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SUMMARY

Population-scale datasets of healthy individuals capture genetic and environ-
mental factors influencing gene expression. The expression variance of a gene
of interest (GOI) can be exploited to set up a quasi loss- or gain-of-function ‘‘in
population’’ experiment. We describe here an approach, huva (human variation),
taking advantage of population-scale multi-layered data to infer gene function
and relationships between phenotypes and expression. Within a reference data-
set, huva derives two experimental groups with LOW or HIGH expression of the
GOI, enabling the subsequent comparison of their transcriptional profile and
functional parameters. We demonstrate that this approach robustly identifies
the phenotypic relevance of a GOI allowing the stratification of genes according
to biological functions, and we generalize this concept to almost 16,000 genes in
the human transcriptome. Additionally, we describe how huva predicts
monocytes to be the major cell type in the pathophysiology of STAT1 mutations,
evidence validated in a clinical cohort.

INTRODUCTION

Any biological parameter is characterized by variation when assessed at the population level. In humans,

this is an essential variable when studying diseases in larger cohorts, and it is increasingly recognized when

describing healthy populations. Assessment of biological parameters by omics technologies exposes this

variation even more owing to the high dimensionality of the data. On the other hand, it encompasses the

possibility of comprehensively capturing human variation, especially when assessed in larger cohorts.

Genetics has been particularly successful in linking genetic variation to diseases per se but also to physi-

ological phenotypes (GWAS, PheWAS) (Pividori et al., 2020; Tam et al., 2019). More recently genetic

variation was directly linked to variation in gene expression (eQTL, expression quantitative trait loci)

(GTEx Consortium, 2013, 2020; Kim-Hellmuth et al., 2020; Majewski and Pastinen, 2011; Strunz et al.,

2018), or epigenetic variation (epiQTL/hQTL) (Furci et al., 2019; Pelikan et al., 2018), as two examples

explaining changes in the transcriptome or gene regulation by variance in the genome. Such genome-

wide approaches also allowed for the identification of genetic risk factors for diseases, e.g. APOE for

Alzheimer’s disease (Kunkle et al., 2019).

Variation of gene expression and regulation is not only determined by the genome. Environmental signals

present another important driver of transcriptional variation, resulting in unique individual transcriptional

profiles (Favé et al., 2018; Gibson, 2008; Majewski and Pastinen, 2011; Wainberg et al., 2019). From a

broader perspective, the breadth of the transcriptional program within a population as a response to

environmental challenges is a key evolutionary feature allowing both rapid and long-term adaptation of

a species to environmental challenges (López-Maury et al., 2008).

In light of the increasing availability of multi-layered datasets derived from cohorts, including those derived

from healthy individuals, it is now possible to move from gene-centric approaches toward data-driven uti-

lization of natural variation. It is evident that genetics and environmental factors impact gene expression,
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andwe hypothesize that the resulting variation of expression is directly linked to functional phenotypes. For

example, inter-individual differences in the expression level of a gene xmight be linked to the number of a

certain cell type in a particular tissue (Newman et al., 2019) or the effect size of a response toward a

pathogen (Bossel Ben-Moshe et al., 2019).

A prerequisite to link, for example, gene expression to its biological role is the simultaneous measure-

ment of expression data for each individual in the population under study, e.g. by assessing transcrip-

tomes, and assays considering biological functions and phenotypes, e.g. cell counts in blood, expression

of cell surface markers, or induction of soluble mediators by immune cells upon stimulation with immu-

nogenic agents. Such studies have become available only recently and a prime example is the Human

Functional Genomics Project (HGFP), in which inter-individual variation of immune responses to proto-

type pathogens has been studied in several hundred healthy donors in the context of their genetics

or microbiomes (Li et al., 2016; Ter Horst et al., 2016). A similar endeavor is currently being pursued

by the Milieu Interieur Consortium (Thomas et al., 2015), and further multi-layered datasets from large

healthy cohorts have been obtained in the ImmVar project (Raj et al., 2014) as well as the CEDAR study

(Momozawa et al., 2018). Exemplary evidence that human gene expression variation can be utilized to

define the biological role of a gene emerged when studying Cystein-rich with EGF-like domains 1

(CRELD1) that is involved in T cell homeostasis. Indeed, CRELD1 gene expression levels in peripheral

circulating immune cells were associated with T cell frequencies in three independent human cohorts

(Bonaguro et al., 2020).

Here, we present the huva (human variation) approach to use the variance of gene expression in human

cohort studies as a general and distinct concept to predict the role of individual genes or groups of genes

for biological functions by integrating expression, phenotypic, and functional data layers from cohort data.

Validity and robustness of huva were demonstrated by applying the approach to genes with previously

described functions and further illustrated by predicting the phenotype of patients with STAT1-activating

mutations (AM). These huva predictions were validated by the analysis of the transcriptome of both periph-

eral blood mononuclear cells (PBMCs) and isolated cell types from STAT1 AM carriers. To facilitate access

to our approach, we implemented huva as an easy-to-use R-based library as well as an interactive webtool

with the built-in datasets of HFGP/500FG, ImmVAR, and CEDAR. huva can be applied to any cohort study

with available multi-layered data from any organ system for which gene or protein expression as well as

functional data are available.

RESULTS

huva allows comprehensive human variation analysis from several cell types

The exploration of human variation to predict and/or define the biological role of individual genes can

be best accomplished by exploiting large enough datasets that have become available for example

blood, often investigated as an easily accessible surrogate tissue and source of biomarkers for many dis-

eases (Ashton et al., 2020; Li et al., 2016; Momozawa et al., 2018; Rajewsky et al., 2020; Ter Horst et al.,

2016). The huva approach for the analysis of human natural variation is illustrated by the use of transcrip-

tomics datasets ranging from bulk transcriptome analyses of whole blood to isolated cell types (CD4+ or

CD8+ T cells, monocytes, B cells, platelets, and granulocytes) (Figure 1A and Table S1). In the huva ‘‘in

population’’ approach, two experimental groups are defined according to the value distribution of a

parameter of interest, e.g. a gene of interest (GOI). With this initial step, two experimental groups

from both ends of the distribution of the gene expression of the GOI, henceforth referred to as LOW

or HIGH, are defined (Figure 1A). In principle, depending on the data available for the cohort in the anal-

ysis and the specific scientific question, we take as input a gene of interest (GOI huva experiment),

analyze its variance, and then use its extremes to define the experimental groups (Figure S1A). For

the definition of the experimental groups of a GOI, it is initially assessed in which of the available data-

sets the selected gene is present (Figure S1A) followed by analyses of the value distribution of the GOI in

each of the datasets (Figure S1A). The LOW and HIGH groups of samples taken into the analysis are

those falling within the percentile intervals selected for the ‘‘in population’’ huva experiment and are

used for the following comparative analysis (Figure 1B). The LOW group is then compared to the

HIGH group for all available parameters of each dataset, including metadata, transcriptome, and immu-

nological or other phenotypes, if available (Figure 1B). We propose that for a specific GOI, this approach

can be used as a proxy for the functional characterization of a gene knockout (KO) in a model system

(e.g. mice) or a loss-of-function mutation in humans.
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Computationally, the huva experiment runs on standard hardware (see STAR methods for details) within a

few seconds for the GOI huva experiment calculating the results from around 2400 transcriptomic profiles

across 4 datasets and 7 cell types (500FG (Li et al., 2016; Ter Horst et al., 2016), CEDAR (Momozawa et al.,

2018), ImmVar (Raj et al., 2014) and PBMC collection (Warnat-Herresthal et al., 2020), Figure S2A). Collec-

tively, this short run-time makes the realization of huva analyses broadly applicable. In our R implementa-

tion of the approach, user-friendliness and accessibility are provided by a web-based app, which allows

easy access to the huva framework with no limiting hardware requirements. In addition to ease of use,

we also ensured flexibility. For example, users have access to all the datasets already included within

huva for the comparative analysis and can easily extend the approach also to private/new datasets with

minimal programming skills.

huva imputes gene function and phenotypes

To demonstrate the workflow of a huva experiment and validate its ability to predict biological differences

as a proxy for a potential biological function of a gene within a certain tissue or biosample,MYD88was cho-

sen as a paradigm for a well-characterized gene (Figure S3A). This gene was first described in an immuno-

logical context in the early 1990s by two independent groups as an adaptor protein that binds the TIR

domain of TLRs and consequently mediates NF-kB activation (Lord et al., 1990; Muzio et al., 1997). The

role of this protein in signaling transduction downstream TLR activation has been deeply characterized

over the last two decades within numerous cellular systems and animal models (Gamrekelashvili et al.,

2020; Kaisho and Akira, 2001; Kawai et al., 1999). Furthermore, mutation of MYD88 has been connected

to a number of human diseases, ranging from immunodeficiency to cancer (Platt et al., 2019; von Bernuth

et al., 2008; Wang et al., 2014).MYD88 is highly expressed in immune cells from healthy donors (500FG da-

taset, Figure 2A) and displays a normally distributed expression across the 95 participants included in the

transcriptomics part of the study (Figure S3A; Shapiro-Wilk p = 0.2, Figure S3B). For the huva experiment,

we defined two experimental groups, HIGH and LOW, according to the expression of MYD88 (Figure 2B).

