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Abstract

This paper revisits the resonant behavior of a harmonically-forced Duff-
ing oscillator with a specific attention to phase resonance and to its relation
with amplitude resonance. To this end, the different families of resonances,
namely primary (1:1), superharmonic (k:1), subharmonic (1:ν) and ultrasub-
harmonic (k:ν) resonances are carefully studied using first and higher-order
averaging. When the phase lag is calculated between the k-th harmonic of
the displacement and the harmonic forcing, this study evidences that phase
resonance occurs when the phase lag is equal to either π/2 (phase quadrature)
or 3π/4ν.
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1. Introduction

The resonant behavior of linear systems can be characterized either with
the concept of an amplitude resonance or a phase resonance. Amplitude reso-
nance corresponds to a relative maximum in the frequency response function
whereas phase resonance is associated with quadrature between the displace-
ment and the external forcing. At phase resonance, the external forcing can-
cels exactly the damping force with the result that the resonance frequency
coincides with the natural frequency of the linear system. The difference be-
tween the two resonances remains small for weakly damped systems. Phase
resonance-based testing [1] which excites the individual modes of the system
in turn was largely exploited during the early days of experimental modal
analysis because it provides accurate estimation of the modal parameters.
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With the advent of advanced system identification techniques such as the
stochastic subspace identification method [2], phase resonance testing has
been less and less employed for linear modal analysis.

For nonlinear systems, the phase lag quadrature criterion was first ex-
tended to synchronous motions using harmonic balance in [3] and then to
arbitrary periodic motions using Melnikov analysis in [4]. These efforts trig-
gered the development of nonlinear phase resonance testing which targets
the identification of the nonlinear normal modes (NNMs) defined as periodic
solutions of the unforced, undamped system [5, 6]. Basic [7, 8, 9] and more
advanced (control-based) strategies [10, 11, 12, 13, 14, 15, 16, 17, 18] were
developed during the last decade. In this context, phase-locked loops (PLLs)
are particularly effective for tracking phase quadrature for increasing forcing
amplitudes, as first proposed in [11]. In addition, like control-based contin-
uation [10], phase control may also stabilize unstable periodic solutions.

Despite the great promise of PLLs for experimental modal analysis of
nonlinear systems, two difficulties remain for an accurate and thorough char-
acterization of nonlinear resonant behaviors. First, according to [3], the cor-
respondence between the quadrature curves identified using PLLs and NNMs
is only valid for multi-harmonic forcing. In the presence of modal interac-
tions, the discrepancy can be very important [19]. Second, nonlinear systems
can exhibit additional resonances including superharmonic and subharmonic
resonances. Even if recent theoretical [4] and numerical [20] studies investi-
gated these secondary resonances under the banner of nonlinear modes, it is
not yet fully clear how they can be identified using phase resonance testing.

To provide a solid theoretical framework for the use of PLLs in nonlinear
experimental modal analysis, the present study aims to pursue the study ini-
tiated in [21]. Specifically, we revisit the resonant behavior of a harmonically-
forced Duffing oscillator with a specific attention to phase resonance and to
its relation with amplitude resonance. To this end, the different families of
resonances including primary (1:1), superharmonic (k:1), subharmonic (1:ν)
and ultrasubharmonic (k:ν) resonances are carefully studied using first and
higher-order averaging.

The paper is organized as follows. Section 2 briefly recalls the principles
behind averaging in nonlinear dynamics. Section 3 focuses on the amplitude
and phase resonances of both a linear and a Duffing oscillator whereas Section
4 extends the investigations to different secondary resonances. In Section 5,
the findings obtained through the analytical derivations are verified using
numerical simulations. The conclusions of the present study are summarized
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in Section 6.

2. General Approach

2.1. Resonances of a Duffing oscillator
The governing equation of motion of a harmonically-forced Duffing oscil-

lator is
mẍ(t) + cẋ(t) + kx(t) + knlx

3(t) = f sinωt (1)

where m, c, k and knl represent the mass, damping, linear and nonlinear
stiffness coefficients, respectively. f is the forcing amplitude whereas ω is the
excitation frequency of period T . The natural frequency of the undamped,
linearized system is ω0 =

√
k
m

[22]. The Duffing oscillator is said to be
hardening when knl > 0, and softening when knl < 0. Only the hardening
case is studied here.

Through mass normalization, Equation (1) can be recast into:

ẍ(t) + 2ζ̄ ω0 ẋ(t) + ω2
0x(t) + αx3(t) = γ̄ sinωt (2)

where ζ̄ = c
2
√
km

, α = knl/m and γ̄ = f/m. The coefficients are set to
m = 1kg, c = 0.01kg/s, k = 1N/m and knl = 1N/m3 throughout the present
study.

If we consider the Fourier decomposition of the displacement

x(t) = A0 +
n∑

k=1

Ak sin (ωkt− ϕk) (3)

where ωk =
kω
ν

(with ν a positive integer), Ak and ϕk are the frequency, am-
plitude and phase lag of the k-th harmonic of the displacement, respectively,
then Equation (3) shows that each harmonic k may trigger a resonance if
ωk corresponds to the (amplitude-dependent) frequency of the primary res-
onance of the system. These resonances can be divided into four categories,
namely 1 : 1 primary resonance (k = ν = 1), k : 1 superharmonic resonances,
1 : ν subharmonic resonances and k : ν ultra-subharmonic resonances.

