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Abstract: Change detection is an important step for the characterization of object dynamics at the 

earth’s surface. In multi-temporal point clouds, the main challenge is to detect true changes at 

different granularities in a scene subject to significant noise and occlusion. To better understand 

new research perspectives in this field, a deep review of recent advances in 3D change detection 

methods is needed. To this end, we present a comprehensive review of the state of the art of 3D 

change detection approaches, mainly those using 3D point clouds. We review standard methods 

and recent advances in the use of machine and deep learning for change detection. In addition, the 

paper presents a summary of 3D point cloud benchmark datasets from different sensors (aerial, 

mobile, and static), together with associated information. We also investigate representative 

evaluation metrics for this task. To finish, we present open questions and research perspectives. By 

reviewing the relevant papers in the field, we highlight the potential of bi- and multi-temporal point 

clouds for better monitoring analysis for various applications. 
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1. Introduction 

The rapid development of 3D data acquisition is making the collection of massive 

point clouds faster than ever before, making them the future core topographic data for 

several applications [1]. However, in a dynamic world where everything is continually 

changing, data must be updated and used to detect and characterize the changes that have 

occurred. Change detection (CD) is defined as the process of recognizing the dynamics 

and changes in the earth’s surface that occur between two or more epochs over the same 

geographic area [2]. 

CD has been widely studied in remote sensing applications, and many approaches 

based on two-dimensional (2D) images have already been proposed [3–11]. The 

availability of continuous large volumes of satellite images with short revisit times has 

created favorable conditions for the detection of long-term changes with improved 

temporal resolution. Similarly, 3D change detection (3D CD) is attracting more and more 

attention, due to the increasing availability of 3D data at different scales (district, city, 

region, and country). In real-world cases, change can range from rapid change (for 

example, in the context of autonomous driving [12,13]) to slow change (e.g., remote 

sensing applications [7,14,15]) depending on the studied phenomenon, its frequency, 

magnitude and velocity. We divide change into two main categories: 3D tracking of 

homologous parts of a surface to compute a displacement field (fast change) and 

computing the distance between two points clouds when the homologous parts cannot be 

defined (slow change). For each one, there are several methods to measure and track 

object dynamics. In 3D remote sensing applications, there has been increasing demand for 

3D CD in the following fields: land use and land cover change detection [16], urban 
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monitoring [17–19], forest changes [20–22], crisis monitoring [23], 3D geographic 

information updating [24–26], landslide and erosion monitoring [27–31], construction 

progress monitoring [32], and resources surveying [33,34]. 

When dealing with multi-temporal point clouds, we talk about a point cloud with 

reference to a specific time, “epoch”. Due to the change in acquisition parameters from 

one epoch to another, it is not possible to make a direct comparison between two points 

clouds, because the sampling of points on the surface is not the same. Consequently, a 

point does not have its direct homologue on the second epoch, and, hence, no homology 

is possible between points; therefore, no direct calculation of point-to-point distance is 

possible. This aspect must be considered for 3D CD, either by preprocessing, if the density 

is different, or by using adapted methods (e.g., Cloud-To-Cloud) [35]. Change detection 

encompasses, in addition to displacement calculation and “from–to” change classification, 

other aspects, such as binary changes, multiclass changes, direction and magnitude of 

change, probability of change, temporal change trajectories (trends) and deformation 

analysis or abnormal comportment [14]. 

The 3D CD methods can be subdivided into Point-Based (PBCD), Object-Based 

(OBCD) [36–38], and Voxel-Based (VBCD) [39–41]. OBCD allows the detection of changes 

at an object level (segment or clusters that group a set of homogeneous points, or an 

instance that belongs to a known object class, like tree, car, building, etc.). The CD step is 

largely influenced by the quality of the detection and classification of objects. VBCD 

methods rely on the discretization of space into grids, octrees, or voxels (e.g., occupancy 

grids), which are mainly used in robotic and indoor mapping applications [42,43]. In this 

review, we focus mainly on the first category, based directly on points with referrals to 

other approaches, without going into excessive detail. Although PBCD is more popular, 

due to its simple algorithms and relatively better quantitative results, applying these 

methods to multimodal point clouds often produces incorrect results. CD of large and 

outdoor scene point clouds faces many challenges, including incomplete data, noise, 

artifacts caused by temporary or moving objects, and cross-source point clouds captured 

by different sensor types. To address these challenges, many studies have proposed 

different methods to use voxels and objects as basic units for change detection [38–40]. 

Another aspect that needs to be introduced is semantic segmentation. Segmentation 

of 3D point clouds is the process of classifying point clouds into several homogeneous 

regions, where points within a region have the same properties. Segmentation is 

challenging, due to the high redundancy, uneven sampling density, and lack of explicit 

structure of point cloud data [44]. With the development of deep learning for point cloud 

semantic segmentation [45–47], high-level point clouds with semantic information can be 

obtained at unprecedented scales. Inspired by this development, recent research tends to 

incorporate high-level semantic features into point clouds CD to solve the problems of 

classic CD pipelines, such as binary CD (change, no change) and missing information 

about change type. However, finding changes is only one aspect of the problem. A 

subsequent crucial task is to make sense of them. What causes changes? Why and when 

do changes occur? What impact could changes have on other objects? Therefore, the 

seemingly simple question of what can be considered a “change” in point clouds is not 

trivial. 

In this paper, we offer a comprehensive review of change detection using 3D point 

clouds. We review the 3D CD methods used in remote sensing applications without 

integrating the 3D scene flow [48–50] or 3D object tracking [51,52] methods. We introduce 

distance-based methods and learning-based methods with a focus on deep learning-based 

ones. The main contributions of our paper are fourfold: 

 Challenges related to the use of point clouds in CD and survey of 3D CD methods; 

 Comprehensive review of the popular point clouds datasets used for 3D CD 

benchmarks; 

 Detailed description of evaluation metrics used to quantify change detection 

performance; 
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 List of the remaining challenges and future research that will help to advance the 

development of CD using 3D point clouds. 

We structure the rest of the review as follows. Section 2 reviews the challenges related 

to 3D CD and relevant works on point clouds CD. Section 3 describes a summary of 

existing 3D point cloud datasets and evaluation metrics. Section 4 proposes a list of the 

remaining challenges for future research. Section 5 closes the paper. 

2. 3D Change Detection Using 3D Point Clouds 

Our approach for compiling different works on 3D change detection using point 

clouds is based on previous reviews of the literature, as in [14,53]. This gave us a quick 

and easy way to situate the state of the art, as well as to understand the proposed 

taxonomies to categorize the existing approaches. To the best of our knowledge, based on 

the study of the literature, this is the first review dedicated to change detection using 3D 

point clouds to incorporate the latest machine and deep learning methods. 

