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Abstract 

This paper presents a Bayesian model updating and model class selection approach based on 

nonlinear normal modes (NNMs). The performance of the proposed approach is demonstrated on 

a conceptually simple wing-engine structure. Control-based continuation is exploited to measure 

experimentally the NNMs of the structure by tracking the phase quadrature condition between the 

structural response and single input excitation. A two-phase Bayesian model updating framework 

is implemented to estimate the joint posterior distribution of unknown model parameters: (1) at 

phase I, the effective Young’s modulus of a detailed linear finite element model and its estimation 

uncertainty are inferred from the data; (2) at phase II, a reduced-order model is obtained from the 

updated linear model using Craig-Bampton method, and coefficient parameters of structural 

nonlinearities are updated using the measured NNMs. Five different model classes representing 

different nonlinear functions are investigated, and their Bayesian evidence are compared to reveal 

the most plausible model. The obtained model is used to predict NNMs by propagating 

uncertainties of parameters and error function. Good agreement is observed between model-

predicted and experimentally identified NNMs, which verifies the effectiveness of proposed 

approach for nonlinear model updating and model class selection. 

Keywords: Nonlinear model updating; nonlinear system identification; nonlinear normal modes; 

Bayesian inference; model class selection; uncertainty quantification and propagation; control-

based continuation. 

1. Introduction 

Finite element (FE) models are arguably commonly used for structural design, assessment, and 

response prediction. The accuracy of FE models can be improved by inferring model parameters 

from in-situ measurements through a model updating process where model parameters are tuned 

to minimize the difference between measurements and the corresponding model predictions [1]. 

The discrepancies between model predictions and measurement data are mainly caused by three 

sources of uncertainty: (a) measurement noise, (b) modeling errors, and (c) model parameter 

uncertainty. Model updating directly reduces the model parameter uncertainty by integrating the 

model with measurement data. There have been numerous applications of model updating that 

employ a deterministic optimization approach [2-9]. In these applications, a least square problem 

is solved by minimizing an ‘objective’ or ‘loss’ function which consists of the difference between 

model predictions and measurements. One of the main shortcomings for the optimization approach 
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is that the method does not provide a measure of estimation uncertainty for the updating parameters. 

Probabilistic model updating approaches such as those using Bayesian inference have been 

developed to overcome this shortcoming. Bayesian model updating updates the prior distribution 

of model parameters to the posterior distribution using the likelihood of observed measurements. 

The posterior distribution provides the parameter uncertainty and the most likely values of 

parameters as the maximum-a-posteriori (MAP) estimate. This approach can also be applied to 

locally identifiable or even unidentifiable problems [10] by stochastic sampling of the posterior 

distribution. Several applications of Bayesian model updating exist in the structural dynamic 

literature [11-15]. Ntotsios et al. applied Bayesian damage identification on a numerical study of 

a highway bridge and a laboratory small-scaled bridge section [16]. Lam et al. implemented a 

Bayesian model updating of a coupled-slab system using field test data and an enhanced Markov 

chain Monte Carlo simulation algorithm [17]. Behmanesh and Moaveni performed probabilistic 

identification of simulated damage (added concrete block on the deck) on the Dowling Hall 

footbridge through a Bayesian finite element model updating [18]. Recently, a hierarchical 

Bayesian model updating has been proposed to provide realistic parameter uncertainty by 

estimating the distribution parameters as hyper-parameters [19-22]. The hierarchical framework is 

especially suitable when structural properties vary due to changing ambient or environmental 

conditions. 

Many of the above applications have considered linear dynamic systems. While some studies 

included material nonlinearity [23-27], linear modal properties were still used as data features in 

model updating. In this paper, features called ‘nonlinear normal modes’ (NNMs) are used to update 

a nonlinear model and estimate the uncertainty of model parameters. NNMs extend the concept of 

linear normal modes to nonlinear systems [28-30]. NNMs have received increased attention in 

recent years as they provide a rigorous theoretical framework for interpreting many nonlinear 

dynamic phenomena [31-33]. For instance, NNMs can be used to predict the amplitude of the 

response of a nonlinear structure at resonance, i.e., when the risk of structural failure is the greatest. 

The identification of NNMs using broadband excitation was proposed in [34], but phase resonance 

testing remains so far the most popular approach [35]. Phase resonance testing aims to isolate one 

NNM at a time by reaching a phase quadrature condition between the response and the applied 

excitation. For nonlinear structures, this quadrature condition is difficult to reach due to the 

presence of bifurcations and the propensity of the structure to jump between coexisting stable 

responses. Several methods such as control-based continuation (CBC) and phase-locked loops 

were proposed to address these issues [36, 37]. In this study, CBC is used to find responses that 

satisfy the phase quadrature condition and track their evolution as the excitation amplitude is 

increased. The so-called backbone curves obtained in this way correspond to the NNMs of the 

underlying conservative system provided that the excitation is appropriately distributed in space 

and frequency [35, 38].  

NNMs identified experimentally can be compared to NNMs calculated from the nonlinear 

model of the structure. In this paper, the harmonic balance method (HBM) [39] is used to compute 

NNMs, although several other methods exist and could have been used [40]. Particular advantage 

of the HBM is that the number of harmonics used to approximate the response of the structure can 
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be reduced to filter out modal interactions and reduce computational load, thereby simplifying the 

calculation of the error function between experimental and theoretical results. 

