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Abstract
This article presents a methodology aiming at easing considerably the genera-
tion of high-quality meshes for complex three-dimensional (3D) domains. To
this end, a mesh size field h(x) is computed, taking surface curvatures and geo-
metric features into account. The size field is tuned by five intuitive parameters
and yields quality meshes for arbitrary geometries. Mesh size is initialized on a
surface triangulation of the domain based on discrete curvatures and medial axis
transform computations. It is then propagated into the volume while ensuring
the size gradient ∇h is controlled so as to obtain a smoothly graded mesh. As the
size field is stored in an independent octree data structure, it can be computed
separately, then plugged into any mesh generator able to respect a prescribed
size field. The procedure is automatic, in the sense that minimal interaction
with the user is required. Applications of our methodology on CAD models
taken from the very large ABC dataset are presented. In particular, all presented
meshes were obtained with the same generic set of parameters, demonstrating
the universality of the technique.
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1 INTRODUCTION

Geometric models used in industry have considerably grown in complexity over the last decades, and it is now common
to mesh models with tens of thousands of model faces. Ideally, a designer would create the CAD model, press the generate
mesh button, and obtain in less than a minute a computational mesh valid as is for a finite element simulation. Practition-
ers in the field know however that things do not work out that easily in reality. Mesh generation for complex geometries is
in practice a time-consuming task often involving intermediary meshes, progressively enhanced to fulfill specified mesh
size and quality requirements.

The purpose of mesh generation is to build meshes with elements of controlled size and quality. In the context of
mesh adaptation, the meshing algorithm is constrained by a mesh size field defined on the domain to be meshed, and
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whose value at a point is the expected element size in the vicinity of that point. The mesh size is usually derived from an
error estimation procedure performed on the solution of a prior finite element or finite volume analysis, by requesting a
smaller size at places where the discretization error is deemed large.

Yet, when solving a problem for the first time, an initial mesh has to be generated without information from a prior
computation, and the size field to generate that initial mesh has to be constructed from scratch on basis of the geometrical
data of the model only. Given a CAD model, there exist a number of theoretical prerequisites on the size field to ensure
a computable mesh, and the purpose of this article is to describe an automated algorithm to compute a mesh size field
fulfilling those prerequisites a priori. The proposed approach is “user-driven,” in the sense that users should be able to
generate a workable computational mesh in one click on basis of a limited number of intuitive meshing parameters,
understandable by any finite element practitioner with no extensive background in meshing.

An isotropic mesh size field h(x) is thus a scalar function indicating the expected element size at any point x in a
domain to be meshed. A first design choice concerns the mathematical representation of h. As our goal is to build a “first
mesh,” no background mesh is yet available against which h could be interpolated. A classical solution (e.g., Gmsh1) is to
define element sizes directly on the geometrical entities of the model. Mesh size can be prescribed at the vertices of the
CAD model, for instance, and smoothly interpolated on model edges. They are then subsequently interpolated on surface
mesh vertices. Size fields interpolated this way may however be biased by geometric features of the surface mesh, such
as gaps, fins or channels, which are assigned locally a small size that is not expected to spread out at distance in the bulk
of the volume. This approach is therefore not 100% reliable and defining the size on auxiliary objects allows for a better
control and prevents the aforementioned phenomenon.

Two kinds of representation for mesh size fields are encountered in the literature: simplicial background meshes,2-5

and Cartesian grids, initially in the form of uniform grids,6 and later on in the form of nonuniform or tree-based grids,
such as octrees.7-9 A graphical representation of such data-structures in the two-dimensional (2D) case can be found in
the first figure of Persson.10 As the refinement of uniform Cartesian grid is constrained by the smallest feature in the
CAD model, their memory cost quickly becomes prohibitive in practice, and they were rapidly abandoned for the sake of
simplicial background meshes and octrees.

Both these representations have their pros and cons. Simplicial background meshes are typically triangulations pro-
vided by the CAD modeler, where mesh size is stored on vertices and interpolated on queried nodes. They offer an accurate
representation of the boundaries, and the mesh size query procedure in the 3D case is reduced to a search in the 2D
parametric space.4,11 However, size fields represented this way are rather sensitive to the location of the vertices in the
background mesh,3 and the access time to the mesh size at a point in the background mesh might be linear in the number
of nodes in the worst case. To improve on this, Chen et al.4 proposed a walk-through algorithm based on the backward
search from Shan et al.,12 although it requires a well-guessed element to quickly locate the point in the mesh, assuming an
interconnection between the background mesh and the meshing algorithm. Octrees, on the other hand, are orientation
sensitive Cartesian structures with applications in both direct meshing13,14 and size field design. They lack the geomet-
rical flexibility of simplicial meshes and significative refinement may be necessary to accurately resolve surface-based
information, for example, curvatures. However, octree-based size fields offer adaptive capabilities to represent quickly
and easily complex size distributions across the structure. Moreover, octrees offer fast access to query points in (log8 n)
time, where n denotes the number of octants, that is, the number of leaves in the octree.

In this work, we choose to store the mesh size field in an octree for adaptivity and efficiency concerns. The octree
implementation is provided by p4est,15 of which the serial version is used. In our implementation, a uniform mesh size
is assigned to each octant in the octree, which is the most natural option with p4est.

As mentioned earlier, there are theoretical prerequisites to ensure the computability of a mesh on a given CAD model.
Those prerequisites can be associated with the following five intuitive mesh parameters.

Bulk size. A bulk or default mesh size hb. When creating the size field, the octree is refined uniformly until every octant
size is smaller or equal to hb. This amounts to say that all sizes are initially set to the bulk value hb.

Curvature. When using piecewise linear elements, the main term of geometrical error produced by a mesh is related to
the curvature of surfaces. The local mesh size h(x) should hence be related to the maximal curvature 𝜅n(x) of the surfaces.
This is done with the node density parameter nd that specifies the number of subdivisions of the perimeter of the local
osculating circle.

