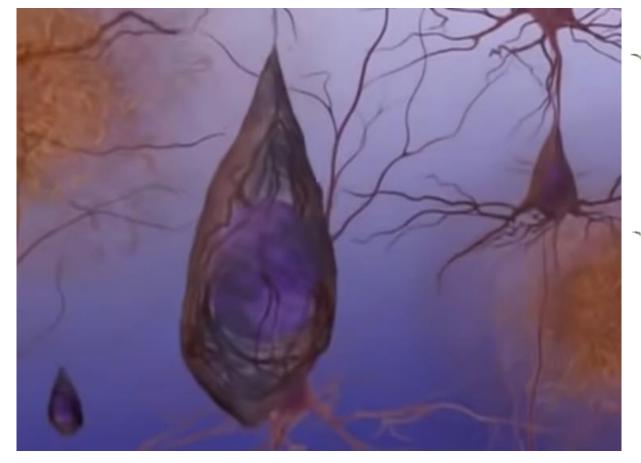
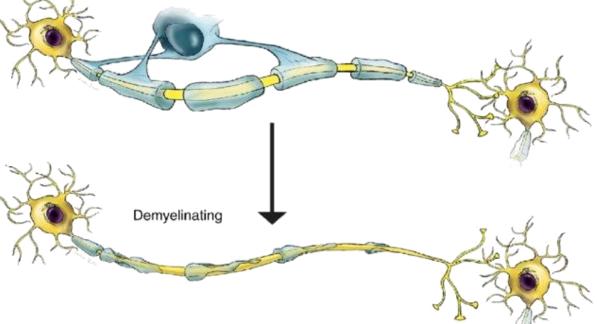

Investigating demyelination, iron accumulation, and synaptic loss in Alzheimer's disease using multimodal imaging techniques

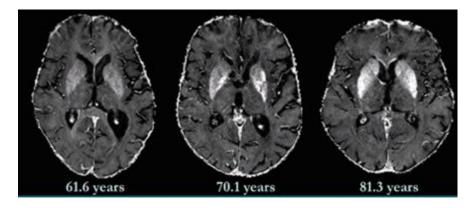
Soodeh Moallemian, Eric Salmon, Mohamed Ali Bahri, Nikita Beliy, Emma Delhaye, Evelyne Balteau, Christian Degueldre, Christophe Phillips* & Christine Bastin*


Prof. Christine Bastin Prof. Christophe Phillips, PhD Oct. 2022

Aging and Memory Lab. CRC-In Vivo Imaging Unit GIGA-Institute Université de Liège

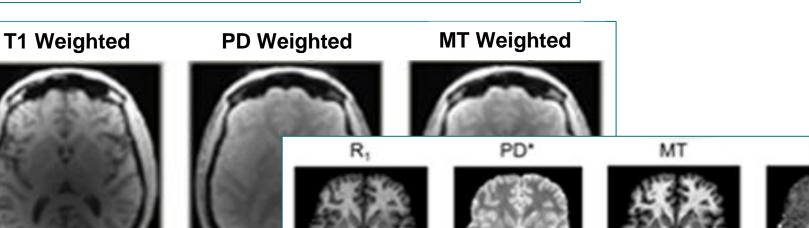

smoallemian@uliege.be




- Hebert, L. E, et. Al., 2013 Neurology. <u>https://doi.org/10.1212/WNL.0b013e31828726f5</u>
- 2022 Alzheimer's Disease Facts and Figures, Special Report More Than Normal Aging: Understanding Mild Cognitive Impairment
- Alzheimer's disease international, 2022

