table 1), which accounts for ~6% of the total signal change (Table 1), is opposite to that of
the following phases (positive). This results in a lag phase in the refolding kinetics, which is
clearly visible (Figure 5A, inset) due to the low and negative amplitude of the fluorescence
change corresponding to this transition. This is consistent with the transient accumulation
of an obligatory intermediate [108]. This species apparently lacks a specific fluorescence
signature and hence cannot be distinguished from the unfolded state, but it results in a
delay in the accumulation of the native or other highly fluorescent species [109,110].
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Table 1. Kinetic parameters for the refolding of PemA after rapid mixing in 0.4 M GdmCl at pH 7, 25 ◦C.

Experiment Burst Phase Phase 1 Phase 2 Phase 3 Phase 4

Int. fluo. a

τ (s) e <0.003 g 1.0 ± 0.3 5.7 ± 1.0 24 ± 8 63 ± 8
amplitude f 0 −0.06 ± 0.01 0.20 ± 0.01 0.31 ± 0.02 0.55 ± 0.04

CD225nm b

τ (s) e <0.007 nd h 5.1 ± 0.4 23 ± 4 63 ± 5
amplitude f 0.56 ± 0.09 nd 0.25 ± 0.01 0.12 ± 0.02 0.07 ± 0.02

ANS fluo.c

τ (s) e <0.003 0.14 ± 0.02 7.0 ± 1.0 25 ± 5 84 ± 10
amplitude f 0.52 ± 0.02 0.032 ± 0.003 −0.13 ± 0.02 −0.15 ± 0.01 −0.10 ± 0.02

Acryl. d

τ (s) e <0.003 nd 7.0 ± 1.5 20 ± 1 115 ± 20
amplitude f −0.54 ± 0.05 nd 0.014 ± 0.006 0.10 ± 0.02 −0.018 ± 0.002
a Intrinsic fluorescence. b Circular dichroism at 225 nm. c ANS fluorescence. d Quenching of fluorescence by acrylamide. e Time constant τ

= 1/k, with k representing the macroscopic rate constants obtained using Equation (2). f Amplitude values are normalized as indicated
in the text. The signs of the amplitudes derived from Equation (2) have been reversed, so that an increase of the measured parameter is
denoted by a positive amplitude. g Lag phase. h nd, not detected. All values are the averages of results from three refolding experiments,
and errors are calculated as standard deviations.

The folding reaction was monitored by tryptophan fluorescence at various GdmCl
concentrations and a plot (known as a chevron plot [94]) of the natural logarithm of the
apparent rate constants for both folding and unfolding against the denaturant concentration
is shown in Figure 6. Refolding of the enzyme at [GdmCl] < 1 M showed the complex
kinetics described above, with at least 4 phases (see Table 1), whereas unfolding in the
presence of GdmCl concentrations in the range of 2.5 to 4.5 M showed single exponential
kinetics. At concentrations of denaturant ranging from 0.6 to 4.5 M, the unfolding and
slowest phase-related refolding branches of the plot were found to be close to linear. Thus,
at concentrations above 0.6 M GdmCl, Equation (3) was used to fit the data, yielding values
of the kinetic parameters given in the legend to Figure 6. Extrapolation of the unfolding
rate constant (ku) at 0 M GdmCl indicates that, in the absence of a denaturant, unfolding is
remarkably slow (ku

H2O = 1.2·10−7 s−1 i.e., t1/2 ≈ 67 days). Analysis of the data highlights
the strong influence of the denaturant concentration on the unfolding rate constant and
explains why circa 9 days were required to reach apparent equilibrium in the transition
region, starting from native PemA. Thus, it can be calculated that it takes about 15 and
2.5 days in the presence of 0.8 and 1.3 M GdmCl, respectively, for the unfolding reaction
to be 95% complete. Note that the time constant value for unfolding at 2.5 M GdmCl was
as high as circa 23 min (i.e., t1/2 ≈ 16 min), and hence, no data were collected at lower
concentrations due to the experimental complications inherent to such long time scales.

