

Phage-mediated Shiga-toxin (Stx2d) gene transduction from O80:H2 Shiga toxigenic *Escherichia coli* (STEC) to non-STEC strains and *in vivo* virulence assessment

Habets A.¹, Antoine C.¹, Wagemans J.², Vermeersch M.³, Laforêt F.¹, Lavigne R.², Mainil J.¹, <u>Thiry D.^{1*}</u>

¹Bacteriology, Department of Parasitic and Infectious Diseases, FARAH, ULiège, Liège, Belgium.

²Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven, Belgium. ³Center for Microscopy and Molecular Imaging, Electron microscopy laboratory, Gosselies, ULB, Belgium **Correspondence* : *Damien.thiry@uliege.be*

The university of Liège provided financial support ('Fonds spéciaux de la Recherche Project HYBRID_COLI_O80 ')

Introduction

Shiga toxin-producing *Escherichia coli* (STEC) are major foodborne pathogens causing human diseases ranging from diarrhea to life-threatening complications such as hemolytic–uremic syndrome. Virulence of STEC strains and their ability to cause severe diseases are linked to the activity of prophage-encoded Shiga toxins (Stxs). Stx phage acquisition and stability studies are crucial in terms of public health. The first objective of this work was to isolate and characterize the Stx2d phage isolated from STEC O80:H2, an emerging serotype in humans and calves, and then study the transduction of the *stx2d* gene phage-mediated in non-STEC strains. The second objective was to assess the survival of *Galleria mellonella* larvae inoculated with these convertant strains.

K12-MG1655

O80:H26

Fig1. *Stx2d* gene transduction Three non-STEC strains were successfully converted with the *stx2d* gene through the Stx2d phage and confirmed by PCR

K12-DH5α

Fig2. Comparative genomics of phage vB_EcoS_ULI-O80_Stx2d and Stx2 112808

The two phages encode different lysogenic cycle associated proteins such as integrase, excisionase and different repressor such as repressor CI, CII and the antirepressor. Stx region is represented by the orange box.

Material and methods

Fig3. Insertion site *yecE* of the three convertant strains

100 nm **Fig4**. Negative staining TEM showed that vB_EcoS_ULI-O80_Stx2d is attributed to the siphovirus morphology

Conclusion

The phage vB_EcoS_ULI-O80_Stx2d belongs to the *Caudoviricetes* class (currently unclassified genus and family) and to the siphovirus morphology, it is stable and can resist to moderate pH and temperature conditions. Induction of lambdoid prophages carrying *stx* genes can convert non-pathogenic *E. coli* into STECs. *In vivo* experiments showed that convertant strains caused significantly higher mortality rates than the corresponding non-STEC strains.