The articles reviewed in this paper were published between 2004 and 2022. Our 

contribution is mainly focused on approaches using 3D point cloud data. For the rest of 

this paper, we refer to change detection (CD) as the following setting: two points clouds 

or more, acquired at different times, covering the same area of interest, in which parts, 

objects, or surfaces move, change scale or color, distort, appear, or disappear between two 

different times. We assume, that point clouds are registered (aligned in the same frame 

reference), can have different sources (dense image matching, laser scanning, etc.) and be 

acquired from any platform (aerial or terrestrial, etc.). Unlike 3D CD, in 2D CD in remote 

sensing, a multitude of state of the art with most recent methods already exist [11,54,55]. 

Therefore, before reviewing the methods found in the literature, we discuss the issues 

related to the use of 3D point clouds, the challenges associated with them, and their 

advantages and disadvantages over 2D data. 

2.1. Challenges and Specificities 

2.1.1. Acquisition Challenges 

The application of change detection on 3D point clouds presents many challenges. 

Indeed, changes in sensing conditions and unconstrained environments have a significant 

impact on the appearance of objects. Objects detected in different scenes or instances 

exhibit a range of variations. Even for the same scene, parameters such as scan timing, 

location, weather condition, sensor type, sensing distance, background, etc., produce 

significant variations for intra- and inter-class changes in 3D point clouds. We subdivide 

the major challenges related to the use of point clouds for CD into two key components: 

Scan-related artifacts. All sensors are noisy, and the scanning system itself presents 

several artifacts which can be significant for applications of CD. One major source of 

artifacts on a scan is regions with non-diffuse reflection properties that refer to areas 

where pulses have been transmitted, but due to pulse absorption or specularity, not 

enough energy (if any) is returned to trigger a distance measurement (e.g., windows, 

water, and low reflectance surfaces). When data from another scan exists in these “hole” 

regions, it is considered a change while it is not. There is also, occasionally, noise caused 

by the presence of particles in the air when scanning, as well as unwanted points caused 

by the reflection of the laser pulse on a surface, such as a lake or a river. Hence, it is 

important to conduct a pre-processing step to clean up these artifacts before performing 

the change detection [56]. 

Occlusion. Due to occlusions, point cloud data are often incomplete. The occlusion of 

objects, or parts of objects, offers another variety of “interference”, with the probable 

consequence of false CD. Points that appear in one scan but not in the other are considered 

potential candidates for natural change. To handle occlusion effects in point clouds, Ref. 

[57] proposed a new strategy for detecting “changed”, “unchanged”, and “unknown” 

buildings, where the latter class is applied to places where, due to lack of data in at least 
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one of the epochs, it is not possible to reliably detect structural changes. Other research 

papers address this problem by using deep learning to fill in the occluded parts [58–64]. 

2.1.2. Three Dimensional Point Clouds Specificities 

For any type of data to be processed, either in 2D or 3D, there are specific 

characteristics to consider. So, in addition to the point clouds challenges associated with 

acquisition, storage and manipulation phase, there are other challenges associated with 

the processing stage. We detail four challenges specific to point clouds that must be 

considered for each application, or algorithm, and, thus, be taken into account for CD. 

Irregularity. Due to several acquisition parameters (e.g., the distance of the point 

from the sensor), point cloud data are irregular. This means that points are not 

homogeneously scattered in different regions of an object or scene, so some regions may 

have dense regions and others sparse ones, resulting in a changing density inside the same 

point cloud, as we can see in Figure 1a. This irregularity can be reduced by subsampling 

techniques using octree or spatial distance, but cannot be eliminated [41]. 

Unstructured. Unlike images, point clouds in their raw form are not placed on a 

regular grid. Each point is scanned independently, and its distance to adjacent points is 

not always fixed, as shown in Figure 1b, which makes their spatial structuration complex. 

In analogy to images where pixels are represented on a two-dimensional grid, and the 

space between two adjacent pixels is always fixed, the point cloud is sometimes 

transformed into voxels to facilitate processing [39,65]. 

Unorderedness. A point cloud of an object or a scene is a set of points derived from 

the object’s surface (represented by XYZ coordinates and other attributes). They are 

usually stored as a list in a file. As a set, the order in which the points are stored does not 

change the represented scene, so we say it is a permutation or order invariant. The 

unordered nature of point sets is illustrated in Figure 1c. 

 

Figure 1. Challenges related to 3D point cloud processing. (a) Irregular: with dense and sparse 

regions. (b) Unstructured/no grid: each point is independent and the distance between adjacent 

points is not fixed. (c) Unordered: as a set, point clouds are permutation invariant. 

Rigid transformation. There are various rigid transformations in point clouds, such 

as 3D rotations, scale, and translations. However, these transformations should not affect 

the results and performance when using processing algorithms and especially deep neural 

networks. 

To date, change detection in remote sensing has been primarily image-based, 

typically using object–background separation, simple subtraction between images, and, 
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more recently, learning-based methods. These approaches have the disadvantage of 

imposing rigid constraints, such as static camera, the need to have the same viewpoint of 

the satellite, the need for recognizable landmarks, and sensitivity to shadowing and local 

illumination problems. The advantages and disadvantages of 2D data for CD have been 

known for a long time, while 3D CD work has emerged recently, mainly due to the 

availability of multi-temporal point clouds and the development of learning-based 

algorithms (Table 1). 

Table 1. Summary of main differences between 2D and 3D CD specificities [14]. 

 2D CD 3D CD 

Data source 

Optical images, multi spectral images, 

RADAR images [66], Digital Surface, 

Terrain, and Canopy Models, and 2D 

Vector data. 

Point clouds, InSAR (Interferometric SAR), Digital surface 

model, stereo and multi-view images, 3D models, building 

information models, and RGB-D images. 

Advantages 

Well-investigated [7,67–69], available 

datasets [70–75], available 

implementation [68,74,76] 

Height component, Robust to illumination differences, 

Free of perspective effect, and provide volumetric 

differences. 

Disadvantages 

Strongly affected by illumination and 

atmospheric conditions. 

Limited by viewpoint and perspective 

distortions. 

Unreliable 3D information may result in artifacts. 

Limited data availability. 

Expensive processing. 

Despite the issues associated with using point clouds as a type of 3D data, they have 

several advantages which motivate their use for change detection. The main advantages 

of using 3D data over 2D data for change detection are summarized as follows: (1) 

Insensitive to illumination difference. As already stated, point clouds refer to spatial 

measurements of 3D objects; therefore, the comparison of the geometry of multi-temporal 

data is independent of illumination conditions; (2) Insensitive to perspective distortions. 

Using point clouds, geometry comparison can be performed in a real three-dimensional 

space, or any projected 2D space (subspace of the 3D space). In this case, they are not 

influenced by the point of view, as for 2D images where this effect is very noticeable; (3) 

Volume information. Change detection in 3D provides information on volumetric changes 

which paves the way for more applications, such as volumetric loss of forests, precise 

monitoring of construction progress, etc. 

