

fn^rs

Assessing the potential of crop model to reproduce *Thinopyrum intermedium* agro-ecosystems functioning and support knowledge acquisition about perennial grain crops.

Pierre Aubry¹, Laura Fagnant¹, Olivier Duchêne², Benjamin Dumont¹

¹Uliege- Gembloux Agro-Bio Tech, 5030 BE ; ² ISARA Lyon, 69007 FR

Context

- Soils are at risk all around the world and agriculture needs to shift toward agro-ecological practices
- One solution \rightarrow perennial grain crops
- Perennial wheat candidate : *Thinopyrum intermedium* (Host) Barkworth & D.R. Dewey
- Grain producing variety : Kernza[®]

What is Kernza®?

 Dual purpose forage/grain production during the same year

• Soil carbon storage, permanent ground cover

 Selection by The Land institute since 20 years to improve grain yield

Grain production

Forage production

Ecosystem services

New crop, New questions

- Eco-physiology ? Nutrient dynamics, resources allocation, long term development, yield components ...
- Technical management ? Sowing, fertilization, weeding, agronomic potentials, climate change adaptation ...

→ Crop modeling can support knowledge acquisition about this new crop in addition to traditional field experiments

Crop modeling

6

Crop modeling

• The Process based STICS crop model was used

• Can simulate annual grain crops and pasture but cannot do both at the same time

The STICS crop model

Modeling Kernza – Data set

- Calibration data set:
 - 4 years of data (2017 2021)
 - 7 different fertilization management x mowed or not
- Validation data set:
 - 2 years of data (2019 2021)
 - 3 sowing dates x 2 inter row

 \rightarrow 2 Independent and contrasted data set

Modeling Kernza - first step : parametrization

- STICS uses a set of approximately 200 plant parameters
- Some parameters are shared by plants in the same family and other are specific to the specie
- → Parameters from various grass plants have been evaluated to identify the shared ones among poaceae species

10

Modeling Kernza – Model evaluation

Calibration and Validation

12

Results

	Calibration			Validation		
	RMSE	EF	ND	RMSE	EF	ND
Phenology	9,6	0,94	0,015	7,6	0,96	0,011
Leaf Area Index	1,5	0,32	0,057	2,4	-0,213	0,31
Biomass production	1,6	0,80	0,034	3,1	0,64	0,126
Grain yield	0,077	0,74	0,033	0,51	0,27	0,186
N uptake	13,74	0,55	0,08	11,52	0,79	0,031
Root biomass	4,52	-15,5	1,6	2,3	-0,42	0,39

Results : Main issues – production peak

 Second growth period is always underestimated

Results : Main issues – production peak

•

Second growth period is always underestimated 65 89 Above ground biomass (t/ha) Simulated dry matter Observed dry matter RMSE=3.736 (t/ha) Means of observed EF=0.481 drv matter R²=0.627 ND=0.259 \mathbf{V} Period 1 Period 2 Period 3 Period 4 2017-2018 2018-2019 2017 2021 2019-2020 2020-2021 2nd year production peak

Results : Main issues – Roots

- Only limited calibration dataset (3 stages, 3 technical management)
- Bad results, the V 9.2 of the model is limited regarding belowground biomass
- New equations will be added in V 10 to improve the model ability to simulate roots (initially developed for miscanthus)

Developing new knowledge

18

N fertilization optimization

Which fertilization management, if applied systematically every year, gives the best chances to obtain high grain yield ?

→ Multi-simulation approach

N fertilization optimization

- The model is run on past climate dataset (1993-2016 = 23 years)
- Simulations are chained during 4 years
- The first simulation year is shifted by one year to cover the all range

N fertilization optimization

- 125 different N fertilization rate have been created with 3 fractions
- Ranging from 0-0-0 kgN/ha to 100-100-100 kgN/ha

Results : Grain yield

Fertilization fractions

Finding the best N management strategy

Identifying the fertilization management that allows the *greatest mean grain yield* and a *high probability* to get yields greater than the mean.

→ Looking for a PDF of yield with a high negative skewness coefficient

→ Ensuring that the corresponding fertilization allows for a great mean yield

Finding the best N management strategy

skewness

Finding the best N management strategy

Yield PDF for 75-0-25 strategy

- Probability distribution of yields is oriented to the right of the mean (blue line)
- The average yield obtained with this strategy is:
 - Statistically equivalent to the highest yields
 - only 47 kg lower than the yield obtained when 300 kgN/ha are applied (3x more N)
- This fertilization strategy thus maximizes the chances to obtain yields above the average if applied systematically
- → Result in line with Jungers et al. (2017) and fields experiments who recommended amount between 60 kgN/ha and 100 kgN/ha in total

→ Model-based approach brought new insights and allow to fill the gaps with experimental-based knowledge

Acknowledgement

This research is funded by Biodiversa+ and FNRS under NAPERDIV project

fns

Thank you for your attention !

<u>Pierre Aubry</u>¹, Laura Fagnant¹, Olivier Duchêne², Benjamin Dumont¹

¹ Gembloux Agro-Bio Tech, University of Liège ; ² ISARA Lyon

Contact: Pierre.Aubry@uliege.be

References

- Jungers, Jacob M. et al., (2017). « Intermediate Wheatgrass Grain and Forage Yield Responses to Nitrogen Fertilization ». In : Agronomy Journal 109.2, p. 462-472
- Duchene, Olivier, Benjamin Dumont et al., (2021). « Process-based analysis of Thinopyrum intermedium phenological development highlights the importance of dual induction for reproductive growth and agronomic performance ». In : Agricultural and Forest Meteorology 301-302, p. 108341.
- Dumont, Benjamin et al., (2013). « Yield variability linked to climate uncertainty and nitrogen fertilisation ». In : Precision Agriculture 2013 - Papers Presented at the 9th European Conference on Precision Agriculture, ECPA 2013, p. 427-434.
- Strullu, L. et al., (2014). « Simulation of Biomass and Nitrogen Dynamics in Perennial Organs and Shoots of Miscanthus×Giganteus Using the STICS Model ». In : BioEnergy Research.