3.4. ANS Binding

The time course of ANS fluorescence intensity during PemA folding (Figure 5C)
was measured by the inclusion of the dye in the refolding buffer, and data reveal that
~95 % of the ANS fluorescence enhancement (i.e., binding) occurred in the dead time of
the stopped-flow experiment and that the maximum was reached after circa 0.5 s. This
was followed by a three-exponential decay of the intensity, reflecting structural changes
associated with the exclusion of the dye from the surface of the refolding protein. These
three phases show time constants (Table 1) very similar to those measured by the changes
in tryptophan fluorescence and in far-UV CD, indicating that the presence of the dye did
not significantly affect the kinetics. Furthermore, the increase in ANS fluorescence was
found to be independent of the ANS-to-protein concentration ratio ([ANS]/[PemA]) in the
range from 50 to 200 (data not shown).
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Circles and squares represent the logarithm of the observed rate constants (in s−1) for slow refolding
(phases 3 and 4 in Table 1); diamonds and crosses are for fast refolding (phases 1 and 2), whereas
triangles correspond to the unfolding rate constant. Data obtained after rapid mixing are represented
by closed symbols, while those obtained following manual mixing are shown by open symbols.
The solid line represents the fit of Equation (3) to the data obtained with GdmCl concentration in
the range from 2.5 to 4.5 M (triangles), using kf

H2O = 0.8 ± 0.2 s−1, mkf
= 21 ± 2 kJ·mol−1 ·M−1,

ku
H2O = (1.2 ± 0.1) · 10−7 s−1, and mku = 9 ± 1 kJ·mol−1 ·M−1.

3.5. Quenching of Fluorescence by Acrylamide

The exclusion of tryptophan residues from the solvent as the protein folds can be
followed by monitoring intrinsic fluorescence in the presence of acrylamide as a fluores-
cence quencher [103,111]. The X-ray crystal structure of PemA [49,50] shows that the five
tryptophan residues of the enzyme are partially buried into the native structure, with about
37, 28, 2, 55, and 10% solvent accessible area for residues at positions 107, 269, 303, 317,
and 361 (calculated using the Naccess program [112]), respectively. This is consistent with
the significant, although moderate, red-shift observed as the protein unfolds (from 342
to 355 nm, data not shown). The accessibility of fluorophores to collisional quenching is
analyzed in the form of Stern–Volmer plots, as shown in Figure 7. Linear regression analysis
of the data using Equation (1) yielded an average value of the Stern–Volmer constant (KSV)
for the native state (5.0 ± 0.1 M−1) that is half that of the unfolded state (10.0 ± 0.2 M−1),
in good agreement with significant exposure of tryptophan residues upon unfolding.

To investigate the change of solvent accessibility of the tryptophan residues during
refolding, it was followed in the absence and in the presence of 81 mM acrylamide and
the ratio (F0/F) of the fluorescence intensity in the absence (F0) and in the presence (F) of
acrylamide was measured as a function of time, as shown in Figure 8. Data were analyzed
according to a sum of three exponential functions (Equation (2)) and the resulting time
constants were again consistent with those obtained using other spectroscopic probes
(Table 1), indicating that all three methods monitor the same steps of folding. In the
dead time of the rapid-mixing experiment, a large decrease in F0/F was observed, which
reflects the sequestering of tryptophan residues from the solvent during the first circa 3 ms.
This was followed by a significant increase in the F0/F ratio and thus, by an apparent
re-exposure of the aromatic side chains, in two successive phases. Finally, the last phase
shows a weak decrease in amplitude (see Table 1), probably due to a slight reduction in
exposure of tryptophan indole groups as the protein adjusts to its native structure.
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PemA. Refolding was carried out in 0.4 M GdmCl and 50 mM sodium phosphate at pH 7 and 25 ◦C.
The data are plotted as the ratio of the intrinsic fluorescence in absence of acrylamide (F0) to that in
the presence of the quencher (F). (�) is F0/F for the unfolded protein measured as the ratio of the
fluorescence intensities of the protein in 4 M GdmCl, with and without acrylamide; (#) represents
the signal of F0/F extrapolated to zero time, and the solid line represents the fit of a sum of three
exponentials (Equation (2)) to the data. The resulting time constants are indicated, and the inset
shows the first 16 s of the reaction.

