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Abstract 

Acoustic Black Hole (ABH) phenomenon features unique wave retarding and 

energy focusing of flexural waves inside thin-walled structures whose thickness follows 

a power-law variation. Existing studies, mostly focusing on linear aspects, show the 

deficiency of the linear ABH structures in coping with low-frequency problems, 

typically below the so-called cut-on frequency. In this paper, electrical nonlinearities 

are intentionally imposed via PZT patches over an ABH beam to tactically influence its 

dynamics through electromechanical coupling. Using a fully coupled 

electromechanical beam model, typical electromechanical coupling phenomena 

between the beam and the external nonlinear circuits, as well as the resultant salient 

nonlinear features of the system, are numerically investigated. Results show the 

beneficial effects arising from the intentional electrical nonlinearity in terms of 

generating energy transfer from low to high frequencies inside the beam, before being 

dissipated by ABH covered by a small amount of damping materials. As such, the 

effective frequency range of the ABH is broadened, conducive to low-frequency 

vibration control problems. Meanwhile, different from existing mechanical means, the 

introduced intentional electrical nonlinearity allows for flexible tuning to accommodate 

specific frequency ranges arising from different applications. 
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1. Introduction 

Acoustic Black Hole (ABH) in thin-walled structures undergoing bending 

vibration exhibits some unique features, exemplified by the phase velocity reduction of 

the flexural waves and energy focalization. Since its inception [1], ABH concept has 

been arousing intense interests in the vibration and acoustic community, which 

accentuates at an accelerating pace during the last decade as reviewed by recent papers 

[2, 3]. The design of an ABH structure is based on the tailoring of its thickness profile 

according to a reducing power-law relationship, so that the local phase and the group 

velocity of the flexural waves gradually reduce to zero when approaching the ABH tip 

where the structural thickness is near zero. This neutralizes wave reflection and causes 

high energy concentration at the ABH tip in the ideal scenario [4, 5]. Although the 

aforementioned ideal process might be affected by the inevitable residual thickness at 

the ABH tip due to the limitation in machining, the adverse effect of the truncated 

thickness can be alleviated by using a small amount of viscoelastic coating over the tip 

area [6-9]. ABH phenomena have been exploited for realizing various functionalities 

for wave manipulation and other engineering applications. In addition to vibration 

reduction of structures [10, 11], ABH-induced slow wave phenomena are shown to 

impair the supersonic structural wave components in a vibrating structure, thus 

warranting a reduced sound radiation efficiency which is beneficial for noise control 

applications [12, 13]. The ABH-induced high energy concentration has also been 

exploited to conceive efficient energy harvesting devices [14, 15]. 

ABH research started from simple 1D and 2D structures. Existing analysis 

methods include the geometrical acoustic approach [16, 17], the transfer matrix 

approach [18, 19] and energy-based semi-analytical approaches [20, 21], mostly for 

simple benchmark systems. Finite Element Method (FEM) [22, 23] is predominantly 

used for more complex structures. Meanwhile, experimental works [24-26] have also 
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been carried out on a variety of beam-like and plate-like structures. With these 

numerical and experimental attempts, predominant ABH phenomena have been 

revealed, which greatly enriched our understanding on various aspects of ABH 

phenomena. 

However, most existing analyses on ABH mainly focus on linear aspects [27, 28]. 

Though exhibiting broadband features, typical ABH effects in linear systems only 

persist above the so-called cut-on frequency, defined in relation to the ABH dimension 

and the wave length of incoming waves [22, 29]. Further reducing the frequency limit 

would require the use of exorbitantly large structures which may not be acceptable in 

practice. Therefore, how to reduce the effective frequency range of the ABH effects in 

a reasonably sized structure is seen to be a bottle-necking problem. Past attempts to 

tackle this problem include the use of extended platform over the thin part of the ABH 

structure for prolonging the ABH effect [10] and the design of helical ABH for 

increasing its effective length [30] etc. Leaving the limited improvement aside, such 

practice challenges the current manufacturing capability and compromises the 

acceptance of the structures.  

The exploration of system nonlinearity, either inherently existing in a structure or 

intentionally added, might offer a useful solution to the problem. In fact, nonlinearity 

has been the focus of investigation for a variety of mechanical and physical applications 

including nonlinear vibration absorbers [31], shock isolation systems [32], energy 

harvesters [33] and nano- and micro-electromechanical systems [34], even 

metamaterials [35]. It is well-known that nonlinear systems generate harmonics [36], 

which are multiples of the excitation frequency. This dynamical mechanism has been 

exploited since several decades to transfer energy from low to high frequencies. For 

instance, Nayfeh et al. [37] utilized the saturation phenomenon to create nonlinearity 

which in turn transfers energy from a directly-excited, problematic vibration mode to a 

higher-frequency mode. As the forcing amplitude is increased, the response amplitude 

of the directly excited mode remains constant (i.e., the mode saturates) whereas the 

response of the indirectly-excited mode increases. Nonlinear absorbers that feature 
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vibro-impacts were also developed to transfer energy between structural modes [38]. 

However, a significant challenge is the practical realization of the sought 

nonlinearity. Mechanical nonlinearities such as cables [39] and springs [40] have some 

inherent limitations. As such, the practical relevance of these designs is questionable 

for real-life applications and the lack of tuning flexibility is also seen as a potential 

problem. This is why the electrical nonlinearity was proposed recently for developing 

novel nonlinear vibration absorbers [41]. Piezoelectric shunt damping has become a 

popular technique to reduce unwanted vibrations in structural systems. The technique 

relies on the transducing capability of a piezoelectric material, i.e., its ability to convert 

part of its mechanical energy into electrical energy, which is then be dissipated by 

connecting properly tuned shunt circuits to the transducer. In addition to linear shunt 

whose performance strongly relies on a precise tuning of the electrical resonant 

frequency, Agnes and Inman [42] investigated the effect of nonlinear shunts. 

