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Abstract

This paper presents a Bayesian model updating and model class selection approach based on
nonlinear normal modes (NNMs). The performance of the proposed approach is demonstrated on
a conceptually simple wing-engine structure. Control-based continuation is exploited to measure
experimentally the NNMs of the structure by tracking the phase quadrature condition between the
structural response and single input excitation. A two-phase Bayesian model updating framework
is implemented to estimate the joint posterior distribution of unknown model parameters: (1) at
phase I, the effective Young’s modulus of a detailed linear finite element model and its estimation
uncertainty are inferred from the data; (2) at phase 1, a reduced-order model is obtained from the
updated linear model using Craig-Bampton method, and coefficient parameters of structural
nonlinearities are updated using the measured NNMs. Five different model classes representing
different nonlinear functions are investigated, and their Bayesian evidence are compared to reveal
the most plausible model. The obtained model is used to predict NNMs by propagating
uncertainties of parameters and error function. Good agreement is observed between model-
predicted and experimentally identified NNMs, which verifies the effectiveness of proposed
approach for nonlinear model updating and model class selection.

Keywords: Nonlinear model updating; nonlinear system identification; nonlinear normal modes;
Bayesian inference; model class selection; uncertainty quantification and propagation; control-
based continuation.

1. Introduction

Finite element (FE) models are arguably commonly used for structural design, assessment, and
response prediction. The accuracy of FE models can be improved by inferring model parameters
from in-situ measurements through a model updating process where model parameters are tuned
to minimize the difference between measurements and the corresponding model predictions [1].
The discrepancies between model predictions and measurement data are mainly caused by three
sources of uncertainty: (a) measurement noise, (b) modeling errors, and (c) model parameter
uncertainty. Model updating directly reduces the model parameter uncertainty by integrating the
model with measurement data. There have been numerous applications of model updating that
employ a deterministic optimization approach [2-9]. In these applications, a least square problem
is solved by minimizing an ‘objective’ or ‘loss’ function which consists of the difference between
model predictions and measurements. One of the main shortcomings for the optimization approach



is that the method does not provide a measure of estimation uncertainty for the updating parameters.
Probabilistic model updating approaches such as those using Bayesian inference have been
developed to overcome this shortcoming. Bayesian model updating updates the prior distribution
of model parameters to the posterior distribution using the likelihood of observed measurements.
The posterior distribution provides the parameter uncertainty and the most likely values of
parameters as the maximum-a-posteriori (MAP) estimate. This approach can also be applied to
locally identifiable or even unidentifiable problems [10] by stochastic sampling of the posterior
distribution. Several applications of Bayesian model updating exist in the structural dynamic
literature [11-15]. Ntotsios et al. applied Bayesian damage identification on a numerical study of
a highway bridge and a laboratory small-scaled bridge section [16]. Lam et al. implemented a
Bayesian model updating of a coupled-slab system using field test data and an enhanced Markov
chain Monte Carlo simulation algorithm [17]. Behmanesh and Moaveni performed probabilistic
identification of simulated damage (added concrete block on the deck) on the Dowling Hall
footbridge through a Bayesian finite element model updating [18]. Recently, a hierarchical
Bayesian model updating has been proposed to provide realistic parameter uncertainty by
estimating the distribution parameters as hyper-parameters [19-22]. The hierarchical framework is
especially suitable when structural properties vary due to changing ambient or environmental
conditions.

Many of the above applications have considered linear dynamic systems. While some studies
included material nonlinearity [23-27], linear modal properties were still used as data features in
model updating. In this paper, features called ‘nonlinear normal modes’ (NNMS) are used to update
a nonlinear model and estimate the uncertainty of model parameters. NNMs extend the concept of
linear normal modes to nonlinear systems [28-30]. NNMs have received increased attention in
recent years as they provide a rigorous theoretical framework for interpreting many nonlinear
dynamic phenomena [31-33]. For instance, NNMs can be used to predict the amplitude of the
response of a nonlinear structure at resonance, i.e., when the risk of structural failure is the greatest.
The identification of NNMs using broadband excitation was proposed in [34], but phase resonance
testing remains so far the most popular approach [35]. Phase resonance testing aims to isolate one
NNM at a time by reaching a phase quadrature condition between the response and the applied
excitation. For nonlinear structures, this quadrature condition is difficult to reach due to the
presence of bifurcations and the propensity of the structure to jump between coexisting stable
responses. Several methods such as control-based continuation (CBC) and phase-locked loops
were proposed to address these issues [36, 37]. In this study, CBC is used to find responses that
satisfy the phase quadrature condition and track their evolution as the excitation amplitude is
increased. The so-called backbone curves obtained in this way correspond to the NNMs of the
underlying conservative system provided that the excitation is appropriately distributed in space
and frequency [35, 38].

NNMs identified experimentally can be compared to NNMs calculated from the nonlinear
model of the structure. In this paper, the harmonic balance method (HBM) [39] is used to compute
NNMs, although several other methods exist and could have been used [40]. Particular advantage
of the HBM is that the number of harmonics used to approximate the response of the structure can



be reduced to filter out modal interactions and reduce computational load, thereby simplifying the
calculation of the error function between experimental and theoretical results.