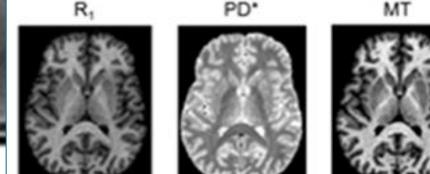
Objectives

Methods

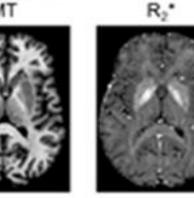

Results

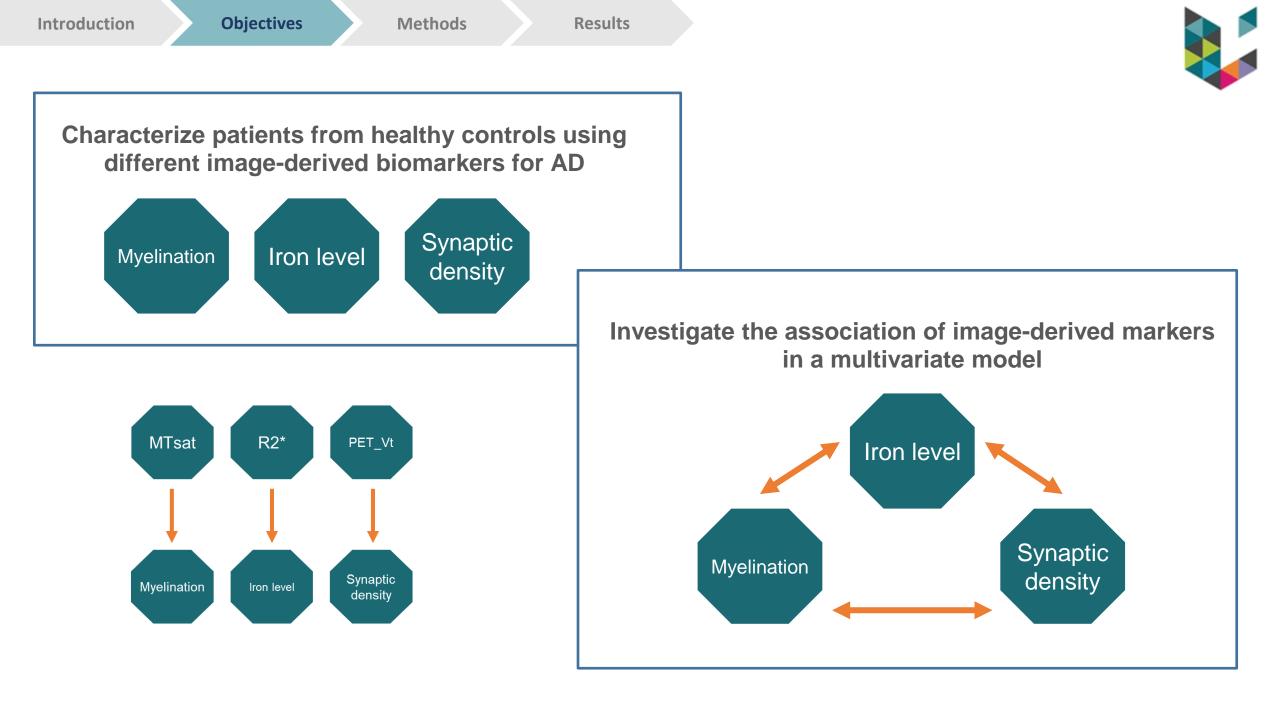
European Journal of Nuclear Medicine and Molecular Imaging (2020) 47:390–402 https://doi.org/10.1007/s00259-019-04461-x

ORIGINAL ARTICLE

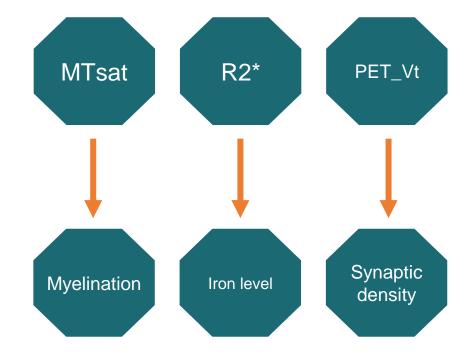

In vivo imaging of synaptic loss in Alzheimer's disease with [18F] UCB-H positron emission tomography