Investigations show that the bandwidth of the piezoelectric absorber could be increased; 

however, undesirable nonlinear phenomena such as quasiperiodic and chaotic motions 

are also generated. Along the same lines, Richard et al. utilized continuous switching 

of a piezoelectric shunt to realize a nonlinear absorber [43]. Moreover, inspired by the 

nonlinear piezoelectric shunt technique [44-46], nonlinear digital oscillators were used 

on the uniform metamaterial beam for broadband micro-vibration attenuation [47]. 

Despite these efforts, there has been clearly a lack of effort made on ABH 

structures in view of drawing benefit from intentional nonlinearities. There exist only a 

few published papers on the topic, among which Denis et al. investigated the effects of 

the geometrical nonlinearities using a model based on a Von Karman plate [48], which 

suggest that possible geometrical nonlinearities inside the structures, due to the 

amplified large vibration amplitude with the high energy concentration area, are 

definitely present and affect the expected ABH effects [49]. Indeed, high amplitude 

vibration typically produces the coupling between the out-of-plane (flexural) and in-

plane (longitudinal) motion of the structure, which in principle can lead to energy 

transfer between different frequency ranges. But the ABH wedge has to be long enough 
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to induce noticeable geometrical nonlinearities, which is also seen as a limitation. 

Afterwards, contact nonlinearity was considered on an ABH beam. In particular, a 

vibro-impactor was used as a mean to generate nonlinearities in an ABH beam to create 

effective energy transfer effects [50]. The expected outcome of the process is to realize 

energy transfer from low to high frequencies, thereby enhancing the passive damping 

effect of the ABH beam at low frequencies and achieving vibration attenuation [51, 52]. 

However, mechanical nonlinearities through vibro-impact are not always easy to 

control. Alternatively, nonlinearities through nonlinear electrical shunts may potentially 

offer an alternative to overcome this limitation. The tuning flexibility it offers would 

allow for tactic design of the shunts to cater for particular structural modes in specific 

frequency ranges. However, nothing has been reported in the context of ABH structures. 

It remains unclear whether the idea is feasible, and if so, what are the nonlinear features 

of the system and how they will impact the inherent physical process pertinent to ABH 

phenomena. 

Motivated by the above, this paper targets a two-fold objective: (a) Using an 

improved semi-analytical electro-mechanical coupling model which allows the 

consideration of nonlinear shunt circuits annexed to a PZT-coated ABH beam, to carry 

out systematic analyses on the associated nonlinear behaviors of the coupled ABH 

system in order to explore the nonlinear electromechanical coupling characteristics of 

ABH beam; (b) to understand the underlying mechanisms of energy transfer caused by 

nonlinear electro-mechanical ABH beam to realize enhanced and broadband ABH 

effects. Besides, analyses are also conducted to understand the effects of major system 

parameters form the system coupling and energy transfer perspectives, so as to provide 

useful design and optimization guidelines to maximize the low-frequency benefit of the 

ABH. 

The rest of the paper is organized as follows. An improved nonlinear electro-

mechanical ABH model based on the previous work is first presented. Analyses on the 

coupled ABH system are then conducted to understand the influence of PZT layout on 

the electro-mechanical coupling strength, alongside a brief discussion on the selection 
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of linear circuit parameters. Next, numerical analyses are conducted to reveal the 

associated nonlinear behaviors of the system, explore the broadband vibration reduction 

and understand the underlying physical mechanisms governing the energy transfer 

process. Moreover, the effects of different system parameters are also studied. Results 

show the electromechanical coupling, albeit relatively weak, can still entail rich 

nonlinear phenomena in the ABH beam, including modal hardening and the generation 

of high-order harmonics. Analyses show two dominant energy transfer paths from low 

to high frequencies within the ABH beam as well as between the mechanical and 

electrical components, like a nonlinear energy sink. These two energy transfer paths 

collectively enhance the passive damping effects of the ABH beam at low frequencies 

along with an enhanced vibration attenuation. Influences of various system parameters 

on the expected nonlinear process pertinent to the enhanced ABH effects are discussed 

to guide the design of the nonlinear shunts. 

2. Theoretical Model 

Fig. 1. A beam with symmetrical ABH power-law profiles and uniform platform. 

As shown in Fig. 1, the system under investigation consists of a beam undergoing 

flexural vibration subject to a point force excitation f(t) at xf. The beam, with a constant 

width b, is composed of an uniform portion with a constant thickness 2hu and an ABH 

portion with variable power-law profiled thickness (2hb) from xu to l, i.e. hb(x)=β(L-x)m, 

followed by an extended platform with uniform thickness h0 till L, with L denoting the 

total length of the beam. Besides, piezoelectric patches and viscoelastic damping layers, 

of constant thickness hp and hd, respectively, are symmetrically installed over the top 
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and bottom surfaces of the beam. The whole system is therefore symmetrical with 

respect to the mid-line of the beam. Both ends of the beam are elastically supported by 

a rotational spring and a translational spring, the stiffness of which can be adjusted to 

mimic various boundary conditions. Here, a cantilever beam can be simulated by 

assigning sufficient large values to k10 and k20 for the uniform end, and setting k1L and 

k2L to 0 at the free end of the ABH beam as detailed in [21, 53]. 