2.2. Averaging around the k : ν resonance
We consider a weakly nonlinear oscillator of the form:

ẍ(t) + ω2
0x(t) = εf(x(t), ẋ(t)) (4)
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When ε = 0, the periodic solution of (4) is written as:

x(t) = u cosω0 t− v sinω0 t (5)

where u and v are constants. When ε ̸= 0, we seek a solution of frequency
ωk such that ωk

2−ω0
2 = εΩ. The solution is expressed as in Equation (5)

but with time-dependent u and v:

x(t) = u(t) cosωk t− v(t) sinωk t (6)

We impose that the velocity should have the same form as in the case ε = 0,
i.e.,

ẋ(t) = −u(t)ωk sinωk t− v(t)ωk cosωk t (7)

Equation (7) holds if:

u̇(t) cosωk t− v̇(t) sinωk t = 0 (8)

Differentiating Equation (7) and replacing ẍ(t) and x(t) in Equation (4)
yields:

u̇(t)ωk sinωk t+ v̇(t)ωk cosωk t = −ε [f(x(t), ẋ(t)) + ωkΩx(t)] (9)

Finally, taking into account Equations (8) and (9) and solving for u̇ and v̇,
a system of first-order equations is obtained:{

u̇ = − ε
ωk

[f(x(t), ẋ(t)) + ωkΩx(t)] sinωk t

v̇ = − ε
ωk

[f(x(t), ẋ(t)) + ωkΩx(t)] cosωk t
(10)

This system has a suitable form to apply first- or higher-order averaging.
First-order averaging is performed herein using the Krylov-Bogolyubov tech-
nique [23, 24]. Higher-order averaging is based on the Lie transform algo-
rithm [24]; it was implemented by Yagasaki in the haverage.m Mathematica
package [25, 26].

x(t) is often represented using the polar coordinates r and ϕ such that
x(t) = r(t) sin (ω t− ϕ(t)) with r =

√
u2 + v2 and ϕ = atan2(−u,−v). For

conciseness, the time dependence for u, v, r and ϕ is dropped in the remainder
of this article.
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3. Primary Resonance (k = ν = 1)

Considering Equation (2), we scale the system such that ζ̄ = εζ and
γ̄ = ε3/2γ, with ζ, γ = O(1). If x =

√
εy, we obtain:

ÿ(t) + 2εζ ω0 ẏ(t) + ω2
0y(t) + εαy3(t) = εγ sinωt (11)

The forcing frequency is in the vicinity of the natural frequency of the linear
system, i.e., ω2−ω0

2 = εΩ. The displacement is expressed as:

x(t) =
√
εr sin (ω t− ϕ) = A sin (ω t− ϕ) (12)

3.1. Linear system
Applying first-order averaging to the linear system (α = 0) yields:{

ṙ = − ε
ω
(2ζ ω0 ω r − γ sinϕ)

ϕ̇ = ε
ω
(Ω+γ cosϕ)

(13)

Assuming a steady-state response, i.e., ṙ = ϕ̇ = 0, the motion around reso-
nance is governed by: {

2ζ ω0 ω r = γ sinϕ

−Ω r = γ cosϕ
(14)

The resonant behavior of a linear oscillator can be described in two dif-
ferent ways, i.e., either when the amplitude of the frequency response under-
goes a relative maximum (i.e., amplitude resonance denoted by a subscript a
herein) or when the displacement is in quadrature with the external forcing
(i.e., phase resonance denoted by a subscript p). Both cases are detailed in
what follows.

3.1.1. Phase lag at amplitude resonance
Amplitude resonance occurs when both ∂r

∂ ω
and ∂r

∂ϕ
are equal to 0. From

Equation (14), we obtain:{
∂r
∂ϕ

= γ
2ζ ω0 ω

(
cosϕ− sinϕ

ω
∂ ω
∂ϕ

)
= 0

∂r
∂ ω

= γ
2ζ ω0 ω

(
cosϕ ∂ϕ

∂ ω
− sinϕ

ω

)
= 0

(15)
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Both relations are equivalent. The second relation of Equations (14) provides
an expression for ω:

ω =

√
ω0

2−εγ

r
cosϕ (16)

∂ ω
∂ϕ

is obtained by isolating Ω in the second equation of (14) and making use
of the chain rule ∂ ω

∂ϕ
= ∂ ω

∂ Ω
∂ Ω
∂ϕ

such that

∂ ω

∂ϕ
=

ε

2ω

(
γ

r
sinϕ+

γ

r2
cosϕ

∂r

∂ϕ

)
(17)

which can be inserted in the first relation of (15):

∂r

∂ϕ
=

γ sinϕ

2ζ ω0 ω

(ω−εζ ω0 tanϕ)

(ω tanϕ+ εζ ω0)
= 0 (18)

This relationship is satisfied when the phase lag takes the form:

tanϕa =
ωa

εζ ω0

=

√
1− 2ζ̄2

ζ̄
(19)

The corresponding frequency and amplitude are

ωa = ω0

√
1− 2ζ̄2, Aa =

γ̄

2ζ̄ ω0
2
√

1− ζ̄2
(20)

It should be noted that ϕ = 0 or ϕ = π also verify Equation (18) and
correspond to the purely static and inertial responses, respectively.