Small features. A CAD model may also contain narrow or thin regions, or features, for example, longerons that are
the load-bearing components of aerospace structures. As such regions may have moderate or no curvature at all, they are
likely to be overlooked by an algorithm that solely links mesh size with curvature. Features are typically included using a
distance function16 or the medial axis transform.8,9 The latter is used here to estimate the thickness of narrow regions, see
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Section 2.2. On this basis a third parameter ng is defined in our algorithm that specifies the minimal number of elements
across the thickness of a narrow region. We call feature mesh size hf that thickness divided by ng. The feature mesh size
hf and the curvature mesh size hc are the indicators used by our algorithm to recursively refine the octree containing the
mesh size field, see Section 2.3.

Boundedness. A minimum mesh size hmin has to be defined as a fourth parameter in our algorithm to forbid
unacceptably small mesh sizes, whenever curvatures are very high for instance (e.g., at corners or at the tip of a cone).

Smoothness. Accurate finite element and finite volume simulations usually require that mesh sizes vary not too
abruptly across the domain of computation. Yet, curvatures and feature sizes may exhibit sharp variations in practice,
resulting in unacceptably large mesh size gradations. A fifth parameter 𝛼 > 1 is thus defined that bounds (from above)
the length ratio between two adjacent edges in the mesh. In Section 2.4, we show that this condition is equivalent to limit
the mesh size gradient to ||∇h|| < 𝛼 − 1.

Our approach thus defines five parameters that are easy to understand by finite element practitioners, and can be
given a reasonable and rather universal default value:

• the bulk size, or default mesh size on newly created octants, hb. The default value is hb =L/20, where L is the largest
dimension of the axis-aligned bounding box of the CAD model;

• the minimal size allowed in the final mesh, hmin. The default value is hmin = L∕1000;
• the number of elements nd used to accurately discretize a complete circle. The default value is nd = 20;
• the number of element layers in thin gaps ng. The default value is ng = 4;
• the gradation, or length ratio of two adjacent edges in the final mesh, 𝛼. The default value is 𝛼 = 1.1.

In addition to these geometry-based criteria, a user-defined mesh size function hu(x) can be provided to specify exterior
constraints on the size field. If so, the smallest instruction between hu(x) and the geometry-based mesh size is considered
throughout the construction of the size field.

This size field computation has been implemented in Gmsh (version 5 and higher), which is also the tool used to
generate all meshes presented in this article. It is planned that the algorithm presented in this article be soon integrated
as a standard procedure in the meshing pipeline of Gmsh.

2 DESCRIPTION OF THE ALGORITHM: A WORKED- OUT EXAMPLE

To illustrate the steps of the construction of the mesh size field h(x), the CAD model of an engine block is considered as an
application example (Figure 1). This geometry contains curved surfaces and narrow features that are typical of industrial
CAD models. The input data for our algorithm is a surface mesh of the CAD model, from which curvature and feature
mesh size are computed. The size field is generated in an independent structure in the five following steps (Figure 1): (i)
compute the curvature mesh size hc from the approximate curvature on the surface mesh of the model; (ii) compute the
feature mesh size hf from the medial axis of the geometry; (iii) initialize the octree as the bounding box of the model and
refine it uniformly until the size of all octants is at most the bulk size hb; (iv) recursively refine the octree based on both
the curvature and the feature mesh size, and assign the appropriate uniform mesh size in all newly created octants; (v)

F I G U R E 1 Overview of the algorithm for mesh size field computation, from left to right: (i− ii) surface mesh of the engine block, from
which discrete curvature and feature sizes are computed; (iii− iv) the octree is refined based on curvature and feature mesh sizes, (v) mesh
size gradient is limited, yielding smoother mesh size field; generation of the final mesh
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smooth out the size field so as to limit its gradient to 𝛼 − 1. During step (v), the structure of the octree is not modified.
Only its stored sizes h(x) are limited to satisfy |∇h| < 𝛼 − 1, see Section 2.4.

2.1 Approximation of surface curvatures

When a CAD model is represented with a mesh of piecewise linear elements, the main term of geometrical error is due to
the curvature of surfaces. The mesh size should thus be reduced in areas of high curvature. We introduce to this end the
curvature mesh size hc(x). Although definition slightly varies in the literature,4,5,17,18 they all rely on the subdivision of the
perimeter of local osculating circles. The osculating circle at a point of a planar curve is the circle that best approximates
the curve in the vicinity of the point, that is, having same tangent and same curvature. On a smooth surface, there is an
osculating circle in every direction, and the most critical curvature mesh size is related to the minimal radius of these
circles, or reciprocally to the maximum normal curvature 𝜅n,max(x). Curvature mesh size is thus defined as follows:

hc(x) =
2𝜋r(x)

nd
= 2𝜋

𝜅n,max(x) nd
, (1)

with nd a user-defined node density.
If a CAD model is available in the background, surface parametrizations are at-hand and the maximal curvature

𝜅n,max(x) can be obtained through the solid modeler’s API. Curvature queries on the CAD model can be costly however,
and are usually designed for single point query. In this work, the input data considered for the size field pipeline is a
triangulation of the CAD model, on which normal curvatures are approximated. We assume that the triangulation is
colored, that is, triangles on each side of a feature edge, such as a ridge or a corner, are identified with a different color,
so that surface discontinuities are not taken into account when computing the discrete curvature.

To approximate surface curvature, the tensor averaging methodology described by Rusinkiewicz19 was considered. It
is here briefly recalled with their notations. Let (u, v) denote an orthonormal basis in the tangent plane at a point x of
a smooth surface, and s = (s1, s2) be an arbitrary direction in that plane. The normal curvature at x in the direction s is
given by

𝜅n(x) = II(s, s) = (s1 s2) [II]

(
s1

s2

)
= (s1 s2)

(
e f
f g

)(
s1

s2

)
, (2)

where II denotes the second fundamental form defined hereafter, and [II] denotes its matrix representation in the chosen
basis. The eigenvalues 𝜅1(x) and 𝜅2(x) of the symmetric matrix [II], known as the principal curvatures, are the maximum
and minimum values of normal curvature at x. Since 𝜅n,max(x) = max(|𝜅1(x)|, |𝜅2(x)|) is required to define the curvature
mesh size (1), our goal is to build an approximation of [II] at each vertex of the surface mesh.