3.6. Slow Phases in PemA Folding

A possible reason for the occurrence of slow phases during protein folding, with time
constants in the 10–100 s range [91,113,114], is the cis-trans isomerization of Xaa-Pro peptide
bonds [115]. PemA contains 11 prolines, out of which 10 are located in the peripheral loops
of the β-helix [49,50]; they are all in the trans configuration, and it is thus possible that
the isomerization of non-native prolyl peptide bonds in the unfolded state determines
the folding kinetics of the enzyme. In particular, the two slowest phases (i.e., 3 and 4)
with time constants around 25 and 80 s could be associated with this phenomenon. In
order to test this hypothesis, a classical double mixing experiment [116] was performed.
In this experiment, the protein was fully unfolded in 6 M GdmCl at 25 ◦C for 5 to 10 s
only. Under these conditions, this was sufficient for complete conformational unfolding of
the enzyme (τ ~ 7 ms), but it was too short to allow significant isomerization of proline-
containing peptide bonds, which thus remained in their native-like isomeric state. Under
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such conditions, the intrinsic fluorescence of the native PemA was recovered in two well-
resolved kinetic phases, with amplitudes and time constants (circa 25 and 80 s, data not
shown) identical to those obtained in single mixing experiments. Thus, the dramatic
reduction of the time left for the protein to unfold had no influence on folding, suggesting
that the two slow phases are not associated with proline isomerization. In addition, no effect
was observed when folding was followed in the presence (5:1 PemA to PPI ratio in the final
refolding mixture; data not shown) of either trigger factor (modified W151F mutant; [117])
or SlyD [118], two peptidyl prolyl isomerases (PPI; [115]), which normally accelerate the
isomerization of prolyl peptide bonds. In conclusion, although both the prolyl bonds might
just not be accessible to the PPIs tested here, and trans-to-cis isomerization in the unfolded
state might be too fast for the double mixing experiment, all kinetic phases observed in
PemA folding (Figures 5 and 8) are likely to be associated with conformational refolding
and not with the isomerization of incorrect cis forms of prolyl peptide bonds.

3.7. Analysis of the Folding Kinetics

The close similarity of the rate constants measured for the three phases (2 to 4, see
Table 1) by the various probes suggests that they represent well-defined, cooperative
folding transitions. The data are consistent with a sequential four-state model (scheme (5))
for folding, where λ1 to λ3 represent the macroscopic rate constants measured for phases 2
to 4. In this model, U represents the burst phase intermediate, considered as the ensemble
of unfolded conformations under the refolding conditions and which already contains a
significant fraction of secondary structure, whereas I1 and I2 corresponds to ensembles of
transient, partially folded species, and N stands for the native state. Using the rate constants
measured by tryptophan fluorescence, this model was used to simulate the time-courses of
the various species (Figure 9). It shows a distinct lag phase in the formation of both I2 and
N, occurring in the first ~20 and ~100 s of the reaction, respectively. Lag times of 9 and 44 s
are calculated using Equations (11) and (12), for I2 and N, respectively. The experimental
observation of a lag phase in the first few second of the fluorescence-detected reaction
(Figure 5A) suggests that an intermediate is also significantly populated between the burst
phase species (i.e., U in scheme (5)) and I1. This species is not directly detected because its
fluorescence intensity is not significantly different from that of both the unfolded and burst
phase species, but it results in a delay in the formation of the three following kinetic species
(i.e., I1, I2, and N), which are characterized by a gradual enhancement of the fluorescence
intensity of the enzyme until the native signal is reached.
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a four-state sequential model with two on-pathway intermediates (Scheme (5)). The simulation
was performed using a program developed with the MATLAB computing platform (MathWorks
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4. Discussion