2.2. Data Preprocessing 

In remote sensing, image preprocessing is an essential first step, it includes geometric 

rectification and images registration, radiometric normalization, cloud and cloud shadow 

detection, atmospheric and topographic correction [77,78]. For 3D point clouds, 

preprocessing is an essential step before applying different change detection algorithms. 

The purpose is to minimize changes due to characteristics we are not interested in, and to 

identify changes we are interested in. So, we make the data at different epochs 

comparable. It includes removal of outliers, filtering, registration, and rasterization of 

DSMs (Digital Surface Models), DEMs (Digital Elevation Models) and nDSMs 

(normalized DSMs). We detail each step as follows: 

Removal of outliers. The first step in preprocessing is the removal of outliers 

(unwanted points). They can be moving objects (a person, a car, etc.), vegetation, 

acquisition artifacts, noise, or points outside the area of interest. By removing these 

undesirable points, errors are reduced in the subsequent steps, such as normal calculation, 

registration, rasterization and change detection. The removal can be done manually by 

the operator or automatically, based on adapted algorithms [79–81]. In [28], the outlier 

removal algorithm calculates, for each point, the distance to all its neighbors and removes 

points having distances outside the point cloud’s global mean and standard deviations. 
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Filtering. The purpose of filtering is to separate ground points from non-ground 

points. Several methods exist for this purpose. Ref. [82] classifies them into three 

categories, namely, mathematical morphology-based filters [83–86], surface-based filters 

[87–89], and slope-based filters [82,90,91]. A further category can be considered which is 

segmentation-based filters [92–95]. 

Registration. Multi-temporal point clouds need to be aligned before performing 

changes analysis [28]. They do not need to be acquired from the same view, unlike images, 

but must be georeferenced in the same coordinate system. For a point cloud acquired from 

a single station/viewpoint, if the sensor moves between epochs, if different sensors are 

used at different times or if at least parts of the surfaces deform between measurements, 

the same points are not measured or cannot be easily identified in the point clouds. Several 

algorithms exist for this task, comprehensive reviews of which can be found in [96–98]. 

Rasterization. For methods based on DSM, DEM or nDSM (see Figure 2 for the 

difference) for 3D CD or multimodal methods which take different types of data as input, 

rasterization allows derivation of a DSM from the point cloud. First, the point cloud is 

structured into a grid (e.g., cell size 1 m). Then, the lowest point of each cell of the grid is 

selected for triangulation as described in [99]. A similar method can be used for the 

rasterization of DEMs, but only the ground points are used in the triangulation. The 

nDSMs are derived through subtraction of the appropriate DEM from the DSM, as 

specified in the next formula: 

���� = ��� − ��� (1)

 

Figure 2. Schematic diagram to show the difference between: (a) DSM (Digital Surface Model), (b) 

DEM (Digital Elevation Model), and (c) The nDSM (normalized Digital Surface Model). 

2.3. Three Dimensional Change Detection Methods 

It is important to note that change detection techniques can be applied to a variety of 

input data (3D point clouds, meshes, 2D images or a combination of both). In our paper, 

we focus on 3D point clouds. Based on our review, we find that the categorization of these 

techniques can be done in different ways based on several criteria: 

 Change Unit. This taxonomy depends on the basic unit used in the CD process, such 

as methods based on points, voxels, objects and rays; 

(b) 

(a)  

(c)  X 

Z 
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 Order of classification and change detection. In this categorization, difference exists 

between methods that proceed to change detection and then classification (pre-

classification methods), those that proceed to classification first (post-classification 

methods), and those that integrate the two steps into one (integrated); 

 Used technique. Methods are classified here based on the used technique whether it 

is based on distance or learning, etc; 

 Target. This depends on the application domain: urban, forestry, maritime, etc. 

Many different point cloud-based change detection techniques have been proposed 

in different contexts of remote sensing, self-driving vehicles or robotic applications. In 

general, many methods use point clouds to compare 3D representations of the 

environment in different states. Below (in Table 2), we summarize the methods found in 

the literature and classify them according to the used input data (LiDAR, images which 

can be remapped into orthophotos or the originals ones, and maps), the order of 

classification and change detection (integrated, pre- and post-classification change 

detection) and the target context (building, tree, vegetation, etc.). In addition to these 

criteria, we indicate the methods that transform the point clouds into a DSM (Digital 

Surface Model) to work on it. Most of the works tend to use point clouds more often and 

integrate classification and change detection in one step to overcome the limitations 

related to the other types. We can also see that most of the studies concern the urban 

environment and, more specifically, buildings. 

Table 2. Overview of 3D CD methods by input data, approach, and change detection class. 

Authors Year 
Input Data 

Change Detection Approach 
Change 

LiDAR Image Maps Detection Class 

Matikainen et al. [100] 2004 X Ortho X Post-classification Building 

Vu et al. [101] 2004 X   Pre-classification 
Building 

DSM-based 

Vosselman et al. [102] 2004 X  X Post-classification Building 

Choi et al. [103] 2009 X   Post-classification 
Ground, vegetation, 

Building 

Matikainen et al. [104] 2010 X Ortho X Post-classification Building 

Stal et al. [105] 2013 X Ortho  Post-classification Building 

Malpica et al. [106] 2013 X Original  Post-classification Building 

Teo et al. [107] 2013 X   Post-classification 
Building 

DSM-based 

Pang et al. [56] 2014 X   Pre-classification 
Building 

DSM-based 

Zhang et al. [108] 2014 X   Pre-classification Ground 

Tang et al. [109] 2015 X  X Post-classification Building 

Awrangjeb et al. [26] 2015 X  X Post-classification Building 

Xu et al. [57,110] 2013, 2015 X   Post-classification Building 

Xu et al. [57,111] 2015 X   Pre-classification Building, tree 

Du et al. [112] 2016 X Original  Pre-classification Building 

Matikainen et al. [113] 2016 X Ortho X Post-classification Building 

Matikainen et al. [114] 2017 X Ortho X Post-classification Building, roads 

Kaiguang et al. [115] 2018 X   Post-classification Forest 

Marinelli et al. [116] 2018 X   Post-classification Forest 

Zhang et al. [117] 2019 X Ortho  Integrated Building 

Zhang et al. [118] 2019 X Ortho  Integrated Building 

Yrttimaa et al. [22] 2020 X   Post-classification Forest 

Fekete et al. [119] 2021 X   Post-classification 
Tree 

DSM-based 
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Huang et al. [120] 2021 X Original  Post-classification Building 

Ku et al. [121] 2021 X   Integrated Building, street, tree 

Iris et al. [122] 2021 X   Integrated Building 

Tran et al. [123] 2021 X   Integrated 
Ground, vegetation, 

building 

Zhang [124] 2022 X   Integrated Building 

Dai et al. [36] 2022 X   Integrated Building 

The new categorization we propose is based on the algorithms used for change 

detection, regardless of the basic unit, the context studied or the order of classification and 

change detection. It classifies change detection methods into three main types that can, in 

turn, incorporate subtypes. The first type includes standard methods (also called distance-

based methods), the second type includes machine learning-based methods that use 

handcrafted features, and the last type includes the deep learning methods that extract 

more abstract features without user specification (see Figure 3). 