The idea proposed by Rusinkiewicz19 is to first compute [II] on the triangles, and average them over adjacent triangles
to obtain the needed per-vertex information. We start by computing per-vertex normal vectors ni by averaging the normals
of triangles adjacent to each vertex using arithmetic mean. On each triangle, an arbitrary orthonormal coordinate system
(uf , vf ) is then defined. The components of the quadratic form II in that basis read

[II] =

(
II(uf ,uf ) II(uf , vf )
II(uf , vf ) II(vf , vf )

)
, (3)

and can be evaluated as II(u, v)=L(u) ⋅ v where the shape operator L(s) = ∇sn is the directional derivative of the normal
vector n along a direction s in the tangent plane. Along the particular direction in the plane (uf , vf ) given by the triangle
edge e0 = (e0 ⋅ uf )uf + (e0 ⋅ vf )vf connecting vertices x1 and x2, one has the following finite difference approximation:

II(e0,uf ) = L(e0) ⋅ uf = ∇e0 n ⋅ uf = (n2 − n1) ⋅ uf , (4)

where the directional derivative ∇e0 n in Rusinkiewicz19 is approximated by the difference of normal vectors along e0. On
the other hand, since the second fundamental form is a bilinear form, we have

II(e0,uf ) = II
(
(e0 ⋅ uf )uf + (e0 ⋅ vf )vf ,uf

)
= (e0 ⋅ uf ) II(uf ,uf ) + (e0 ⋅ vf ) II(vf ,uf ). (5)
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BAWIN et al. 4829

Combining (4) and (5) and proceeding the same way for vf yields the following equality for the components of [II]:

[II]

(
e0 ⋅ uf

e0 ⋅ vf

)
=

(
(n2 − n1) ⋅ uf

(n2 − n1) ⋅ vf

)
. (6)

Repeating the same procedure for the two remaining edges e1 and e2, one ends up with a system of six equations
for three unknowns, which can be solved using a least square method to obtain the matrix representation of II for the
triangle. This per-triangle representation of II is expressed in the local basis (uf , vf ). To combine the contributions of
triangles adjacent to a vertex p, the orthonormal basis (up, vp) is defined in the plane perpendicular to the normal vector
at p. Denoting (u′

f , v
′
f ) as the basis (uf , vf ) rotated to be made coplanar with (up, vp), the components of the triangle

contribution to the per-vertex representation [II]p can then be obtained as

ep = uT
p [II] up =

(
up ⋅ u′

f

up ⋅ v′
f

)T

[II]

(
up ⋅ u′

f

up ⋅ v′
f

)
, fp = uT

p [II] vp, gp = vT
p [II] vp. (7)

As for the normal vectors, the contributions of triangles adjacent to the vertex p are then averaged to obtain [II]p. Once
again, arithmetic mean is used to compute the average tensor, that is, all triangles have an equal contribution regardless
of their area.

Once the matrix representation of the second fundamental form [II]p has been computed at a vertex, its eigenvalues
are extracted and the curvature mesh size hc at the vertex is set using (1).

The computed maximal curvature for the engine block model is shown below (Figure 2(A)): curvature is computed
on each colored face of the triangulation, discounting the feature edges.

2.2 Feature size

Whenever two surfaces with moderate or no curvature are close to each other but the distance between them is smaller
than the mesh size, the mesh generator will place only one element in the gap between those surfaces. In many
engineering applications like solid mechanics or fluid mechanics, having only one element in a gap means that both sides

F I G U R E 2 Left: Approximated maximum normal discrete curvature 𝜅n = max(|𝜅1|, |𝜅2|) of the surface triangulation, shown in
grayscale: Curved areas are in gray-black while regions with mild curvature are in light gray. Right: A subset of the Voronoï vertices lying the
farthest from the Delaunay vertices, called poles (black dots), approximate the medial axis as the mesh density increases
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4830 BAWIN et al.

are connected by one single mesh edge. If Dirichlet boundary conditions are applied, such as a nonslip boundary con-
dition, the gap is then essentially closed, leading to an unwanted change of the domain topology. Note that a posteriori
error estimation will not detect large errors in those closed gaps where the solution is essentially constant.

Hence, special care should be given to such narrow geometrical regions, where curvature information alone is not
enough to determine a suitable mesh size field. To this end, we define the feature size f (x) as a measure of the local gap
thickness (Figure 3(A)). If 𝜕V is the boundary of a volume V , f (x), x∈ 𝜕V , is defined as twice the distance between x and
the medial axis of volume V . If a surface bounds two volumes, then the minimum feature size is chosen. The feature mesh
size at the considered vertices, now, is the feature size divided by the desired number of element layers in narrow regions
ng, that is, hf (x)= f (x)/ng. The feature mesh size hf is thus in a similar relationship to the feature size f than the curvature
mesh size hc was to the maximum principal curvature 𝜅.

The evaluation of the feature size f (x) requires computing an approximation of the medial axis of all volumes in the
computational domain. The medial axis of a volume V , also referred to as its skeleton, is defined as the set of points having
more than one closest point on its boundary 𝜕V . Equivalently, the medial axis is the set of the centers of all spheres tangent
to 𝜕V in two or more points, and the feature size f (x) is twice the radius of the sphere tangent at x.

We rely on the algorithm Medial introduced by Dey and Zhao20 to compute a discrete approximation of the medial
axis. The input data for Medial is a Delaunay tetrahedrization of the vertices of the surface mesh only, that is, a set
of tetrahedra, often called empty mesh, filling the computational domain and whose nodes all lie on the surfaces. This
algorithm is based on the Voronoï diagram of these vertices and has suitable convergence properties, in the sense that
the output set of facets converges to the medial axis as the surface mesh density increases. In this work, we implemented
Medial as is. For sake of completeness, we here briefly remind the rationale behind the algorithm, using their notations.

In 2D, the vertices of the Voronoï cells dual to the empty mesh give straightaway an approximation of the medial
axis. The same is however not always true in 3D, because sliver tetrahedra of the empty mesh can persist close to the
boundary as the surface mesh is refined. However, by pruning as explained below the Voronoï vertices dual of these sliver
tetrahedra, a subset of Voronoï vertices called poles can be defined that do approximate the medial axis (Figure 2(B)).
Given the Voronoï cell dual of a surface vertex p (Figure 3(A)), the corresponding pole p+ is defined as the Voronoï vertex
that is the most distant from p. Each surface vertex p is thus associated with a pole p+ and a pole vector vp = p+ − p, the
latter approximating the normal to 𝜕V at p (Figure 3(B)).