3.1.2. Phase lag at phase resonance
Phase quadrature ϕp = π

2
occurs when the excitation frequency corre-

sponds to the natural frequency of the undamped system, i.e., when ω =
ωp = ω0. The amplitude at phase resonance is Ap =

γ̄
2ζ̄ ω0

2 .

3.2. Nonlinear system
First-order averaging applied to the nonlinear system (α ̸= 0) gives:{

ṙ = − ε
ω

(
ζ ω0 ω r − γ

2
sinϕ

)
ϕ̇ = − ε

ω

(
α
8

(
3r2 − 4Ω

α

)
− γ

2
cosϕ

) (21)

The steady-state solutions around the primary resonance are governed by:{
ζ ω0 ω r = γ

2
sinϕ

α
8

(
3r2 − 4Ω

α

)
r = γ

2
cosϕ

(22)
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3.2.1. Phase lag at amplitude resonance
Following the same procedure as for the linear system, we obtain:{

∂r
∂ϕ

= γ
2ζ ω0 ω

(
cosϕ− sinϕ

ω
∂ ω
∂ϕ

)
= 0

∂r
∂ ω

= γ
2ζ ω0 ω

(
cosϕ ∂ϕ

∂ ω
− sinϕ

ω

)
= 0

(23)

and
∂ ω

∂ϕ
=

ε

2ω

([
6αr

4
+

γ

r2
cosϕ

]
∂r

∂ϕ
+

γ

r
sinϕ

)
(24)

Eventually,

∂r

∂ϕ
=

4ζ ω0 ω
2 γ sinϕ(ω−εζ ω0 tanϕ)

8ζ2 ω0
2 ω4 tanϕ+ ε(3αγ2 sinϕ2 tanϕ+ 8ζ3 ω0

3 ω3)
(25)

This relation is verified when:

tanϕa =
ωa

εζ ω0

(26)

and, from (22) and (26), it is possible to derive Aa, ωa and ϕa as a function
of the forcing and the system parameters:

Aa =

√
2ω0

2

3α

(
(ζ̄2 − 1) +

√
(1− ζ̄2)2 + 3αγ̄2

4ζ̄2 ω0
6

)
ωa =

ω0√
2

√
1− 3ζ̄2 +

√(
1− ζ̄2

)2
+ 3αγ̄2

4ζ̄2 ω0
6

tanϕa =

√
1−3ζ̄2+

√
(1−ζ̄2)

2
+ 3αγ̄2

4ζ̄2 ω0
6

√
2ζ̄

.

(27)

3.2.2. Phase lag at phase resonance
Imposing ϕp = π/2 in Equations (22) yields:Ap =

γ̄
2ζ̄ ω0 ωp

ωp = ω0

√
1 + 3α

4ω0
2A2

p

(28)

from which the expressions of the amplitude and frequency at phase reso-
nance can be deduced:

Ap =

√√√√2ω0
2

3α

(√
1 +

3αγ̄2

4ζ̄2 ω0
6
− 1

)
(29)
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and

ωp =
ω0√
2

√√√√1 +

√
1 +

3αγ̄2

4ζ̄2 ω0
6

(30)

We note that Equations (28) correspond to those that would be obtained by
applying the energy balance principle [27, 28] to the NNMs of the undamped,
unforced system and neglecting higher-order harmonics. Under this latter
assumption, this means that phase resonance testing amounts to exciting
the underlying NNMs.

3.2.3. Discussion
This section has derived analytical expressions of the amplitude, fre-

quency and phase of a Duffing oscillator at amplitude and phase resonances.
Of specific interest is the difference in frequency between amplitude and phase
resonances, ∆ω = ωp−ωa:

∆ω =
ω0√
2


√√√√1 +

√
1 +

3αγ̄2

4ζ̄2 ω0
6
−

√√√√1− 3ζ̄2 +

√(
1− ζ̄2

)2
+

3αγ̄2

4ζ̄2 ω0
6


(31)

We note that the phase resonance of a harmonically-forced Duffing oscillator
is rarely discussed in the technical literature. The reason might come from the
fact that perturbation techniques do not always make a distinction between
amplitude ans phase resonances. For example, the method of multiple scales
[29] yields around the primary resonance:{

ζ ω0
2 r = γ

2
sinϕ

α
8

(
3r2 − 8ω0(ω−ω0)

εα

)
r = γ

2
cosϕ

(32)

Since the amplitude r is maximum when ϕ = π/2, amplitude and phase
resonances are predicted to occur simultaneously with:{

A = γ̄
2ζ̄ ω0

2

ω = ω0+
3αγ̄2

32ζ̄2 ω0
5

(33)