Contrasting the full transcriptomes of these two groups revealed substantial differences, as depicted by

principal component analysis (Figure S3C). Differential expression analysis between the two groups re-

vealed around 400 differentially expressed genes (307 downregulated, 142 upregulated/|FC|>2; FC: fold

change; Figures 2C, S3D, and S3E; Table S2). In the differential expression analysis, we compare the

LOW vs. HIGH groups as a proxy for an ‘‘in population’’ loss-of-function experiment. To clarify this compar-

ison, this means genes defined as downregulated have lower expression in the LOW group compared to

Figure 1. huva allows comprehensive human variation analysis from several cell types

(A) Schematic representation of the huva framework, starting with the analysis of gene expression across multiple publicly

available dataset to (B) the basic workflow of the analysis, the comparison groups of individuals with low and high levels of

a parameter of interest. See also Figures S1 and S2; Table S1 (GOI gene of interest).
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the HIGH group and vice versa for upregulated genes. Among the differentially expressed genes, we found

NFAT5, known to be important for TLR signaling (Buxadé et al., 2012), IFIT1/2/3 (Diamond and Farzan,

2013; John et al., 2018), CXCR2, another well-known MyD88 target gene (Sabroe et al., 2005), and TLR4

and 6, two signaling molecules upstream of MyD88 activation to be downregulated in samples with low

MYD88 expression (Figure 2C).

Figure 2. huva imputes MyD88 function and phenotype

(A) MYD88 vst transformed expression profile in PBMC (500FG).

(B) MYD88 expression in the HIGH and LOW huva experimental groups (n = 10).

(C) Volcano plot of log2 fold change and negative log10 p value of the differential expression between the LOW and HIGH MYD88 huva experimental groups.

(D and E) Total cell number of total monocytes (d) and non-classical monocytes (CD14dim, CD16++; n = 10) (E).

(F) Volcano plot of log2 fold change and negative log10 p value for secreted cytokines after stimulation in the comparisonMYD88 LOW vs. HIGH, colored by

measured molecule (ELISA, n = 10).

(G) IL-6 secretion LPS stimulation for 24 h (n = 10).

(H and I) GSEA plot for the GSE22935_WT_VS_MYD88_KO_MACROPHAGE_UP signature on the ranked gene list of the huva experiment of PBMC (H) and

heatmap of the leading edge of the enrichment (I). Box plots were constructed in the style of Tukey, showing median, 25th and 75th percentiles, exact p value

is shown from unpaired two-sided t-test. See also Figures S3 and S4; Tables S2, S3, and S4.

ll
OPEN ACCESS

4 iScience 25, 105328, November 18, 2022

iScience
Article



Finding a notable overlap of differentially expressedgenes in dependency ofMYD88between our humandata

analysis and the published results from murine loss-of-function models, we investigated the immunological

phenotype of the two experimental huva groups. Here, we further exploited the 500FG dataset, not only

including transcriptome information but also paired data on cell counts for the main circulating immune

cell types as well as cytokine secretion profiles upon stimulationwith several pathogens (e.g.Candida albicans)

or pathogen components (e.g. LPS) (Li et al., 2016; Ter Horst et al., 2016). At first, looking at the total cell count

in the blood of MYD88 LOW or HIGH samples, we observed a strong decrease in the number of circulating

monocytes, which indeed appeared to be the only cellular population strongly affected by the expression

levels of MYD88 (Figures 2D and S3F; Table S3). Intriguingly, even though the total number of monocytes

was strongly affected by the expression level of our gene of interest (Figure 2D), classical monocytes, as the

largest fraction of circulating monocytes, showed only a tendency of reduced numbers (Figure S3G), whereas

both, non-classical (Figure 2E) and intermediate monocytes (Figure S3H) were most affected. Non-classical

monocytes are well-known for their pro-inflammatory phenotype (Kapellos et al., 2019) and their capacity to

migrate to inflamed tissues (Kapellos et al., 2019; Randolph et al., 2002). The role of MyD88 as a modulator

of cytokine transcription downstream of TLR or IL-1R activation is also well characterized (Akira, 2003; Cohen,

2014). A hallmark cytokine downstream of the MyD88/NF-kB axis is IL-6. Indeed, Myd88�/� mice are totally

depleted of any circulating IL-6 (Kawai et al., 1999; von Bernuth et al., 2008). Strikingly, when comparing the

secretion of cytokines from PBMC of donors in the LOW and HIGHMYD88 experimental groups, we noticed

a general reduction in the secretion of IL-6 upon exposure to several of the used stimulants in theMYD88 LOW

group with almost all other cytokine levels unaltered (Figure 2F and Table S4). Interestingly, the effect on IL-6

production wasmost prominent upon LPS stimulation (a strong canonical TLR4 antagonist, Figure 2G) (Jin and

Lee, 2008) but also downstream of other TLR ligands such as CpG (a TLR9 ligand, Figure S3I) and Pam3Cys

(TLR1 agonist, Figure S3J) (Jin and Lee, 2008). Thus, the phenotype we observe ‘‘in population’’ with the

huva framework reflects previous experimental data derived from genetic model systems.

Finally, to provide a more unbiased approach rather than the comparison with single differentially ex-

pressed genes, we curated a collection of MyD88-related gene signatures and projected them on the

ranked gene list of the differential genes from theMYD88 LOW vs. HIGH comparison sorted by fold change

in the huva experiment, with GSEA showing a strong regulation of almost all tested signatures (Figure S3K).

Among the most regulated terms, we found the signature ‘‘WT VSMYD88 KOMACROPHAGE_UP’’ (Godec

et al., 2016; Qualls et al., 2010). When investigating the leading edge driving the strong negative functional

enrichment, in agreement with a high transcriptional similarity between MyD88 KO cells and the huva

MYD88 LOW group, we found HIF1A, CCR2, or CASP8 among the most downregulated genes, all of which

are genes reportedly involved in MyD88 signaling (Figures 2H and 2I) (Qualls et al., 2010). Similarly, a pub-

lished collection of genes found to be co-expressed and/or modulated by MyD88 (Subramanian et al.,

2005) (Figures S3L and S3M) was strongly downregulated in the huva LOW group as well.

To further strengthen the validity and the biological significance of the huva approach, we performed

similar analyses for additional genes (AKT1, MAPK3 (ERK), STAT1), for which enough experimental evi-

dence for their function in immune cells is available (Hoxhaj and Manning, 2020; Manning and Toker,

2017). For each of these genes, huva uncovers - based on the variance within human populations - the

biology that was previously determined for these genes in genetic model systems (Figure S4).

Collectively, we provide evidence that human variation analysis by the huva approach can predict biolog-

ical implications and phenotypes for any GOI, generating strong hypotheses that can be further tested for

their causal relationship to an observed phenotype.