( )

(A)

1

2

3

+

(B)

F I G U R E 3 Left: View of the input triangular surface mesh and of the Delaunay tetrahedra adjacent to a mesh vertex p. Zoom in on the
same tetrahedra (transparent) and the associated dual Voronoï cell (in red). Right: Voronoï cell dual to the Delaunay vertex p in the triangular
surface mesh. The pole vector vp (dashed) connects the mesh vertex p to the farthest Voronoï vertex (tetrahedron circumcenter) or pole p+. The
Delaunay edges pq1, pq2, and pq3 connect p to neighboring Delaunay vertices q1, q2, and q3, respectively. Only pq1 and pq2 satisfy one of the
filtering conditions and are considered to compute the feature size. In gray, the umbrella Up of p is the Delaunay facets (triangles) dual to
the Voronoï edges cut by the plane through p with normal vp (not shown)
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BAWIN et al. 4831

The plane passing through p with normal vp intersects edges of the Voronoï cell, and the Delaunay facets dual to these
edges are pictorially called the umbrella Up of p by Dey and Zhao (Figure 3(B), in light gray).

Triangles of the umbrella are used to select some of the Delaunay edges adjacent to p whose dual facets will eventually
form the discrete medial axis. The idea is to select Delaunay edges pq that (a) make a sufficiently large angle with the
triangles of the umbrella, or (b) are significantly longer than the circumradius of these triangles. Condition (a) measures
how normal the edge pq is to the umbrella Up and is referred to as the angle condition. The edge should make an angle
larger than 𝜃 with each triangle of the umbrella, or conversely, an angle smaller than 𝜋∕2 − 𝜃 with their normal vector.
In practice, we evaluate:20

max
i ∈ Up

∠(pq, n̂i) <
𝜋

2
− 𝜃, (8)

where pq is a vector parallel to the edge pq, i denotes a triangle in Up and the threshold angle is set to 𝜃 = 𝜋∕8. Condition
(b) ensures that edges of the surface mesh are removed. It does so by selecting long edges for which the angle condition
has failed, and is referred to as the ratio condition. In practice, only edges at least 𝜌 = 8 times longer than the circumradius
R of the triangles in Up are considered, and the condition reads:20

max
i ∈ Up

||pq||
Ri

> 𝜌. (9)

The numerical values for parameters 𝜃 and 𝜌 are those suggested by Dey and Zhao. They yield a good approximation
of the medial axis for a large variety of geometries. If a Delaunay edge pq satisfies either of these two conditions, its dual
Voronoï facet is added to a set F, forming the approximate medial axis. Consider the three mesh vertices qi connected to
p through a Delaunay edge pqi = qi − p on Figure 3(B). Edge pq1 makes a large angle 𝜃 with the triangles of the umbrella,
and edge pq2 is several times longer than the largest circumradius: both are added to the set E dual to F. Edge pq3 is a
short surface edge mesh lying flat to the umbrella, and is thus removed from the list of candidate edges.

In our size field computation, we need not compute the dual facet to edges in E: for each Delaunay edge pq satisfying
the angle or ratio conditions, the local feature size is directly given by the edge length ||pq||. Mesh size at both vertices p
and q is thus defined as the edge length divided by the desired number of element layers in features:

hf (xp) = hf (xq) =
||pq||

ng
. (10)

The mesh size on the octants containing these vertices is then lower bounded if necessary:

h = max
(

hmin,min
(

hf , hc, hu, hb
))
. (11)

The medial axis also contains the centers of spheres with radius vanishing to zero in angles and corners of the volume
(Figure 4(A)). Dual edges in these corners are smaller than the feature size one wishes to identify, and should thus be
disregarded to avoid spurious small mesh size in these areas. In practice, an edge pq making an angle larger than 𝜃 with
either one of the normal vectors n̂p and n̂q at its ends is also filtered out (Figure 4(B)).

The quality of the approximation of the medial axis is directly related to the node density of the surface mesh. As
pointed out by Dey and Zhao, the surface mesh should be a 𝜀-sample, that is, vertices should have neighbors within a
distance 𝜀f (x), where f (x) is the feature size and 𝜀 is small. Of course, as the aim is here precisely to compute the feature
size, it is not known beforehand whether or not the input surface mesh is a 𝜀-sample. A first solution is to measure
beforehand the most critical feature size fcrit = minx f (x) of the CAD model, then generate a uniform mesh with constant
mesh size hcrit = 𝜀f crit, typically with 𝜀≤ 0.25 as suggested in Reference 20. The characteristic size of the input surface
mesh is then constrained by the smallest feature in the geometry, which may result in an expensive size field computation.
While we could certainly adjust the mesh size of the input mesh to be hcrit only in the small features, this would amount
to manually specify the mesh size field, which we want to avoid. To circumvent this, one can compute an initial size field
based on a reasonably fine uniform mesh, then perform the mesh generation from this field. This intermediary mesh will
include an initial refinement in the small features, and will be a better candidate for the final size field computation.

The resulting medial axis for our block example after both filtering operations (i.e., conditions (8) and (9), as well as
removing the spurious branches in corners) is shown on Figure 5(A). Taking into account the local feature size allows
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4832 BAWIN et al.

Irrelevant branches
in angles and corners

(A) (B)

F I G U R E 4 Left: The medial axis of a rectangle consists of a main branch (thick) and four secondary branches (dashed) connecting the
main branch to the corners. The radii of the spheres whose center lies on the main branch are representative of the feature size f (here, the
thickness of the rectangle), while the radii of the spheres on the secondary branches shrink to zero as the branch approaches the surface, and
are thus not representative of f . To remove those secondary branches (Voronoï facets), the dual Delaunay edges are applied a second filtering
process ensuring that the angle between the edge and the normal vectors at its extremities does not exceed 𝜃. Right: the medial axis (in red) of
an angle geometry before filtering the branches in the corners (left) and the medial axis after filtering (right)

F I G U R E 5 Left: Approximated medial axis of the CAD model. The Voronoï facets dual to the filtered Delaunay edges are drawn in red.
In the close-up view, only the facets of the medial axis lying outside of the volume are shown. Right: The RTree structure built from the
bounding boxes of the triangles of the surface mesh

for a refined mesh in small features of the geometry, especially in areas with zero curvature, which would be overlooked
otherwise (Figure 6, see also Figure 10 for the volume mesh).