Several contributions have considered NNMs for parameter estimation and nonlinear model 

updating. Peter et al. [41] employed optimization to minimize the difference between backbone 

curves measured using the phase resonance method and their analytical counterparts computed 

using the HBM. The nonlinear stiffness parameters of a single degree-of-freedom (DOF) oscillator 

were estimated using a similar method in [36]. Hill et al. [42] performed Bayesian model updating 

of nonlinear structures based on analytical models to describe the backbone curves. They derived 

analytical expression to describe the backbones which only provided an approximate solution and 

was limited to weakly nonlinear systems. Song et al. [43] implemented a numerical case study of 

Bayesian model updating on a nonlinear beam known as the COST Action F3 benchmark [44]. In 

that study, the NNMs were identified from simulated response under broadband excitation. The 

present paper demonstrates the model updating methodology proposed in [43] on a structure with 

multiple localized nonlinearities and using NNMs identified from experimental data. In addition, 

the present paper further exploits Bayesian inference to perform model class selection and choose 

the most plausible model (i.e., the model with the largest evidence) among a set of candidates. 

This approach has the benefit to combine nonlinearity characterization and parameter estimation - 

two steps which are usually considered as separate in the identification of nonlinear structures [45]. 

The Bayesian model updating and model class selection methodology proposed here proceeds 

in two phases to update the linear and nonlinear parts of the structural model separately. The 

proposed method is applied to a conceptually simple wing-engine structure with nonlinear 

connections. Two NNMs of the structure are identified using CBC through phase resonance testing. 

At phase I, a linear FE model is updated using the NNMs identified at the lowest energy level. A 

reduced-order model (ROM) is created based on the updated linear model and then used for 

nonlinear model updating in Phase II. At phase II, the ROM is combined with five different classes 

of nonlinearity function, and Bayesian model updating and class selection are performed to 

estimate the posterior distribution and evidence for each model class. 

2. Bayesian Inference for Model Updating and Model Class Selection Based on NNMs 

2.1 Bayesian Model Updating  

This section presents the general framework of Bayesian model updating using NNMs. For 

simple structural models with small numbers of DOFs, linear and nonlinear parameters can be 

updated together to obtain the joint posterior distribution. However, for complex structural systems 

with many DOFs, the updating process may become computationally prohibitive as it entails a 

large number of NNMs computations from the numerical model, which can be a computationally 

demanding task. To avoid this issue, this paper implements a two-phase model updating approach 

in which the underlying linear system parameters are estimated first, and then a ROM of the 

updated linear system is generated and used for nonlinear model updating. Since the ROM has 

fewer DOFs than the original model, Bayesian updating of the nonlinear system through stochastic 

sampling is computationally feasible. This two-phase Bayesian updating process has been 

demonstrated through a numerical application to a nonlinear beam in a previous study [43]. 
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2.1.1 Phase I: Updating of the underlying linear model 

Linear modal properties such as natural frequencies and mode shapes have been extensively 

used for model updating of linear structures with reasonable successes [2-9]. When vibration 

amplitude is sufficiently small, the contribution of nonlinearity is assumed to be negligible. As 

such, the NNMs identified at the lowest vibration level ‘resemble’ the linear modes [29] and can 

be used to update the parameters of the underlying linear system. Note that if this assumption is 

not verified (due, for instance, to friction nonlinearities), additional testing is required to identify 

the underlying linear modes of the system, or this Phase I should be modified to account for the 

presence of such nonlinearities and the estimation of their parameters. 

The classical Bayes’ theorem can be written as: 

( | , ) ( | )
( | , )

( | )

p M p M
p M

p M


d θ θ
θ d

d
 (1) 

where θ  is the vector of updating model parameters, d  refers to the measured data (e.g., NNMs), 

and M denotes a specific model class or model form. Left term in Eq. (1) is the joint posterior 

probability density function (PDF). ( | , )p Md θ  is referred to as the ‘likelihood function’ which 

represents the probability of observing measurements d  given parameters θ , and ( | )p Mθ  is the 

prior PDF which reflects the prior knowledge or engineering judgement about updating parameters 

before measurements are taken. ( | )p Md  is called ‘evidence’ or ‘marginal likelihood’ which 

quantifies the plausibility of model class M in the view of measurements. Higher evidence value 

indicates higher plausibility given the measurements. The evidence term usually lacks analytical 

solution and is often computed numerically through stochastic sampling or estimated using the 

approximate approach presented in section 2.2. Currently it is treated as an unknown constant 

whose exact value is not required for evaluating the posterior PDF when Markov chain Monte 

Carlo (MCMC) sampling methods are used. When uninformative prior distribution is assumed, 

e.g., uniform distribution, then the prior PDF is also a constant term. The uniform prior function 

is selected in this study considering the large modeling errors, missing material specifications and 

the unknown properties of nonlinear connections. The uniform distribution bounds the parameter 

values within a reasonable range and prevents it going beyond feasible physics. Combing all 

constant terms as ĉ , the following formulation is derived: 

ˆ( | , ) ( | , )p M cp Mθ d d θ  (2) 

The model class M is neglected in the following discussion to save the notation and will be 

introduced back in section 2.2 for model class selection. 