Statistical validation of the huva approach

In essence, huva compares, for example, transcriptomes derived within a human population with phenotypic

measurements from the same donors focusing on those individuals with high or low levels of parameters of in-

terest, most commonly a particular gene (GOI huva experiment). To test the validity of our approach, we per-

formed random permutation sampling (Figure 3A) with 100 random permutations assigning an equal number

of random samples to each, the HIGH and LOW group, and compared the fold change of the GOI to the true

LOWandHIGHgroups (Figures 3B andS5A).WeusedSLC12A1 as an example illustrating strongabsolute vari-

ance and high statistical significance between the LOW and HIGH groups (Figure 3B). In contrast, none of the

randomly drawn sample sets came close in terms of absolute fold change differences and significance levels.

This was similarly true for genes with low fold change differences, as exemplified forCRELD1 (Figure S5A). We
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further tested if the randomization of samples would lead to the identification of differentially expressed (DE)

genes (filteredonly byp value cut-off). Strikingly, inmostof the comparisons,we foundnoDEgenes (Figures3C

and S5B) which further supports the notion that the biology of any given gene within a population can only be

revealedby selecting those individualswithin ahuvaexperiment according to themeasuredexpression level of

the GOI being either at the lower or upper end of the expression spectrum.

Intrigued by the stark difference in the number of DE genes between random sampling and expression dif-

ference-based sampling, we tested if the sample selection might be influenced by parameters within the

Figure 3. Statistical validation of the huva approach

(A) Visual representation of the randomization experiment performed in Figures 3B, 3C, S5A, and S5B.

(B) Absolute fold change and –log10 p value for a selected gene of interest showing high variance across the dataset

(STAT1). In red the result of the huva LOW and HIGH groups, in green the result of random sampling of two experimental

groups of equal size (n = 100).

(C) Number of differentially expressed of the huva and random sampling experiments shown in b (n = 100).

(D) Schematic view of the validation experiment performed in Figures 3E and 3F.

(E) Fraction of overlapping DE genes from 1,593 huva GOI experiment performed on the 500FG dataset and the same

dataset with and in silico produced data bias.

(F) Heatmap representing the combinatorial overlap of DE genes form the 1,593 huva experiments shown in e for both,

the original and the biased datasets.

(G) Schematic view of the experiments performed in Figure 3H.

(H) GSEA statistics (NES and –log10 p value) for the ‘‘GSE22935WT VSMYD88 KOMACROPHAGE UP00 signature shown if

Figure 2G and the result for the enrichment of 1,000 randomly generated signatures of equal length on the same ranked

gene list. Box plots were constructed in the style of Tukey, showingmedian, 25th and 75th percentiles. See also Figures S5–

S9 and Table S5.
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data unrelated to biology, e.g. technical noise leading to unbalanced expression values in some samples,

which would result in the selection of the same group of samples, independently from the selected gene or

parameter. To test such a potential bias, we generated an artificial dataset based on the original dataset by

gradually introducing noise via adding expression values across the complete sample set ranging from 0 to

10% addition of the original expression values for each gene within a sample’s dataset and with a fixed

added percentage for each individual sample (Figure S6A). The result of introducing such bias is visualized

for all donors in the dataset (Figure S6B) and for individual samples (Figure S6C).

We next used the original and the biased datasets to test the influence of such bias. We restricted the anal-

ysis to a random selection of 10% of the present genes (n = 1,593, Table S5). We first asked how often a

sample falling into the HIGH group for gene A was also included in the HIGH group for gene B, which

we termed the sample overlap fraction (Figure S7A). Across the permutation of all genes included, the over-

lap of samples in the analysis was around 10% for both the LOW and HIGH experimental groups

(Figures S7B–S7E), which is essentially the overlap from the random sampling of 10 out of 95 donors in

the LOW and HIGH groups, the same percentage of samples of the two huva experimental groups in

this example, for which the mean is 10% and median 10.52% of overlap (data not shown). The analysis

on the same set of randomly selected genes, performed on the biased dataset shows a significant increase

in overlap for either the LOW andHIGH groups (Figures S7B–S7E) supporting that our original dataset does

not show such bias.

To evaluate whether the introduced bias also has an impact on the biological interpretation as defined by

DE gene analysis, we compared the DE gene overlap of the same 1,593 genes in both the original and the

biased dataset (Figure 3D). The DE gene overlap fraction was found to be moderate in the original dataset

(Figures 3E and 3F). Only for a smaller number of genes, we identified almost complete overlap, strongly

arguing for gene co-regulation and shared function as has been demonstrated in previous transcriptome

analyses (Tarbier et al., 2020). In contrast, the gene overlap fraction substantially increased in the biased

dataset compared to the original data (Figures 3E and 3F) indicating that technical noise needs to be

considered and evaluated when working with new population datasets for huva experiments to exclude

spurious co-regulation. We recommend the user to perform a similar set of tests on the new dataset

together with a conventional exploratory data analysis (e.g. PCA and hierarchical clustering) to identify

possible aberrant samples (e.g. low library complexity or RNA quality) or unexpected variance in the

data that would bias the huva experiments.

Next, we compared the original and the biased dataset concerning fold change rank statistics. Here, we

performed the GOI huva experiment on each of the 1,593 genes and correlated the obtained ranked

gene lists based on the fold changes of the gene expression for the LOW vs. HIGH comparison from

each experiment against the ranked gene lists of all other experiments (Figure S8A). Within the original

data, we obtained an overall mean of 0 for the correlation coefficient between gene ranks as expected

for the random ranking of genes while a positive mean was obtained for the biased dataset (Figure S8B).

Collectively, we provide means to test for potential hidden bias in newly generated population data, and

we demonstrate that the dataset from the HFGP does not seem to contain any bias influencing the biolog-

ical interpretation of the huva experiments presented here.

To further address that the biological findings for any given gene are not random effects within the dataset,

we addressed the biological robustness of the results on the gene level. Here, we used theMYD88 example

and the results from the linked GSEA (Figures 2H and 2I) and compared the enrichment score and p value of

the experimental signature to 1,000 randomly generated signatures of equal length (Figure 3G). Strikingly,

no randomly generated signature received an equally strong signal enrichment on the fold change ranked

gene list and only 4.6% of the random signatures showed p values lower than 0.05 (Figure 3H). This was also

true for STAT1, MAPK3 (ERK), and AKT1 (Figures S9A–S9C), further supporting that the huva experiment

extracts gene-related biology contained within population-based human variation.

Lastly, we determined the influence of the selected quantile cut-off on the results and biological interpre-

tation of a given huva experiment (Figure S9D). We, therefore, performed huva experiments with all

possible quantile cut-offs for a gene (MYD88) and evaluated the fold change and p value of the differential

expression of all other genes in the comparison between the resulting experimental groups (Figures S9E
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and S9F). The same analysis was performed using randomly selected samples for the two experimental

groups (green dots). Here, we observed that altering the quantile setting has a strong impact on both

average fold change (Figure S9E) and average p value (Figure S9F) of all genes for the LOW vs. HIGH com-

parison. Integrating both parameters revealed a bell-shaped distribution with a peak indicating the quan-

tile setting, with maximal fold change and corresponding low p value (Figure S9G). The setting selected

with these iterations also leads to the highest number of DE genes (Figure S9G), as evident from the

peak of the curve coinciding with the maximum of the DE gene curve at the top side of the graph. Choosing

a setting with a high number of DE genes for the gene of interest allows the user to have amore defined and

precise picture of the difference between the two experimental groups and thus an easier interpretation of

the results and downstream functional analysis. On the other hand, we noticed that the correlation of all

ranked gene lists between quantiles appeared almost unchanged (Figure S9H) showing that independently

from the cut-off used to define the extreme groups for the analysis, the qualitative difference between gene

expression was not changed. This shows that the selection of quantiles will not fundamentally change the

huva result, but will ease its biological interpretation. Indeed, the huva approach, performing a comparison

between two defined groups, provides an output easier to implement in the downstream analysis

compared to conventional gene-gene correlation analysis in which the difficulty to set a defined cut-off

makes the interpretation of the results more challenging. This was not only true for MYD88, but also for

several other tested genes (e.g. STAT1, CRELD1, FOXP3, data not shown). Of note, the quantile cut-off

leading to the highest number of DE genes changes for each tested GOI. This observation was not corre-

lated with the expression variance of the selected gene (data not shown).

Taken together, we demonstrate that the huva experiment is a robust approach to identify biological dif-

ferences based on natural human variation, as supported by the overlap of insight gained from in popula-

tion experiments with experimental data on genes of known function.