2.3 Octree initialization and refinement

The mesh size field h(x) over the domain to be meshed is now built as an octree structure. The initial octant is defined as
the axis-aligned bounding box of the surface mesh, stretched in all three dimensions by a factor 1.5. In order to ensure a

 10970207, 2021, 18, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.6747 by T
hirion Paul - D

ge, W
iley O

nline L
ibrary on [28/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



BAWIN et al. 4833

F I G U R E 6 Surface mesh generated from the computed mesh size field: from curvature only (left) and considering both curvature and
feature sizes (right). On the right, four layers of elements are generated in the fins around the largest cylinder

suitable gradation in the mesh, the guiding principle for the refinement of the octree is that the dimension of each octant
should eventually be representative of the local mesh size. The octree is then first subdivided recursively and uniformly
until the size of each octant is at most the bulk size hb, and the local mesh size assigned to the octants created during
this initial step are set to hb. The octree is then further refined on basis of the curvature mesh size hc and the feature
mesh size hf . This information, which is available on the surfaces, has to be transferred to the octree, which is a 3D
structure. One needs for that to detect efficiently the intersections between octants and the surface mesh. To this end,
the 3D bounding box of each triangle of the surface mesh is added to an R-Tree,21 a data structure used for spatial access
methods (Figure 5(B)) which acts here as the intermediary between the geometry and the octree. More specifically, the
R-Tree provides for each octant of index i a list i of triangles whose bounding box intersects the octant. The octant with
index i is then divided until it becomes smaller than the minimal mesh size (hc or hf ) at the vertices of all triangles in i.
Whenever a user-defined mesh size function hu =u(x) is provided, this additional constraint is taken into account at this
level. The octant size being bounded from below by the user-defined minimal mesh size hmin, octants are thus subdivided
until the condition

hoctant ≤ max
(

hmin,min
(

hc, hf , hu, hb
))

(12)

is met everywhere in the octree.
Once this refinement is completed, the octree is balanced to ensure a maximum 2:1 level ratio between two octants

across adjacent faces (Figure 7), that is, the levels of two octants on each side of a face should not differ by more than
one unity. This balancing is necessary to obtain suitable stencils for finite difference computations during the gradient
limiting step, see Section 2.4. It is performed by p4est. Newly created octants having an intersection with the surface
mesh are assigned the mesh size determined by (12), otherwise the size is set to the bulk size hb (Figure 9(A)). At this
stage, the size field features large variations, and a limitation step is required to end up with a mesh size field suitable for
high-quality mesh generation.

2.4 Size limitation

Large mesh size gradients may be the cause of low-quality finite element solutions. In solid mechanics, for example, they
may be the cause of excessive values of strains when a very small element is adjacent to a large one. One of the goals of our
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4834 BAWIN et al.

F I G U R E 7 Octree after refinement: The color of each octant signifies its refinement level, from coarse (red) to fine (blue)

approach is to ensure that two adjacent edges in the mesh have their length ratio below a user-defined gradation 𝛼 > 1,
that is, the length ratio along a direction follows a geometric progression. We briefly show here that such a geometric
progression is achieved by limiting the size gradient along a given direction by 𝛼 − 1:

||||𝜕h
𝜕x

|||| ≤ 𝛼 − 1, (13)

that is, a constant gradation yields a geometric progression of edges length and not a linear progression as one could
expect at first glance. To see this, let us consider a one-dimensional (1D) mesh in the direction x along which the size
gradient is maximal. Let us denote by xi, i= 0, … n the vertices of the mesh and hi = h(xi) the length of the edge starting
at xi. As the edge lengths follow a geometric progression of ratio 𝛼, we have hi = 𝛼ih0. The x-coordinate of vertex xn is
given by:

xn =
n−1∑
i=0

hi = h0 (1 + 𝛼 + 𝛼2 + … + 𝛼n−1) = h0
𝛼n − 1
𝛼 − 1

(14)

from where follows:

𝛼nh0 = h0 + xn(𝛼 − 1). (15)

Using hn = 𝛼nh0, one ends up with:

hn = h(xn) = h0 + xn(𝛼 − 1), (16)

showing that the size field h(x) is a linear function of space, despite the fact that the edge lengths are in a geometric
progression. The derivative 𝜕h/𝜕x is hence constant, with magnitude 𝛼 − 1. Locally, since 𝛼 = hi+1∕hi, we also have the
following finite difference approximation for the size gradient:

||||𝜕h
𝜕x

|||| = hi+1 − hi
1
2
(hi+1 + hi)

= 2(𝛼 − 1)
𝛼 + 1

, (17)
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BAWIN et al. 4835

which is close to (18) for typical values of 𝛼 ∈ [1, 1.4]. Limiting the size derivative along any direction thus amounts to
limit the 2-norm of the size gradient, that is

||∇h(x)||2 ≤ 𝛼 − 1. (18)

A similar computation by Chen et al.4 leads to a third condition ||∇h(x)||2 ≤ ln 𝛼, also close to (18) for the considered
range of gradation, as we have ln(1 + (𝛼 − 1)) ≃ 𝛼 − 1.

As pointed out by Persson,10 the 1D analysis discussed above is not sufficient to ensure that the expected mesh size gra-
dation condition is fulfilled all over the mesh. Indeed, when storing the size field h(x) in a background mesh, the expected
gradation is ensured only along the edges of the elements of the background mesh, and larger size variations might be
encountered in the interior of the elements. To also constrain size gradients inside the elements of the background mesh,
it is then necessary to iterate over the edges of the background mesh to modify appropriately the size stored at the nodes.4,5

This results in a size field h(x) that eventually satisfies (18), but in a background mesh dependent fashion.10 This draw-
back is avoided with our methodology because the mesh size function is rather stored in a balanced octree. Condition
(18) is satisfied everywhere in the volume, and thus also in the interior of the elements, as a result of the subdivision of
the octants until convergence.