For evaluation of the likelihood function, an error function is defined to represent the 

discrepancy between model-predicted and experimentally identified data features. In the first 

phase of model updating where  represents linear model parameters, the error function is defined 

based on natural frequencies and mode shapes as 

( ) ( )m

m me   θ θ , (3) 
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( )
( )

( )

m m m
m

mm

a


 



Φ Φ θ
e θ

Φ θΦ
, (4) 

where ( )me θ  and ( )m

e θ  are the error function terms for the natural frequency and the mode shape 

of mode m. m  and mΦ  are experimentally identified eigenfrequency (  
2

2 f  in which f  is 

natural frequency in Hz) and mode shape. ( )m θ  and ( )mΦ θ  are their respective model-predicted 

counterparts.   is a selection matrix which picks corresponding components of ( )mΦ θ   (which 

usually has more components than mΦ  whose dimension depends on the number of deployed 

sensors) according to 
mΦ , and consists of only 0 and 1 terms. 

ma  is a scaling factor to ensure the 

mode shapes are comparable [21, 43] and is equal to  ( ) ( )m m m m  Φ Φ θ Φ Φ θ .  

Based on the principle of maximum entropy, the error function is assumed to follow a zero-

mean Gaussian distribution with standard deviations for the natural frequency and the mode shape 

error terms give by [18] 

CoV
m m mw   , (5) 

CoV
m s mN w   , (6) 

where 
mw  are weights for different modes which can be determined based on measurement 

accuracy. In the experimental application of this paper, 
mw  is set to be one to provide equal 

weights for all the considered modes. CoV  refers to the coefficient-of-variation (ratio of standard 

deviation to mean value) of the experimentally identified eigenfrequency for mode m. 
sN  is the 

number of sensors deployed in the instrumentation and balances the weights between natural 

frequency and mode shapes, as it has been done in past studies [18, 43].  

The error function components are often assumed to be statistically independent Gaussian 

distribution. This is a conservative assumption and will maximize the uncertainty of posterior PDF 

based on the principle of maximum entropy. Assuming the error functions are independent, the 

likelihood function is written as 

2

2
1 1

1 1 1
( | ) ( | ) exp( ) exp ( , )

2 22

n n
i

i

i i ii

e
p p d J

 

 
     

 
 d θ θ θ d , (7) 

2

2
1 1

( ) ( )( )
( , )

e θ e θθ
θ d

m m

m m

m T mN Nm

m m

e
J

 

   

 
  

 
 

  , (8) 

where 
mN   is the number of available modes in dataset d , 

ie  and 
i  denotes individual error 

components (including both natural frequencies and mode shapes error functions) and their 

respective standard deviations. The term ( , )J θ d  is similar to the ‘objective function’ used in 

model updating with an optimization approach, which consists of the discrepancy between model-

predicted and identified modal properties. It is easy to see that the minimization of ( , )J θ d  is 

equivalently to the maximization of the likelihood function and the posterior PDF (proportional to 
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the likelihood function as shown in Eq. (2)). Therefore, in this case the optimization approach and 

Bayesian approach provide the same solution for optimal (for optimization) or MAP (for Bayesian) 

parameter values, while the Bayesian approach also provides estimation uncertainty of updating 

parameters as well as model evidence. 

In the case that multiple sets of measurements from different tests are available, they can be 

fused together to provide the joint posterior PDF by assuming all datasets are independent: 

1

1
ˆ( ) exp ( , )

2

N

n

n

p c J


 
  

 
θ θ d|D  (9) 

where D  collects all the datasets 
1[  ... ]N d dD  . During the dynamic tests, different modes can 

be excited and identified each time, therefore, different datasets may contain different modes, or 

even different number of sensors. However, the fusion of multiple datasets follows the same 

procedure in Eq. (9). Different MCMC sampling methods can be used to evaluate the posterior 

PDF such as the Metropolis-Hastings (MH) [46], the adaptive MH [47], or the Transitional MCMC 

[48]. 

2.1.2 Phase II: Updating of the nonlinearities 

The updating of structural nonlinearity requires the whole NNM curves, as larger amplitude 

response contains richer information about the nonlinear behavior. Similar error functions for 

natural frequencies and mode shapes are defined here by considering NNMs at different energy 

levels: 

, , ,( ) ( )m nl nl

j m j m j me r    θ θ  (10) 

, ,

, ,

, ,

( )
( )

( )

nl

m j m jm nl

j m j nl

m j m j

a


 



Φ Φ θ
e θ

Φ Φ θ
 (11) 

in which nl
θ  denotes the vector of coefficient parameters of the nonlinearity function, and the 

subscript j denotes the vibration amplitudes (energy levels) of the NNMs. 
mr  refers to the linear 

natural frequency residual at Phase I and is defined as ,1
ˆ( )m m mr   θ , where θ̂  denotes the MAP 

value of θ  and ,1m  is the corresponding eigenfrequency of identified NNMs at the smallest 

amplitude. This term is introduced here to eliminate propagation of errors from the linear model. 

The error function terms , ( )m nl

je θ  and , ( )m nl

je θ  refer to specific points on the NNM curves, 

and different tests may retain different total number of points on the curves. To account for this 

imbalance, the error functions in Eqs. (10) and (11) are averaged by the number of points on the 

NNMs. Therefore, a similar term as Eq. (8) is derived for nonlinear model updating at phase II: 

,

2

, , ,

2
1 1 1 1

( ) ( ) ( )1 1
( , )

m m
p pm m

m j m

m nl m nl T m nlN NN N
j j jnl

m m
m j m jp p

e
J

N N

  

     

    
     

       
   

θ e θ e θ
θ d  (12) 
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where 
m

pN   denotes the number of points on the thm  NNM in each test. 
,m j  is defined similar to 

m
  as 

, ,CoV
m j m m jw    and CoV  here is averaged among different energy levels. The fusion 

of multiple datasets from different tests follow the same procedure as the linear model updating 

case. 