Large-scale huva analysis revealed a structured phenome

A fundamental characteristic of the huva ‘‘in population’’ experiment is the ease of applicability to any gene

expressed in a certain cellular population. We here decided to run a huva experiment for all 15,927 ex-

pressed genes in bulk transcriptomes derived from whole blood immune cells (Li et al., 2016; Ter Horst

et al., 2016). For each GOI huva experiment, we collected the fold change and p value for the comparison

between the LOW and HIGH groups for all genes, cell counts of circulating immune cells, cytokine secre-

tion upon stimulation, and functional enrichment of the hallmark gene sets (Subramanian et al., 2005)

(Figures 4A and S10A). We obtained a high dimensional description of the functional connection between

the transcriptome and the phenome (15,927 genes, 32,284 parameters) which can now be used to associate

any given phenotype to previously undescribed genes or to link anyGOI to new and undescribed biological

roles for further hypothesis testing (Bonaguro et al., 2020).

Manual examination of the results can give an insight into which genes are mostly related to abundance

changes in a certain cell type, for example, monocytes in blood (Figures 4B and 4C). GOI huva experiments

leading to a negative fold change for the total number of bloodmonocytes means that having a lower expres-

sion of such a gene of interest (LOWgroup) is associated with a lower total number of monocytes in the blood.

We imply in this context that the GOI has a positive contribution to monocyte numbers and their phenotype.

Among the top 20 most influential genes for monocyte abundance were ZEB2 (Scott and Omilusik, 2019;

Wu et al., 2016) and IRF9 (Lee et al., 2017; Paul et al., 2018; Platanitis et al., 2019), both predominantly ex-

pressed in monocytes and known for their crucial function in monocyte activation and differentiation.

Further, we noted PARP9, described to be involved in monocyte-derived macrophage differentiation

(Iwata et al., 2016), and MR1, a mediator of ILC activation (Meierovics and Cowley, 2016; Salio et al.,

Figure 4. Large-scale huva analysis revealed a structured phenome

(A) Graphical overview of the analysis of Figures 4, S10, and S11.

(B) Volcano pot visualizing the log2 fold change and negative log10 p value for changes in monocyte cell counts for the transcriptome-wide huva analysis.

(C) Top 20 genes most influencing the total number of monocytes according to the analysis in b.

(D) Hierarchical clustering of the GFC (group fold change) for the modules identified in the Co-Cena2 co-expression network analysis for the changes in cell

counts. The number of genes in each module are shown as bar charts.

(E and F) Network visualization of the correlation between huva experiments colored according to the defined CeCena2 modules (E) and GFC of the cellular

populations (F).

(G) GOEA of selected gene sets across all Co-Cena2 modules. See also Figure S10, Tables S6 and S8.
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2020; Ussher et al., 2016); both genes that are broadly expressed in immune cells, yet shown here to be

regulated in the context of monocyte biology. The same approach can be applied to a functional pheno-

type of interest. For example, we investigated genes most associated with interferon-gamma secretion

levels (Figures 5A and 5B). Here, we observed KLF12, a recently reported regulator of NK cell proliferation

and IFN-g production (Lam et al., 2019), or PLAC8 involved in IFN-g production in CD4+ T cells (Slade et al.,

2020). Interestingly, many genes in this list have previously not been connected to IFN-g production or

T cell activation, indicating that huva unveils novel candidate genes influencing distinct cellular functions

opening up avenues for future research directions.

The high dimensionality of the results from single huva experiments for all expressed genes makes the

manual annotation of the outcome challenging. We decided to use an unbiased approach to identify

Figure 5. Large-scale huva analysis revealed a structured phenome

(A) Volcano plot visualizing the log2 fold change and negative log10 p value for changes in IFN-g secretion after 48 h of

Phytohaemagglutinin P (PHA) stimulation in the transcriptome-wide huva analysis.

(B) Top 20 genes most influencing IFN-g secretion upon 24 h of PHA stimulation according to the analysis in b.

(C) Hierarchical clustering of the GFC (group fold change) for the modules identified in the Co-Cena2 co-expression

network analysis for the changes in cytokine secretion. The number of genes in each module are shown as bar charts.

(D and E) Network visualization of the correlation between huva experiments colored according to the defined CeCena2

modules (D) and GFC of the cellular populations (E).

(F) GOEA of selected gene sets across all Co-Cena2 modules. See also Figure S10, Tables S7 and S9.
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modules of genes sharing common phenotypes probably involved in similar molecular pathways. To this

end, we used the co-expression network analysis pipeline Co-Cena2 (Aschenbrenner et al., 2021; Oestreich

et al., 2022) recently developed for gene co-expression analysis and adapted here to use huva results as

input. As a parameter for the calculation of the correlation between individual huva experiments, we

used the product of the negative fold change and the negative logarithmic transformation of the p value

(see STAR methods section for details). In order to assign a positive score when a gene is a positive regu-

lator of a parameter of interest allowing for an easier visualization and interpretation of the results, we

changed the sign of the fold change.

In this global analysis, we included cellular composition changes of the main immune cell populations in

blood (B cells, CD4+ T cells, CD8+ T cells, monocytes, and granulocytes) and the huva experiments filtered

for the 3,000 GOI showing the highest variance across the analyzed cellular populations. The Co-Cena2

clustering algorithm identified 14 clusters of ‘‘in population’’ huva experiments with different patterns of

the modulation of the analyzed cellular populations (Figures 4D–4F and Table S6). As expected, we iden-

tified clusters specific for the myeloid (orchid, pink and maroon) and lymphoid (indianred) compartments.

Interestingly, GOEA for the genes in each cluster in the cell frequency network confirmed the specificity and

the importance of each of those for specific cell types or immunological functions (Figure 4G and Table S8).

For example, ‘‘natural killer cell mediated immunity’’ was enriched in the lightgreen module that is most

prominently associated with a change in NK cell abundance in the blood, ‘‘T cell activation’’ and ‘‘lympho-

cytes differentiation’’ were enriched in the lightblue module related to B and T cell abundance. Interest-

ingly, genes associated with ncRNA metabolic processes seem particularly important in B and T lympho-

cytes (indianred and turquoise modules). The connection between ncRNA and lymphocytes biology is still

not fully established, showcasing how huva can be employed here to shed light on important biological

processes and prioritize targets for validation experiments. Similarly, an analogous analysis for the levels

of secreted cytokines (instead of cell population abundance) also shows a stark separation of huva exper-

iments between lymphoid and myeloid compartment-associated cytokines (Figures 5C–5E and Table S7).

Furthermore, dissecting the changes by the different stimulations, we observed modules specific for the

stimulation with particular pathogens (e.g. influenza virus infection), disclosing new layers in the analysis

and opening up further investigations (Figure S10B). Similarly to the cell count network, GOEA for the

genes in each of the cytokine secretion network clusters revealed specific enrichment for terms related

to immune cell function (T cell activation/neutrophils activation) but also to common molecular processes

(DNA genomic changes/protein localization to the plasma membrane) known to be important for a coor-

dinated immune response (Figure 5F and Table S9).