Interestingly, the multiple scales method predicts that the amplitude at res-
onance of the Duffing oscillator is identical to that of the phase resonance of
the underlying linear system.
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Getting back to Equation (31) and performing a Taylor series expansion
indicates that the frequency difference is of the order of O

(
ζ̄2
)
, as in the

linear case. For weak to moderate damping (i.e., not beyond a few percent,
which is usually the case for mechanical structures), it thus follows that phase
resonance lies in the immediate neighborhood of amplitude resonance. This is
illustrated in Figures 1a and 1b, where the phase resonance curve constructed
thanks to Equations (29) and (30) is superposed to the nonlinear frequency
responses calculated from Equations (22) for different forcing amplitudes.
Expression (31) also evidences that a hardening nonlinearity (α>0) brings
amplitude and phase resonances closer to each other, and conversely for a
softening nonlinearity.

(a) (b)

Figure 1: Nonlinear frequency responses (black) around the primary resonance of the Duff-
ing oscillator for forcing amplitudes of 0.001N, 0.005N and 0.01N and the phase resonance
curve (orange): (a) amplitude and (b) phase lag.

4. Secondary Resonances

Considering the mass-normalized equation of the Duffing oscillator (2),
we scale the system such that ζ̄ = εdζ and γ̄ =

√
εγ, with µ, γ = O(1), and

d is a positive integer. If we let x =
√
εy, we obtain

ÿ(t) + 2εdζ ω0 ẏ(t) + ω2
0y(t) + εαy3(t) = γ sinωt (34)

If ε = 0, then Equation (34) has a periodic solution y(t) = Γ sinωt with
Γ = γ/(ω2

0 − ω2). Introducing z(t) = y(t) − Γ sinωt in Equation (34) yields
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a weakly nonlinear oscillator with a form suitable for first- or higher-order
averaging:

z̈(t) + ω2
0z(t) = εf(z(t), ż(t), ωt, ε) (35)

where

f(z(t), ż(t), ωt, ε) = −α(z(t) + Γ sinωt)3 − 2εd−1ζ ω0(ż(t) + ωΓ cosωt) (36)

where the forcing frequency is close to a fraction of the natural frequency
of the linear system, i.e., ωk

2−ω0
2 = εΩ. The solution around the k : ν

resonance can therefore be expressed as:

x(t) =
√
ε (r sin (ωk t− ϕ) + Γ sinω t) = Ak sin (ωk t− ϕ) + Γ̄ sinω t (37)

where Ak =
√
εr and Γ̄ = γ̄/(ω2

0 − ω2).

4.1. 3 : 1 resonance
The first secondary resonance studied is the 3 : 1 superharmonic reso-

nance, i.e., k = 3 and ν = 1. Using Equation (34) with d = 1, first-order
averaging provides:ṙ = −ε

(
ζ ω0 r − αΓ3

24ω
sinϕ

)
ϕ̇ = −ε

(
α

24ω

(
3r2 + 6Γ2 − 4Ω

α

)
− αΓ3

24ω r
cosϕ

) (38)

Assuming a steady-state solution, ṙ = ϕ̇ = 0, we have:{
24ζ ω0 ω

α
r = Γ3 sinϕ(

3r2 + 6Γ2 − 4Ω
α

)
r = Γ3 cosϕ

(39)

4.1.1. Phase lag at amplitude resonance
As for the primary resonance, amplitude resonance for the 3 : 1 resonance

occurs when ∂r
∂ ω

= ∂r
∂ϕ

= 0:
∂r
∂ϕ

= αΓ3

24ζ ω0 ω

([
7ω2 −ω0

2

ω(ω0
2 −ω2)

]
sinϕ∂ ω

∂ϕ
+ cosϕ

)
= 0

∂r
∂ ω

= αΓ3

24ζ ω0 ω

([
7ω2 −ω0

2

ω(ω0
2 −ω2)

]
sinϕ+ cosϕ ∂ϕ

∂ ω

)
= 0

(40)
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Isolating Ω from (39), using the chain rule ∂ ω
∂ϕ

= ∂ ω
∂ Ω

∂ Ω
∂ϕ

and inserting it
in ∂r

∂ϕ
gives:

∂r

∂ϕ
=

αΓ3
(

(7ω2 −ω0
2)

ω(ω0
2 −ω2)

εζ ω0

3
sinϕ+

(
1− ε αΓ2

3(ω0
2 −ω2)

+ ε 2ζ ω0 ω
ω0

2 −ω2
1

tanϕ

)
cosϕ

)
24ζ ω0 ω

(
1− ε

(
αΓ2

3(ω0
2 −ω2)

+ 2ζ ω0 ω
ω0

2 −ω2
1

tanϕ
− α3Γ3 sinϕ2

6912ζ2 ω0
2 ω3 − ζ ω0

3 sinϕ tanϕ

))
(41)

The numerator is 0 when:

tan2 ϕ− 3ω(ω0
2−ω2)

εζ ω0(ω0
2−7ω2)

(
1− εαΓ2

3(ω0
2−ω2)

)
tanϕ− 6ω2

(ω0
2−7ω2)

= 0 (42)