 

Figure 3. The taxonomy of 3D CD approaches with the methods we will detail in the next sections. 

2.3.1. Standard Methods 

This category of 3D CD includes point clouds comparison methods based on the 

calculation of the distance between two points. They establish displacement based on 

proximity in Euclidean space. There are approaches based on the difference between 

digital elevation models (DEMs), the distance between point clouds using the nearest 

distance, and multi-scale point clouds comparison. We detail each of these as follows: 

DEM of difference (DoD). This has a simple concept and easy implementation; it 

quantifies the surface change based on the DEM derived from a 3D point cloud. One of 

the most common methods in this category is the difference between DEMs that estimate 

elevation change on a cell-by-cell basis where the change is derived along a single, 

predefined direction (Z-axis) [125–127]. This simplicity reveals a limitation in complex 

contexts, such as overhangs and near vertical slopes, where the vertical difference is not 

sufficient. 

Cloud-to-cloud comparison (C2C). Point cloud comparison is the simplest and most 

effective method for deformation and CD [35]. The change is detected by calculating the 
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Euclidean distance between individual points in a reference point cloud (epoch A) and 

the respective nearest neighbor point (NN) in the target point cloud (epoch B). We 

illustrate this process in Figure 4a. Its simplicity is its major advantage, since it does not 

require the calculation of normal, and, therefore, no local modeling of the surface is 

needed (e.g., triangulation or plane adjustment). 

Cloud-to-Mesh comparison (C2M). Like the C2C method, the C2M method computes 

displacements using the nearest Euclidean distance between each point in a source point 

cloud and the nearest facet (or to an edge, if the orthogonal projection of the point does 

not fall on any facet) in the target mesh of the triangulated point cloud [128,129]. The 

principle of this method is illustrated in Figure 4b. Its main limitation is its need to mesh 

the target point cloud. This can generate triangular surfaces with holes and artifacts, 

which leads to false displacement and change detection. 

Multiscale Model to Model Cloud Comparison (M3C2). This method estimates the 

displacement based on the points of interest found in each point cloud (e.g., sub-sampled 

points of the point cloud or even the entire source point cloud) [130]. It has two main steps: 

(1) Surface normal estimation and orientation in 3D space at a scale consistent with the 

locale surface roughness; (2) Measurement of the mean surface change along the normal 

direction with the explicit calculation of local confidence interval (σ). Its main advantage 

is that it works directly on point clouds without needing to mesh or grid them. It estimates 

a confidence interval for each distance measurement depending on the roughness and 

registration error of the point clouds (see Figure 4c). However, the M3C2 performs less 

well when the changes occur in different directions than the direction of change 

computation, and also when the level of detection (see Section 3.2) exceeds the magnitude 

change. 

 

Figure 4. Existing approaches of point-to-point distance calculation. (a) Cloud to Cloud. (b) Cloud 

to Mesh. (c) Multiscale Model to Model Cloud Comparison. 

There are two problems associated with this type of methods, which relies on the 

point-to-point distance calculation for CD. The first issue is related to density, which is 

variable between two epochs and within the same epoch. This is affected not only by the 

distance of the point from the acquisition sensor but also by the change in the type of 

sensor and the acquisition mode. The second problem is related to the inefficiency of these 

methods to deal with occluded areas in point clouds, because they do not consider free 

spaces. To counter these two problems, there are ray-based methods. These methods 

require that the sensor positions are known for each instant to recreate a bundle of rays 

representing the pulse path and the measured point [53]. However, this type of method is 

highly point-of-view dependent and cannot be generalized to data without information 

about the sensor positions. 

A further challenge in 3D CD is the quantification of small changes with low 

uncertainty. A recent paper proposed an improved version of M3C2, called 

(a) (b) (c) 

Source point cloud Target point cloud 

Cylinder 

d 

σ 
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Correspondence-Driven Plane-Based M3C2 (CD-PB M3C2) [131]. Based on two points 

clouds at epoch A and epoch B, this method uses a three steps workflow (Figure 5a). The 

first is to extract the planar surface using a region-growing segmentation (Figure 5b). The 

second is the plane’s correspondence search through a binary random forest classifier (RF) 

(Figure 5c). The third is the quantification of change and uncertainty (level of detection) 

through the calculation of M3C2 distance between each plane and its corresponding one 

(Figure 5d). This approach, based on plane correspondence, gives results seven-fold better 

than the M3C2, in terms of uncertainty associated with topographic change, and shows 

high performance for quantifying small-magnitude (less than 0.1 m) changes. The other 

main advantage of the CD-PB-M3C2 is that, by using the matching planes, it is not 

necessary to determine the direction of change a priori, as the feature similarities are used 

regardless of the absolute position of the planes. Nevertheless, the use of planes 

constitutes its own disadvantage because it does not allow high-level recognition of 

objects other than planes. 

 

Figure 5. Correspondence-driven plane-based M3C2 as described in [131]. (a) Input point clouds. 

(b) Extraction of planar surfaces. (c) Plane correspondence search. (d) Quantification of change and 

uncertainty. 

To summarize, the problem with traditional methods for CD and displacement 

analysis is establishing the correspondences between point clouds in the Euclidian space. 

However, these correspondences just represent the distance between the surfaces, not the 

actual displacement of points on the surfaces. Therefore, previous methods (C2C, C2M, 

M3C2 and CD-PB-M3C2) struggle to estimate the correct and significant change in a 

specific case, mainly in the case of parallel motion to the surface. To resolve this problem, 

several methods have been proposed in the literature, such as the fusion of point clouds 

and RGB (Red, Green, Blue) images, as in [132]. The latter estimates 3D change and 

displacement vectors using the corresponding points obtained, based on 2D RGB-Depth 

image in features space, as illustrated in Figure 6. The matching is not distance-based but 

uses the correspondence of the extracted features around each point in a radius r to find 

the corresponding point in the target point cloud. With the same consideration, recent 

machine and deep learning methods propose to establish correspondences in the feature 

rather than the Euclidean space only. 
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Figure 6. Correspondence between points at different epochs in features space. 

2.3.2. Machine Learning with Handcrafted Features 

In this section, we show works using handcrafted features in machine learning 

algorithms. These recent approaches for CD using 3D point clouds integrate the 

classification and change detection at the same time using handcrafted features [19,123]. 

The general idea of these methods is to extract inter- and intra-epoch features and then 

classify them using a learning model to obtain change classification results, as illustrated 

in Figure 7. 

 

Figure 7. General 3D CD framework using handcrafted features. 