2.2 Bayesian Model Class Selection 

One of the important advantages of Bayesian inference for model updating is model class 

selection to identify the most plausible model. The selection criterion is simply the evidence of 

model M given measurement data D ,  ( | )p MD . The evidence term usually lacks an analytical 

solution, and sampling approaches such as MCMC are often employed to provide numerical 

estimation, e.g., MH algorithm [49] or TMCMC which provides the evidence as a by-product [48]. 

In this study, class selection is focused on selecting the most probable nonlinearity function. Linear 

mode class selection follows exactly the same procedure presented in this section; however, it is 

not considered herein. The Bayes’ theorem is presented below for nonlinear coefficient parameters: 

( | , ) ( | )
( | , )

( | )

nl nl
nl p M p M

p M
p M


θ θ

θ
D

D
D

 (13) 

The following is readily available by rearranging the terms: 

( | , ) ( | )
( | )

( | , )

nl nl

nl

p M p M
p M

p M


θ θ

θ

D
D

D
 (14) 

The only uncertain term on the right is the posterior PDF ( | , )nlp Mθ D . In the literature, the 

posterior distribution is often assumed to be a Gaussian distribution, which is usually a good 

approximation when the parameters are globally identifiable [10]. In the applications of wing-

engine structure presented in later sections, the posterior PDF is also observed to resemble a 

Gaussian distribution. Substituting the posterior PDF with the Gaussian PDF  | ,nl nl

nlN
θ θ

θ μ Σ , 

the following is derived: 

( | , ) ( | )
( | )

( | , )nl nl

nl nl

nl

p M p M
p M

N


θ θ

θ θ

θ μ Σ

D
D  (15) 

In Eq. (14), nl
θ  can be any value with non-zero posterior PDF. However, the MAP (same as mean 

value for Gaussian PDF) of parameters ˆ nl
θ  is used in this study. After substituting the likelihood 

function and prior PDF and taking the logarithm of both sides, the computation of evidence is 

shown below: 

       ˆ ˆ ˆlog ( | ) log ( | , ) log ( | ) log ( | , )nl nl

nl nl nlp M p M p M N  
θ θ

θ θ θ μ ΣD D   (16) 

 
1

1ˆlog ( | , ) log(2 ) log( ) ( , )
2 2

N N
nl

i n

i n

N
p M J 



 
     

 
 θ θ d

D

DD   (17) 

where N
D

 refers to the total number of error function components in the likelihood. 
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2.3 Probabilistic Prediction of NNMs  

After the joint posterior PDF of parameters are estimated, both parameter uncertainty and error 

function uncertainty can be propagated into probabilistic response predictions. By rearranging the 

terms in the definition of the error function in Eq. (10), the following frequency prediction of 

NNMs is obtained: 

prediction

, , ,( )nl m

m j m j j me r   θ   (17) 

In Eq. (17), both parameters nl
θ  and error function ,

m

je  follow Gaussian distributions 

 | ,nl nl

nl nlN
θ θ

θ θ μ Σ~   and  
,

2

, , | ,
m j

m m

j je N e  0~  . Monte Carlo simulations can be performed 

to obtain adequate number of NNMs simulations by generating independent samples of nl
θ  and 

,

m

je , and then response confidence intervals can be produced from these simulations. 

3. Application to a Conceptually Simple Wing-engine Structure 

3.1 Structure Description and Instrumentation 

The tested structure represents a conceptually simple wing-engine system as shown in Figure 

1 [50]. The scaled structure consists of a rectangular aluminum wing plate on the top (size of 

1000 mm × 220 mm and thickness of 6 mm), and two steel pylons (Figure 1(b)). Each of the two 

pylons have two thin steel plates (referred to as ‘springs’) which are clamped by two supporting 

aluminum blocks at the bottom of the wing plate. Nonlinear behavior is observed at the clamping 

connections of the steel springs due to the curved inner surfaces of the two supporting aluminum 

blocks, as illustrated in Figure 1(b). The restoring forces of the steel springs are a nonlinear 

function of the pylon displacement because the effective lengths of the springs change with 

vibration amplitude, which introduces nonlinear stiffness. The whole structure is hanging by 12 

soft springs located at the four corners of the wing plate. The wing-engine structure is instrumented 

with 14 accelerometers and one single point excitation shaker. Eight accelerometers are mounted 

on the top of the wing plate measuring vertical acceleration (Figure 2(a)), and three accelerometers 

are mounted on each of the two pylons measuring horizontal acceleration (Figure 2(b)). The single 

point shaker is located under the structure with excitation force applied at the same location as 

sensor 7. 
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(a) (b) 

Figure 1. Wing-engine structure and instrumentation (a) and detailed view of nonlinear 

connection and modeling assumption (b). Only the left shaker shown in (a) was used for exciting 

the structure during the experiment. 

  
(a) (b) 

Figure 2. Layout of accelerometers and FE model in Abaqus. 

3.2 FE Model and ROM 

A linear FE model of the wing-engine structure is created in Abaqus [51]. It includes 639 linear 

quadrilateral elements of type S4R, and 440 linear hexahedral elements of type C3D8R, and has a 

total of 6876 DOFs. The discretization of the FE model is selected such that, within the frequency 

range of interest, the dynamic characteristics of the structure have converged. The local 

nonlinearities at the connections of the pylons are not considered in this linear model, and the 

connections of the steel springs with aluminum blocks are assumed to be perfect (Figure 1(b)). 

The first two mode shapes of the FE model are shown in Figure 3. Significant displacements at the 

pylons are observed which are influenced by the nonlinearities.  