Several contributions have considered NNMs for parameter estimation and nonlinear model
updating. Peter et al. [41] employed optimization to minimize the difference between backbone
curves measured using the phase resonance method and their analytical counterparts computed
using the HBM. The nonlinear stiffness parameters of a single degree-of-freedom (DOF) oscillator
were estimated using a similar method in [36]. Hill et al. [42] performed Bayesian model updating
of nonlinear structures based on analytical models to describe the backbone curves. They derived
analytical expression to describe the backbones which only provided an approximate solution and
was limited to weakly nonlinear systems. Song et al. [43] implemented a numerical case study of
Bayesian model updating on a nonlinear beam known as the COST Action F3 benchmark [44]. In
that study, the NNMs were identified from simulated response under broadband excitation. The
present paper demonstrates the model updating methodology proposed in [43] on a structure with
multiple localized nonlinearities and using NNMs identified from experimental data. In addition,
the present paper further exploits Bayesian inference to perform model class selection and choose
the most plausible model (i.e., the model with the largest evidence) among a set of candidates.
This approach has the benefit to combine nonlinearity characterization and parameter estimation -
two steps which are usually considered as separate in the identification of nonlinear structures [45].

The Bayesian model updating and model class selection methodology proposed here proceeds
in two phases to update the linear and nonlinear parts of the structural model separately. The
proposed method is applied to a conceptually simple wing-engine structure with nonlinear
connections. Two NNMs of the structure are identified using CBC through phase resonance testing.
At phase I, a linear FE model is updated using the NNMs identified at the lowest energy level. A
reduced-order model (ROM) is created based on the updated linear model and then used for
nonlinear model updating in Phase II. At phase Il, the ROM is combined with five different classes
of nonlinearity function, and Bayesian model updating and class selection are performed to
estimate the posterior distribution and evidence for each model class.

2. Bayesian Inference for Model Updating and Model Class Selection Based on NNMs
2.1 Bayesian Model Updating

This section presents the general framework of Bayesian model updating using NNMs. For
simple structural models with small numbers of DOFs, linear and nonlinear parameters can be
updated together to obtain the joint posterior distribution. However, for complex structural systems
with many DOFs, the updating process may become computationally prohibitive as it entails a
large number of NNMs computations from the numerical model, which can be a computationally
demanding task. To avoid this issue, this paper implements a two-phase model updating approach
in which the underlying linear system parameters are estimated first, and then a ROM of the
updated linear system is generated and used for nonlinear model updating. Since the ROM has
fewer DOFs than the original model, Bayesian updating of the nonlinear system through stochastic
sampling is computationally feasible. This two-phase Bayesian updating process has been
demonstrated through a numerical application to a nonlinear beam in a previous study [43].
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2.1.1 Phase I: Updating of the underlying linear model

Linear modal properties such as natural frequencies and mode shapes have been extensively
used for model updating of linear structures with reasonable successes [2-9]. When vibration
amplitude is sufficiently small, the contribution of nonlinearity is assumed to be negligible. As
such, the NNMs identified at the lowest vibration level ‘resemble’ the linear modes [29] and can
be used to update the parameters of the underlying linear system. Note that if this assumption is
not verified (due, for instance, to friction nonlinearities), additional testing is required to identify
the underlying linear modes of the system, or this Phase | should be modified to account for the
presence of such nonlinearities and the estimation of their parameters.

The classical Bayes’ theorem can be written as:

p(d|6,M)p(68|M) )
p(d|M)

where 0 is the vector of updating model parameters, d refers to the measured data (e.g., NNMs),

and M denotes a specific model class or model form. Left term in Eq. (1) is the joint posterior

probability density function (PDF). p(d |0, M) is referred to as the ‘likelihood function” which

represents the probability of observing measurements d given parameters 0, and p(0|M) is the

prior PDF which reflects the prior knowledge or engineering judgement about updating parameters
before measurements are taken. p(d|M) is called ‘evidence’ or ‘marginal likelihood” which

quantifies the plausibility of model class M in the view of measurements. Higher evidence value
indicates higher plausibility given the measurements. The evidence term usually lacks analytical
solution and is often computed numerically through stochastic sampling or estimated using the
approximate approach presented in section 2.2. Currently it is treated as an unknown constant
whose exact value is not required for evaluating the posterior PDF when Markov chain Monte
Carlo (MCMC) sampling methods are used. When uninformative prior distribution is assumed,
e.g., uniform distribution, then the prior PDF is also a constant term. The uniform prior function
is selected in this study considering the large modeling errors, missing material specifications and
the unknown properties of nonlinear connections. The uniform distribution bounds the parameter
values within a reasonable range and prevents it going beyond feasible physics. Combing all
constant terms as €, the following formulation is derived:

p(6]d,M)=Cp(d|6,M) (2)

The model class M is neglected in the following discussion to save the notation and will be
introduced back in section 2.2 for model class selection.