In our previous paper [54], we have proposed a fully coupled electromechanical 

model based on Timoshenko ABH beam with PZT patches and a linear shunt circuit 

via Rayleigh-Ritz approach. Upon decomposing the out-of-plane displacement, w(x, t), 

and the rotation angle, θ(x, t), of the beam into a set of assumed admissible shape 

functions (modified trigonometric functions with supplementary boundary smoothing 

terms as detailed in [54]), the corresponding temporal coordinates (packed into two 

unknown vectors a(t) and b(t)), the kinetic energy, potential energy and the work done 

by the external force f(t) and electrical loading can all be mathematically expressed to 

form the Lagrangian of the system. Using Lagrange’s equations, we can get the fully 

coupled electromechanical equations, cast into the following form: 
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 )()()()( 21 tqtvCtt eq =⋅+⋅+⋅ bΘaΘ TT  (3) 

where M and K with subscripts stand for different components which form the global 

mass matrix and stiffness matrix. Similarly, Θ is the electromechanical coupling matrix 

and Ceq the capacitance of the PZT equivalent circuit, the electromechanical coupling 

in the system is ensured via the electrical voltage v(t). T denotes the transpose of a 

matrix. Details of these matrix components are provided in our previous paper [54]. 

As a further simplification for nonlinear solution, the above formulation based on 

Timoshenko theory is simplified to a Euler-Bernoulli model by neglecting the cross-
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sectional rotational inertia and shear deformation of the beam. In the above formulation, 

any external circuit can be connected to the PZT patches as part of the whole electro-

mechanical system, including both linear and nonlinear shunts. In the present case, a 

nonlinear oscillating circuit, including a cubic nonlinear capacitance, is used as shown 

in Fig. 2, governed by: 

 )(1)(1)()()( 3 tq
C

tq
C

tqRtqLtv
nleq

e ⋅+⋅+⋅+⋅=   (4) 

where Le is the inductance, R is the resistance and Cnl is the nonlinear capacitance of 

the external circuit. 

 

Fig. 2. Schematic diagram of external nonlinear circuit. 

The fully coupled electromechanical ABH model with external nonlinear circuit 

can then be written in the following matrix form: 
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In Eqs. (1) to (3), the damping of the beam and that of the damping layer are 

considered through introducing complex Young’s modulus. This leads to complex K 

matrix shown in the above equations. Conversion is made to find the equivalent viscous 

damping for computational purposes. 

In the subsequent numerical analyses, frequency domain solution is obtained using 

Harmonic Balance Continuation method [55], coupled with a continuation strategy, 
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proven to be effective for solving multi-degree-of-freedom nonlinear problems. The 

periodic components a(t), q(t) and f(t) are approximated by Fourier series truncated to 

the NH
th harmonic as: 
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where si and ci represent the vectors of the Fourier coefficients related to the sine and 

cosine terms of the ith harmonic, respectively. These coefficients are gathered into the 

vectors to obtain the equations of the harmonic coefficient: 
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The temporal coordinate of the beam displacement, the electrical charge and the 

external force are recast into a more compact form as: 

 Htt aQa ⋅= )()(  (12) 

 HqtQtq ⋅= )()(  (13) 

 Htt fQf ⋅= )()(  (14) 

where Q(t) is a vector containing the sine and cosine series as [1 sinωt cosωt … sinNHωt 

cosNHωt]. Corresponding velocities and accelerations can also be defined accordingly. 



10 
 

Substituting the displacement, velocity, acceleration and force terms into Eq. (5) 

and using Galerkin procedure yield the equations of motion expressed in the frequency 

domain, written in a more compact form as: 

 0
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where A is the matrix describing the linear dynamics. aH, qH, and fH are nonlinear, which 

need to be obtained by the alternating frequency/time-domain (AFT) technique. 

Newton-Raphson procedure is taken to correct the nonlinear equation solution. 

Besides, in the present work, the time domain solution is obtained by Newmark 

method, which is widely used in solving the nonlinear problems. Details on these 

numerical treatment are described in [56]. 

3. Numerical Analyses 

An electro-mechanical cantilever ABH beam is numerically investigated, with its 

material and geometrical parameters tabulated in Table 1. The ABH beam is subject to 

a harmonic point force excitation of 1N in amplitude at the point xf =0.1m on the 

uniform portion. Different observation positions on the beam (either on the uniform 

portion or the ABH portion) are used for structural response assessment. Calculations 

conducted using 16 decomposition terms plus axillary terms are shown to be enough to 

ensure converged results within the entire frequency range of interest investigated in 

this paper. 
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Table 1. Material and geometrical parameters of beam, PZT and electrical shunt 

Material parameters Geometrical parameters 

Beam 

Density: ρb=7800kg/m3 

Damping loss factor: ηb=0.005 

Elasticity modulus: Eb=210GPa 

Damping 

Density: ρd=950kg/m3 

Damping loss factor: ηd=0.5(case-specific) 

Elasticity modulus: Ed=5GPa 

PZT 

Density: ρp=7600kg/m3 

Damping loss factor: ηp=0 

Elasticity modulus: Ep=132GPa 

Piezoelectric stress constant: e=-3C/m3 

Dielectric constant: εs=2.8×10-9F/m 

Electrical shunt 

Inductance: Le=1.895H (case-specific) 

Resistance: R=50Ω 

Beam 

β=0.1  

m=2 

b=0.05m 

xu=0.25m 

l=0.45m 

L=0.5m 

hu=6.25mm 

h0=0.5mm 

Damping 

xd1=0.48m 

xd2=0.5m 

hd=0.5mm 

PZT 

xp1=0.42m 

xp2=0.48m 

hp=0.5mm 

 

3.1 Coupling characteristics of the ABH beam with linear/nonlinear shunts 

Numerical examples are given in the following sections to systematically illustrate 

the electromechanical coupling characteristics of the ABH beam with the shunted PZT 

and damping layers in different cases: without electrical shunts; with linear RL 

(resistance and inductance) oscillating circuit and with nonlinear circuit that includes a 

nonlinear capacitance on the top of the linear circuit. 