Solving this equation for tanϕ and keeping only the leading term, the phase
lag at amplitude resonance writes

tanϕa =
3ωa(ω0

2−ω2
a)

ζ̄ ω0(ω0
2−7ω2

a)
(43)

Assuming further that the ratio

ω0
2−ω2

a

ω0
2−7ω2

a

≃ 4 (44)

yields:

tanϕa =
12ωa

ζ̄ ω0

(45)

Inserting this relation in Equations (39) and assuming that the static response
is constant, i.e., Γ ≃ Γ∗ = 9γ

8ω0
, provides an expression of the amplitude of

the third harmonic and of the frequency at amplitude resonance:
A3,a =

αΓ̄3
∗

2ζ̄ ω0
2
√

ζ̄2 ω0
2 +144ω2

a

ωa =

√
−c2+

√
c22−4c1c3

2c1

(46)

where 
c1 =

1728
α

c2 = −144
(
2Γ̄2

∗ +
4ω0

2

3α
− 3ζ̄2

4α

)
c3 =

(
2ζ̄2 ω0

2

3α
− 2Γ̄2

∗ − 4ω0
2

3α

)
ζ̄2 ω0

2− α2Γ̄6
∗

4ζ̄2 ω0
2

(47)
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4.1.2. Phase lag at phase resonance
For weak to moderate damping, Equation (45) shows that amplitude

resonance occurs near phase quadrature between the third harmonic of the
displacement and the forcing. The phase resonance for the 3:1 superharmonic
resonance can thus be associated with a phase lag of π/2. The averaged
equations of motion (39) become:rp =

αΓ3

24ζ ω0 ωp

rp =
√

4Ω
3α

− 2Γ2
(48)

If we assume again that Γ ≃ Γ∗, it is possible to derive a closed-form expres-
sion for A3,p and ωp: 

A3,p =
αΓ̄3

∗
24ζ̄ ω0

2 ω2
p

ωp =

√
−c2+

√
c22−4c1c3

2c1

(49)

where 
c1 =

1728
α

c2 = −144
(
2Γ̄2

∗ +
4ω0

2

3α

)
c3 = − α2Γ̄6

∗
4ζ̄2 ω0

2

(50)

Figures 2a and 2b compare the nonlinear frequency responses calculated
from Equations (39) and the phase resonance curves constructed thanks to
Equations (49) and (50). Clearly, the newly-defined concept of a phase res-
onance for the 3:1 superharmonic resonance is in excellent agreement with
the maxima of the third harmonic of the response, at least for the amount
of damping considered herein, i.e., 0.5%. Assuming small ζ̄, this observation
is also confirmed analytically by the direct comparison between Equations
(46)-(47) and (49)-(50).

In the case of a softening Duffing oscillator (α < 0), the phase lag ϕp

should be adjusted to 3π
2

in order to have a positive amplitude A3,p. This
phase lag is still consistent with Equation (45).

4.2. 1 : 3 resonance
For the 1 : 3 superharmonic resonance, i.e., k = 1 and ν = 3, and d = 1,

first-order averaging gives:{
ṙ = −ε

(
ζ ω0 r − 9αΓ

8ω
r2 sin 3ϕ

)
ϕ̇ = −ε

(
3α
8ω

(
3r2 + 6Γ2 − 4Ω

α

)
− 9αΓ

8ω
r cos 3ϕ

) (51)

12



(a) (b)

Figure 2: Nonlinear frequency responses (black) and phase resonance/quadrature curves
(orange) around the 3 : 1 resonance of the Duffing oscillator for forcing amplitudes of 0.1N,
0.15N and 0.2N: (a) amplitude and (b) phase lag.

For steady-state solutions,{
ζ ω0 =

9αΓ
8ω

r sin 3ϕ
3α
8ω

(
3r2 + 6Γ2 − 4Ω

α

)
= 9αΓ

8ω
r cos 3ϕ

(52)

4.2.1. Phase lag at amplitude resonance
Amplitude resonance occurs when ∂r

∂ ω
= ∂r

∂ϕ
= 0:

∂r
∂ϕ

= 8ζ ω0

9αΓ sin 3ϕ

((
1− 2ω2

ω0
2 −ω2

)
∂ ω
∂ϕ

− 3ω
tan 3ϕ

)
= 0

∂r
∂ ω

= 8ζ ω0

9αΓ sin 3ϕ

((
1− 2ω2

ω0
2 −ω2

)
− 3ω

tan 3ϕ
∂ϕ
∂ ω

)
= 0

(53)

We must have sin 3ϕ ̸= 0, i.e., ϕ ̸= iπ
3
, where i is an integer. Following the

same procedure as for the previous resonances gives:

∂r

∂ϕ
=

8ζ ω0

9αΓ sin 3ϕ

(
1− 2ω2

ω0
2 −ω2

)
ε9ζ ω0− 3ω

tan 3ϕ

(
1− ε 27αΓ2

ω0
2 −ω2 + ε 6ζ ω0

ω0
2 −ω2

1
tan 3ϕ

)
1− ε 27αΓ2

ω0
2 −ω2 + ε 6ζ ω0

ω0
2 −ω2

1
tan 3ϕ

−
(
1− 2ω2

ω0
2 −ω2

)(
ε 16ζ2 ω0

2

3αΓ2 sin2 3ϕ
+ ε 3ζ ω0

ω tan 3ϕ

)
(54)