p(6[d,M)=

For evaluation of the likelihood function, an error function is defined to represent the
discrepancy between model-predicted and experimentally identified data features. In the first
phase of model updating where 0 represents linear model parameters, the error function is defined
based on natural frequencies and mode shapes as

e7(8) = 4, — £,(6) , 3)
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where €7'(0) and e ; (0) are the error function terms for the natural frequency and the mode shape

e, (0)=

of mode m. A and ®_ are experimentally identified eigenfrequency ((27:1:)2 in which f is
natural frequency in Hz) and mode shape. 2 (0) and @ _(0) are their respective model-predicted
counterparts. I" is a selection matrix which picks corresponding components of ®@_(0) (which

usually has more components than ﬁ)m whose dimension depends on the number of deployed
sensors) according to (i)m , and consists of only 0 and 1 terms. a,, is a scaling factor to ensure the
mode shapes are comparable [21, 43] and is equal to ®_-T'®_ (9)/(H<i)mu||l“tl)m (0)||) :

Based on the principle of maximum entropy, the error function is assumed to follow a zero-

mean Gaussian distribution with standard deviations for the natural frequency and the mode shape
error terms give by [18]

o, =wW,CoV,4,, (®)
o, \/iw CoV,, (6)

where w_ are weights for different modes which can be determined based on measurement
accuracy. In the experimental application of this paper, w_ is set to be one to provide equal
weights for all the considered modes. CoV, refers to the coefficient-of-variation (ratio of standard
deviation to mean value) of the experimentally identified eigenfrequency for mode m. N, is the
number of sensors deployed in the instrumentation and balances the weights between natural
frequency and mode shapes, as it has been done in past studies [18, 43].

The error function components are often assumed to be statistically independent Gaussian
distribution. This is a conservative assumption and will maximize the uncertainty of posterior PDF
based on the principle of maximum entropy. Assuming the error functions are independent, the
likelihood function is written as

. ~ f 1 1€ 1
p(d10)=] T o, 10)- H e exp(—gfj—'iz) <o -3100.0)) )
m1\ O, %,

where N is the number of available modes in dataset d, e, and o, denotes individual error
components (including both natural frequencies and mode shapes error functions) and their
respective standard deviations. The term J(0,d) is similar to the ‘objective function’ used in

model updating with an optimization approach, which consists of the discrepancy between model-
predicted and identified modal properties. It is easy to see that the minimization of J(0,d) is

equivalently to the maximization of the likelihood function and the posterior PDF (proportional to
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the likelihood function as shown in Eq. (2)). Therefore, in this case the optimization approach and
Bayesian approach provide the same solution for optimal (for optimization) or MAP (for Bayesian)
parameter values, while the Bayesian approach also provides estimation uncertainty of updating
parameters as well as model evidence.

In the case that multiple sets of measurements from different tests are available, they can be
fused together to provide the joint posterior PDF by assuming all datasets are independent:

p(D|9)=éexp(Z—%J(9,dn)j 9)

n=1
where D collects all the datasets D =[d, ... d] . During the dynamic tests, different modes can

be excited and identified each time, therefore, different datasets may contain different modes, or
even different number of sensors. However, the fusion of multiple datasets follows the same
procedure in Eq. (9). Different MCMC sampling methods can be used to evaluate the posterior
PDF such as the Metropolis-Hastings (MH) [46], the adaptive MH [47], or the Transitional MCMC
[48].

2.1.2 Phase I1: Updating of the nonlinearities

The updating of structural nonlinearity requires the whole NNM curves, as larger amplitude
response contains richer information about the nonlinear behavior. Similar error functions for
natural frequencies and mode shapes are defined here by considering NNMs at different energy
levels:

&) (0")= A, —A,;(0")+T, (10)
o re (0™

enl m,j ) m,j
SO, T e, 00

in which 0" denotes the vector of coefficient parameters of the nonlinearity function, and the
subscript j denotes the vibration amplitudes (energy levels) of the NNMs. r_ refers to the linear

(11)

natural frequency residual at Phase | and is definedas r, = A (6)—A_,,where © denotes the MAP

m1?
value of 6 and Zm is the corresponding eigenfrequency of identified NNMs at the smallest
amplitude. This term is introduced here to eliminate propagation of errors from the linear model.

The error function terms ezj(ﬁ”') and e;jj(e”') refer to specific points on the NNM curves,

and different tests may retain different total number of points on the curves. To account for this
imbalance, the error functions in Eqgs. (10) and (11) are averaged by the number of points on the
NNMs. Therefore, a similar term as Eq. (8) is derived for nonlinear model updating at phase II:

20".0) = Z!N Zple“(e )]] +Zm{NmZ o0, 2, 12)

p i\ 9, 1| Ny = ¢m




where N7 denotes the number of points on the m™ NNM in each test. T is defined similar to

o, 80, = WmCoVAim' ; and CoV, here is averaged among different energy levels. The fusion

of multiple datasets from different tests follow the same procedure as the linear model updating
case.