For more details, we present the workflow proposed by [123]. Point clouds at two 

different epochs (A and B) are merged to extract four types of features: features describing 

the point distribution (e.g., planarity, verticality, linearity and omnivariance), feature 

height above the terrain, features specific to the multi-target capability of laser scanning 

(e.g., return number and number of returns) and features combining point clouds from 

both epochs to identify change. The proposed methods take as input two cleaned and 

georeferenced point clouds in the same coordinate system (no registration needed). Then, 

the point clouds are merged to generate the four specified features, as shown in Figure 8, 

and, finally, provide change detection classification type using random forest classifier. 
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Figure 8. Integrated CD and classification of point clouds using handcrafted feature as in [123]. 

Despite its advantages of fusing classification and CD in a single step, as well as being 

able to detect change in multiple classes simultaneously (e.g., tree, building, soil, etc.), 

machine learning methods depend heavily on the initial training data. This problem can 

be partially solved by using unsupervised machine learning methods. 

2.3.3. Deep Learning Methods 

To overcome the problem of change detection based only on distance correspondence 

in a Euclidean space, deep learning methods propose to create more abstract features 

without the need for user specification. In [133,134], the authors proposed a new deep 

learning framework for point clouds displacement and change analysis, called Feature to 

Feature Super voxel-based Spatial Smoothing (F2S3). It is divided into two mains step: (1) 

Estimation of an initial 3D displacement vector field by determination of point-to-point 

correspondence in the feature space, and (2) Filtering and smoothing of the initial 3D 

vector field pipeline (see Figure 9). The proposed concept of F2S3 is not to rely on 

proximity in Euclidean space (distance) but to create a correspondence between points at 

different times based on proximity in feature space. This proximity is covered by local 

feature descriptors, which describe the geometric information of the local neighborhoods 

of the point of interest (e.g., a sphere of radius r, as specified in Figure 6). Spectral and 

radiometric features (e.g., color, intensity, or multispectral bands) can be used in addition 

to geometric features, but these are usually neglected and not considered in the local 

feature descriptors, because of constraints related to changing acquisition conditions, 

environment, sensors, etc. Thus, by establishing the corresponding points within the 

feature space, F2S3 is sensitive to displacements along the surface. It was demonstrated in 

this work that F2S3 outperformed the standard methods (C2C, C2M, M3C2) on real-world 

geo-monitoring datasets when the hyper-parameters were chosen appropriately [133,134]. 

However, the available current implementation of F2S3 is computationally very 

complex, not fully automated, and requires in-depth knowledge of the algorithm and the 

deformation process to choose the right hyper-parameters. To solve such problems, Ref. 

[30] proposes a further step and integrates the F2S3 workflow into a fully automatic 

pipeline (Figure 9). They propose a tiling procedure to create smaller point tiles to 

facilitate their processing in an efficient and parallel way (to process large point clouds). 

They also propose to replace the hyper-parameters that required in-depth knowledge of 

the user with values derived directly from the input point clouds. To overcome the 

problem of processing time and memory complexity, they propose using more efficient 

local feature descriptors, as proposed in [135]. These learning-based methods have been 

shown to outperform all the traditional methods already mentioned in Section 2.3.1. 
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Figure 9. Workflow of the modified F2S3, as described in [30]. 

In another work, Ref. [121] proposed a Siamese Graph Convolutional Network 

(SiamGCN) for 3D point clouds CD. The edge convolution (EdgeConv) operator is 

adopted to extract representative features from point clouds (Figure 10). Then, a Siamese 

architecture, [136], based on the graph convolutional networks, is proposed to identify the 

change type of any two input point clouds (A and B) from two different epochs. The 

source code of their approach is publicly available at 

https://github.com/kutao207/SiamGCN (last accessed on 28 August 2022). The authors 

also evaluated three algorithms, including one handcrafted and two learning-based 

methods, on the 3D CD dataset (more details in Section 3.2). The first one is point clouds 

change detection with hierarchical histograms (named PoChaDeHH). The second one is 

3D point cloud CD for street scenes (named HGI-CD). The third is the SiamGCN (see 

Figure 10). Although the handcrafted algorithm can achieve relatively balanced results on 

the overall and per-class accuracy and mean intersection over union (mIoU), it was 

obvious that learning-based methods achieved overwhelming performance. 
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Figure 10. SiamGCN network architecture, as described in [121]. 

In [124], the authors proposed a method to detect building changes between LiDAR 

(Light Detection And Ranging) and photogrammetric point clouds. With consideration of 

the fact that semantic segmentation and CD are correlated, they suggested the 

SiamPointNet++ model to combine the two tasks in one framework (see Figure 11). The 

method outputs a pointwise joint label for each point. If a point is unchanged, it is 

assigned a semantic label (e.g., building) and if a point is changed, it is assigned a change 

label (new building). The semantic and change information is included in the joint labels 

with minimum information redundancy.  

The combined Siamese network learns both intra-epoch and inter-epoch features. 

Intra-epoch features are extracted at multiple scales (sphere radius r) to embed the local 

and global information. Inter-epoch features are extracted by Conjugated Ball Sampling 

(CBS) and concatenated to make change inferences (Figure 11). For the decoder layers, the 

DIM feature vectors are interpolated to the raw LiDAR points locations, instead of the raw 

Dense Image Matching (DIM) points locations. This ensures that the DIM features are 

calculated at the same centroids as the LiDAR data. Only feature vectors extracted at the 

same centroids can be compared. The authors point out that even if there is no DIM point 

in the conjugate ball of a LiDAR point, a pseudo feature map is calculated at the same centroid 

to “inform” the model that the neighborhood of the ball in the DIM data is empty [124].  

Experiments conducted in a study area in Rotterdam, Netherlands, indicated that the 

network was effective in learning multi-task features. It was invariant to the permutation 

and noise of inputs and robust to the data difference between LiDAR and dense image 

matching data. Compared with a sophisticated object-based method and supervised 

change detection, this method requires much fewer hyper-parameters and less human 

intervention, but achieves superior performance, as stated by the authors. 
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Figure 11. SiamPointNet++ network architecture [124]. 

The same author proposed in [117] a Convolutional Neural Networks (CNN) 

architecture for multimodal CD. Change in buildings was detected between a digital 

surface model (DSM) derived from point clouds, and a dense image matching point 

clouds using feed-forward CNN, which showed high performance for using multimodal 

data. 

Using the same analogy of the Siamese architecture for 2D CD, Ref. [122] proposed 

to extend the Siamese to 3D point clouds. They proposed embedding the KPConv [137] 

architecture used for semantic segmentation into a deep Siamese network where both 

point clouds would pass through the same encoder with shared weights. Similar to the 

usual encoder–decoder architecture with skip connections, at each scale of the decoding 

part, they concatenated the difference of extracted features associated with the 

corresponding encoding scale, as shown in Figure 12. The authors compared the Siamese 

KPConv results to machine learning hand-crafted methods presented previously in [123]. 

The comparison results showed that the deep learning method outperformed the machine 

learning one for all evaluation metrics. An improvement of about 27 points of IoU 

(Intersection over Union) over classes of change was observed. 