A commonly used metric to measure the effective range of the ABH effects is the 

cut-on frequency or the characteristic frequency of an ABH structure, denoted by fc and 

defined as [54]: 

 
b

bu
c

E
l

hf
ρ

π
12

2
ABH

2=  (16) 



12 
 

where lABH denotes the length of the ABH portion, including ABH portion with variable 

power-law profiled thickness and the platform with a uniform thickness. In the present 

case, the cut-on frequency of the beam is 940 Hz. The ABH beam with PZT and 

damping layers with open circuit contains seven modes below 2000 Hz. The natural 

frequencies as well as the corresponding modal shapes of these modes are shown in 

Fig.3. Note the white background represents the uniform portion of the ABH beam, and 

the shadowed ones represent the ABH portion. 

 

Fig. 3. Modal shapes of the first seven modes below 2000Hz. 

Figure 3 shows that the ABH portion undergoes strong oscillations with the 

corresponding amplitudes greatly exceeding that of the uniform portion, especially for 

higher-order modes. This shows strong energy concentration around the ABH tip, 

typical of the ABH effects and conducive to energy dissipation. Note the fifth mode at 

993.5Hz slightly exceeds the cut-on frequency of the structure (940Hz), starting from 

which systematic ABH effects can be expected. Therefore, we choose the fourth mode 

as the design and analysis target in the subsequent analyses. The fourth mode shape 

diagram shows that the beam deforms significantly within the area 420-480mm where 

piezoelectric patches are placed. This arrangement is expected to generate strong 

electro-mechanical coupling between the PZT and the host beam. 
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(1) Effect of ABH beam with linear circuit 

The electro-mechanical coupling strength, measured in terms of how a specific 

structural mode is affected, can be quantified using an electromechanical coupling 

factor k, defined as [41]: 

 
sc

scock 2

22
2

ω
ωω −

=  (17) 

where ωoc and ωsc are the angular natural frequencies of a given mode of the structure 

when the piezoelectric transducer is open-circuited and short-circuited, respectively. 

 

Fig. 4. Electromechanical coupling factors of the first seven modes below 2000Hz. 

Figure 4 shows the variation of k for the first seven modes below 2000Hz. Indeed, 

the current arrangement leads to a maximum k for the fourth mode, which justifies the 

installation location of the PZTs in the present area to effectively alter the fourth 

structural mode. Targeting the frequency of this structural mode, the corresponding 

linear RL resonant shunt yields the optimal inductance value of around 1.895H, 

determined by [44]: 

 2
1

oceq
e C

L
ω

=  (18) 

Using a sine sweeping excitation with an amplitude of 1N, Fig. 5 shows the 

displacement response of the ABH beam with and without optimal linear RL circuit. 
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The displacement values are calculated in dB, namely 20log10(Displacement). While 

informing on the general dynamics of the system, the comparison curves in Fig. 5 also 

show typical dynamic absorber phenomenon. As expected, the local attenuation of the 

resonant peak requires a precise tuning of the electrical shunt parameters, namely the 

electrical resonance has to be tuned to the open-circuit natural frequency ωoc. No 

noticeable changes can be observed on other untargeted and lower-order resonances. 

This alludes to the need of adding a nonlinear cubic capacitance on top of the linear RL 

circuit to better promote ABH effects. 

 

Fig. 5. Comparison of beam displacements placed PZT and damping layers without electrical 

shunt and with linear shunt. 

(2) ABH beam with nonlinear circuit 

Having demonstrated the deficiency of the linear RL oscillating circuit in 

accommodating vibration problems via ABH effects, we now add a nonlinear 

capacitance Cnl=1×10-22C3V-1 to the linear electrical shunt used before. A good 

understanding on the nonlinear features of the coupled system will also be beneficial 

for the subsequent analyses in views of helping achieve enhanced ABH effects in a 

broader frequency range. 
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Fig. 6. Comparison of electrical charge amplitudes with linear shunt and with nonlinear shunt, 

in which the multiple solution region is marked between red dash lines. 