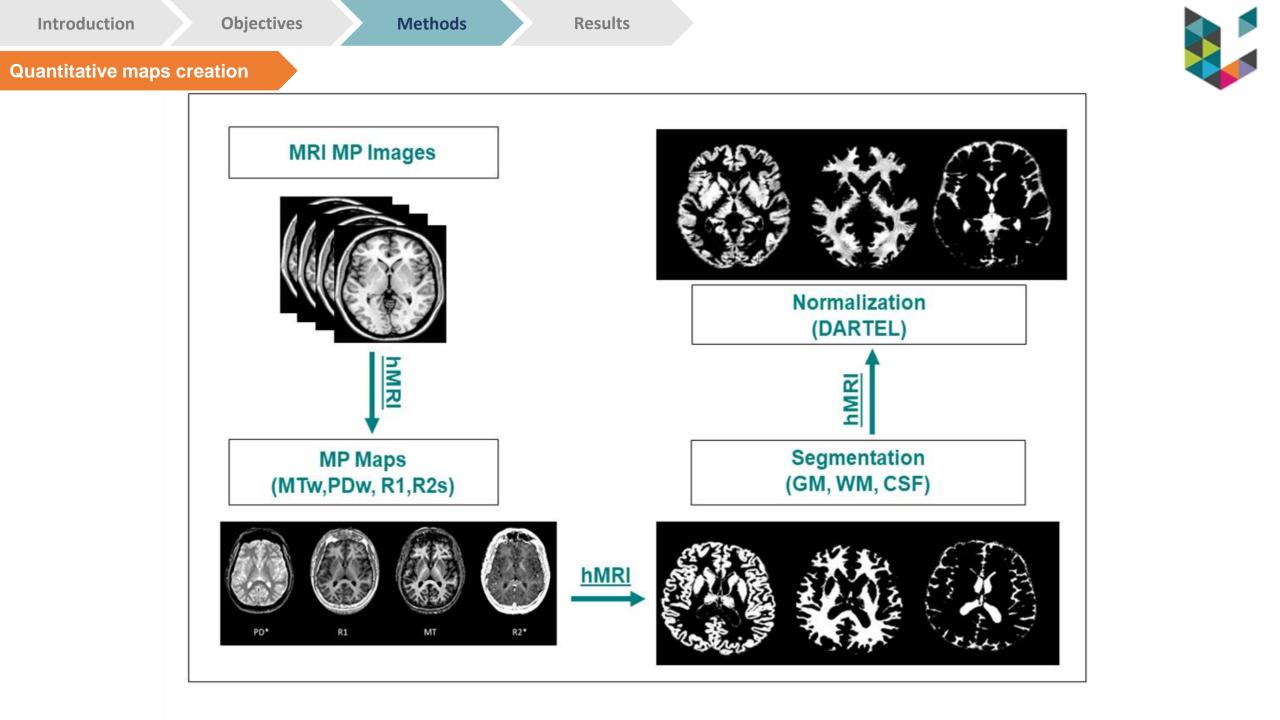
Christine Bastin¹ • Mohamed Ali Bahri¹ • François Meyer¹ • Marine Manard¹ • Emma Delhaye¹ • Alain Plenevaux¹ • Guillaume Becker¹ • Alain Seret¹ • Christine Mella¹ • Fabrice Giacomelli¹ • Christian Degueldre¹ • Evelyne Balteau¹ • André Luxen¹ • Eric Salmon¹