Taken together, we extended the huva framework to the whole transcriptome, integrated this information

in a high-dimensional network and provide evidence of how this network enables the further assessment of

genes of unknown functions within their functionally connected phenome modules.

huva predicts the predominant monocyte phenotype of patients with STAT1-activating

mutations

As the huva analysis of the whole transcriptome can identify novel and unexpected roles of well-known genes,

we tested this approach for STAT1 (Figure S11A). Interestingly in our global analysis, STAT1 was part of the

khaki module of genes impacting predominantly monocytes (Figure S11B). Being mainly recognized as an

important transcription factor in lymphocytes (Mogensen, 2018), the fact that particularly monocytes are

affected by the disruption of STAT1 levels is a surprising novel observation. A closer look at the GOI huva

experiment for STAT1 revealed clear changes in the transcriptional program of the STAT1 LOW and HIGH

groups in the 500FG dataset, as visible in the principal component analysis (Figures 6A and S11A), which re-

sulted in a high number of differentially expressed genes (225 down, 207 up/|FC|>2; Figure S11C and

Table S10). Functional enrichment for the comparison revealed a strong inflammatory signature in STAT1

HIGH donors (Figure 6B), with a significant enrichment of terms related to interferon response, inflammatory

response, and cellular proliferation (Figures 6B and S11D; Table S11). This strong inflammatory signature is

clearly paired with a marked increase in the number of all monocyte subsets, whereas according to the initial

observation no changes were observed in any of the T cell populations (Figures 6C and S11E–S11G; Table S12,

and data not shown). Investigating the functional changes between the STAT1 LOW and HIGH groups in

ex vivo PBMC stimulation experiments showed an increased production of key monocyte-derived cytokines,

such as IL-1b (Figure S11H and Table S13). All in all, running the GOI huva experiment for STAT1 highlights a

predominant impact in monocyte biology in relation to the level of STAT1 expression.
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Next, by sampling blood from a small patient cohort we studied the actual effect of STAT1-activating muta-

tion (AM) on their transcriptome. We conducted a targeted study on three patients carrying an activating

point mutation in the STAT1 gene manifesting as an autosomal dominant chronic mucocutaneous

candidiasis (van de Veerdonk et al., 2011) (Table S14). The transcriptomes of PBMCs of the three STAT1

AM donors and three age-matched healthy controls were analyzed by differential expression analysis (Fig-

ure S12A) highlighting major differences between STAT1 AM and control samples, as displayed on a global

Figure 6. huva predicts predominant monocyte phenotype of patients with STAT1-activating mutations

(A) Principal component analysis for the transcriptome of the STAT1 HIGH and STAT1 LOW experimental groups.

(B) Volcano plot of the GSEA output (NES and p value) for the HALLMARK gene sets from the huva experiment in the

comparison STAT1 HIGH vs. STAT1 LOW, colored for categories of interest upregulated in the STAT1 HIGH group.

(C) Boxplot of the total number of circulating monocytes in the HIGH and LOW huva experimental groups.

(D) Schematic representation of the comparative analysis performed between the result of the STAT1 huva experiment

and the experimental data of patients with STAT1 AM.

(E and F) GSEA of the STAT1 AM patients’ PBMC up and down signatures on the ranked gene list of the STAT1 huva

experiment in the 500FG whole blood dataset, volcano plot of the statistical output (E) and signature mapping (F).

(G) Distribution of the gene fold changes in the comparison of patients with STAT1 AM vs. controls in purified cell types

(left) and count of genes with absolute FC higher than 2 (right).

(H and I) GSEA of the STAT1 AM patients’ PBMC up and down signatures on the ranked gene list of the STAT1 huva

experiment on CD14+ monocytes from the ImmVar dataset, volcano plot of the statistical output (H) and signature

mapping (I) Box plots were constructed in the style of Tukey, showing median, 25th and 75th percentiles, exact p value is

shown from unpaired two-sided t-test. See Figures S11–S13; Tables S10, S11, S12, S13, S14, S15, and S16.
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level by principal component analysis (Figure S12B). Interestingly, the expression of STAT1 itself appears

unchanged showing that no direct or feedback regulation of gene expression takes place owing to the AM

mutation (Figure S12C). Conventional differential expression analysis revealed 203 differentially expressed

genes (146 up, 57 down/|FC|>2, Figure S12D and Table S15). Typical inflammatory response genes such as

PI3 (Elafin - with antimicrobial function (Simpson et al., 1999)), CD36 (Park, 2014), or ALCAM (CD166, a mono-

cytes/T cell activation marker (Lyck et al., 2017; Nair et al., 2010)) were observed among the top upregulated

genes in STAT1AMPBMCs. Interestingly, also genes with immunosuppressive function, such as IL1RN, a scav-

enger receptor for IL-1a and IL-1b (Perrier et al., 2006) were upregulated, possibly as a result of a negative

feedback in the chronic inflammatory state and pointing once more at monocytes as a driving force of the

phenotype observed in these patients (Figure S12E). GOEA on the upregulated genes revealed a strong in-

flammatory signature, as already observed in the GOI huva experiment results (Figure S12F and Table S16).

The comparison of the transcriptomes from PBMC of STAT1 AM patients with the results of the huva ‘‘in

population’’ experiment for STAT1 was performed next to evaluate the overlap of the two approaches

and the predictive potential of the huva experiment in the context of a human AM (Figures 6D and

S11A). Using the differentially expressed genes from the analysis of patients with AM as a transcriptional

signature, we performed GSEA on the ranked gene list from the comparison between STAT1 LOW and

STAT1 HIGH huva groups (Figures 6E and 6F). Here, the downregulated genes in our STAT1 AM data

were also among the most downregulated in the PBMC from the GOI huva experiment in the STAT1

HIGH group (Figures 6E and 6F top). Accordingly, the upregulated genes in patients with STAT1 AM are

upregulated in the STAT1 HIGH huva experiment group (Figures 6E and 6F bottom). To further confirm

the alignment between the huva results and the phenotype observed in patients with STAT1 GOI, we

investigated the expression of the STAT1 target genes TAP2, IRF1, and IFIT1 (Figure S13A) showing

high agreement between both datasets and cell types.

To pinpoint the difference seen in PBMCs to a cell-intrinsic phenotype of the monocytic compartment, we

further analyzed the transcriptomes of purified monocytes, conventional T (T conv) cells and cytotoxic lym-

phocytes (CTLs). Confirming the result of the huva experiment, the highest fold changes were found in

monocytes when compared to the other cell types resulting in a total of 2,787 genes with an absolute

fold change higher than 2 (compared to 1,882 for T conv, and 1,681 in CTLs) (Figure 6G).

Indeed, also when assessing the STAT1 huva experiment in FACS-purified CD14+ monocytes from a

different healthy population-based dataset (ImmVar CD14) (Figure 6H), both, the patient-derived up- (Fig-

ure 6I top) and downregulated (Figure 6I bottom) signatures from STAT1 AM PBMCs were enriched in the

STAT1 HIGH vs. LOW comparison. Thus, in combination with the observed changes in the PBMC data, the

results argue for a cell-intrinsic effect of the STAT1 AM mutation in monocytes.

Taken together, our observations show for the first time the central role of monocytes in the pathophysi-

ology of STAT1 AM carriers. The huva approach elucidated the mainly affected cell types as well as clinical

manifestations of gene perturbation.

DISCUSSION

Human variation is driven by a combination of genetic and epigenetic determinants. The huva framework

provides a powerful approach to exploit variation as an intrinsic property of any large human cohort to un-

derstand phenotype or function linked to a gene of interest. By stratifying gene expression data from the

healthy 500FG cohort in a huva gene of interest (GOI) experiment for MYD88, we contrasted individuals

with low vs. high expression with respect to their transcriptomes and cytokine production capacities.

This ‘‘in population’’ experiment extracted transcriptomic alterations linked to TLR and NF-kB signaling

and phenotypic manifestations, such as reduced IL-6 secretion after LPS exposure inMYD88 LOW individ-

uals, from the human data, which had been previously suggested by complete genetic loss of MyD88 in

murine models (Akira, 2003; Kawai et al., 1999; Qualls et al., 2010). We also applied this variance-based

analysis approach to STAT1, a well-described transcription factor mediating inflammatory processes,

e.g. upon interferon exposure. In PBMCs, huva revealed a central role of monocytes as a consequence

of STAT1 perturbation. As many clinical genetic variants of STAT1 have been described, we validated

our findings within a cohort of STAT1-activating mutation carriers. We hypothesized that if natural variation

in the healthy population can predict the biological role of a gene, our approach not only would uncover

LOF phenotypes, but also reveal the phenotypic alterations for a clinically relevant activating mutation
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(STAT1 AM). The multi-layered dataset of the 500FG cohort provides the possibility to interrogate if high

STAT1 expression is linked to any alterations in the transcriptome, the abundance of circulating immune

cells, or cytokine secretion. Indeed, STAT1 HIGH individuals exhibited a stronger enrichment of signatures

related to inflammatory or interferon response than STAT1 LOW donors. They produced more IL-1b upon

ex vivo PBMC stimulation and showed enrichment of those DE-Gs derived from a patient-derived STAT1

AM vs. ctrl transcriptome comparison. Interestingly, the unexpected prediction of monocytes as the

most perturbed cell type compared to lymphocytes was also confirmed by analyzing the transcriptome

of isolated cell types from a STAT1 AM carrier. This result extends our understanding of the pathophysi-

ology caused by STAT1 AM mutations and may help to tailor better therapeutic strategies.