2.2 Bayesian Model Class Selection

One of the important advantages of Bayesian inference for model updating is model class
selection to identify the most plausible model. The selection criterion is simply the evidence of
model M given measurement data D , p(D |M). The evidence term usually lacks an analytical

solution, and sampling approaches such as MCMC are often employed to provide numerical
estimation, e.g., MH algorithm [49] or TMCMC which provides the evidence as a by-product [48].
In this study, class selection is focused on selecting the most probable nonlinearity function. Linear
mode class selection follows exactly the same procedure presented in this section; however, it is
not considered herein. The Bayes’ theorem is presented below for nonlinear coefficient parameters:

p(D |6",M)p(8™ | M)

p(e" D, M) = (13)
p(D [M)
The following is readily available by rearranging the terms:
D |0",M)p(0" | M
p(DIM)=p( I )p(6” M) (14)

p(e™ D, M)
The only uncertain term on the right is the posterior PDF p(8" |D,M). In the literature, the

posterior distribution is often assumed to be a Gaussian distribution, which is usually a good
approximation when the parameters are globally identifiable [10]. In the applications of wing-
engine structure presented in later sections, the posterior PDF is also observed to resemble a

Gaussian distribution. Substituting the posterior PDF with the Gaussian PDF N (9”' | s Zo )
the following is derived:

_ p(D 0", M)p(6" | M)
N (enl | l‘lenl ) Z‘enl )
In Eq. (14), 8" can be any value with non-zero posterior PDF. However, the MAP (same as mean

value for Gaussian PDF) of parameters 8™ is used in this study. After substituting the likelihood
function and prior PDF and taking the logarithm of both sides, the computation of evidence is
shown below:

p(D [M)

(15)

log(p(D |M)) =log(p(D 6",M))-+log(p(6" |M))—log(N(®" |1, Z,)) (16)
log(p(D 8", M)) = —NTDlog(zﬁ)—jlog(ai)+2(—%3(e,dn)j (17)

where N, refers to the total number of error function components in the likelihood.



2.3 Probabilistic Prediction of NNMs

After the joint posterior PDF of parameters are estimated, both parameter uncertainty and error
function uncertainty can be propagated into probabilistic response predictions. By rearranging the
terms in the definition of the error function in Eq. (10), the following frequency prediction of
NNMs is obtained:

ﬂg(}diction — ﬂ*m,j (enl) + e}r:j -r (17)

m

In Eq. (17), both parameters 0" and error function e;; follow Gaussian distributions
0"~ N (0“' |p9n.,):9m) and €7, ~ N (ej{‘,j |0’0§m,j) . Monte Carlo simulations can be performed

to obtain adequate number of NNMs simulations by generating independent samples of 8" and
e; ;» and then response confidence intervals can be produced from these simulations.

3. Application to a Conceptually Simple Wing-engine Structure
3.1 Structure Description and Instrumentation

The tested structure represents a conceptually simple wing-engine system as shown in Figure
1 [50]. The scaled structure consists of a rectangular aluminum wing plate on the top (size of
1000 mm x 220 mm and thickness of 6 mm), and two steel pylons (Figure 1(b)). Each of the two
pylons have two thin steel plates (referred to as ‘springs”) which are clamped by two supporting
aluminum blocks at the bottom of the wing plate. Nonlinear behavior is observed at the clamping
connections of the steel springs due to the curved inner surfaces of the two supporting aluminum
blocks, as illustrated in Figure 1(b). The restoring forces of the steel springs are a nonlinear
function of the pylon displacement because the effective lengths of the springs change with
vibration amplitude, which introduces nonlinear stiffness. The whole structure is hanging by 12
soft springs located at the four corners of the wing plate. The wing-engine structure is instrumented
with 14 accelerometers and one single point excitation shaker. Eight accelerometers are mounted
on the top of the wing plate measuring vertical acceleration (Figure 2(a)), and three accelerometers
are mounted on each of the two pylons measuring horizontal acceleration (Figure 2(b)). The single
point shaker is located under the structure with excitation force applied at the same location as
sensor 7.



Curvedﬁsurface Modeling Assumption
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(b)
Figure 1. Wing-engine structure and instrumentation (a) and detailed view of nonlinear
connection and modeling assumption (b). Only the left shaker shown in (a) was used for exciting
the structure during the experiment.
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Figure 2. Layout of accelerometers and FE model in Abaqus.
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3.2 FE Model and ROM

A linear FE model of the wing-engine structure is created in Abaqus [51]. It includes 639 linear
quadrilateral elements of type S4R, and 440 linear hexahedral elements of type C3D8R, and has a
total of 6876 DOFs. The discretization of the FE model is selected such that, within the frequency
range of interest, the dynamic characteristics of the structure have converged. The local
nonlinearities at the connections of the pylons are not considered in this linear model, and the
connections of the steel springs with aluminum blocks are assumed to be perfect (Figure 1(b)).
The first two mode shapes of the FE model are shown in Figure 3. Significant displacements at the
pylons are observed which are influenced by the nonlinearities.