The evaluation of the posterior PDF using MCMC techniques requires large number of 

computations of NNMs from the numerical model, therefore, it is computationally demanding to 

directly include nonlinearity in the detailed Abaqus model for this task. A simplified model with 

less DOFs is needed to include the nonlinearities and reduce the computation burden. The Craig-

Bampton method is employed to obtain a ROM of the linear model [52]. All the DOFs associated 

with the sensor locations are treated as boundary points and the corresponding static constraint 

modes are retained in the ROM. Only the translational DOFs corresponding to the measured 

directions are included, i.e., the DOFs in the Z direction for sensors 1 - 8, and the DOFs in the X 

direction for sensors 9 - 14. To model the nonlinearities at the pylons, nonlinear restoring forces 

that depend on the relative displacements between corresponding DOFs are added to the ROM, 

i.e., between sensor 9 - 10, 9 - 11, 12 - 13 and 12 - 14. The ROM is then used to compute theoretical 

NNMs which are compared with the experimental results for model updating. Note that the two-

phase model updating approach proposed here is in principle not restricted to a particular model 

reduction method and could also work without (albeit at a much higher computational cost).  

Spring
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In this study, the HBM is used to directly compute NNMs for response amplitudes that 

correspond to the amplitudes measured experimentally. These responses are the only ones required 

to evaluate the error functions defined in Eqs. (10) and (11). It is worth noting that damping 

properties do not have to be included in the ROM for the computation of NNMs. Effective damping 

ratios can be estimated from the measured backbone curves [53] and directly incorporated in the 

ROM after updating. To include the damping parameters in the model updating, the backbone 

curves measured experimentally should be compared directly with the backbone curves computed 

from forced and damped simulations [38] instead of the NNMs. 

  

(a) (b) 

Figure 3. Mode 1 (a) and mode 2 (b) of the Abaqus model. 

3.3 Experimental Results 

The NNMs of the wing-engine structure are identified using CBC through phase resonance 

testing. CBC is a model-free method that relies on feedback control to explore the dynamic 

behavior of nonlinear systems directly during experimental tests [54]. CBC has been used to 

extract important nonlinear dynamic features such as backbone curves [36], nonlinear frequency 

response curves [55] and limit-point bifurcation curves [56, 57], on a range of harmonically forced 

mechanical structures, including nonlinear energy harvesters [55, 56], a bilinear oscillator[58] and 

a nonlinear beam with harmonically coupled modes [57, 59]. To identify backbone curves, CBC 

adjusts the frequency of excitation such that the response and excitation are in phase quadrature. 

The evolution of the excitation frequency and structure response is then captured by maintaining 

quadrature for increasing excitation amplitudes. So far, CBC has been applied to conceptually 

simple structures with at most a couple of degrees of freedom. In this paper, we show that CBC is 

applicable to more complex, multi-degree-of-freedom systems. 

The backbone curves identified for the first and second modes of the wing-engine structure are 

shown in Figure 4 and Figure 5, respectively. For conciseness, the structure response is shown 

only at sensors 9 - 14. The response amplitude at sensors 10, 11, 13 and 14 is observed to be one 

order of magnitude larger than the response measured at sensors 9 and 12. This is because the 

former sensors are located at the bottom of pylons (Figure 2(b)). 

Figure 4 and Figure 5 show several backbone curves, each of which was obtained by measuring 

the phase quadrature condition between the excitation and a particular sensor. For the first mode, 

this leads to 14 different curves - one for every accelerometer on the structure. From a theoretical 

perspective, different backbone curves represent the same NNM and should therefore overlap each 

other [38]. However, due to the single-point nature of the applied excitation, the energy provided 

by the external force is not perfectly distributed across the whole structure and the response of the 

structure is not monophase. However, the qualitative agreement and the relatively small errors 

between different backbone curves suggest that phase differences that exist between different 

sensors are acceptable, and that the NNM of the underlying conservative structure is close to the 
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identified backbone curves. For mode 2, backbone curves were identified for only 5 sensors. For 

the other 9 sensors, the quadrature condition could not be reached with the desired accuracy 

tolerance of 35 10  rad  (or 0.29∘). It is thought that this issue is solely due to the inappropriate 

distribution of the excitation as no issue with the controller was observed. 

When considering all 7 measured harmonics, the response amplitude for the first NNM shows 

a peak at about 15.3 Hz (Figure 4). This peak is due to the presence of a modal interaction between 

the first and a higher-frequency mode. Modal interactions usually lead to the presence of loops in 

the frequency-amplitude curve of the NNM. These loops pose issues for computing the error 

functions used in model updating (Eqs. (10) and (11)) as the curve can no longer be uniquely 

parameterized by the frequency or response amplitude, i.e., multiple response amplitudes are 

possible for a given frequency and multiple frequencies are possible for a given response amplitude. 

Note that only parts of the loop were measured experimentally, which explains the greater 

variability observed in the results around the 15.3 Hz peak (Figure 4). Based on the available 

experimental data, it is not possible to systematically identify which one of those multiple 

responses has been measured and hence to correctly pair experimental data and model prediction 

points in the modal interaction region. To overcome this issue in theoretical calculations, modal 

interactions were filtered out by reducing the number of harmonics used in the HBM to only one. 

Similarly, only the first harmonic of the responses measured experimentally was used. The 

differences in response amplitudes resulting from the use of one and seven harmonics are shown 

in Figure 4 and Figure 5. 

 

Figure 4. Identified backbones of NNM 1. 
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Figure 5. Identified backbones of NNM 2. 