Figure 6 shows the effect of the intentional electrical nonlinearity on the amplitude 

of the electrical charge q collected from the PZT patch. Several typical nonlinear 

phenomena are noteworthy. The first is the hardening phenomenon due to the cubic 

nonlinear capacitance, reflected by an increase in the resonance frequency of the 

electrical resonance peak in the circuit, which bends to higher frequency to form a 

detached resonance curve (DRC), namely a branch. One can even observe the merging 

of DRC with the neighboring higher-order resonance peak, which leads to a significant 

increase of the fifth resonance peaks in the charge curve. Meanwhile, the use of 

nonlinear capacitance in the shunt also affects the dynamic absorber effect over the 

fourth peak due to the detuning effects from the nonlinear stiffness. As a result, the 

amplitude between the fourth and the fifth resonance peaks (from mechanical system) 

increases compared with the case with the linear shunt. The nonlinear stiffness-induced 

bending and the branching out of the fourth mode form a high-energy frequency range 

within which partial energy transfer might be expected (to be confirmed later). The 

second salient feature, also typical and common to nonlinear systems, is the existence 

of multiple solutions at some frequencies (the frequency range is marked between the 

red dash lines), some of which are unstable. Stability changes occur through 

bifurcations (in this case, fold bifurcations), which indicate a qualitative change in the 

dynamics of the system as system parameters are varied (in this case, the forcing 
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frequency) [57]. Whether the system is on the high- or low-amplitude branch depends 

on its initial state. Finally, the amplitudes of the first four peaks undergo obvious 

reduction, suggesting a possibly reduced energy return from the mechanical system and 

an amplified low-frequency damping effect in the nonlinear shunt. Therefore, through 

the use of nonlinear capacitance, the electrical shunt exhibits hardening phenomenon 

near its resonant frequency, energy reduction at lower-order mechanical resonant 

frequencies alongside a possible energy transfer from low to high frequencies. This will 

be further confirmed by subsequent analyses. 

We now examine the corresponding changes in the mechanical system, by 

analyzing the displacement response of the beam and the generation of higher-order 

harmonics respectively. 

(a) (b)  

Fig. 7. Comparison of beam displacements with linear shunt and with nonlinear shunt: (a) 

overall response within 2000Hz, in which the blue dotted box marks a nonlinear loop; (b) 

Enlarged view of the blue dotted box in Fig. a, the loop marked by blue dash lines. 
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Fig.8. Enlarged view of beam displacement without shunt, with linear shunt and with 

nonlinear shunt for the first four modes. 

Similar to the charge signals, due to the nonlinear capacitance, the linear resonant 

shunt-induced dynamic absorber effect (reflected by the split of the fourth resonance 

peak) disappears. In addition, some nonlinear phenomena also appear on the beam, the 

most obvious of which is that the bended and detached resonance curves (DRCs) 

observed in Fig. 6 also appear in Fig. 7 as an isolated loop in the frequency response 

curves (FRCs) around the fifth peak. The DRCs manifest as a result of multi-valuedness 

in the FRC [36]. A closer examination shows that the loop region (magnified in Fig. 7b 

and marked by the same red dash lines), from 1000-1100Hz, coincides exactly with the 

unstable multi-solution region of the branch on q, observed in Fig. 6. This means that, 

in the case of harmonic excitation and provided that the system response is 

predominantly harmonic at the excitation frequency, multiple solutions may appear in 

the steady-state amplitude responses. In addition, we can see in the enlarged views (Fig. 

8) that, the first three resonance peaks of the beam displacement response also move, 

albeit slight, to higher frequencies, and the amplitude of the first and second resonance 
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peaks decrease. Although the phenomenon is not as obvious as in the circuit itself due 

to the weak electro-mechanical coupling, the use of nonlinear capacitance in the shunt 

seems to lead to an impaired low-frequency vibration of the ABH beam. Compared 

with the cases without electrical shunt, the deployment of the nonlinear circuit only 

results in slight resonance peak reduction. 

 

Fig. 9. Comparison of the third harmonics of beam with linear shunt and with nonlinear shunt, 

the lower abscissa represents the excitation frequencies, and the upper abscissa represents the 

corresponding third harmonic frequencies, the natural frequencies of linear system are marked 

by the blue dotted lines. 

Figure 9 shows the effect of the electrical nonlinearity on the third harmonic in the 

mechanical system. In the figure, obvious nonlinear phenomena appear. Firstly, 

compared with its linear counterpart, all of the first four resonance peaks produce 

obvious third harmonics, which should be accompanied by an energy increase in the 

high-frequency range. Secondly, similar to the electrical charge signals, near the fifth 

peak, other nonlinear features such as modal hardening and bridging can also been 

observed. More specifically, a rather flattened and wide-band high-energy region 

between the fourth and the fifth resonances also appear, in accordance with the bending 

of the fourth resonance peak towards higher frequency to form a branch, already shown 

and discussed in Fig. 6. This means that not only obvious third-order harmonics of the 

resonant peaks are produced, but also obvious harmonics between the two, alongside 

energy transfer. 
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As well known, the hardening phenomenon and the generation of harmonics are 

typical nonlinear phenomena, which can reflect the strength of nonlinearity to a certain 

extent. Now, we examine the corresponding changes of the modal hardening 

phenomenon and the third-order harmonic respectively by changing the nonlinear 

capacitance value to alter the strength of the nonlinearity. As shown in Figure 10, we 

added a third-order harmonic curve with a nonlinear capacitance Cnl=1×10-20C3V-1 

(dark grey dash line), which helps us understand the effect of nonlinearity on the system. 

 
Fig. 10. Comparison of the third harmonics of beam with different nonlinear capacitances.  

The bending degree of the circuit frequency ∆f is marked by the red dotted lines; W is the 

integral area between the third harmonic curves of the nonlinear system and its linear 

counterpart, marked by the shadowed region. 

We can see in Fig. 10 that although a weaker nonlinearity with Cnl=1×10-20C3V-1 

can still generate the visible hardening phenomenon, the resultant DRC is compromised, 

definitely not significant enough to bridge with the higher-order resonance peak to 

generate the wide-band high-energy region between the fourth and the fifth resonances 

as the case with Cnl=1×10-22C3V-1. This would also limit the energy transferred through 

harmonics (to be confirmed later). As the nonlinearity increases, not only the hardening 

phenomenon becomes more obvious, but also the amplitude of the third harmonic of 

the beam increases, the nonlinear phenomena are same as described in Figure 9. 