PemA displays a typical right-handed parallel β-helix fold (Figure 1) [49,50], with
three parallel β-sheets (PB1, PB2 and PB3) forming the β-helix domain. This structural orga-
nization determines the spatial arrangement of the connecting peripheral loops (T1, T2, and
T3), which can adopt their native conformation only after the β-sheets have formed. Fur-
thermore, long flexible peripheral T1 and T3 loops, and an α-helix are located at the C- and
N-terminal ends of the β-helix, respectively, which protect the hydrophobic interior from
the solvent and prevent oligomerization. This topology causes special requirements for the
folding of the polypeptide chain. Remarkably, the location of the five tryptophan residues
of PemA (i.e., W107, W269, W303, W317, and W361) on peripheral loops (Figure 1B) might
enable discriminating between the formation of the β-helix domain, monitored by far-UV
CD, and the structural organization and docking of the lateral loops, monitored by intrinsic
fluorescence measurements.

The conformational stability of PemA was probed by adding denaturants or by in-
creasing pressure. GdmCl- and urea-induced unfolding was fully reversible as probed by
intrinsic tryptophan fluorescence, far-UV CD and enzymatic activity measurements.

The denaturant-induced equilibrium unfolding of PemA (Figure 3) is well described
by a two-state transition (N 
 U) between the native (N) and unfolded (U) states, without
partially folded species. Remarkably, circa 9 days at 25 ◦C were needed to reach equilibrium
all through the transition, because the protein unfolded and refolded extremely slowly
in the transition region. Extremely slow unfolding kinetics were also observed for two
other β-helical proteins [74,77] and, by analogy with proteins from hyperthermophilic
organisms [119,120], this is likely associated with the compact, hydrophobic core formed
by their β-helix domain.

Analysis of the data according to a two-state model yielded experimental cooperativity
parameters (m values) for the unfolding transition (−30 ± 2 and −14 ± 2 kJ·mol−1·M−1

in GdmCl and urea, respectively), which are consistent with those calculated (−33 and
−15 kJ·mol−1·M−1, respectively) on the basis of the size of PemA [121]. The m value
depends on the efficiency of the denaturant (mGdmCl ≈ 2.3·murea [121]) and is proportional
to the change in solvent exposed surface area upon unfolding. It is a good indicator for
the two-state character of a transition, because hidden intermediates in a transition would
decrease its apparent value substantially [121–123]. Thus, the coincidence between the
unfolding curves obtained by fluorescence and CD measurements (Figure 3C), and the
good agreement between calculated and experimentally determined m values indicate
that the enzyme unfolds in a cooperative transition that involves the entire molecule. This
allows the free energy change for unfolding (∆G◦NU = 35 ± 5 kJ·mol−1) to be calculated
with confidence. The two-state unfolding of PemA by denaturants contrasts with the
three-state transitions observed for pertactin [77] and for the plasmid-encoded toxin (Pet)
from E. coli [124], two other β-helical proteins. For them, the population of a partially
folded intermediate was observed at about 1.5 and 1.1 M GdmCl, respectively. Finally,
for a large fragment (termed Bhx) of TSP (residues 109–544), which encompasses the
entire β-helix domain, Seckler and collaborators [70,125] showed that its unfolding is a
two-state process in urea, at low protein concentrations (10 µg·mL−1, i.e., circa 0.2 µM),
low ionic strength, and low temperature (10 ◦C), yielding (pH 7) ∆G◦NU = 32 kJ·mol−1

and mNU = 12.7 kJ·mol−1·M−1. In this case, however, the experimental m value was much
lower than expected (19.8 kJ·mol−1·M−1) for a protein of this size, suggesting that the
experimentally observed unfolding transitions involved only a part of the β-helix do-
main [70,125].