The numerator is equal to 0 when:

9εζ ω0

(
1− 2ω2

ω0
2−ω2

)
tan2 3ϕ−3ω

(
1− ε

27αΓ2

ω0
2−ω2

)
tanϕ−ε

18ζ ω0 ω
2

ω0
2−ω2

= 0

(55)
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Solving this equation for tan 3ϕ and keeping only the leading term, the phase
lag at amplitude resonance can be approximated with

tan 3ϕa =
ωa

3ζ ω0

(
1 + 2ω2

a

ω2
a −ω0

2

) (56)

Assuming further that the ratio

2ω2
a

ω2
a −ω0

2
≃ 9

4
(57)

yields:

tan 3ϕa =
4ωa

39ζ̄ ω0

(58)

Inserting this relation in Equations (52) gives:A1,a =
2ζ̄ ω0

9αΓ̄

√
1521ζ̄2 ω0

2+16ω2
a

γ̄ = ∥ω0
2 −ω2

a ∥√
6α

√
(2Ω̄ + 13ζ̄2 ω0

2)2 ±
√

(2Ω̄ + 13ζ̄2 ω0
2)2 − 8

9
ζ̄2 ω0

2(1521ζ̄2 ω0
2+16ω2

a)

(59)
where Ω̄ = ω2

k −ω0
2. Unlike the 3 : 1 superharmonic resonance, the static

response cannot be assumed to be constant because the frequency varies
much faster for the 1:3 subharmonic resonance (see Figure 3a). An explicit
expression for the resonance frequency ωa as a function of the forcing γ̄ can
thus not be derived. We also note that, due to the ± sign, there exist two
frequencies satisfying (59), the greatest (lowest) frequency corresponding to
the maximum (minimum) response on the isolated branch. It is thus the
greatest frequency which is in relation with the resonance frequency ωa.

4.2.2. Phase lag at phase resonance
For weak to moderate damping, Equation (58) shows that amplitude res-

onance occurs near phase lags equal to π
6
+ iπ

3
where i is an integer. For

odd (even) values of i, r takes positive (negative) values. Considering posi-
tive amplitudes, the phase resonance for the 1:3 subharmonic resonance can
be associated with phase lags equal to π

2
, 7π

6
and 11π

6
. For π

2
, the averaged

equations of motion (39) can be transformed into:A1,p =
8ζ̄ ω0 ωp

9αΓ̄

γ̄ =
∥ω0

2 −ω2
p ∥√

3α

√
Ω̄±

√
Ω̄

2 − 32
9
ζ̄2 ω0

2 ω2
p

(60)
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The same expressions can be obtained if the two other phase lags are con-
sidered instead.

Figures 3a and 3b compare the nonlinear frequency responses calculated
from Equations (52) and the phase resonance curve constructed numerically
thanks to Equations (60). The phase quadrature curve is found to trace out
the locus of the maxima of the different isolated responses.

(a) (b)

Figure 3: Nonlinear frequency responses (black) and phase resonance/quadrature curves
(orange) around the 1 : 3 resonance of the Duffing oscillator for forcing amplitudes of 0.3N,
0.6N and 1N: (a) amplitude and (b) phase lag.

For a softening Duffing oscillator, amplitude resonance still occurs for
phase lags ϕp near π

6
+ iπ

3
except that positive amplitudes occur now when i

is odd. Thus, the resonant phase lags are π
6
, 5π

6
and 3π

2
.

4.3. 1 : 2 resonance
Using Equation (34) with d = 2, second-order averaging yields:ṙ = − ε2

2

(
2ζ ω0 r +

33α2Γ2

4ω3 r3 sin 4ϕ
)

ϕ̇ = − εα
4ω

(
3r2 + 6Γ2 − 4Ω

α

)
+ ε2

2

(
R1:2(r

2)− 33α2Γ2

4ω3 r2 cos 4ϕ
) (61)

where

R1:2(r
2) =

(
2Ω2

ω3
− 6αΓ2Ω

ω3
− 51α2Γ2

10ω3

)
r2−

(
6αΩ

ω3
+

33α2Γ2

4ω3

)
r4+

51α2

16ω3
r6

(62)
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Steady-state solutions obey:{
2ζ ω0 = −33α2Γ2

4ω3 r2 sin 4ϕ
α
2ω

(
3r2 + 6Γ2 − 4Ω

α

)
= ε

(
R1:2(r

2)− 33α2Γ2

4ω3 r2 cos 4ϕ
) (63)

4.3.1. Phase lag at amplitude resonance
Neglecting the O(ε) term in the second Equation of (63) gives an approx-

imation r0 of the amplitude r:

r0 =

√
4Ω

3α
− 2Γ2 (64)

Its derivative is:

∂r0
∂ ω

=
4

r0

(
1

12εα
− γ2

(ω0
2−ω2)3

)
ω (65)