Two indicators are defined to measure the strength of nonlinear phenomena. As 

∆f 
W 
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shown in Fig. 10, the first quantifies the hardening degree in the nonlinear system, 

described by the frequency shift Δf= fq(nonlinear)-fq(linear), where fq(linear) and 

fq(nonlinear) are respectively the electrical resonance frequencies with linear shunt and 

nonlinear shunt. The second one is a measure of the overall level of the third harmonics 

carried by the higher-order harmonics, which is defined as the integral area between the 

third harmonic curves of the nonlinear system and its linear counterpart, which can be 

understood as an indicator of energy transferred from the fundamental waves to the 

third harmonics, as marked by the shadowed region W in Fig. 10. The variation of Δf 

and W with the nonlinear capacitance value is respectively shown in Figs. 11(a) and 

11(b). It can be seen that both parameters, Δf and W, follow very similar variation trends, 

increasing with nonlinearity strength (decreasing capacitance value). In another word, 

the greater the nonlinearity, the greater the degree of resonant peak bending, and the 

stronger the energy transfer from the fundamental waves at low frequencies to the third 

harmonics at higher frequencies, as expected. The observation also points at the 

possibility of manipulating the energy transfer through a proper tuning of the nonlinear 

capacitance, which is easier to achieve than mechanical nonlinearity. It is also expected 

that the degree of the nonlinearity also increases with the excitation level so that similar 

changes in ∆f and W could also be induced. 

(a) (b)  

Fig. 11. Comparison of (a) ∆f and (b) W with different nonlinear capacitances. 

The above analyses suggest two possible mechanisms to realize low-to-high 

frequency energy transfer: through the formation of a branch/bridging of resonance 

modes as a result of hardening and through the generation of higher harmonics. The 

latter seems more significant than the former, which in principle might take place in 



21 
 

nearly entire frequency band to different extent. This expected energy transfer process, 

in relation to its impact on ABH phenomena will be discussed in detail hereafter. 

3.2 Energy transfer and enhanced ABH effects 

Numerical examples are analyzed to confirm the aforementioned energy transfer 

phenomena caused by nonlinear shunt and the benefit they bring about in achieving 

enhanced ABH effects in different frequency bands. 

(1) Energy transfer from low-to-high frequencies 

Harmonic forcing at different frequencies (targeting the selected modes of the 

system) is applied on the ABH beam. Time-domain response of the beam is computed. 

After the response reaching a steady state, the force excitation is stopped to trigger free 

vibration with decreasing amplitude. Fast Fourier transform will then be performed on 

the entire response signal to obtain the corresponding frequency-domain response, 

which can directly inform on the high-order harmonics (not only the third harmonics). 

The rationale behind is to produce a free vibration response which is initially dominated 

by one targeted mode and examine how the one-mode dominated energy could possibly 

be transferred to other frequencies in a free vibration regium. Note that while keeping 

the inherent material damping of the beam, the damping loss factor ηd of the damping 

layers is set to zero in order to better show the phenomenon of energy transfer more 

clearly before it is dissipated later when the damping of the damping layer is added. 

Following the above procedure, the corresponding frequency spectra of the system are 

obtained. 

(a) (b)  
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(c) (d)  

Fig. 12. Comparison of beam displacement spectra under single-frequency excitation forces 

with different frequencies: (a) 76.03Hz; (b) 149.5Hz; (c) 405.5Hz; (d) 632.2Hz. 

In the present case, the ABH beam is successively excited at each of the first four 

natural frequencies (determined for the linear system) with limited duration. Note they 

are all below the cut-on frequency of the ABH (Eq. (16)). The free response spectra 

corresponding to the four cases are shown in Figs.12, in comparison with their 

respective linear counterparts. Note the junction between the white and the shadow 

regions corresponds to the ABH cut-on frequency, which is considered as a frequency 

barrier for producing systematic ABH effects. It can be seen that, irrespective of the 

excitation frequency, high-order harmonics alongside other rather broad band energy 

appear when the nonlinear capacitance is added in the circuit. Focusing more on Figs. 

12(a) and 12(b), due to the higher vibration level dominated by the low frequency 

modes, a series of high-order harmonics appear more obviously. This causes an increase 

of vibration level at higher frequencies alongside an amplitude reduction of the low-

frequency peaks. In Figs. 12(c) and 12(d), due to the higher excitation frequency, there 

are fewer high-order harmonics within 2000Hz. Nevertheless, it still leads to an 

increase of high-frequency energy and a decrease at low-frequencies. It is relevant to 

note in Figs.12(a-c) that, although the peak energy at and before the excitation 

frequency is all reduced to some extent, most of the dominant higher-order harmonic 

frequencies are still below the cut-on frequency of ABH beam. Only the last case (Fig. 