Thus, despite its large size and modular nature, PemA shows a remarkably high
degree of cooperativity in equilibrium unfolding, as expressed in its close adherence to a
simple two-state model. In comparison with PelC, which is very similar in size to PemA
(353 and 342 residues, respectively), the data suggest a more homogeneous distribution of
stabilities across the PemA β-helix length and also perhaps a higher stability of the repeat
interfaces [46]. With pertactin, the larger size (i.e., 539 residues) and higher stability of
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the C-terminal half [77] of the protein probably explains the non-cooperative equilibrium
unfolding. Finally, for Pet [124], the occurrence of at least two structural domains besides
the right-handed β-helical C-terminal domain [126] probably explains the complex multi-
state transition.

The cooperative transition of PemA is also clearly evident from pressure-induced un-
folding experiments. The FTIR measurements revealed that very high pressures (>600 MPa)
are needed to unfold the enzyme. Pressure-induced unfolding was not reversible, but a
tentative two-state analysis gave a ∆G◦NU value of 33 ± 4 kJ·mol−1, which is identical
within the error limits to that obtained from denaturant-induced unfolding. The apparent
volume change for the unfolding of PemA (∆V = −41 ± 5 mL·mol−1) is relatively small for
its size (it corresponds to 0.15% of its molecular volume, i.e., 27336 mL·mol−1, as calculated
with the help of the Brugel software package [127]), and it is in the lower range compared
to other globular proteins [128,129]. In comparison, pressure induced-unfolding studies on
staphylococcal nuclease, a small monomeric protein of circa 17 kDa, revealed a significantly
larger volume change (∆V = −75 mL·mol−1) [130]. This contrasts, however, with the vol-
ume change for another (all α) repeat protein, Nank1-7, containing seven ankyrin sequence
repeats and consisting of 248 amino acids, which was found to be −44 mL·mol−1 [131].
Here, a systematic analysis suggested that the volume change is mainly due to the changes
in cavity volume rather than differential hydration. This study suggested that the major
contributing factors to pressure effects on proteins are their imperfect internal packing
and the occurrence of dry (i.e., with very low solvent occupancy) cavities in the folded
state. Furthermore, it supports the view that there is a strong correlation between internal
cavity volume and the volume change for protein unfolding [130,132]. In PemA, the side
chain alignment of aliphatic and aromatic residues inside the hydrophobic β-helix core
does not allow the presence of extended cavities. Analysis of the enzyme using the Brugel
software [127] reveals that it contains seven major cavities, with volumes ranging from 7.7
to 14.8 mL·mol−1. This implies that the overall cavity volume is larger than the observed
volume change upon folding. Clearly, relating this reaction volume solely to changes in
cavities would be over simplistic. Nevertheless, PemA shows a higher stability towards
pressure-induced unfolding (Pm = 800 ± 7 MPa) than many other proteins [128,133,134].

A combination of complementary spectroscopic probes was used to monitor the
folding kinetics of PemA (Figures 5 and 8). These experiments revealed that very fast
changes occurred during the 3–7 ms dead time of stopped-flow mixing, followed by at
least three resolved phases that were observed by all spectroscopic techniques. Within
the dead time, the enzyme acquired one half (~56 %) of its native ellipticity at 225 nm
(Figure 5B), accompanied by the formation of hydrophobic patches that were accessible for
the dye ANS (Figure 5C). Tryptophan fluorescence did not change in the dead-time reaction
(Figure 5A), but the access of indole side chains towards quenching by acrylamide was
reduced. These observations are consistent with very fast (τ < 1 ms) hydrophobic collapse,
a partial burial of tryptophan side chains, and substantial secondary structure formation.
Stable native tertiary contacts had presumably not yet formed, however, as indicated by
the absence of fluorescence changes during the dead time of mixing. These features are
reminiscent of the molten globule type of intermediates that have been observed in the
folding of many proteins [135–138]. A species with partial formation of the β-helix domain,
involving the stack of phenylalanine residues (F168, F189 and F209—Figure 1C) in the
core of the enzyme, might be a plausible model for the burst phase intermediate. This
hypothesis is based on the data [64] showing that the burial of the internal side chains of
stacked phenylalanine residues in the central region of the parallel β-helix domain of TSP
is critical for its folding. Furthermore, it is also supported by the finding that ANS binding
during the burst phase is not very important (i.e., ~1.5-fold increase) when compared to the
typical > 5-fold increase observed with other proteins (see e.g., [100–103]). Similar results
were obtained with pertactin [78], and these observations are interpreted here in terms of
the early formation of a dry molten globule intermediate [139], with a partially structured
β-helical domain. This species provides only low surface binding for the dye and hence,
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is apparently already quite dehydrated and probably offers little solvent access to the
protein interior. Finally, the loops, although probably forming dynamic and fluctuating
structures, show a significant degree of hydrophobic collapse, however, with burial of the
five tryptophan side chains in a non-native environment, as indicated by the low degree of
acrylamide quenching.