The evaluation of the posterior PDF using MCMC techniques requires large number of
computations of NNMs from the numerical model, therefore, it is computationally demanding to
directly include nonlinearity in the detailed Abaqus model for this task. A simplified model with
less DOFs is needed to include the nonlinearities and reduce the computation burden. The Craig-
Bampton method is employed to obtain a ROM of the linear model [52]. All the DOFs associated
with the sensor locations are treated as boundary points and the corresponding static constraint
modes are retained in the ROM. Only the translational DOFs corresponding to the measured
directions are included, i.e., the DOFs in the Z direction for sensors 1 - 8, and the DOFs in the X
direction for sensors 9 - 14. To model the nonlinearities at the pylons, nonlinear restoring forces
that depend on the relative displacements between corresponding DOFs are added to the ROM,
i.e., between sensor 9-10,9-11,12-13and 12 - 14. The ROM is then used to compute theoretical
NNMs which are compared with the experimental results for model updating. Note that the two-
phase model updating approach proposed here is in principle not restricted to a particular model
reduction method and could also work without (albeit at a much higher computational cost).
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In this study, the HBM is used to directly compute NNMs for response amplitudes that
correspond to the amplitudes measured experimentally. These responses are the only ones required
to evaluate the error functions defined in Egs. (10) and (11). It is worth noting that damping
properties do not have to be included in the ROM for the computation of NNMs. Effective damping
ratios can be estimated from the measured backbone curves [53] and directly incorporated in the
ROM after updating. To include the damping parameters in the model updating, the backbone
curves measured experimentally should be compared directly with the backbone curves computed
from forced and damped simulations [38] instead of the NNMs.

(@) (b)
Figure 3. Mode 1 (a) and mode 2 (b) of the Abaqus model.

3.3 Experimental Results

The NNMs of the wing-engine structure are identified using CBC through phase resonance
testing. CBC is a model-free method that relies on feedback control to explore the dynamic
behavior of nonlinear systems directly during experimental tests [54]. CBC has been used to
extract important nonlinear dynamic features such as backbone curves [36], nonlinear frequency
response curves [55] and limit-point bifurcation curves [56, 57], on a range of harmonically forced
mechanical structures, including nonlinear energy harvesters [55, 56], a bilinear oscillator[58] and
a nonlinear beam with harmonically coupled modes [57, 59]. To identify backbone curves, CBC
adjusts the frequency of excitation such that the response and excitation are in phase quadrature.
The evolution of the excitation frequency and structure response is then captured by maintaining
quadrature for increasing excitation amplitudes. So far, CBC has been applied to conceptually
simple structures with at most a couple of degrees of freedom. In this paper, we show that CBC is
applicable to more complex, multi-degree-of-freedom systems.

The backbone curves identified for the first and second modes of the wing-engine structure are
shown in Figure 4 and Figure 5, respectively. For conciseness, the structure response is shown
only at sensors 9 - 14. The response amplitude at sensors 10, 11, 13 and 14 is observed to be one
order of magnitude larger than the response measured at sensors 9 and 12. This is because the
former sensors are located at the bottom of pylons (Figure 2(b)).

Figure 4 and Figure 5 show several backbone curves, each of which was obtained by measuring
the phase quadrature condition between the excitation and a particular sensor. For the first mode,
this leads to 14 different curves - one for every accelerometer on the structure. From a theoretical
perspective, different backbone curves represent the same NNM and should therefore overlap each
other [38]. However, due to the single-point nature of the applied excitation, the energy provided
by the external force is not perfectly distributed across the whole structure and the response of the
structure is not monophase. However, the qualitative agreement and the relatively small errors
between different backbone curves suggest that phase differences that exist between different
sensors are acceptable, and that the NNM of the underlying conservative structure is close to the
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identified backbone curves. For mode 2, backbone curves were identified for only 5 sensors. For
the other 9 sensors, the quadrature condition could not be reached with the desired accuracy
tolerance of 5x107° rad (or 0.29°). It is thought that this issue is solely due to the inappropriate
distribution of the excitation as no issue with the controller was observed.

When considering all 7 measured harmonics, the response amplitude for the first NNM shows
a peak at about 15.3 Hz (Figure 4). This peak is due to the presence of a modal interaction between
the first and a higher-frequency mode. Modal interactions usually lead to the presence of loops in
the frequency-amplitude curve of the NNM. These loops pose issues for computing the error
functions used in model updating (Egs. (10) and (11)) as the curve can no longer be uniquely
parameterized by the frequency or response amplitude, i.e., multiple response amplitudes are
possible for a given frequency and multiple frequencies are possible for a given response amplitude.
Note that only parts of the loop were measured experimentally, which explains the greater
variability observed in the results around the 15.3 Hz peak (Figure 4). Based on the available
experimental data, it is not possible to systematically identify which one of those multiple
responses has been measured and hence to correctly pair experimental data and model prediction
points in the modal interaction region. To overcome this issue in theoretical calculations, modal
interactions were filtered out by reducing the number of harmonics used in the HBM to only one.
Similarly, only the first harmonic of the responses measured experimentally was used. The
differences in response amplitudes resulting from the use of one and seven harmonics are shown
in Figure 4 and Figure 5.