Gradient computation by finite difference. Condition (18) requires to limit the size derivative along all directions, which
is a costly operation. In practice, we limit the size variation along the directions of the axes, that is, the directions of the
octree, and condition (13) is enforced using a finite difference scheme. This amounts to impose

||∇h(x)||∞ ≤ 𝛼 − 1, (19)

a looser requirement resulting in directions along which the gradation may only be controlled up to a factor
√

3 in the
worst case. As the results show however, limiting the ∞-norm yields high-quality meshes for all the considered CAD
models, with an average discrete size gradation matching the required gradation, see Section 3. We iterate over the octants
until

|||| 𝜕h
𝜕xk

|||| ≤ 𝛼 − 1, (20)

is verified everywhere, with k= 1, … , 3. For each octant, we take advantage of the 2:1 balancing provided by p4est to
compute the gradient with a cell-centered finite difference scheme. Since the octree is balanced, only three stencils must
be considered to approximate the gradient in all cases. With the p4est terminology, one side of a face between two octants
is said to be either full (F) or hanging (H), depending on whether the octant on that side is a leaf or is itself subdivided.
The stencils to be considered (Figure 8) are then FFF, FFH, HFH, since the all-hanging case (HHH) can be regarded as
multiple all-full (FFF) stencils. To evaluate (20) at the center of the middle octant along, say, the x-direction, we use the
Taylor expansion:

𝜕h
𝜕x

||||i = 1
2

(
hi+1 − hi

Δxi+1 + Δxi
+ hi − hi−1

Δxi + Δxi−1

)
, (21)

where i− 1, i, and i+ 1 represent the three positions in the considered stencil, hi denotes the arithmetic average of the
mesh size of the four octants adjacent to the hanging face i, and Δxi is the half-length of the octants in the position i. For
the all-full stencil FFF, one has hi = hi and the Δxi are all equal to the half length of the octants, so that the approximation
(21) reduces then to the usual second-order centered scheme.

Size limitation. The computed gradient is then used to limit the mesh size field. For any two adjacent octants with
gradient larger than 𝛼 − 1, the larger is reduced so as to satisfy condition (18). More precisely, if h1 and h2 denote the mesh
size in the octants with h2 ≥ h1, h2 is modified as

h2 = min(h2, h1 + Δx(𝛼 − 1)). (22)

This expression is an approximation of the solution to the steady-state equation proposed by Persson10 in his con-
tinuous formulation of the gradient limiting problem, ensuring mesh size limitation is propagated in the direction of
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4836 BAWIN et al.

increasing values. Smaller mesh sizes are left unchanged by the limitation process, preserving the sharp features of
the geometric model. The limitation is performed iteratively in the three directions, until condition (18) is satisfied
everywhere in the octree (Figure 9(B)).

2.5 Size query in the octree

Size queries to evaluate the size at different locations on parametrized curves, surfaces and volumes during the meshing
process are performed by Gmsh. The implementation of the query routines in the octree is provided by p4est. Since both

F I G U R E 8 Finite difference stencils to compute ∇h in the octree

F I G U R E 9 Limiting the mesh size stored in the octants: (A) Initial mesh size field computed from curvature and feature size, assigned
in octants intersecting the surface mesh (B) size field after limitation
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BAWIN et al. 4837

the size h(x) and its gradient are known in each octant, the mesh size at the query point x is evaluated using a first-order
Taylor expansion:

h(x) = hi + ∇h ⋅ (x − xc), (23)

where hi and xc denote the size and the coordinates at the center of the octant, respectively.

3 RESULTS

The proposed algorithm was applied to a variety of CAD models accessed from GrabCAD (https://grabcad.com/), the
ABC Dataset model library22 and Gmsh’s benchmarks suite. For all geometries, the same set of parameters was used
with values given in Section 1, that is, nd = 20 elements in curved areas, ng = 4 elements in thin layers and a mesh gra-
dation of 𝛼 = 1.1. Note that those default parameters were chosen with what we consider to be common sense, and
not after a series of trial and error: for example, discretizing a circle with 20 line segments is what is used by default
to graphically represent a circle in Gmsh. The number of layers ng = 4 was set with bending structures computations
in mind, where it is known that having less than four layers leads to overestimating the stiffness of the structures. The
gradation of 1.1 originates from regular discussions with CFD practitioners: this value can be set higher for compu-
tational mechanics applications for example, yet, it should not exceed 1.7–1.8, unless the generated mesh serves for
visualization purposes. As shown in this section, those intuitive parameters yield quality meshes for a vast majority of
the considered models. In each case, we generate a triangulation of the CAD model with a prescribed uniform mesh
size. The surface mesh is the input of the algorithm to compute a mesh size field on all volumes. Surface curvatures and
the approximate medial axis are then estimated, and the mesh size field h(x) is computed as described in the previous
sections. The octree is stored on disk in the native p4est format on creation, and is then loaded as a background field in
Gmsh.

This sections aims at demonstrating the efficiency and accuracy of our approach. As far as efficiency is concerned,
the CPU time dedicated to queries in the octree is distinguished from the time devoted to the construction of the octree.
We then compare the sum of those two times to the meshing time. In particular, we show that the proposed size field
construction does not change the order of magnitude of the meshing time, that is, seconds remain seconds and do not
become minutes. We then analyze how accurately the prescribed parameter are reached in the mesh generated from
the size field. To this end, a discrete counterpart of the gradation is compared with the parameter 𝛼, and the number of
elements in small gaps is checked to be close to ng. An efficiency index is then introduced for each of the generated mesh:
this index measures how close the resulting mesh is to a unit mesh and thus expresses the adequacy between the size
field and the mesh.

All computations are run on a laptop with Intel Core i7 8750h CPU (2.2 GHz) and 16 GB memory, and execution times
for two selected test cases can be found in the table hereafter.