Following the kinetically unresolved changes in far-UV CD, ANS fluorescence, and
quenching of intrinsic fluorescence by acrylamide, a further minor increase (~5%) in ANS
fluorescence was observed (Figure 5C), which reaches a maximum at circa 1 s. The native
optical signals were then regained in three visible, well-resolved kinetic phases (numbered
2 to 4 in Table 1), which were observed by all four optical probes. The various meth-
ods yielded very similar time constant values (i.e., 6 ± 1 s, 23 ± 2 s, and 80 ± 20 s) for
these phases, which are all compatible with the cis-trans isomerization of Xaa-Pro peptide
bonds [113–115]. PemA contains 11 prolines, but double jump experiments and refolding
assays in the presence of two different PPIs did not provide evidence that prolyl isomer-
ization is involved in the folding kinetics of the enzyme. These data, together with the
observation of a lag phase (phase 1, Figure 5A) in the stopped-flow intrinsic fluorescence ex-
periments, suggest that the kinetic changes observed in phases 2 to 4 represent well-defined
cooperative conformational transitions. These can be described by a sequential folding
pathway (scheme (5)), with the population of four species, i.e., U, I1, I2, and N, wherein I1
and I2 represent two obligatory, on-pathway intermediates. Using the macroscopic rate
constants given in Table 1, the time-course of the four species was simulated (Figure 9) on
the basis of scheme (5). This indicates that I1 and I2 reach a maximum amount (~60 and
~50%, respectively) after circa 9 and 44 s, respectively. These values are greater than the
length of the lag phase (time constant of circa 1 s) observed in fluorescence experiments
(Figure 5A), which therefore, suggests that an additional kinetic intermediate accumulates
between the burst phase species and I1. It exhibits a low fluorescence intensity, similar
to the phase burst intermediate, and therefore makes it possible to observe a lag in the
appearance of the following species, which exhibit a greater fluorescence intensity. Very
few claims (see [109,110]) of obligatory intermediates in protein folding are supported by
the observation of an appropriate lag period ([108]), because favorable circumstances are re-
quired, namely the formation of an early intermediate species with spectroscopic properties
identical or nearly identical to the starting species. The lag phase (also sometimes referred
to as an induction period) is simply due to the accumulation of this spectroscopically
silent intermediate before the substantial formation of subsequent species, with native-like
spectroscopic characteristics. Clearly, the observation of a lag phase (Figure 5A) in the
stopped-flow fluorescence experiments provides convincing evidence for the significant
population of at least two productive (i.e., kinetically competent) intermediate species
on the folding route between the denatured and native states (scheme (5) and Figure 10).
Observation of this phase is possible here because the fluorescence properties of the native
state, and of the two intermediate species I1 and I2, are markedly different from those of
the unfolded and early intermediate species. The analysis of PemA folding, wherein struc-
turally defined intermediates accumulate on a preferred pathway, is consistent with the
classical macroscopic view [22,23] that folding occurs through a statistically predominant
route. The distinct structural species that pave the way to the native state correspond to
large molecular ensembles of rapidly interconverting molecules, which display significant
common structural features and a measurable degree of cooperativity [24,140].
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ance of the following species, which exhibit a greater fluorescence intensity. Very few 
claims (see [109,110]) of obligatory intermediates in protein folding are supported by the 
observation of an appropriate lag period ([108]), because favorable circumstances are re-
quired, namely the formation of an early intermediate species with spectroscopic proper-
ties identical or nearly identical to the starting species. The lag phase (also sometimes re-
ferred to as an induction period) is simply due to the accumulation of this spectroscopi-
cally silent intermediate before the substantial formation of subsequent species, with na-
tive-like spectroscopic characteristics. Clearly, the observation of a lag phase (Figure 5A) 
in the stopped-flow fluorescence experiments provides convincing evidence for the sig-
nificant population of at least two productive (i.e., kinetically competent) intermediate 
species on the folding route between the denatured and native states (scheme (5) and Fig-
ure 10). Observation of this phase is possible here because the fluorescence properties of 
the native state, and of the two intermediate species I1 and I2, are markedly different from 
those of the unfolded and early intermediate species. The analysis of PemA folding, 
wherein structurally defined intermediates accumulate on a preferred pathway, is con-
sistent with the classical macroscopic view [22,23] that folding occurs through a statisti-
cally predominant route. The distinct structural species that pave the way to the native 
state correspond to large molecular ensembles of rapidly interconverting molecules, 
which display significant common structural features and a measurable degree of coop-
erativity [24,140]. 