Considering that the sinus function in the first equation of (63) is bounded
by −1 and 1, an existence condition for r is derived:

−1 ≤ − 8ζ ω0 ω
3

33α2Γ2r2
≤ 1 (66)

The second inequality is always true. r0 is thus injected in the first inequality:

4Ω

3α
≥ 2Γ2 +

8ζ ω0 ω
3

33α2Γ2
(67)

The numerical resolution in Figure 4 indicates that, if the forcing exceeds
a certain threshold, there exist two frequencies, ωinf and ωsup, which define
the domain of existence of the 1:2 subharmonic resonance. Conversely, if the
forcing is too low, the inequality is not satisfied, and the 1:2 subharmonic
resonance does not exist. Because Equation (65) shows that r0 is increasing
monotonically with respect to frequency since α > 0, r0 is thus maximum
(minimum) when ω is equal to ωsup (ωinf ), and amplitude resonance occurs
when ω = ωsup.

4.3.2. Phase lag at phase resonance
For this specific resonance, because the O(ε) term was neglected in Equa-

tions (63), phase resonance corresponds to amplitude resonance and takes
place when ω = ωsup or, equivalently, sin 4ϕa = −1. Phase resonance is thus

16



Figure 4

Figure 5: Numerical verification of the inequality (67) for a forcing of 0.8N (blue), 1N and
3N (black).
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defined for a phase lag ϕa = 3π
8
+ iπ

2
, where i = 0, 1, 2, 3, which transforms

(63) into: rp =
√

8ζ ω0 ω3

33α2Γ2

rp =
√

4Ω
3α

− 2Γ2
(68)

from which the forcing γ can be computed as a function of the resonant
frequency ωp: 

Ap =

√
8ζ̄ ω0 ω3

p

33α2Γ̄2

γ̄ =
∥ω0

2 −ω2
p ∥√

3α

√
Ω̄±

√
Ω̄

2 − 12
11
ζ̄ ω0 ω3

p

(69)

The ± sign indicates that, for a fixed forcing, there exist two possible fre-
quencies corresponding to the minimum and maximum values of Ap.

Figures 6a and 6b compare the nonlinear frequency responses calculated
from Equations (63) and the phase resonance curve constructed numerically
thanks to Equations (69). The phase resonance curve is found to trace out
the locus of the maxima and minima of the different isolated branches.

(a) (b)

Figure 6: Nonlinear frequency responses (black) and phase resonance curves (orange)
around the 1 : 2 resonance of the Duffing oscillator for forcing amplitudes of 1N, 2N and
3N: (a) amplitude and (b) phase lag.

5. Additional Higher-order Resonances

Higher-order averaging is required to obtain the resonant motions around
other k : ν resonances. For each resonance, the second relation of the gov-
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erning equations takes the form:

3r2 + 6Γ2 − 4Ω

α
= O(ε) (70)

Neglecting the O(ε) term, an approximation r0 of the amplitude r is obtained
as in Equation (64). The corresponding derivative is:

∂r0
∂ ω

=
4

r0

(
k2

3ν2εα
− γ2

(ω0
2−ω2)3

)
ω (71)

which is always positive when ω > ω0, i.e., when ν > k. If ω < ω0, the
derivative can be either positive, negative or positive then negative depending
on the value of ω and γ.

5.1. Subharmonic resonances (1 : ν)
5.1.1. Odd subharmonic resonances

These resonances occur when ν takes odd values. Considering first the
1 : 5 resonance, the governing equations at steady state are:{

2ζ ω0 = −1875α2Γ
128ω3 r3 sin 5ϕ

3r2 + 6Γ2 − 4Ω
α

= O(ε)
(72)

In this case, ∂r0
∂ ω

is always positive. Applying the same reasoning as for the
1 : 2 resonance indicates that phase resonance occurs for a phase lag equal
to π

10
+ 2iπ

5
, where i = 0, 1, 2, 3, 4. Because all these phase lags provide the

same results, π
2

can thus be chosen as the resonant phase lag. This finding
can be extended to higher odd values of ν.

5.2. Even subharmonic resonances
The governing equations of the 1 : 4 resonance are:{

ζ ω0 = −1665α4Γ2

ω6 r6 sin 8ϕ

3r2 + 6Γ2 − 4Ω
α

= O(ε)
(73)

∂r0
∂ ω

is again positive. Phase resonance occurs for a phase lag equal to 3π
16
+ 2iπ

4
,

where i = 0, 1, 2, 3, meaning that 3π
16

can be chosen as the resonant phase lag.
For higher even values of ν, the value 3π

4ν
is to be considered.

19



5.3. Superharmonic resonance (k : 1)
5.3.1. Odd superharmonic resonances

For the 5 : 1 resonance, one has:{
2ζ ω0 r =

3α2Γ5

1280ω3 sinϕ

3r2 + 6Γ2 − 4Ω
α

= O(ε)
(74)

Because the sine function is bounded by −1 and 1 and because the argument
of the square root inside r0 must be positive, the inequality

2Γ2 ≤ 4Ω

3α
≤
(

3α2Γ5

2560ζ ω0 ω3

)2

+ 2Γ2 (75)

must be verified. In the domain of existence, it may happen that ∂r0
∂ ω

be
negative, but this only occurs for large values of γ or when ω is close to ω0,
which is not consistent with the hypotheses of the averaging technique. We
can thus consider that r0 increases monotonically and that π

2
is the phase

lag which characterizes both the amplitude and phase resonances. This also
holds for higher-order odd superharmonic resonances.