4. Model Updating Results 

4.1 Linear Model Updating Results 

The wing-engine structure is made of two materials: aluminum and steel. The Young’s 

modulus of these two materials are chosen as the linear updating parameters, i.e., 

 Aluminum Steel

T
E Eθ . The values of updating parameters are normalized to their initial values: 

Initial

Aluminum 68.9 GPaE   and 
Initial

Steel 200 GPaE  . The proposed Bayesian updating framework is 

implemented to update the selected Young’s modulus based on the linear modes which are 

estimated as the identified NNMs 1 and 2 at their lowest energy levels. Therefore, 14 sets of mode 

1 and 5 sets of mode 2 are used in the updating process. MH algorithm is used to generate 3500 

samples of the joint posterior PDF, and then the first 500 samples are removed as burning-in 

strategy to eliminate the effects of transitional samples. The sample acceptance rate is adjusted to 

be in the range recommended in [60]. The evolution histories of sample mean and standard 

deviation are shown in Figure 6(b). It can be seen that the sample mean and standard deviation 

have converged and 3500 samples are sufficient for evaluating the posterior PDF. The sample 

distribution after burning-in is shown in Figure 6(a). The contour plots are from a Gaussian 

distribution with its mean and covariance the same as the sample statistics. It is seen that the sample 

scatter follows the Gaussian contours well, implying that the posterior PDF resembles the Gaussian 

distribution.  

The sample mean and standard deviation are reported in  
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Table 1. It is observed that 
SteelE  has been reduced significantly (around 70%) in the updating 

process. This large reduction is attributed to an error in the modeling of the boundary conditions 

of the springs which are the only components made out of steel. In reality, the inner surfaces of 

the aluminum blocks are curved to introduce the nonlinear restoring force (Figure 1(b)). However, 

the linear FE model assumes that the aluminum blocks are straight and that the clamping is perfect 

(Figure 1(b)). As a result, the length of the steel springs is underestimated. In the model updating, 

the Young’s modulus of steel is drastically reduced to compensate for this modeling error. The 

modal properties of the calibrated model match the identified counterparts very well (see Table 2). 

A validated model with more accurate representation of the geometry would overcome the 

modeling error. Note that the modeling error cannot be corrected by the large reduction of 

parameter value but is compensated to provide accurate modal properties in this study. The current 

Abaqus model is created based on the best knowledge of the authors as the portions of the 

aluminum blocks that are in contact with the steel springs are not precisely known and appear to 

be different at the front and at the back of the pylons. The mesh size of the steel springs has been 

verified to have converged and has negligible effects on the model updating. A good tutorial about 

model updating process and modeling errors can be found in [61]. Another possible reason is that 

the initial Young’s modulus of steel and aluminum are overestimated compared to their true values 

since the precise material compositions of the structure are not available.  

The estimated standard deviations of the parameters are very small indicating negligible 

uncertainty in the underlying linear system. Therefore, the ROM of the linear model is generated 

only based on the MAP values of the updating parameters. The natural frequencies and mode 

shapes of the linear model before and after updating are compared with their identified counterparts 

in Table 2. The post-updating values are from the FE model using the MAP values of parameters 

and are much closer to the identified values. The identified natural frequencies are reported as the 

mean values over several tests. The modal assurance criteria (MAC) values are computed between 

model-predicted and identified mode shapes and the mean values for different tests are reported in 

Table 2. It is observed that the MAC values are also improved significantly after model updating, 

especially for mode 1. 
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(a) (b) 

Figure 6. (a) MH samples of linear model updating and contour plot of approximated Gaussian 

distribution; (b) evolution time histories of sample mean and standard deviation. 

 

 

 

Table 1. Sample mean and standard deviation of linear model updating. 

 AluminumE  
SteelE   

Mean 0.88 0.31 

Std (× 10−3) 3.93 0.39 

 

Table 2. Linear modes comparison before and after linear model updating. 

 Frequency (Hz) MAC 

 Initial Updated Identified Initial Updated 

Mode 1 22.78 14.75 14.65 0.788 0.999 

Mode 2 30.91 17.50 17.71 0.968 0.985 

4.2 Nonlinear Model Updating and Model Class Selection 

As mentioned before, the estimated parameter uncertainty in the linear model is negligible and 

thus the ROM is generated only based on the MAP values of the linear parameters. The first 15 

internal mode shapes of the linear model (6 rigid-body-like modes caused by the hanging springs 

and the first 9 vibration modes) and 14 static constraint modes associated with the measured DOFs 

are retained in the ROM which comprises a total of 29 DOFs. The natural frequencies of the ROM 

are compared with those of the full model in Figure 7(a), and the relative frequency errors and 

MAC values of the corresponding mode shapes are shown in Figure 7(b). The ROM agrees very 

well with the full model for the first 9 modes. However, the accuracy of the ROM deteriorates 
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significantly for higher modes ( 9 ) since they are not included in the Craig-Bampton model 

reduction.  

 

Mode 

Relative 

frequency 

error (%) 

MAC 

1 0.00 1.000 

2 0.00 1.000 

3 0.13 1.000 

4 0.02 1.000 

5 0.15 1.000 

6 0.15 1.000 

7 1.09 1.000 

8 0.41 0.990 

9 0.52 0.956 
 

(a) (b) 

Figure 7. Natural frequency comparison between full FE model and ROM (a) and relative 

frequency errors and MAC (b). 