3.1 Surface and volume meshing

Engine block. We first consider the engine block test case depicted in Figure 2(A). The geometry, while presenting a
relatively low (≈ 500) number of faces, features entities of variable radii of curvature as well as thin areas, and is an
interesting application example for our algorithm. The CAD model being an assembly of thin components, such as nar-
row fins surrounding the main cylinder, the feature mesh size is the dominant meshing criterion. Surface meshes were
presented in Section 2, and show the impact of the feature mesh size (Figure 6) on the final mesh density. On the left
part of Figure 6, the size field is constructed based only on curvature: one or two elements are generated in the nar-
row fins, whose mesh size is defined by the radius of curvature of the inner cylinder. On the right part of Figure 6,
the feature mesh size hc is also considered in the construction of the size field, and ng = 4 element layers are then as
expected generated in the fins. Figure 10 shows the tetrahedral mesh, where prescribed mesh size specifications are
respected inside the volume. Since the spurious branches of the medial axis are removed in the rounded corners, mesh
size in these locations is constrained by curvature. This results in a smaller size defined by the node density nd (zooms
2 and 3). Mesh size in the thin cylinders and the fins is computed to fit four layers of elements (zooms 1, 4, 5, 6,
and 7).
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4838 BAWIN et al.

F I G U R E 10 Final volume mesh of our worked-out example: The size field is computed with nd = 20 nodes on the local osculating
circles and ng = 4 layers of elements in all geometric features. The mesh contains 583,776 nodes and 2,716,170 tetrahedra
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BAWIN et al. 4839

F I G U R E 11 The surface mesh based only on curvature contains 1,521,410 nodes and 3,042,060 triangles (left); the mesh based on both
curvature and feature size contains 2,302,630 nodes and 4,605,010 triangles (right)

Sport bike engine. The second test case is a four-cylinder engine of a Honda™ CBR600F4i sport bike*. The model is
composed of thin areas such as pipes, gears and plates, and of regions of high curvature. The enclosing volume being
not conformal (i.e., not “air-tight”), a volume mesh could not be generated without first repairing the CAD. Only surface
meshes are thus presented for this example. The resulting surface meshes accurately capture areas of higher curvature
(Figure 11, left) as well as small features (Figure 11, right and Figure 12), demonstrating the robustness of the algorithm
on large CAD models.

ETA 6497-1 watch movement. This geometry† is a complete clockwork composed of flat plates and gears of different
sizes. Feature size is the constraining factor on most flat pieces, while curvature determines the mesh size at, for example,
gear teeth. The surface mesh and the volume mesh for this test case are, respectively, shown on Figures 13 and 14.

Space shuttle. This example was selected to illustrate specifically the influence of the node density nd and of the
gradation parameter 𝛼 on the mesh. To show their influence on the whole model, including thin areas, feature size
was not considered in this case, and only curvature was taken into account. As expected, larger values of nd result
in more elements on the local osculating circle to a surface, and hence in a finer mesh (Figure 15). Similarly, a gra-
dation parameter 𝛼 close to 1 limits the size gradient, also resulting in a globally finer and more homogeneous mesh
(Figure 16).

Various geometries. Finally, our algorithm was also applied with the same parameters to a series of CAD model
obtained from GrabCAD, the ABC Dataset library, and the Gmsh benchmarks library (Figure 19). In all cases, accurate size
fields were computed within a few seconds to a few minutes, yielding smooth meshes suitable for numerical simulations.
Note that feature size computation was not enabled for all models (e.g., for the lava lamp).

3.2 Adequacy between the mesh and the size field

With the generated mesh at-hand, we define two quantitative estimates to assess its adequacy with the size field: an
efficiency index measures how far the mesh is from a unit mesh in the isotropic metric field described by the size field,
and a discrete counterpart to the gradation verifies that edge length progression is limited in the mesh. Finally, a standard
isotropic quality indicator is presented.

Efficiency index. The resulting mesh should be as close as possible as a unit mesh in the metric field associated to the
isotropic sizing function,23 that is, the edges lengths should be as close as 1 when measured in the given metric. Since
we are dealing with the discrete counterpart of this continuous mesh framework, we consider that the size specification

*https://grabcad.com/library/honda-cbr600-f4i-engine-1
†https://grabcad.com/library/eta-6497-1-complete-watch-movement
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4840 BAWIN et al.

F I G U R E 12 Zooms on selected parts of the Honda engine

is respected when the mesh is quasi-unit, that is, when the edges lie in [ 1√
2
,
√

2]. To evaluate the adequacy between the
generated mesh and the prescribed size field, we define an efficiency index. Let li be the length of an edge i computed in
the local metric and ne the number of edges in the mesh. The efficiency index 𝜏 of a mesh is defined as the exponential
to one of all the edges length in the mesh, that is:

𝜏 = exp

(
1
ne

ne∑
i=1

li

)
, (24)

with li = li − 1 if li < 1 and li = 1∕li − 1 if li ≥ 1. The efficiency index thus lies in ]0, 1], the upper bound being reached for
a unit mesh. We run our algorithm on close to two hundred CAD models and computed the efficiency index (Figure 17),
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BAWIN et al. 4841

F I G U R E 13 Zooms on selected parts of the surface mesh of the watch movement

whose median is slightly above 0.8. This shows that the size field given to the meshing tool is realistic, as it can generate
almost unit edges for the given metric field.

Discrete gradation. The resulting mesh should feature a geometric progression in adjacent edges lengths with a ratio
up to 𝛼. Instead of monitoring the maximum edge ratio at every vertices of the final mesh, we use a looser indicator defined
on the edges. The discrete gradation 𝛼d,i measures the progression between the average edges lengths at both vertices of
each edge ei. Let v1 and v2 denote the vertices of ei and lavg(v) the average edge length at vertex v. We define the discrete
gradation at edge ei as follows:

𝛼d,i =
max[lavg(v1), lavg(v2)]
min[lavg(v1), lavg(v2)]

. (25)
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4842 BAWIN et al.

F I G U R E 14 Zooms on selected parts of the volume mesh of the watch movement

F I G U R E 15 Influence of the node density nd on the final mesh for a gradation of 𝛼 = 1.1

In the same way that the efficiency index is a global indicator for a given mesh, we define an average discrete grada-
tion as the average of 𝛼d,i over all edges of the mesh. The average discrete gradation should be close to the user-defined
gradation 𝛼. In our results over the same sample of meshes, the discrete gradation is close to the required gradation,
although it lies slightly above for a variety of volume meshes as a consequence of our choice to limit ||∇h||∞ instead of||∇h||2 (Figure 18).