Sensor 9 Sensor 10 Sensor 11

16.5 16.5 16.5
N
L 16 16 16
>
0
cC 155 15.5 15.5
o
>
9_) 15 7 harmonics 15 15
L —— 1 harmonic

14.5 14.5 14.5

0 0.2 0.4 0.6 0 2 4 6 8 0 2 4 6 8
Sensor 12 Sensor 13 Sensor 14

16.5 16.5 16.5
N
L 16 16 16
>
0
cC 155 15.5 15.5
)
>
g 15 15 15
S
L

14.5 14.5 14.5

0 0.2 0.4 0.6 0 2 4 6 0 2 4 6
Amplitude (mm) Amplitude (mm) Amplitude (mm)

Figure 4. Identified backbones of NNM 1.
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c 185 18.5 18.5
)
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| .
L
17.5 17.5 17.5
0 0.5 1 0 1 2 3 0 1 2 3
Sensor 12 Sensor 13 Sensor 14
19.5 19.5 19.5
N
L 19 19 19
>
5
C 185 18.5 18.5
o
S
S 18 18 18
—
L
175 17.5 17.5
0 0.2 0.4 0.6 0.8 0 1 2 3 0 1 2 3
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Figure 5. Identified backbones of NNM 2.
4. Model Updating Results
4.1 Linear Model Updating Results

The wing-engine structure is made of two materials: aluminum and steel. The Young’s
modulus of these two materials are chosen as the linear updating parameters, i.e.,

e = [EAIuminum
Eriial  —68.9 GPa and EM™ =200 GPa . The proposed Bayesian updating framework is

Aluminum Steel

Esteel ]T . The values of updating parameters are normalized to their initial values:

implemented to update the selected Young’s modulus based on the linear modes which are
estimated as the identified NNMs 1 and 2 at their lowest energy levels. Therefore, 14 sets of mode
1 and 5 sets of mode 2 are used in the updating process. MH algorithm is used to generate 3500
samples of the joint posterior PDF, and then the first 500 samples are removed as burning-in
strategy to eliminate the effects of transitional samples. The sample acceptance rate is adjusted to
be in the range recommended in [60]. The evolution histories of sample mean and standard
deviation are shown in Figure 6(b). It can be seen that the sample mean and standard deviation
have converged and 3500 samples are sufficient for evaluating the posterior PDF. The sample
distribution after burning-in is shown in Figure 6(a). The contour plots are from a Gaussian
distribution with its mean and covariance the same as the sample statistics. It is seen that the sample
scatter follows the Gaussian contours well, implying that the posterior PDF resembles the Gaussian
distribution.

The sample mean and standard deviation are reported in
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Table 1. Itis observed that E, ., has been reduced significantly (around 70%) in the updating

process. This large reduction is attributed to an error in the modeling of the boundary conditions
of the springs which are the only components made out of steel. In reality, the inner surfaces of
the aluminum blocks are curved to introduce the nonlinear restoring force (Figure 1(b)). However,
the linear FE model assumes that the aluminum blocks are straight and that the clamping is perfect
(Figure 1(b)). As a result, the length of the steel springs is underestimated. In the model updating,
the Young’s modulus of steel is drastically reduced to compensate for this modeling error. The
modal properties of the calibrated model match the identified counterparts very well (see Table 2).
A validated model with more accurate representation of the geometry would overcome the
modeling error. Note that the modeling error cannot be corrected by the large reduction of
parameter value but is compensated to provide accurate modal properties in this study. The current
Abaqus model is created based on the best knowledge of the authors as the portions of the
aluminum blocks that are in contact with the steel springs are not precisely known and appear to
be different at the front and at the back of the pylons. The mesh size of the steel springs has been
verified to have converged and has negligible effects on the model updating. A good tutorial about
model updating process and modeling errors can be found in [61]. Another possible reason is that
the initial Young’s modulus of steel and aluminum are overestimated compared to their true values
since the precise material compositions of the structure are not available.

The estimated standard deviations of the parameters are very small indicating negligible
uncertainty in the underlying linear system. Therefore, the ROM of the linear model is generated
only based on the MAP values of the updating parameters. The natural frequencies and mode
shapes of the linear model before and after updating are compared with their identified counterparts
in Table 2. The post-updating values are from the FE model using the MAP values of parameters
and are much closer to the identified values. The identified natural frequencies are reported as the
mean values over several tests. The modal assurance criteria (MAC) values are computed between
model-predicted and identified mode shapes and the mean values for different tests are reported in
Table 2. It is observed that the MAC values are also improved significantly after model updating,
especially for mode 1.
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Figure 6. (a) MH samples of linear model updating and contour plot of approximated Gaussian
distribution; (b) evolution time histories of sample mean and standard deviation.

Table 1. Sample mean and standard deviation of linear model updating.

EAluminum ESteeI
Mean 0.88 0.31
Std (x 1073) 3.93 0.39

Table 2. Linear modes comparison before and after linear model updating.

Frequency (Hz) MAC
Initial Updated Identified Initial Updated
Mode 1 22.78 14.75 14.65 0.788 0.999
Mode 2 30.91 17.50 17.71 0.968 0.985

4.2 Nonlinear Model Updating and Model Class Selection

As mentioned before, the estimated parameter uncertainty in the linear model is negligible and
thus the ROM s generated only based on the MAP values of the linear parameters. The first 15
internal mode shapes of the linear model (6 rigid-body-like modes caused by the hanging springs
and the first 9 vibration modes) and 14 static constraint modes associated with the measured DOFs
are retained in the ROM which comprises a total of 29 DOFs. The natural frequencies of the ROM
are compared with those of the full model in Figure 7(a), and the relative frequency errors and
MAC values of the corresponding mode shapes are shown in Figure 7(b). The ROM agrees very
well with the full model for the first 9 modes. However, the accuracy of the ROM deteriorates
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significantly for higher modes (>9) since they are not included in the Craig-Bampton model
reduction.