The nonlinearity identification process usually consists of three steps: (1) localization, (2) 

characterization and (3) parameter identification. The localization step is trivial given that the 

nonlinearities were implemented deliberately. The characterization step requires identifying the 

optimal functional form describing the nonlinearities, and parameter identification entails 

estimating coefficient parameters. Steps (2) and (3) are here jointly carried out through a Bayesian 

model class selection and updating process. In this study, five model classes with different 

nonlinear functions are considered to represent the nonlinear force-displacement relationship of 

the pylon connections. The considered functions are all polynomials as the analysis of the 

experimental data collected for sine sweep excitation around the first two modes shows that the 

nonlinearity is smooth. The five nonlinear functions considered are summarized in Table 3. The 

five nonlinearity forms in Table 3 are selected after an extensive screening process of reasonable 

polynomial functions, where different orders of polynomials, and combinations of them have been 

investigated. The selected five nonlinearities provide the most reasonable NNM predictions 

compared to the measurements with relatively simple polynomial forms. More polynomials can 

be included in the functions, but it is found that additional higher order polynomials are not 

providing meaningful improvements on NNM predictions. Only odd functions are selected in this 

study because the measured backbone curves only show hardening effect as observed in Figures 4 

and 5, and no softening effect exists. The authors have examined the performance of even 

nonlinearity functions in the first stage of screening candidate functions, but they are eventually 

excluded. It is worth noting that asymmetrical effects of the backbones were observed in earlier 

studies on the structure [62, 63], however, the structure was modified since then, especially the 

steel springs clamping connection. The nonlinearity is found to be sensitive to the connection 

conditions. Based on the measured backbones in this study, the nonlinearity has changed and is 
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different from previous observations. A static test on the studied wing-engine structure was 

performed by Delli Carri et al. [50] and showed that the nonlinear form was an odd polynomial 

function, which is consistent with this study. Cubic splines could have been considered to provide 

more flexibility to our model [34]; however, this was considered outside the scope of this work. 

The coefficients 
j

ic  denotes the updating parameters in each model class, with one updating 

coefficient for classes 1 - 3, and two updating coefficients for classes 4 and 5. These updating 

parameters have been normalized to their initial values in each class (e.g., 0.216 in class 1), which 

are determined through a preliminary trial and error tuning process to provide a reasonable starting 

point for the updating process. This process is not required but is recommended as otherwise more 

samples are needed for MCMC to converge to higher probability area. The nonlinearities at the 

four locations are assumed to be the same as no obvious difference is observed in the identified 

NNMs at these locations (Figure 4 and Figure 5). The authors have verified that introducing 

different nonlinearities at two pylons does not improve the model updating results but increases 

the number of updating parameters and computation efforts significantly. 

The proposed Bayesian model updating approach is applied to estimate the posterior PDF of 

the coefficient parameters and the evidence of each model class. The prior distributions of all 

parameters are assumed to be uniform but with different ranges, i.e., (0,  10)U   is assumed for 

classes 1 - 3 (
1c , 

2c  and 
3c ) and the first polynomial coefficient in classes 4 - 5 (

4

1c  and 
5

1c ), and 

( 10,  10)U   is assumed for the second coefficient in classes 4 - 5 (
4

2c  and 
5

2c ). These assumptions 

are made to represent lack of prior knowledge about these parameters, especially for parameters 
4

2c  and 
5

2c . The first coefficient is constrained to be positive as a hardening effect is observed from 

the identified backbones. A total of 5500 samples of the posterior PDF are generated using the MH 

algorithm, with the first 500 burned in. The evolution of sample mean and standard deviation for 

model class 1 are plotted in Figure 8(b) showing the convergence of these statistics, which verifies 

that the current number of samples is adequate. The sample histograms for classes 1 - 3, and sample 

distribution for classes 4 - 5 are shown in Figure 8 - 10. The PDF (classes 1 - 3) and contour lines 

of the approximated Gaussian distribution (classes 4 - 5) are also shown, with their means and 

covariances computed from the samples. The Gaussian PDFs in Figure 8 - 9 have been normalized 

to have peak values the same as the highest bins of histograms.  It is seen that for all model classes 

the samples generally follow the approximated Gaussian distribution, which verifies the Gaussian 

assumption in the proposed evidence computation in section 2.2. Strong correlations between 
4

1c  

and 
4

2c , as well as 
5

1c  and 
5

2c , are observed from Figure 10(a) and (b), which is caused by their 

compensation effects since 
4

2c  and 
5

2c  have negative signs. The sample mean and standard 

deviation for all classes are reported in Table 4. It is seen that the estimated parameter uncertainties 

for classes 1 - 3 are similar, while classes 4 - 5 have significantly larger uncertainties, especially 

for parameters 
4

2c  and 
5

2c  which represent the high order polynomial terms. The strong 

compensation effects between the first positive cubic terms (
4

1c  and 
5

1c ) and the second negative 

terms (
4

2c  and 
5

2c ) can be the cause of the large parameter uncertainties. The significant 
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uncertainties in 
4

2c  and 
5

2c  suggest their low sensitivities to the NNMs, which implies that they can 

be redundant in the nonlinearity function. This is verified by model class selection results presented 

below. 