 

Figure 12. Siamese KPConv network architecture. Source: Image adopted from [122]. 

All conducted works in this section have shown that deep learning methods largely 

outperform traditional methods, either in terms of change classes number or in terms of 

evaluation metrics. Their main advantages lie in the ability to understand structured 

objects at a global scale, thus, leading to correct classification of hidden parts, and so 

resolving the occlusion part in point clouds. However, the problem of occlusions and 
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variability of density and distribution of points between the different epochs is not 

completely solved. As can be noticed, learning-based methods largely depend on the 

availability of training data to achieve high CD quality. In the following section, we 

present multi-temporal point clouds benchmarks which are accessible in Open Access, as 

well as the metrics used in the literature for performance comparison. 

3. Benchmarks 

A variety of methods are proposed to detect changes in the literature, but the choice 

of the right one is not obvious. Therefore, it is essential to adopt appropriate metrics to 

use for performance evaluation in the same dataset. In this section, we list publicly 

available benchmark point clouds datasets and provide some standard evaluation metrics 

used to compare the performance of the algorithms, for application in future research. 

3.1. Datasets for 3D Change Detection 

This section presents different types of commonly used point clouds datasets for 3D 

CD. We classify the existing datasets related to our topic into two main types: unannotated 

datasets, which do not contain semantics information about objects classes or change type, 

and annotated datasets. The latter is the most useful because they pave the way for the 

rapid development of CD applications and exploitation of 3D data using machine learning 

methods and deep learning networks. 

OpenTopography. This is a United States National Science portal that facilitates 

access to high-resolution data and related tools and resources [138,139]. It provides open 

access to LiDAR and photogrammetry point clouds and photos with on-demand 

processing tools to generate derived products. The one we are interested in is the change 

map created from the available multi-temporal point clouds. One can download point 

clouds acquired at different locations in high resolution. It also offers the possibility to use 

two services on demand: the first one is vertical differencing, which aims to measure 

landscape change by differencing DEMs (Digital Elevation Models) to see the topographic 

change from processes, including urban growth, flooding, landslides, wildfires, and 

earthquakes [140]. The second one is 3D differencing, which aims to detect the horizontal 

and vertical change when the landscape shifts during earthquakes and landslides [140]. 

This dataset is not annotated into change classes, and it is accessible at: 

https://opentopography.org/ (last accessed on 28 August 2022). 

AHN1, AHN2, AHN3, AHN4. The Actueel Hoogtebestand Nederland (AHN) is the 

digital height map for the whole of the Netherlands. What is interesting about this is that 

there is repeat LiDAR acquisition AHN1, AHN2, AHN3 and a recent AHN4 [141]. AHN1 

(1997–2004) was initiated by Waterboards, Ministry of Infrastructure and Water 

Management and Provinces to manage the water systems and water security, then AHN2 

(2007–2012) and AHN3 (2014–2019). There is an upcoming version, AHN4 (2020–2022), 

which is denser than ever before. These datasets already contain a pre-classification, but are 

not annotated in type of change, link https://www.ahn.nl/ (last accessed on 28 August 2022). 

Abenberg—ALS test dataset. This dataset contains the point clouds acquisition of 

Adenberg, Germany (49.2416° N, 10.9636° E), using aerial laser scanner (ALS) RIEGL 

LMS-Q560 (version 2006). The first was acquired on 18 April 2008, by four ALS strips in a 

cross pattern, resulting in an accumulated point cloud which includes 5,400,000 points 

(Figure 13) with an average point density of 16 pts/m². The second was acquired on 31 

August 2009, using the same sensors and a similar setting as specified by [142], resulting 

in a point cloud of 6,200,000 points with an average point density of 21 pts/m². In addition 

to the coordinates of 3D points (XYZ), the data sets contain the local normal directions, 

sensor positions, and results of pre-classification (ground, vegetation, and building). 

These multi-temporals multi-view point clouds data are well suited for the development 

and evaluation of 3D CD methods in urban areas, and the investigation of other 

applications of ALS data, e.g., city modeling and city model updating. 
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(a) (b) 

Figure 13. (a) Adenberg data 2008 and (b) Adenberg data 2009. 

4D objects by changes. This dataset contains an hourly dataset of Terrestrial Laser 

Scanning (TLS) point clouds acquired in the frame of coastal monitoring at the sandy 

beach of Kijkduin (52°04′14″ N, 4°13′10″ E), Netherlands, over a period of five months 

[143,144]. Link: https://doi.org/10.11588/data/4HJHAA (last access on 28 August 2022).  

ICRA 2017—Change Detection Datasets. This contains three indoor datasets (living 

room, office, lounge) acquired using Google Tango tablets, mainly their RGB-Depth 

sensors with an operating range of 0.4 m to 4.0 m, and with a resolution of 320 × 180 pixels, 

as specified in [145]. The first one (living room, as in Figure 14) contains nine hand-held 

observations (9 epochs) in a controlled indoor environment. The second one (office) 

consists of four recordings of a controlled office environment recorded from the center of 

the room using a tripod. The third one consists of ten hand-held observations in an 

uncontrolled environment, a highly accessible meeting area observed over the course of 

two weeks. The link to the dataset is 

https://projects.asl.ethz.ch/datasets/icra2017changedetection (last accessed on 28 August 

2022). 

  

(a) (b) 

Figure 14. Observations at two epochs (a and b) of the living room (controlled environment). 

PLS dataset of Kijkduin beach–dune. A high-resolution 4D terrestrial laser scan 

dataset of the Kijkduin beach–dune system, Netherlands [146]. The beach was scanned 

hourly for 190 days. between 11 November 2016, and 26 May 2017, by a Permanent Laser 

Scanner (PLS) mounted in a permanent place at 38 m height above the mean sea level. The 
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dataset is georeferenced and contains 4082 hourly point clouds, each one containing 

between one and ten million 3D points. It contains additional attributes, such as the laser 

return and intensity. 

CG-PB-M3C2. This dataset includes six points clouds acquired bi-weekly by a TLS 

within the summer of 2019 in the lower tongue area of the rock glacier Außeres 

Hochebenkar, Austria. The dataset contains approximately 222 million points per epoch, 

with a point spacing ≤ 0.01–0.11 m (mean 0.03 m). More details on the point clouds and 

their spatial coverage can be found in [147] and at https://doi.org/10.11588/data/TGSVUI 

(last accessed on 28 August 2022). 

Near-continuous 3D time series. This dataset contains data to perform 

spatiotemporal segmentation in time series of surface change data for synthetic data and 

hourly snow cover changes acquired by a terrestrial laser scanner (TLS) [148]. The link to 

the dataset is https://doi.org/10.11588/data/1L11SQ (last accessed on 28 August 2022). 