To accommodate the broad applicability of our approach, we provide access to the huva framework for

both the data science community and wet-lab scientists. On the one hand, we implemented huva in R

and compiled predefined environments for huva analysis (e.g. Docker containers) giving immediate and

versatile access to our framework. On the other hand, to facilitate the usage of huva by wet-lab scientists,

we designed an interactive easy-to-use interface on the FASTGenomics platform (www.fastgenomics.org)

allowing to run huva experiments without advanced programming skills (Data S1).

Beyond the technical aspects of the huva framework, a further prerequisite for the utilization of huva by the

research community is the availability of suitable human data with both gene expression data and func-

tional assays. Such studies have only recently become available, which also might explain why the concept

of human variation for example to predict loss-of-function or activating mutations of individual genes has

not been addressed earlier in population-based human data. The HFGP is certainly a prime example and

more such datasets are currently assembled that will allow utilizing the huva approach to identify unknown

human biology. We provide proof-of-principle how to use huva as a conceptually new strategy that does

not solely link genetics with gene expression, but includes environmental influences from the beginning.

Using the transcriptome as the net output from the combined effect of genetics and epigenetics on gene

expression in order to establish a link to the phenome leads to directly interpretable and exploitable in-

sights into the functional network of any GOI. Thus, multi-layered data (expression data plus phenotypic

and functional data) from large human cohort studies are an excellent starting point to propose links be-

tween gene expression and expression regulation and function. Other approaches to utilize such data

focus on the integration of multi-omic layers within such datasets in an unsupervised fashion. An excellent

recent example is MOFA2 (Argelaguet et al., 2018), a factor analysis model which provides a general frame-

work for the integration of multi-omic data with the major aim to determine latent factors across different

omics modalities that describe the variation within a given dataset and as results facilitate the identification

of major cellular states or disease subgroups within a dataset. Huva on the other hand utilizes numerous

different (multi-)omic datasets to infer the function of a gene (or a group of genes) based on extreme phe-

notypes (HIGH/LOW) across different datasets. In a sense, it is orthogonal to recent approaches such as

MOFA2.

Genetic variation observed in healthy human cohorts consists of tolerable expression fluctuations. Elimina-

tion of a factor, e.g. a GOI, from a system to study its biological role, as it is the case for a gene in a genetic

knockout model, will lead to a loss-of-function phenotype, but will also result in effects of compensatory

mechanisms (El-Brolosy and Stainier, 2017) by the functional network it is usually embedded in, which

may obscure the specific role of the GOI. Instead of complete loss by genetic removal, comparing the ex-

tremes of gene expression within its physiological range can allow for a more nuanced description of the

connected biological functions and processes. Indeed, gene expression often needs to reach a certain

threshold before manifesting in phenotypic changes (Cournac and Sepulchre, 2009; Goldbeter, 2005).

Clearly, combined with newer genetic models based on CRISPR technology that can modulate gene

expression without necessarily completely deleting a GOI (Qi et al., 2013), approaches such as huva starting

with observations in the human setting, can define new ways of causally linking gene expression to gene

function, complementing conventional approaches to build causality such as genetic models (e.g. KO

mice).

The following examples for possible application of huva show the broad use of the framework: In the

context of basic research, gene-centric scientific approaches will greatly benefit from huva and provide

a framework to explore functional phenotypes for genes of interest. Huva can then help to make informed
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decisions, to better design animal experiments and as such help to reduce the number of animal experi-

ments, a major concern for both ethical and economical reasons (Ioannidis et al., 2014; Ter Riet et al.,

2012). Data-driven approaches may embrace the concept to employ novel systematic approaches to un-

derstand the dynamics and determinants e.g. in all circulating cells of the immune system for which data

is available. Third, with respect to medicine, huva can help identify pre-determinants in our response to

perturbation for example uncovering genes whose expression is phenotypically connected to a more

potent reaction to bacterial infection (Bossel Ben-Moshe et al., 2019; Haks et al., 2017).

Currently, huva primarily uses information from studies based on circulating immune cells in the blood of

healthy cohorts (Li et al., 2016; Momozawa et al., 2018; Raj et al., 2014; Ter Horst et al., 2016). New multi-

layered datasets of large cohorts, focusing on other cell types or even specific disease states, are currently

being generated - creating the opportunity as well as a need for new avenues to explore this kind of data.

We encourage extending huva with datasets including at least around 100 donors and one additional

phenotypic or functional data layer to the transcriptome. Although one can use huva only within the tran-

scriptome layer, the strength of our tool is the seamless integration of the transcriptome with other pheno-

typic and functional data layers. When including new data, conventional exploratory data analysis should

be performed to make sure no technical bias is affecting the data. Furthermore, we provide examples (Fig-

ures 3 and S6–S8) and code (GitHub https://github.com/lorenzobonaguro/huva_reproducibility; Zenodo

https://doi.org/10.5281/zenodo.7071267) to a series of tests to ensure the consistency of the data.

New questions may be posed, such as what the context/milieu-dependent relationship between the tran-

scriptome and the phenome may be. With this scope in mind, we envision huva to be a very helpful tool for

the analysis of these new datasets and designed the R implementation to be scalable and capable of

quickly implementing new datasets. Future studies will provide more examples of the broad variety of

possible applications for the huva framework.

In conclusion, huva exploits the natural variation found in human populations to infer the relationship

between the transcriptome and its phenotypic manifestation. We used huva to uncover unknown roles

of clinically relevant mutations in STAT1 and provide compelling evidence that huva aids basic research

in hypothesis generation and experimental design. Given the versatility of the huva analysis, its implication

in various contexts and the ease of integration with pre-existing workflows, we envision that huva will pro-

vide important biological insights in many fields.

Limitations of the study

The huva approach contrasts individuals with high and low expression of a GOI and we show how this com-

parison mimics the phenotype of a GOF or LOF setting in human and mouse models. Nevertheless, huva

cannot infer per se a causal link between the GOI and the phenotype, for which further supporting exper-

imental data are required (e.g assessment of human mutations, CRISPR-Cas KO). Further, while we

described its application to the circulating immune system, the approach can be easily extended to other

organs/tissues and biological questions. Our study offers a starting point for the investigation of human

variation in healthy cohorts to explore gene function and as such opens new avenues to directly study

the functional basis of genotype-phenotype relationships as well as environmental influences.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and code should be directed to and will be fulfilled by the

lead contact Anna Aschenbrenner (anna.aschenbrenner@dzne.de).

Materials availability

This study did not generate new unique reagents.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

ImmVar GEO GSE56035

HFGP 500FG GEO GSE134080

CEDAR Array Express http://cedar-web.giga.ulg.ac.be;

E-MTAB-6666 and E-MTAB-6667

STAT1 AM RNAseq This paper EGAS00001005041 https://ega-archive.org/

studies/EGAS00001005041

Software and algorithms

Huva v. 0.1.4 This paper https://github.com/lorenzobonaguro/huva;

https://doi.org/10.5281/zenodo.7071267

Huva.db v. 0.1.4 This paper https://github.com/lorenzobonaguro/huva.

db; https://doi.org/10.5281/zenodo.7071267

DEseq2 v. 1.30.1 Love et al., 2014 https://bioconductor.org/packages/release/

bioc/html/DESeq2.html

Limma v. 3.46.0 Ritchie et al., 2015 https://bioconductor.org/packages/release/

bioc/html/limma.html

Fgsea v. 1.12.0 Korotkevich et al., 2016 https://bioconductor.org/packages/release/

bioc/html/fgsea.html

ggplot2 v. 3.3.3 R Tidyverse https://ggplot2.tidyverse.org/

CoCena2 Aschenbrenner et al., 2021;