The value of evidence for each of the five considered model classes is computed using the 

proposed evidence estimation approach and reported in the last column of Table 3. It can be seen 

that class 2 has the largest evidence value, while classes 4 and 5 have comparable but slightly 

smaller evidence, and classes 1 and 3 have much smaller values. Compared to class 2 with only 

cubic polynomial, classes 4 and 5 also include higher order terms, therefore, they have more 

flexibility in their nonlinearities than class 2 (i.e., the likelihood functions of classes 4 and 5 are 

larger or equal to that of class 2). However, the inclusion of extra parameters (
4

2c  and 
5

2c ) reduces 

the value of prior PDF  ˆlog ( | )cp Mθ   in Eq. (15). According to the assumed uniform 

distributions, 2
ˆ( | ) 1 /10cp M θ  while 4 5

ˆ ˆ( | ) ( | ) 1 / 200c cp M p M θ θ . The prior distribution 

here is similar to the Occam’s razor, as it assigns penalty to extra parameters. The Bayesian class 

selection will choose the model with less complexity (smaller number of parameters) unless the 

improvement from addition of extra parameters outweighs the penalty (from prior distribution). In 

this study, higher order polynomials are not considered as they have lower evidence. Therefore, 

Bayesian class selection algorithm automatically enforces the principle of parsimonious model 

with the largest prediction capability. 

Table 3. Model classes of nonlinearity function and the estimated evidence. 

Model classes Nonlinearity function 
Evidence: 

 log ( )p MD  

Class 1 
1 2( ) 0.216sign( )nlf x c x x    452.9 

Class 2 
2 3( ) 0.068nlf x c x    619.2 

Class 3 
3 4( ) 0.03sign( )nlf x c x x    476.8 

Class 4 
4 3 4 4

1 2( ) 0.0884 0.0027sign( )nlf x c x c x x      617.2 

Class 5 
5 3 5 5

1 2( ) 0.0748 0.00084nlf x c x c x      617.1 
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(a) (b) 

Figure 8. (a) Sample histograms and approximated Gaussian PDF of model classes 1; (b) 

Evolution histories of sample mean and standard deviation. 

  
(a) (b) 

Figure 9. Sample histograms and approximated Gaussian PDFs of model classes 2 (a) and 3 (b). 

  
(a) (b) 
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Figure 10. Sample distribution and contour plots of approximated Gaussian PDFs of model 

classes 4 (a) and 5 (b). 

Table 4. Sample mean and standard deviation of nonlinear model updating. 

Model classes Parameters Mean Std 

Class 1 1c  1.63 0.017 

Class 2 2c  1.58 0.016 

Class 3 3c  1.09 0.012 

Class 4 
4

1c , 4

2c  1.34, 1.26 0.046, 0.443 

Class 5 
5

1c , 5

2c  1.49, 0.51 0.049, 0.391 

 

4.3 Bayesian Prediction of NNMs 

Model class 2 is selected as the best model in the view of identified NNMs because of its 

largest evidence. This model is used for probabilistic NNM predictions using the proposed 

approach in section 2.3. The parameter uncertainty (assumed to have Gaussian distribution) and 

the error function uncertainty (assumed to have zero-mean Gaussian distribution with standard 

deviation estimated from the identified NNMs) are propagated into the predictions. A total of 200 

Monte Carlo simulations are performed using independent samples from the posterior PDF and 

the error function distribution. Then a 95% quantile interval is generated by sorting the 200 model-

predicted NNMs at different amplitudes and then selecting the 6th and 195th sorted values as the 

lower and upper bounds. The estimated quantile intervals and the identified NNMs are shown in 

Figure 11 and Figure 12. It can be seen that the identified NNMs generally fall within the estimated 

confidence intervals. Furthermore, intervals of mode 2 have larger bounds than that of mode 1 due 

to the larger standard deviation of error function for mode 2 (the identified NNM 2 has greater 

variability shown in Figure 5). The identified backbones of mode 1 at sensors 9 and 13 slightly fall 

out of the confidence bounds, due to modeling errors and NNMs identification error. 
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Figure 11. Confidence intervals of NNM 1 and the identified counterparts. 

 

Figure 12. Confidence intervals of NNM 2 and the identified counterparts. 
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5. Conclusions 

This paper presents a two-phase Bayesian model updating and class selection of nonlinear 

structures using experimentally identified NNMs. The proposed method is applied to a 

conceptually simple wing-engine system with nonlinear connections. Two NNMs of the system 

are identified using CBC for phase resonance testing. At phase I, the linear FE model is updated 

to represent the underlying linear system of the structure using NNMs at the lowest energy level. 

Then a ROM is generated from the updated FE model using the MAP values of the parameters. 

The linear model uncertainty is not considered because the parameter uncertainty is negligible. At 

phase II, the ROM is combined with nonlinearity functions to represent the nonlinear connections. 

Five model classes with different polynomial functions are considered, and the proposed Bayesian 

nonlinear model updating is performed to estimate the posterior PDF and evidence for each model 

class. The Bayesian class selection approach automatically enforces the principle of parsimonious 

model and rejects classes 4 and 5 although they have higher order polynomial terms. The model 

class 2 with a cubic nonlinearity is selected as the most plausible model and is used to perform 

probabilistic prediction of NNMs by propagating the estimated parameter uncertainty and error 

function uncertainty. The identified NNMs generally fall within the 95% confidence interval of 

predictions.  

The application considered demonstrates the effectiveness of the proposed Bayesian model 

updating and class selection methodology for nonlinear structures which are assumed to exhibit 

elastic deformations and to return to the same unique equilibrium position when at rest. Behaviors 

like buckling, wear, tear, and material nonlinearity are not considered. The proposed method is 

particularly appropriate for structures with localized stiffness nonlinearities that manifest 

themselves for sufficiently large vibration amplitudes. The proposed method also has the potential 

to be applied to structures where nonlinear effects occur for small vibration amplitudes (such as 

with friction) if phase I of the model updating is modified to include and to estimate the parameters 

of those nonlinearities. 
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