Change3D Benchmark. The data is provided by CycloMedia. It consists of annotated 

“points of interest” in street-level colored point clouds gathered using vehicle-mounted 

LiDAR sensors, in 2016 and 2020, in the city of Schiedam, Netherlands [121]. This dataset 

focuses on street furniture, with most of the labels corresponding to traffic signs (Figure 

15). Although other objects, such as advertisements, statues, and garbage bins, are also 

included. Labeling was done through manual inspection. The dataset proposed over 78 

annotated street-scene 3D point cloud pairs. Each point cloud pair represents a street 

scene in two different years and contains a group of changed or unchanged objects. Each 

object pair is assigned one of the following labels: (1) No change, (2) Added, (3) Removed, 

(4) Change and (5) Color change. The link to the dataset is https://kutao207.github.io/ (last 

accessed on 28 August 2022). 

 

Figure 15. Change3D dataset with labeled points and two examples of change in color and addition. 

Source: Image adopted from [121]. 

TUM City Campus—MLS test dataset. This dataset is situated in Munich, Germany 

(48.1493° N, 11.5685° E), and covers an area of about 29,000 m2. The first one was acquired 

on 18 April 2016, using Mobile Laser Scanning (MLS), resulting in more than 8000 scans 

(rotations of the scanner head) with 1.7 billion points [149,150]. An Additional epoch 

(TUM-MLS-2018) was acquired on 19 December 2018, resulting in 10,500 scans (rotations 

of the scanner head) with 2.2 billion points. Parts of the two datasets (Figure 16) were 

labeled and contain semantic information (Artificial Terrain, Natural Terrain, High 

Vegetation, Low Vegetation, Building, Hardscape, Artifact, and Vehicle). The authors 

have added a less dense, old epoch (TUM-ALS-2009), acquired by airborne laser scanning 

in 2009, which offers further research possibilities. So, using these multi-temporals 



Geomatics 2022, 2 475 
 

 

datasets, methods for 3D CD can be developed and tested. The datasets and annotations 

can be downloaded at: http://s.fhg.de/mls1 (last accessed on 28 August 2022). 

 

Figure 16. Top views of the dataset TUM-MLS-2016 and TUM-MLS-2018. Color code based on 

height. Source: Image adopted from [150]. 

URB3DCD. De Gélis et al. [151] proposed a bi-temporal simulated 3D dataset for CD 

in urban areas. They prepared five sub-datasets containing simulated pairs of 3D 

annotated point clouds with different characteristics, from high to low resolution, with 

various levels of noise [122]. 

The 2017 Change Detection Dataset. This is a dataset for visual CD consisting of 

images and 3D models. The dataset contains five different scenes. For each scene, it 

provides a 3D model and a set of images depicting a structural element not present in the 

model (see Figure 17). In addition, for each scene, it provides an XML file containing the 

calibration of the camera used to take the pictures, as well as the extrinsic poses in world 

coordinates. Finally, for each image, it also provides the ground truth obtained by 

manually labeling the areas of change [152]. 

  

(a) (b) 

Figure 17. Finding changes in the environment based on an existing 3D model (a), and a sequence 

of (currently recorded) images (b). 

We summarize in the Table 3 the different cited datasets we found in the state of the 

art. For each dataset we specify if it contains a classification (class label, such as building, 

tree, etc.) and if it contains a ground truth about the change (change label, such as 



Geomatics 2022, 2 476 
 

 

changed, unchanged, etc.). We also add, when available, the dates of acquisition and the 

references to the works that created these datasets. 

Table 3. Summary of the existing datasets. 

Dataset Class Label Change Label Years Reference 

OpenTopography   Multiple years [138,139] 

AHN1, AHN2, AHN3, AHN4 X  Multiple years [141] 

Abenberg—ALS test dataset X  2008–2009 [142] 

4D objects by changes X  2017 [143,144] 

ICRA 2017—Change Detection Datasets   2017 [145] 

PLS dataset of Kijkduin beach-dune   2016–2017 [146] 

CG-PB-M3C2   2019 [147] 

Near-continuous 3D time series    [148] 

Change3D Benchmark  X 2016–2020 [121] 

TUM City Campus—MLS test dataset X  2009–2016–2018 [150] 

URB3DCD X X  [122] 

The 2017 Change Detection Dataset  X 2017 [152] 

3.2. Evaluation Metrics 

The evaluation of the performance of a CD algorithm is a critical issue. CD algorithms 

process highly unbalanced data with respect to the ratio of changed to unchanged regions. 

Here, we introduce commonly used evaluation metrics. A well-known uncertainty metric 

for CD quantification is the level of detection (LODetection) [28,153–155]. It is used as a 

threshold to consider only real changes (where the magnitude distance is superior to the 

LODetection at a specific confidence interval) for further analysis and interpretation 

(using a statistical t-test and an assumption of normal distribution of errors). It is 

determined by the number of points (�)  in the point set and the variance of their 

distances to the fitted plane (��), and by the registration error (alignment). It is defined by 

the following formula [130]: 

LODetection���������� �������� = ±1.96 ×  ���
σ�

�

n�
� + �

σ�
�

n�
� + alignement�  (2) 

where, A and B are the points clouds at epoch A and epoch B; �� is the plane fitting 

variance (surface roughness); n is the number of points in the fitting neighborhood; 

alignment is the registration error, which can be estimated by using the absolute mean 

distance between two points clouds plus the standard deviation of these distance 

measurements. 

Estimating the uncertainties through the process of CD is an important part of the 

workflow. It allows the differentiation between significant and non-significant changes. 

A change is considered significant when the quantified change magnitude is superior to 

uncertainty (LODetection). A change is considered insignificant when the magnitude of 

change is inferior to, or equal to, the uncertainty. 

To quantitatively evaluate change detection methods, there are several metrics used 

in the literature [112]. Two of these metrics, commonly used to compare the results of 

these methods with reference data, are correctness and completeness [112]: 

Correctness =
TDN

DN
× 100%  (3) 
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Completness =
TDN

RN
× 100%  

where TDN (True Detected Number) is the number of real changed objects (e.g., buildings) 

correctly detected as changed, DN (Detected Number) is the number of changed objects 

(e.g., buildings) in the detected results and RN (Reference Number) is the number of 

changed objects (e.g., buildings) in the reference data. Since these metrics take the object 

as a unit of comparison, as long as the detected object has an overlap with the reference 

object, it is considered as correctly detected [112]. 

The confusion matrix is another commonly used metric for quantitative analysis of 

binary or multiple classification. The common definition of the confusion matrix is 

presented in Table 4. Where FP (false positive) and FN (false negative) refer to the points 

that were incorrectly classified as changed and unchanged, respectively. TP (true positive) 

and TN (true negative) represent the changed points and unchanged points that were 

correctly detected, respectively. 

Table 4. Simple example of matrix confusion of a binary change. 