Oestreich et al., 2022

https://github.com/MarieOestreich/hCoCena

Igraph - Louvain clustering – v. 1.2.6 Blondel et al., 2008 https://igraph.org/r/

clusterProfiler v. 3.12.0 Yu et al., 2012 https://bioconductor.org/packages/release/

bioc/html/clusterProfiler.html

TopHat v. 2.0.4 Trapnell et al., 2009 https://ccb.jhu.edu/software/tophat/index.

shtml

Rsubread v. 2.10.1 Liao et al., 2019 https://bioconductor.org/packages/release/

bioc/html/Rsubread.html

Docker desktop v. 20.10.16 https://www.docker.com/

products/docker-desktop

RRID:SCR_016445

R v. 4.0.3 http://www.r-project.org/ RRID:SCR_001905

Other

Code for reproducibility of the analysis This paper https://github.com/lorenzobonaguro/

huva_reproducibility; https://doi.org/10.5281/

zenodo.7071267

Huva web portal This paper https://beta.fastgenomics.org/a/huva
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Data and code availability

d The STAT1 AM RNA-seq data have been deposited at EGA and are available upon approval of the data

access committee as of the date of publication. Accession numbers are listed in the key resources table.

d This paper analyzes existing, publicly available data (ImmVar, 500FG, CEDAR). These accession numbers

for the datasets are listed in the key resources table.

d The source code of the huva R package has been deposited at Zenodo and GitHub and is publicly avail-

able as of the date of publication. DOIs are listed in the key resources table. Huva is distributed opens

source under GPL 3 license.

d The source code of the huva.db R package has been deposited at Zenodo and GitHub and is publicly

available as of the date of publication. DOIs are listed in the key resources table. Huva.db is distributed

opens source under GPL 3 license.

d Docker images huva.docker and huva.shiny are available on dockerhub (https://hub.docker.com/u/

lorenzobonaguro).

d The code necessary to reproduce the analysis has been deposited at Zenodo and GitHub and is publicly

available as of the date of publication. DOIs are listed in the key resources table. All the analysis in this

manuscript was performed with huva v. 0.1.4 with the companion huva.db v. 0.1.4 within a dockerized

environment.

d Huva is also available with a user-friendly interface at FASTGenomics (https://beta.fastgenomics.org/a/

huva).

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

For the transcriptome analysis of STAT1 AM patients, blood was collected from three patients and three

control subjects (4 males, 2 females, age 27–39, for details see Table S14) after informed consent at the Rad-

boud University Nijmegen Medical Centre (RUNMC, Nijmegen, the Netherlands). The study was approved

by the Institutional Review Board of the Radboud University Nijmegen Medical Centre.

METHOD DETAILS

Benchmarking huva experiments

The evaluation of the performance of the huva experiments was performed on a workstation PC (Intel Core

I7-8700K @3.70GHz, 32 GB RAMmemory, Windows 10 Pro version 2004). The huva results for each run were

calculated for all available studies (500FG, ImmVar, CEDAR, PBMC collection) and shown as cumulative

time in Figure S3. The huva GOI experiments were performed on the same set of randomly selected genes

expressed in at least one of the included datasets. The performance experiments were performedmultiple

times with different sampling of genes for the analysis obtaining similar results, one representative result is

shown in Figure S3.

Pre-processing of the publicly available datasets

500FG

Row counts, sample annotation and phenotype data (cell count and cytokines secretion) were provided by

the HFGP, transcriptome data of this study are available as GEO dataset (GSE134080). RNA-sequencing

counts were first normalized according to the DEseq2 (Love et al., 2014) pipeline, filtered for genes with

a cumulative number of count higher than 100 and vst transformed. Transformed counts were corrected

for the sex of the donor using the function provided in the limma R package (Ritchie et al., 2015). For

the use in the huva framework ENSEMBL IDs were converted to gene symbols, duplicated gene symbols

were filtered choosing the gene showing the highest variance across the samples. The final dataset in-

cludes 95 samples and 15,927 genes.

CEDAR

The CEDAR dataset was provided as a log2-transformed pre-processed expression table (http://cedar-

web.giga.ulg.ac.be). The dataset was filtered to include healthy donors only and batch corrected for
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experimental batch and sex. Duplicated gene symbols derived from translation of Illumina ProbeID were

filtered choosing the gene displaying the highest variance across the samples. Each cell type included in

the study was pre-processed independently, Finally the dataset includes 242 samples and 10,541 genes

including the expression profile of CD4+ T cell (CD4T), CD8+ T cells (CD8T), monocytes (CD14M), B cells

(CD19B), granulocytes (CD15G) and platelets (PLA).

ImmVar

The ImmVar dataset was downloaded from GEO as a pre-processed expression table (GSE56035). Dupli-

cated gene symbols were filtered choosing the gene displaying the highest variance across the samples

and the expression was log2-transformed to be used in the huva framework. The dataset includes expres-

sion profiles from CD4+ T cells (CD4T) and CD14+ monocytes (CD14M) including 499 samples and 20,231

expressed genes.

PBMC collection

The three PBMC datasets described in Warnat-Herresthal et al. 2020 (Warnat-Herresthal et al., 2020) were

batch corrected for study ID with the appropriate function provided in the limma R package (Ritchie et al.,

2015) to remove batch deriving from different experimental settings or covariates. The dataset was filtered

to include only PBMC samples from healthy donors for a total of 41 samples and 12,708 genes (dataset 1),

638 samples and 12,708 genes (dataset 2) as well as 61 samples and 12,708 genes (dataset 3).

Stepwise description of the huva experiment

The huva framework is implemented in R, the analysis in this manuscript was performed using R version

4.0.3. The huva package calculates the result of the huva experiment consecutively for all datasets included.

At first, the quantile parameter, the threshold used to define the HIGH and LOW experimental groups, was

selected. If not stated differently, a quantile of 0.1 (10%) was used for the analysis. The enrichment is then

used to define the quantiles cut-off and the two experimental groups. Differential expression analysis was

performed using the limma R package (Ritchie et al., 2015) using the experimental groups in the design

model, p-value correction for multiple testing and fold change cut-off for each experiment are reported

in the result section for each experiment separately. GSEA within the huva function is performed with

the R package fgsea (Korotkevich et al., 2016) with standard setting (1000 random permutations), the

gene rank used for GSEA is calculated according to the log2 fold change in the comparison between

the LOW and HIGH groups. The results of the huva experiment are collected in a huva_experiment R object

used as input for the provided functions to explore the output for each dataset. Statistical significance for

cell count and cytokine secretion was calculated with an unpaired two-sided Student’s T test. All graphical

output of the huva experiment are calculated with built-in functions as ggplot2 objects. The only excep-

tions are all heat maps calculated with the R package pheatmap within a separate huva function.

Statistical validation

Group sample randomization

We performed a huva experiment on a gene with high variance (SLC12A1) and one with low variance

(CRELD1), across the 500FG dataset and compared the results of this experiment with the result of the

same experiment in which the samples were randomly selected. In this experiment, the samples in the

LOW and HIGH groups were randomly selected independently from gene expression. The fold changes

and p-values for SLC12A1 and CRELD1 were then collected and analysed. For each huva experiment,

also the number of differentially expressed genes with significant p-value after Benjamini & Hochberg

correction for multiple testing is shown. The randomization of the HIGH and LOW groups was permuted

100 times.

Overlap of huva experiments results

With the aim to identify potential bias in the used dataset, we designed a series of experiments to both,

investigate this bias in the data used and to simulate the result of a huva experiment when this bias was

intentionally added to the data (biased dataset). We performed a huva experiment for several genes

and compared the results between each other on several levels: overlap of samples in the HIGH and

LOW group, DE genes, and ranked gene list. The genes used for the analysis were randomly sampled

for the 10% of expressed genes in the 500FG dataset. The huva result was calculated with both the original

huva database and an in silico-biased dataset. The biased dataset was produced adding randomly to each
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sample from 0 to 10% of the original gene expression values. The result of each huva experiment was

compared to all other results of the selected genes in the analysis.