 
Figure 10. Representation of a possible folding pathway of PemA (pH 7, 25 °C). The sequential nature of the refolding 
process is indicated, and the two major intermediates are illustrated. The three β-sheets are in yellow (PB1), green (PB2), 
and red (PB3), and the N- and C-terminal ends of the polypeptide chain are indicated by N and C, respectively. Starting 
from a highly heterogeneous denatured state (U), the process of collapse (burst phase) and further minor structural rear-
rangements (phases 1 and 2) leads to a first intermediate species (I1), with native-like structure in the entire β-helix domain 
but unstructured peripheral loops (see text for details). This is followed by the folding of most of the peripheral loops and 
the formation of a second intermediate species (I2). Finally, the folding of the C-terminal loop and its docking against the 
parallel β-helix (PB2) (phase 4) leads to the final native structure. The values of the time constants for each step are 

Figure 10. Representation of a possible folding pathway of PemA (pH 7, 25 ◦C). The sequential nature of the refolding
process is indicated, and the two major intermediates are illustrated. The three β-sheets are in yellow (PB1), green (PB2), and
red (PB3), and the N- and C-terminal ends of the polypeptide chain are indicated by N and C, respectively. Starting from a
highly heterogeneous denatured state (U), the process of collapse (burst phase) and further minor structural rearrangements
(phases 1 and 2) leads to a first intermediate species (I1), with native-like structure in the entire β-helix domain but
unstructured peripheral loops (see text for details). This is followed by the folding of most of the peripheral loops and
the formation of a second intermediate species (I2). Finally, the folding of the C-terminal loop and its docking against the
parallel β-helix (PB2) (phase 4) leads to the final native structure. The values of the time constants for each step are indicated.
Note that the various states in the model need to be described in terms of ensembles of conformers, and the experimental
parameters are averaged over these ensembles.