12(d)) allows meaningful and cross ABH barrier energy transfer that can be directly 

related to ABH effect. 
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The above analyses show that, the introduction of the electrical nonlinearity 

successfully generates broadband energy transfer from low to high frequencies, which 

is manifested by a decrease of low frequency vibration and an increase of high 

frequency energy. This completes and enriches the first step of the ABH process in 

terms of energy transport, namely a frequency domain energy transfer in addition to the 

spatial energy transport ensured by the ABH thickness variation. As the second ABH 

process, the increase of the high-frequency vibration energy in the system is expected 

to be dissipated by the damping of the coating layers, which is not considered in the 

above discussion. To verify this, the damping module is activated by considering its 

damping loss factor ηd. Figure 13 shows the spectra corresponding to Fig. 12(d) with 

and without damping of the coating layer over the ABH tip. It can be seen that with 

damping ηd, the amplitudes of major modal response peaks are further reduced. More 

interestingly, in the high frequency region above the cut-on frequency and close to the 

third harmonic region, energy reduction is more obvious and significant. Note this is 

exactly the same frequency area into which energy was transferred in by the 

nonlinearity of the electrical shunt (Fig. 12(d)). The drastic energy reduction due to the 

damping layer is due to the ABH effects which are indeed enhanced and fully play out 

as a result of the intentionally added nonlinear electrical shunt. The entire process 

confirms that low-frequency energy (before the ABH barrier) is indeed transferred to 

higher frequencies (after the ABH barrier) before being more effectively dissipated 

through enhanced ABH effects. It is also worth noting that the low-frequency sub-

harmonic peaks generated by the nonlinear electrical shunt also decrease significantly 

with the increase of ηd, such as the one-third sub-harmonic peak generated at around 

200Hz. The outcome of the entire process is the creation of better chance for the low 

frequency vibration to be reduced and ABH effects to be broadened, resulting in a 

simultaneous low- and high-frequency vibration reduction. 
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Fig. 13. Comparison of beam displacement spectra with different damping loss factor ηd 

under single-frequency excitation force at 632.2Hz. 

In principle, the above observed energy dissipation is also partly from the 

introduced electrical shunt in addition to the ABH-induced dissipation. Calculations are 

conducted to separate these two components (electrical shunt and the damping layer) 

and quantify their respective contribution to the total energy dissipation. We first define 

different power terms of different components in the system as: 

 T(t)aC(t)a  ⋅⋅=)(tPd  (19) 

 )()()( tqtvtPq ⋅=  (20) 

 ),()()( txwtftPf ⋅=  (21) 

where Pd (t), Pq (t) and Pf (t) represent the dissipated power by the damping layers, that 

of the electrical shunt and the input power of the force excitation, respectively. Their 

corresponding power spectra are obtained by Fast Fourier transform, denoted as Pd, Pq 

and Pf, respectively. The respective contributions of different power terms related to 

different system components are assessed using 

 100% ×
+

=
qd

d
d PP

PP  (22) 
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Obviously, Pd% and Pq% represent respectively the relative portion of the energy 

dissipated mechanically and electrically.    

(a) (b)  

Fig. 14. Energy dissipation by damping layers and nonlinear electrical shunt for different ηd: 

(a) Broadband results; (b) Close-up view of higher frequency range after filtering. 

Figure 14 respectively shows the computed Pd% and Pq% in both full frequency 

range (Fig. 14(a)) and close-up view focusing on the higher frequency region (Fig. 

14(b)) after a high pass filter is applied to above 1400Hz. Fig. 14(a) shows obvious 

energy dissipation by both the electrical shunt at its resonant frequency and its third-

order harmonic. Due to the resonant nature of the circuit, however, system energy at 

other frequencies are mainly dissipated by mechanical damping (from both the beam 

and the damping layer). Focusing more on the high frequency range where effective 

energy transfer was observed before, Fig 14(b) shows that, while electrical dissipation 

is present in the absence of the damping of the coating layer, especially towards the 

high frequency end of the curves, the whole energy dissipation process is completely 

taken over and dominated by the damping layer after it is added to the system. This is 

particularly obvious in the broad region within which strong energy transfer is 

previously identified (Fig.13). In this frequency region, electrical damping contributes 

marginally, except near the third harmonics of the forcing frequency around 1900 Hz. 

These observations confirm that the vibration reduction at this high frequency region is 

indeed due to the damping dissipation arising from the enhanced ABH effect. 
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(2) Mechanical-to-electrical energy transfer  

In addition to the above discussed energy transfer across frequency bands in the 

mechanical system, energy transfer also takes place from the ABH beam to the 

nonlinear electrical shunt, which is investigated. Nothing that the bridging of DRC with 

the fifth resonance peak, shown in Fig. 6, leads to a significant increase of the peak 

amplitude, we examine the associated nonlinear phenomena of the fifth structural mode. 

To this end, we examine the free vibration response of the beam. The onset of the system 

vibration is due to an initial force excitation at 993.8Hz (fifth natural frequency of the 

beam) which is sopped after reaching the steady state. The time-domain signals of the 

beam displacements, normalized to their respective maximum values, are shown in Fig. 

15(a). Corresponding Pq (t)% is used to quantify the percentage of energy transferred 

from the mechanical system to the electrical system in time domain, defined as 

 100
)(
)(

)%( ×=
tP
tP

tP
f

q
q  (24) 

  
Fig. 15. Comparison of (a) normalized beam displacements and (b) the percentages of the 

circuit power to the total input power, when the excitation frequency is 993.8Hz, ηd=0. 