Detected 
Reference 

Changed Not Changed 

Changed TP FP 

Not changed FN TN 

From this matrix, we can derive the most used evaluation metrics in CD, which are 

overall accuracy, precision, recall, F1-score, and intersection over union, as shown in Table 

5. Generally, higher precision indicates fewer false prediction results, and higher recall 

indicates that fewer changes were missed. Furthermore, the larger their values are, the 

better the prediction results will be. 

Table 5. Definitions of evaluation metrics for 3D point cloud CD. 

Metric Description Equation 

Overall accuracy 
It is the general evaluation metric for prediction 

results. 
�� =

TP + TN

TP + FP + TN + FN
 

Precision 
It measures the fraction of detections that were 

changed. 
��������� =

TP

TP + FP
 

Recall It measures the fraction of correctly detected changes. ������ =
TP

TP + FN
 

F1 score It refers to recall and precision together. �1 =
2 × Precision × Recall

Precision + Recall
 

Intersection over union Or the Jaccard Index. ��� =
TP

TP + FP + FN
 

The first type of metrics (LODetection) is used mainly for the standard approaches, 

while the confusion matrix and derived metrics in Table 5 are used for learning 

approaches. Another important, but often neglected, metric is the calculation time, as well 

as the complexity of the workflow and the number of steps and operations it contains. 
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4. Discussion and Perspectives 

In this review, we have subdivided 3D change detection methods into three 

categories. The first type includes standard methods (also called distance-based methods), 

the second type includes machine learning-based methods that use handcrafted features, 

and the last type includes the recent deep learning methods that extract more abstract 

features without user specification. Each method of these three categories has its 

advantages and limitations. To reveal the best-performing ones, in terms of metrics, a 

comparison is needed. I. de Gélis et al. (2021) performed a comparison between three 

methods: one based on distance calculation, one based on machine learning with hand-

crafted features and one based on deep learning [19]. Experimental results on the 

URB3DCD dataset showed that the machine learning method with hand-created features 

using random forest gave the best results, which, nevertheless, required supervision and 

a feature extraction step. Tao et al. [121] conducted a benchmark of three methods, with 

one handcrafted feature (PoChaDeHH) and the other two learning-based (HGI-CD and 

SiamGCN). The results showed that the handcrafted algorithm had balanced performance 

over all classes. Learning-based methods achieved overwhelming performance but 

suffered from the class-imbalanced problem and might fail in minority classes. SiamGCN 

solved the class-imbalanced problem by adopting randomized oversampling and 

proposed a well-designed Siamese graph convolutional network architecture for the 3D 

CD. Comparison results showed that SiamGCN achieved the best performance on the 

released Change3D benchmark. 

It is already well known that deep learning techniques show good performances in 

several point cloud processing tasks (semantic segmentation, object detection and 

recognition, object tracking, etc.). These techniques have demonstrated the same good 

performance over traditional methods in 3D CD tasks. Nevertheless, several problems are 

still related to this, which we summarize as follows: 

Labeled data. Even though deep learning algorithms can learn highly abstract feature 

representations from raw 3D point clouds, successful detection and identification depend 

on large training samples. However, labeled high-resolution point cloud datasets are rare. 

Creating datasets for CD is more complicated than other tasks; it requires traversing point 

clouds not just at one epoch, but at two or more epochs. Given the lack of annotated data, 

to properly train the models, researchers use a variety of strategies, including transfer 

learning [156], data augmentation [157,158], and Point Clouds Generative Adversarial 

Networks (PC-GAN) [159,160]. Although these techniques alleviate some of the problems, 

coupled with a lack of samples, further improvements are still needed. Thus, future work 

should focus on creating methods that involve relying on small training datasets for 

supervised CD. This approach seems very interesting, as it minimizes the need for labeled 

training data. 

Large-scale data. In general, change happens on a reduced area and not on the entire 

point clouds. The lack of prior knowledge about the precise location of change, as well as 

the direction of change, means conventional unsupervised methods are unable to solve 

change quickly. More advanced studies are needed to solve this problem, such as 

hierarchical, weakly supervised, and semi-supervised methods. 

Level of detail. Point clouds are massive data that can cover an entire country. These 

multi-temporal data collections are an ideal source for 3D change detection. The major 

problem is how to process such data, as change usually only occurs over limited areas. 

Level of detail structuration (LOD) is an efficient technique to address large data size. The 

idea is to use levels of detail from the highest to the lowest, so when more detail is 

required, the level of detail is lowered. The part that still needs to be studied is how the 

level of detail influences the results of the change detection. What metrics do we use to 

know the optimal LOD and to estimate the quality of the change accuracy? 

Thus, even if the challenges related to point cloud processing are overcome, due to 

the availability of processing techniques, there remain many other fundamental issues 

related to their use in change detection that need more investigation, mainly the following: 
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 The use of heterogeneous and multi-modal data (acquired by photogrammetry, laser 

scanner or other acquisition techniques). 

 The use of multi-resolution data (acquired by sensors with different specifications). 

 Handling near real-time laser scanning with a high temporal resolution that has 

become available today. Scene flow methods can play an important role in handling 

this data [48–50]. 

 The availability of benchmark data for the 3D CD. 

 The exploitation of the progress made in the 3D semantic segmentation to integrate 

this information in the 3D CD process. 

 The use of graph neural network for change detection [15,161,162]. 

Finally, it is worth pointing out that 3D CD is an active research field, which aims to 

reach robust methods to recognize dynamics and changes in any environment using 

dense point clouds. This literature review shows that this is a field that requires further 

research to improve the performance and accuracy of the CD results. The construction of 

these processes from point clouds data requires designing new approaches capable of 

detecting changes in the earth’s surface with high accuracy and efficiency. Our future 

research tries to respond to these challenges by proposing, as a continuation of this work, 

a new approach that aims to enhance the quality of CD using prior semantics in 3D Point 

clouds. The objective is to improve the quality of true change and its characterization. 

5. Conclusions 

The detection of change and its characterization is an essential step for monitoring 

dynamics on the earth’s surface. In this paper, we presented a comprehensive review of 

change detection (CD) using 3D point clouds. We reviewed the methods used in the 

literature, and proposed several ways to classify them, and we highlighted the advantages 

and disadvantages of each category compared to the others. We proposed a first 

categorization based on classification and CD steps. Some start with CD and then 

classification, others do the reverse and others integrate the two steps at the same time to 

avoid errors propagation from one step to the next one. The second categorization is based 

on the used algorithm, Then, a third proposed classification categorizes existing methods 

to ones based on distance (C2C, C2M, M3C2, CD-PB-M3C2), machine learning, and deep 

learning. 

We also revised the evaluation metrics for CD. Two categories are shown, 

LODetection and classification metrics derived from the confusion matrix. The first one is 

for methods that are based on the calculation of distances, and the others are for the 

evaluation of change types from learning process. With the trend toward the use of 

learning methods, we also reviewed and described point cloud benchmarks available in 

open access. We noted that deep learning methods provide more accurate results than 

standard methods, but at the expense of the required labeled datasets. 
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