The restoration of the native optical signals (i.e., ellipticity, fluorescence emission
intensity, and access to acrylamide), together with the release of the dye (ANS) in three
exponential phases, can be interpreted as follows (illustrated in Figure 10). The first event
(phase 2) leads to the regaining of a large percentage (~80%) of native ellipticity at 225 nm
and a mere ~15% of native fluorescence intensity. This could reflect the formation of
virtually the entire β-helix domain with the peripheral loops remaining in a non-native col-
lapsed state (represented by I1 in Figure 10). A species (termed “native-like”) with similar
structural features has been observed [75] in the early stage of PelC folding, suggesting a
common intermediate on the folding pathway of these two right-handed parallel β-helix
proteins. Following the population of I1, a second species (I2, Figure 10) accumulates (phase
3) before the formation of the native structure. Although it has recovered ~93% of the
native CD signal at 225 nm, it shows only ~45% of the native fluorescence signal, indicating
that it is missing a significant fraction of the native tertiary contacts. The unexpected
increase in acrylamide quenching demonstrates, however, that a substantial change in the
environment of one or more of the five tryptophan residues takes place during this phase.
An attractive model would involve the docking of the tryptophan indole side chains close
to their native orientations, particularly those at positions 107, 269, and 317 (see Figure 1).
Thus, W107 and W317 display the two most solvent-exposed side chains, with ~37% and
~55% accessibility, respectively [112]. The increase in acrylamide quenching in phase 3
might be caused by the reexposure of these tryptophan residues during the final folding of
the peripheral loops. In contrast, the large (~30%) increase in tryptophan fluorescence in
this phase might originate from the burial of W269 in its final hydrophobic environment,
close to the central PB1 β-sheet. W269 shows enhanced fluorescence probably because it re-
sides in a hydrophobic environment and because the neighboring tyrosines Y158 and Y181
(Figure 1) transfer energy to W269. Finally, we speculate that the strong (~55%) increase
in intrinsic fluorescence and ~7% change in ellipticity (phase 4), which characterize the
final conformational adjustments to achieve the native structure, might be associated with
the folding of the C-terminal loop (residues 345 to 359). The latter, which forms two short
helices, packs anti-parallelly against the PB2 β-sheet of the parallel β-helix [49,50]. This
results in the transfer of the indole side chain of W361 to a more hydrophobic environment,
in close proximity to Y167 (Figure 1). As described for W269, the final positioning of W361
could result in a substantial increase in fluorescence intensity.



Biomolecules 2021, 11, 1083 21 of 26

The chevron plot in Figure 6 highlights the complexity of the refolding kinetics of
PemA, which contrasts with the apparent simplicity of unfolding. Thus, the absence of
curvature in the unfolding limb of the chevron plot suggests a single cooperative unfold-
ing, without intermediates, i.e., no sequential unraveling of the repeat array, repeat by
repeat [45]. In refolding at low denaturant concentrations, only the rate of the slowest of the
four exponential phases varies significantly with GdmCl concentration. This supports our
analysis (schematically summarized in Figure 10) that, from the burst phase intermediate
to I2, only minor local conformational rearrangements occur, without major changes in
the surface area accessible to the denaturant. Strong changes in solvent accessibility occur
during the last phase of folding and therefore, its rate shows strong denaturant depen-
dence [141]. Between 0.6 and 4.5 M, the unfolding and refolding branches of the plot for the
slowest phase (i.e., phase 4 in Table 1) were found to be linear. Thus, in this concentration
range, Equation (3) was used to fit the data, yielding the kinetic rate constants given in the
legend to Figure 6. Using the values of kf

H2O and ku
H2O, Equation (4) allows calculation of

a ∆G◦kin value of 39 ± 8 kJ·mol−1, which is identical within the error limits to the value
(32 ± 3 kJ·mol−1) obtained from the equilibrium unfolding transitions.

Interestingly, the value of the folding rate constant (i.e., 0.8 s−1) extrapolated at 0 M
GdmCl is about five orders of magnitude lower than that (circa 2·105 s−1) estimated on the
basis of relative protein contact order [32,33] (calculated with the help of Baker Laboratory
Tool http://depts.washington.edu/bakerpg/contact_order/, accessed on 11 May 2021).
Other repeat proteins (see e.g., [78,142]) also fold with rates much lower than predicted
based on their native state topology. As discussed in [42], this is due at least in part to the
unusual local topology of all repeat proteins, which lack sequence-distant contacts. This
lack and the simple topology of repeat proteins result in uniform and low contact order,
and hence, the calculation based on contact order leads to folding rates that are orders
of magnitude too high. Clearly, contact-order models, as developed for small globular
proteins, are inadequate for repeat proteins [42].
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