Randomization of gene signature

To challenge the biological value of the results of the huva GOI experiment, we performed GSEA on 1,000

randomly generated signatures of an equal number of genes to the genes of the ‘‘GSE22935WT VSMYD88

KO MACROPHAGE UP’’ signature expressed in the 500FG dataset (186 genes), the GSEA was performed

with the standard setting of the huva framework using the fgsea R package (Korotkevich et al., 2016). Similar

analysis was performed also for AKT1, signature ‘‘AKT_UP.V1_UP’’ (138 genes);MAPK3, signature ‘‘GO_ER-

K1_AND_ERK2_CASCADE’’ (219 genes) and STAT1, signature ‘‘GSE40666_WT_VS_STAT1_KO_CD8_T-

CELL_UP’’ (195 genes).

Variation of quantile cut-off

To evaluate the impact of the quantile threshold in the results of the huva analysis, the huva experimentwas

performed using a quantile setting ranging from 3% to 49% with intervals of 1%. For each experiment, we

collected the median log2 fold change and Benjamini & Hochberg corrected p-value for all present genes

in the comparison between the LOW and HIGH huva experimental groups. In the calculation of the median

value of fold change and p-value, the gene of interest selected as input of the huva experiment was

removed to avoid bias on the results since the difference in expression of this gene was set by the exper-

imental definition.

Transcriptome-wide huva experiment and CoCena2 co-expression network analysis for huva

results

For the transcriptome-wide huva experiment, we performed a huva GOI experiment for all expressed

genes in the 500FG dataset. The huva results were calculated only for the 500FG datasets and collected

in separate tables for fold change and p-value and also for each of the stored parameters (genes, cell count,

cytokines secretion and hallmark enrichment). As a metric for the visualization of the results and the calcu-

lation of the co-expression network the product of the calculated log2-transformed fold change and nega-

tive log10 transformation of the p-value (Xiao et al., 2014) was used. For the calculation of the correlation

network between the huva results, we implemented the CoCena2 co-expression network analysis pipeline

(Aschenbrenner et al., 2021; Oestreich et al., 2022). As input for the network calculation we used the table of

the product of the calculated log2-transformed fold changes and negative log10 transformation of the

p-values. For the network describing the changes in blood cellular composition, we filtered for changes

in B cells, CD4+ and CD8+ T cells, granulocytes, monocytes and NK cells, and the huva experiments

were filtered for the 3000 most variable ones. For the generation of the correlation network, nodes (huva

experiments) were connected (edges) with a correlation cut-off of 0.971 for a total of 61,585 edges and

2,894 nodes. Clustering of the huva experiments included in the network was performed with the Louvain

clustering algorithm (Blondel et al., 2008) with aminimum cluster size of 10 nodes. Group fold changes were

calculated for each cell type and overlaid on the huva experiments network (Figure 4F) or merged by cluster

as heat map (Figure 4D). Similarly, for the network describing the changes in cytokine secretion, the top

3,000 most variable huva experiments were used with a correlation cut-off of 0.674 resulting in a network

with 159,827 edges and 2,943 nodes. Clustering was performed with the Louvain clustering algorithm

(Blondel et al., 2008) with a minimum cluster size of 10 nodes. For each network, the optimal correlation

cut-off was calculated according to a weighted sum of the Multicriteria Decision Aiding (MCDA) tabular

output favouring a higher R2 and number of edges/nodes but minimising the number of independent net-

works resulting from the selected cut-off (Bigaret et al., 2017). GOEAwas performed for each CoCena2 clus-

ter independently with the clusterProfiler R package (Yu et al., 2012).

RNA-seq and pre-processing of STAT1 AM PBMC samples

For the transcriptome analysis of STAT1 AM patients, blood was collected after informed consent at the

Radboud University Nijmegen Medical Centre (RUNMC, Nijmegen, the Netherlands). The study was

approved by the Institutional Review Board of the Radboud University NijmegenMedical Centre, informed

consent was obtained from all subjects. RNA-sequencing experiments were performed on PBMC samples

from 3 controls and 3 STAT1 AM patients after 4 hours of ex vivo incubation in RPMI. In the analysis of

isolated cell types one exemplary STAT1 AM patient and an age-matched control was analysed. The

first patient is a 39-year-old male who carries the STAT1 p.R274W mutation and was previously described
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(family 1 pt 3) (van de Veerdonk et al., 2011). The other patients have not yet been previously reported; the

second patient is a 41-year-old male carrier for the STAT1 p.R274Q variant and the third is a 31-year-old

male carrying the STAT1 p.D23V (Table S14). Total RNA was isolated in 800 mL of TRIzol reagent (Invitro-

gen); RNA integrity was then measured on an Agilent 2100 Bioanalyzer (Agilent) using an Agilent RNA

6000 Pico Chip according to manufacturer’s instructions (RIN>7). mRNA was consequently enriched with

the Micro-Poly(A) Purist Kit (Ambion) starting from 5mg of total RNA with two rounds of Oligo(dT) selection.

Whole transcriptome libraries were prepared using the SOLiD Total RNA-Seq Kit (STaR Kit) following the

protocol for low input amounts (Smeekens et al., 2013). Paired-end sequencing (50+25 bases) was per-

formed on a 5500XL sequencer (Life Technologies). Paired-end reads were mapped against the human

genome (hg19) using TopHat (v 2.0.4) (Trapnell et al., 2009). The count table was generated starting

from TopHat aligned .bam files with the Rsubread tool (v. 1.34.7) (Liao et al., 2019) using standard settings

for paired-end reads.

Analysis of STAT1 AM transcriptome data

RNA-sequencing counts were processed according to the DEseq2 differential expression analysis pipeline

(Love et al., 2014). Shortly, sequencing reads were normalised and rlog-transformed for visualization.

Genes showing a total of less than 100 reads across the dataset were removed due to low expression in

the dataset and to increase the calculation speed. Differentially expressed genes were calculated with a

significant fold change of 2 and a p-value lower than 0.05 after independent hypothesis weighting (IHW)

p-value correction. The design model used for the DE genes estimation includes the genotype (Ctrl,

STAT1 AM) and the experimental date to correct for the batch caused by processing the samples in two

different days as reported in Table S14. For the visualization of box plots for single genes, heat maps

and PCA the rlog counts were corrected using the function included in the limma R package (Ritchie

et al., 2015). All differentially expressed genes were used as gene signatures for GSEA (STAT1 AM UP

and STAT1 AM DOWN). For the representation of the volcano plot, the log2 fold change and p-value

were calculated by the DEseq2 model. GOEA was performed with the clusterProfiler R package (Yu

et al., 2012) using the human GO gene list for biological processes as reference (downloaded on 21/11/

2018). GSEA was calculated within the huva framework using the fgsea R package (Korotkevich et al.,

2016). In the analysis of isolated cell types from peripheral blood of control or STAT1 AM donors, kallisto

pseudo-aligned counts were normalized according to the DEseq2 pipeline and the fold change was calcu-

lated as the log2 transformation of the comparison STAT1 AM vs. ctrl for each cell type (where STAT1 AM is

at the nominator and ctrl at the denominator of the comparison). The raw data are available at EGA data-

sets (EGAS00001005041).

How to include a new dataset to huva

Wedesigned the R implementation of huva to allow easy integration of new dataset from the user. The gen-

erate_huva_dataset function takes care to correctly format the transcriptomic data and any further comple-

mentary dataset to be used with huva. The function also lets the user decide if a standalone dataset should

be generated or the new dataset should be merged with those provided with the huva.db package.

From our experience, we suggest including datasets with at least 100 donors and one additional pheno-

typic or functional data layer. When evaluating a new dataset, exploratory data analysis (Love et al.,

2016) (eg. PCA, hierarchical clustering) should be performed to identify possible unwanted sources of vari-

ation in the data or aberrant samples. We also provide in our Zenodo and GitHub repositories the code to

run the same test performed in this manuscript (Figures 3 and S6–S8).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical significance was calculated in R (v. 4.0.3) with an unpaired two-sided t-test if not stated differ-

ently. Exact p-values are reported in the figures; a p-value < 0.05 was considered significant. All data

were visualized using R (v. 4.0.3) with the packages ggplot2, pheatmap or the built-in functions of huva

(v. 0.1.4). All box plots were constructed in the style of Tukey, showing median, 25th and 75th percentiles;

whisker extends from the hinge to the largest or lowest value no further than 1.5 * IQR from the hinge

(where IQR is the interquartile range, or distance between the first and third quartiles); outlier values are

depicted individually.
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