5.3.2. Even superharmonic resonances
Applying second-order averaging around the 2 : 1 resonance yields:{

2ζ ω0 = −21α2Γ4

640ω3 sin 2ϕ

3r2 + 6Γ2 − 4Ω
α

= O(ε)
(76)

Contrary to other resonances, the first relation of (76) shows that there is no
direct relation between r and ϕ. In fact, numerical and analytical solutions
for the even superharmonic resonances do not match. We thus conclude that
our developments cannot be accurately predict these resonances.

5.4. Ultra-subharmonic resonances (k : ν)
5.4.1. ν > k

Fourth-order averaging is used to derive the governing equations for the
2 : 3 ultra-subharmonic resonance.{

24ζ ω0 = −297257881995
282591232

α4Γ4

ω7 r4 sin 6ϕ

3r2 + 6Γ2 − 4Ω
α

= O(ε)
(77)

Amplitude and phase resonances occur for a phase lag equal to π
4
+ iπ

3
where

i = 0, 1, . . . , 5.
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5.4.2. k > ν

For the 3 : 2 resonance,{
24ζ ω0 = − 1973735

22289904
α4Γ6

ω7 r2 sin 4ϕ

3r2 + 6Γ2 − 4Ω
α

= O(ε)
(78)

In this case, r0 does not increase monotonically since ∂r0
∂ ω

may be negative.
However, the numerical simulations in Figure 7 show that the resonance
branch exists between two frequencies which feature a phase lag equal to
3π
8
+ iπ

2
. Even though this phase lag does no longer correspond to ampli-

tude resonance, it still provides valuable information, because it locates the
extremities of the isolated response.

(a) (b)

Figure 7: Nonlinear frequency responses around the 3 : 2 resonance of the Duffing oscillator
for forcing amplitudes of 0.03N, 0.1N and 0.15N (right to left in the graphs): (a) amplitude
and (b) phase lag.

6. Numerical Validation

The analytical results in the previous sections considered the amplitude
and phase lag of the harmonic k, i.e., the harmonic triggering the k : ν
resonance. We observed that amplitude resonance was occurring near a well-
defined phase lag, allowing us to extend the concept of a phase resonance to
secondary resonances. The phase resonances of the Duffing oscillator can be
classified into two families depending on the value ϕk:

• ϕk =
π
2

(phase quadrature) when k and ν are odd;

21



• ϕk =
3π
4ν

when either k or ν is even.

Though the averaging technique did not give satisfying results for the even
superharmonic resonances, their resonant phase lag follows the above rule,
i.e., they take the value 3π

4
, as evidenced numerically in [20].

To further validate the relevance of our developments, Figure 8 represents
the nonlinear frequency responses of the Duffing oscillator calculated numer-
ically using the harmonic balance method [30] for the 1 : 1, 3 : 1, 5 : 1, 7 : 1,
1 : 2 and 1 : 3 resonances. Unlike the previous figures, Figure 8 depicts the
multi-harmonic response of the Duffing oscillator. The red dots are located
where phase resonance of the k-th harmonic occurs, i.e., ϕk =

π
2

for the 1 : 1,
k : 1 and 1 : 3 resonances and 3π

8
for the 1 : 2 resonance. We can clearly

see that the so-defined phase resonance points can also accurately capture
the amplitude resonance of the multi-harmonic response, and not only of the
k-th harmonic.

7. Conclusion

The key contribution of this paper is the analytical characterization of the
resonant phase lags of a hardening Duffing oscillator. For the k : ν resonance,
the phase lag is computed between the k-th harmonic of the displacement and
the harmonic forcing. When k and ν are odd, phase resonance occurs when
phase quadrature is achieved. When either k or ν is even, phase resonance
takes place for a phase lag equal to 3π/4ν. In almost all cases considered,
phase resonance appears in the immediate vicinity of the amplitude resonance
of the kth harmonic, at least for the amount of damping considered in this
study.

These analytical results are in complete agreement with the numerical
observations made in [20]. They thus confirm the relevance of the concept
of a phase resonance nonlinear mode (PRNM) which was defined as the
point on the nonlinear frequency response which fulfills the phase resonance
conditions. Eventually, the two papers lay down the foundations for rigorous
phase resonance testing of nonlinear systems using phase-locked loops [11]
and the subsequent correlation between numerical and experimental analyses.

Future work should generalize these results to other types on nonlineari-
ties, including softening nonlinearities, and to higher-dimensional systems.
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(a)

3:1

5:1

7:1

0.8

(b)

(c) (d)

Figure 8: NFRCs (black) and the corresponding phase resonance points (red) of the (a)
1 : 1, (b) k : 1, (c) 1 : 3 and (d) 1 : 2 resonances.
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