Quality measure. In addition to the measures of adequacy, elementwise mesh quality is also evaluated using the ratio
𝛾 of the radius r of the sphere inscribed in a tetrahedron to the radius R of its circumscribing sphere:

 10970207, 2021, 18, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.6747 by T
hirion Paul - D

ge, W
iley O

nline L
ibrary on [28/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



BAWIN et al. 4843

𝛾 = 3r
R
. (26)

This ratio varies from 1 for a regular tetrahedron, and approaches 0 for sliver tetrahedra. The quality distribution for 50
meshes is shown on Figure 17: these meshes exhibit high-quality elements with 𝛾 = 0.8 on average. The current volume
meshing algorithm24 of Gmsh performs mesh optimization if the quality of an element is below 0.4, hence the very reduced
number of elements below this threshold.

3.3 Execution time

The execution times for the engine block and the watch movement are given in Table 1. The mesh size field time is split
between the main steps of the algorithm: (i) insert the bounding boxes of the triangles of the surface mesh in the RTree,
(ii) compute the approximated curvature with a least square method, (iii) compute the medial axis of the geometry, (iv)
initialize the root octant and refine the octree, and (v) limit the size gradient to 𝛼 − 1. Computing the medial axis requires
the Delaunay tetrahedrization of the points from the surface mesh: this step is detailed and included in the time associated
to the medial axis computation. The step “Others” includes all the secondary steps, such as splitting the mesh into faces
before computing curvature.

To limit the size gradient, we iterate over the octants until condition (12) is satisfied in all three directions. This step
is dependent on the depth of the octree, hence on the minimum size hmin, the node density nd and the curvature of the
surface mesh given as input. A highly curved region of the model due to a poor resolution of the surface mesh will result

F I G U R E 16 Influence of the gradation 𝛼 on the final mesh for a node density of nd = 20

F I G U R E 17 Left: Elements quality for 50 meshes. Right: Efficiency index for a sample of 190 meshes
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F I G U R E 18 Left: Discrete gradation for a sample of 190 meshes for a prescribed 𝛼 = 1.1. Right: 𝛼 = 1.2

T A B L E 1 Execution times

Block Watch movement

Time (s) % Time (s) %

Create mesh size field Insert surface mesh in RTree 0.47 3.0% 2.30 1.2%

Compute curvature 0.36 2.3% 1.13 0.6%

Compute medial axis 7.19 45.7% 64.06 34.1%

incl. Delaunay tetrahedrization of surface mesh 0.61 3.9% 2.33 1.2%

Create and refine octree 0.96 6.1% 20.24 10.8%

Limit size gradient 5.85 37.1% 93.89 50.0%

Others 0.69 4.3% 6.07 3.2%

Total 15.75 100.0% 187.69 100.0%

Mesh model Mesh 1D entities 2.48 2.5% 38.51 4.5%

Mesh 2D entities 25.68 25.6% 355.58 41.0%

Mesh 3D entities 72.12 71.9% 469.94 54.4

Total 100.3 100.0% 864.03 100.0%

including Size queries 65.13 64.9% 483.53 56.0%

# of curves in the CAD model 1584 12,991

# of faces in the CAD model 533 4760

# of nodes in input surface mesh 145,024 654,348

# of elements in input surface mesh 290,116 1,308,870

# of octants 670,566 9,052,065

# of triangles in final surface mesh 573,808 3,629,000

# of tetrahedron in final volume mesh 2,716,170 12,273,300
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F I G U R E 19 Application of the size field on various geometries from GrabCAD, the ABC Dataset and the Gmsh benchmarks
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in high density in the octree, increasing the size limitation time. This can generally be circumvented by first generating
a slightly refined surface mesh, which can be computed quickly and will rule out these extreme curvature magnitudes.
Computation time for the medial axis, on the other hand, is linear with the number of nodes of the input mesh: this is
indeed observed in Table 1.

4 CONCLUSION

A methodology to automatically generate an accurate size field, storing the sizing information in an octree, was presented.
This tool eliminates the tedious operation that is assigning by hand the mesh size on all geometric entities of a CAD model,
thus saving considerable time. This algorithm was a missing piece of the standard meshing pipeline of Gmsh, and was
designed to become the default tool for size specification going onward. Five user parameters are required to generate a
mesh suitable for numerical simulations, two of which being the minimum and the maximum, or bulk, size, whose value
is assigned based solely on the characteristic dimension of the CAD model. This leaves the user with only three parameters
in order to tune the mesh density. Special care was given to the small features of the geometry: through an approximate
medial axis computation, we ensure multiple layers of elements are always generated in narrow regions. This is particu-
larly useful in simulations where Dirichlet boundary conditions are applied. To illustrate our size field computation, we
applied our algorithm on a large variety of CAD models: for all the test cases, high-quality surface and volume meshes
were obtained in a robust and automatic fashion, and are adapted to the features of the geometric model. The adequacy
between the size fields and the meshing algorithm was demonstrated: the generated meshes are unit or quasi-unit accord-
ing to the prescribed isotropic metric field, and the desired mesh gradation is met. In thin areas of the CAD model, the
required number of layers of elements is present in the final mesh. More importantly, generated meshes are high-quality
meshes ready to be used for numerical simulations. Emphasis was placed on selecting the same set of parameters for
all the geometries: parameters that make sense to the user do indeed yield a suitable mesh for a given geometry, making
this tool intuitive and user-friendly. Our choice was to use the p4est library to implement the background tree struc-
ture: although it adds an external dependence, the octree routines are efficient and a parallel implementation is available
for further improvements. Future work will focus on extending to anisotropic size prescription, as well as coupling this
geometry-based size field with numerical solutions postprocessing results, to include a posteriori error estimation in the
size field design. In this sense, this tool will assist users performing mesh adaptation, storing the error-based metric field
while providing size prescription based on the CAD throughout the adaptation process (Figure 19).
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