150 — w , w ' | ' T B

i E::HNTE mocel ® Relative
Mode | frequency MAC
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Mode number
(a) (b)
Figure 7. Natural frequency comparison between full FE model and ROM (a) and relative
frequency errors and MAC (b).

The nonlinearity identification process usually consists of three steps: (1) localization, (2)
characterization and (3) parameter identification. The localization step is trivial given that the
nonlinearities were implemented deliberately. The characterization step requires identifying the
optimal functional form describing the nonlinearities, and parameter identification entails
estimating coefficient parameters. Steps (2) and (3) are here jointly carried out through a Bayesian
model class selection and updating process. In this study, five model classes with different
nonlinear functions are considered to represent the nonlinear force-displacement relationship of
the pylon connections. The considered functions are all polynomials as the analysis of the
experimental data collected for sine sweep excitation around the first two modes shows that the
nonlinearity is smooth. The five nonlinear functions considered are summarized in Table 3. The
five nonlinearity forms in Table 3 are selected after an extensive screening process of reasonable
polynomial functions, where different orders of polynomials, and combinations of them have been
investigated. The selected five nonlinearities provide the most reasonable NNM predictions
compared to the measurements with relatively simple polynomial forms. More polynomials can
be included in the functions, but it is found that additional higher order polynomials are not
providing meaningful improvements on NNM predictions. Only odd functions are selected in this
study because the measured backbone curves only show hardening effect as observed in Figures 4
and 5, and no softening effect exists. The authors have examined the performance of even
nonlinearity functions in the first stage of screening candidate functions, but they are eventually
excluded. It is worth noting that asymmetrical effects of the backbones were observed in earlier
studies on the structure [62, 63], however, the structure was modified since then, especially the
steel springs clamping connection. The nonlinearity is found to be sensitive to the connection
conditions. Based on the measured backbones in this study, the nonlinearity has changed and is
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different from previous observations. A static test on the studied wing-engine structure was
performed by Delli Carri et al. [50] and showed that the nonlinear form was an odd polynomial
function, which is consistent with this study. Cubic splines could have been considered to provide
more flexibility to our model [34]; however, this was considered outside the scope of this work.

The coefficients ¢’ denotes the updating parameters in each model class, with one updating

coefficient for classes 1 - 3, and two updating coefficients for classes 4 and 5. These updating
parameters have been normalized to their initial values in each class (e.g., 0.216 in class 1), which
are determined through a preliminary trial and error tuning process to provide a reasonable starting
point for the updating process. This process is not required but is recommended as otherwise more
samples are needed for MCMC to converge to higher probability area. The nonlinearities at the
four locations are assumed to be the same as no obvious difference is observed in the identified
NNMs at these locations (Figure 4 and Figure 5). The authors have verified that introducing
different nonlinearities at two pylons does not improve the model updating results but increases
the number of updating parameters and computation efforts significantly.

The proposed Bayesian model updating approach is applied to estimate the posterior PDF of
the coefficient parameters and the evidence of each model class. The prior distributions of all
parameters are assumed to be uniform but with different ranges, i.e., U(0, 10) is assumed for

classes 1 - 3 (¢, ¢® and c’) and the first polynomial coefficient in classes 4 - 5 (¢ and c), and

U (10, 10) is assumed for the second coefficient in classes 4 - 5 (¢, and c; ). These assumptions
are made to represent lack of prior knowledge about these parameters, especially for parameters
¢, and c; . The first coefficient is constrained to be positive as a hardening effect is observed from

the identified backbones. A total of 5500 samples of the posterior PDF are generated using the MH
algorithm, with the first 500 burned in. The evolution of sample mean and standard deviation for
model class 1 are plotted in Figure 8(b) showing the convergence of these statistics, which verifies
that the current number of samples is adequate. The sample histograms for classes 1 - 3, and sample
distribution for classes 4 - 5 are shown in Figure 8 - 10. The PDF (classes 1 - 3) and contour lines
of the approximated Gaussian distribution (classes 4 - 5) are also shown, with their means and
covariances computed from the samples. The Gaussian PDFs in Figure 8 - 9 have been normalized
to have peak values the same as the highest bins of histograms. It is seen that for all model classes
the samples generally follow the approximated Gaussian distribution, which verifies the Gaussian

assumption in the proposed evidence computation in section 2.2. Strong correlations between c;
and c,, as well as ¢ and ¢, are observed from Figure 10(a) and (b), which is caused by their

compensation effects since ¢, and ¢, have negative signs. The sample mean and standard

deviation for all classes are reported in Table 4. It is seen that the estimated parameter uncertainties
for classes 1 - 3 are similar, while classes 4 - 5 have significantly larger uncertainties, especially

for parameters c, and c; which represent the high order polynomial terms. The strong
compensation effects between the first positive cubic terms (¢, and c) and the second negative

terms (c, and C; ) can be the cause of the large parameter uncertainties. The significant
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uncertainties in ¢, and c; suggest their low sensitivities to the NNMs, which implies that they can

be redundant in the nonlinearity function. This is verified by model class selection results presented
below.