Fig. 15(a) shows an enlarged view of the free vibration response of the beam 

within a truncated time-window starting from t=2.14s (note the excitation for both cases 

stops at t=2s). Vibration response with electrical nonlinearity decays rapidly due to the 

enhanced damping effects. Roughly after t=2.2s, the nonlinear curve shows fluctuation 
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with nevertheless significant signal attenuation. This instant roughly coincides with an 

obvious increase in the Pq (t)% as shown in Fig 15(b), suggesting an increase of energy 

transfer to the electrical shunt. The fluctuation observed in Fig 15(a) suggests a possible 

energy flow back to the beam, exemplified by a temporary increase, albeit slight, of the 

beam displacement at certain instants after t=2.22s. The process indicates that energy 

flows back and forth between the two oscillators, mechanical and electrical, typical of 

the nonlinear beating phenomenon observed in nonlinear energy sink. Through this 

nonlinear beating phenomenon, a reversible energy transfer occurs. As a whole however, 

the energy transferred from the ABH beam to the electrical shunt dominates the process, 

which contributes to the rapid vibration attenuation of beam alongside mechanical 

damping. 

Numerical simulations also suggest that the level of the above mechanical-

electrical energy transfer process does not monotonously increase with the nonlinearity 

strength (decreasing nonlinear capacitance values). This motivates us to examine the 

relationship between nonlinear capacitance and the amount of transferred energy from 

ABH beam to the electrical circuit, so as to optimize the circuit design to achieve the 

highest mechanical-electrical energy transfer efficiency. To quantify the process, we 

defining Wq% as 
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Physically, Wq% represents the portion of the electrically dissipated energy over the total 

dissipated energy of the electromechanical system (the sum of energy dissipated by 

circuit Wq and energy dissipated by damping Wd) with a time duration delimited by two 

time instants t1 and t2. 
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Fig. 16. Electrical energy dissipation with respect to Cnl  

Variation of Wq% with respect to nonlinear capacitance Cnl is depicted in Fig. 16. 

It shows that electrical energy dissipation is the highest for a particular level of the 

nonlinearity. In addition, there exists a threshold value of the nonlinearity below which 

nearly no energy could be dissipated by the electrical shunt. This observation is also 

consistent with NES [33].  

Note that all above analyses use an electrical nonlinear shunt whose linear resonant 

frequency fq is designed to precisely target the fourth natural frequency of the beam. It 

is then relevant to comment on cases where fq is not exactly tuned to match one 

particular mode. Numerical analyses show that as long as fq is around the targeted mode, 

either below and above, basically the same phenomena as described above are still 

persistent, providing the flexibility and the tolerance for the design of the nonlinear 

electrical shunt. 

4. Conclusions 

This paper in concerned with intentionally imposing electrical nonlinearities via 

PZT patches over an ABH beam to tactically influence its dynamics through 

electromechanical coupling for achieving enhanced ABH effects. To this end, a 

previously established semi-analytical electromechanical coupling model is improved, 

which allows for the inclusion of a nonlinear shunt circuit annexed to an ABH beam. 

Salient nonlinear features in the electro-mechanical coupled system as well as major 
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ABH-specific benefits are numerically demonstrated and physically explained. 

It is shown that the introduction of electrical nonlinearity enables obvious and rich 

nonlinear phenomena in both the electrical and mechanical systems. For the former, the 

deployment of a cubic capacitance in the resonant shunt generates pronounced 

hardening phenomenon. The targeted resonance peak bends to higher frequency, forms 

a detached resonance curve (DRC) as a branch, which might even bridge/merge with 

the neighboring resonance peak provided the introduced nonlinearity is sufficiently 

strong. The process is accompanied by the creation of higher harmonics with energy 

transfer to higher frequencies in the circuit. As a result, the amplitudes of electrical 

resonances in the lower frequency range are greatly reduced. Corresponding to the same 

frequency region, DRCs observed in the electrical signal appear as an isolated loop in 

the frequency response curves (FRCs) of the ABH beam, which is shown to produce 

similar phenomena as a nonlinear energy sink (NES), in terms of generating energy 

transfer from the beam to the electrical circuit. Meanwhile obvious cross frequency 

energy transfer is also achieved. Although the phenomenon is not as obvious as in the 

electrical circuit due to the limited level of electromechanical coupling, it does lead to 

the low-frequency vibration reduction of the ABH beam, and most importantly, 

generates typical nonlinear phenomena which are vital for achieving low-to-high 

frequency energy transfer. Analyses show two dominant energy transfer paths within 

the ABH beam as well as between the mechanical and electrical components: one 

through the formation of a branch/bridging of resonance modes as a result of hardening 

and the other through the generation of higher harmonics. The latter is shown to be 

more compelling and predominant. These two energy transfer paths collectively alter 

the system dynamics, increase the ABH-specific energy focusing ability and enhance 

the passive damping effects of the ABH beam at lower frequencies. 

Energy analyses also confirm the above physical process, particularly in relation to 

the energy dissipation by different components in the coupled electro-mechanical 

system. It is shown that the vibration reduction at high frequencies is indeed due to the 

damping dissipation, which is caused and amplified by the nonlinearity-enhanced ABH 
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effects. In addition to the energy transfer across the ABH-imposed cut-on frequency 

barrier in the mechanical part, electro-mechanical energy transfer and dissipation also 

take place, similar to a NES. Among major features, a typical nonlinear beating 

phenomenon is observed, alongside a threshold nonlinearity level to trigger energy 

transfer from the ABH beam to the electrical circuit. This suggests that the nonlinearity 

level in the shunted resonant circuit needs to be properly tuned to reach the optimal 

configuration. While the system nonlinearity increases with the forcing level and 

decreases with the nonlinear capacitance, there is however no stringent requirement on 

the precise tuning of the resonant frequency of the electrical shunt, as long as it is 

around the natural frequency of structural mode which is targeted to achieve ABH-

specific energy transfer. 
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