The value of evidence for each of the five considered model classes is computed using the
proposed evidence estimation approach and reported in the last column of Table 3. It can be seen
that class 2 has the largest evidence value, while classes 4 and 5 have comparable but slightly
smaller evidence, and classes 1 and 3 have much smaller values. Compared to class 2 with only
cubic polynomial, classes 4 and 5 also include higher order terms, therefore, they have more
flexibility in their nonlinearities than class 2 (i.e., the likelihood functions of classes 4 and 5 are

larger or equal to that of class 2). However, the inclusion of extra parameters (c; and c;) reduces

the value of prior PDF Iog(p((§°|M)) in Eq. (15). According to the assumed uniform

distributions, p(6°|M,)=1/10 while p(6°|M,)= p(6°|M,)=1/200. The prior distribution
here is similar to the Occam’s razor, as it assigns penalty to extra parameters. The Bayesian class
selection will choose the model with less complexity (smaller number of parameters) unless the
improvement from addition of extra parameters outweighs the penalty (from prior distribution). In
this study, higher order polynomials are not considered as they have lower evidence. Therefore,
Bayesian class selection algorithm automatically enforces the principle of parsimonious model
with the largest prediction capability.

Table 3. Model classes of nonlinearity function and the estimated evidence.

Evidence:
Model classes Nonlinearity function Iog(p(D |M ))
Class 1 f (x) =c'x0.216sign(x)x’ 452.9
Class 2 f (x)=c?x0.068x° 619.2
Class 3 f (x) =c®x0.03sign(x)x" 476.8
Class 4 f (x)=c; x0.0884x° —c; x0.0027sign(x)x* 617.2
Class 5 f (X) =c; x0.0748x> —c; x0.00084x° 617.1
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Figure 10. Sample distribution and contour plots of approximated Gaussian PDFs of model
classes 4 (a) and 5 (b).

Table 4. Sample mean and standard deviation of nonlinear model updating.

Model classes Parameters Mean Std
Class 1 ¢t 1.63 0.017
Class 2 c? 1.58 0.016
Class 3 ¢ 1.09 0.012
Class 4 ¢, c 1.34,1.26 0.046, 0.443
Class 5 ¢, C 1.49,0.51 0.049, 0.391

4.3 Bayesian Prediction of NNMs

Model class 2 is selected as the best model in the view of identified NNMs because of its
largest evidence. This model is used for probabilistic NNM predictions using the proposed
approach in section 2.3. The parameter uncertainty (assumed to have Gaussian distribution) and
the error function uncertainty (assumed to have zero-mean Gaussian distribution with standard
deviation estimated from the identified NNMs) are propagated into the predictions. A total of 200
Monte Carlo simulations are performed using independent samples from the posterior PDF and
the error function distribution. Then a 95% quantile interval is generated by sorting the 200 model-
predicted NNMs at different amplitudes and then selecting the 6™ and 195" sorted values as the
lower and upper bounds. The estimated quantile intervals and the identified NNMs are shown in
Figure 11 and Figure 12. It can be seen that the identified NNMs generally fall within the estimated
confidence intervals. Furthermore, intervals of mode 2 have larger bounds than that of mode 1 due
to the larger standard deviation of error function for mode 2 (the identified NNM 2 has greater
variability shown in Figure 5). The identified backbones of mode 1 at sensors 9 and 13 slightly fall
out of the confidence bounds, due to modeling errors and NNMs identification error.
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5. Conclusions

This paper presents a two-phase Bayesian model updating and class selection of nonlinear
structures using experimentally identified NNMs. The proposed method is applied to a
conceptually simple wing-engine system with nonlinear connections. Two NNMs of the system
are identified using CBC for phase resonance testing. At phase I, the linear FE model is updated
to represent the underlying linear system of the structure using NNMs at the lowest energy level.
Then a ROM is generated from the updated FE model using the MAP values of the parameters.
The linear model uncertainty is not considered because the parameter uncertainty is negligible. At
phase I1, the ROM is combined with nonlinearity functions to represent the nonlinear connections.
Five model classes with different polynomial functions are considered, and the proposed Bayesian
nonlinear model updating is performed to estimate the posterior PDF and evidence for each model
class. The Bayesian class selection approach automatically enforces the principle of parsimonious
model and rejects classes 4 and 5 although they have higher order polynomial terms. The model
class 2 with a cubic nonlinearity is selected as the most plausible model and is used to perform
probabilistic prediction of NNMs by propagating the estimated parameter uncertainty and error
function uncertainty. The identified NNMs generally fall within the 95% confidence interval of
predictions.

The application considered demonstrates the effectiveness of the proposed Bayesian model
updating and class selection methodology for nonlinear structures which are assumed to exhibit
elastic deformations and to return to the same unique equilibrium position when at rest. Behaviors
like buckling, wear, tear, and material nonlinearity are not considered. The proposed method is
particularly appropriate for structures with localized stiffness nonlinearities that manifest
themselves for sufficiently large vibration amplitudes. The proposed method also has the potential
to be applied to structures where nonlinear effects occur for small vibration amplitudes (such as
with friction) if phase | of the model updating is modified to include and to estimate the parameters
of those nonlinearities.
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