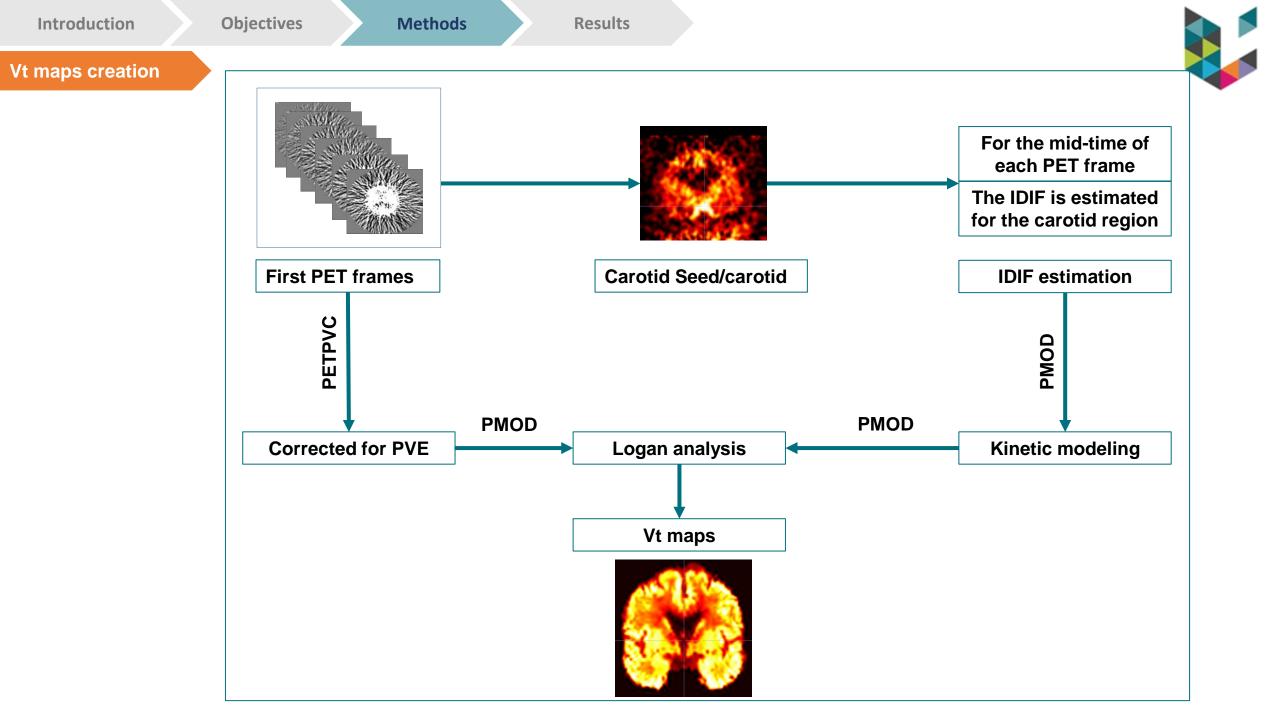




Check for updates




Introduction


Methods

Data sets	# Subjects	Age Range
Alzheimer's disease	24 (11 males	60-80
Healthy control	19 (9 males	00-00

Z-transformation

Objectives Methods

Results

Univariate GLM:

$$X = \begin{bmatrix} AD_m & 0 & age & sex \\ 0 & HC_m & age & sex \end{bmatrix}_{43 \times 4} \beta = \begin{bmatrix} \mu_{11} \\ \mu_{12} \\ \mu_{21} \\ \mu_{22} \end{bmatrix}$$

Test the difference between groups using one modality

 $\begin{array}{l} H_0: \ C\beta = 0 \\ H_1: \ C\beta \neq 0 \end{array}$

Between Subject contrast

 $C = [1 - 1 \ 0 \ 0]$

Mu	ıltivariate	e GLM:			MSPM
<i>X</i> =	$\begin{bmatrix} AD_{MT} \\ AD_{R2s} \\ AD_{PET} \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	0 0 HC _M HC _{R2} HC _{PE}	age _T age	sex sex sex sex sex sex	$B = \begin{bmatrix} \mu_{111} & \mu_{112} \\ \mu_{121} & \mu_{122} \\ \mu_{211} & \mu_{212} \\ \mu_{221} & \mu_{222} \end{bmatrix}$

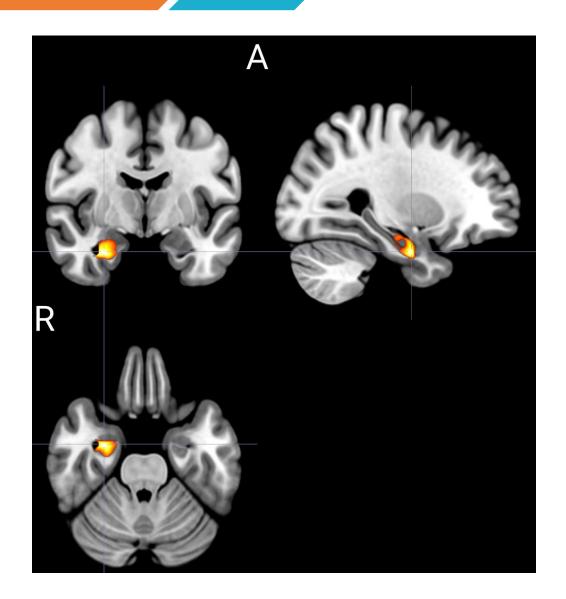
Test the difference between groups using all modalities at once

$$H_0: CBL = 0$$

$$H_1: CBL \neq 0$$

Within Subject parameter
$$L = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}_{3 \times 3}$$
Between Subject contrast $C = \begin{bmatrix} 1 & -1 & 0 & 0 \end{bmatrix}$

* Here "m" represents different modalities


L. Gyger et al., NeuroImage, May 2021, doi: 10.1016/j.neuroimage.2021.117895.

Univariate GLM

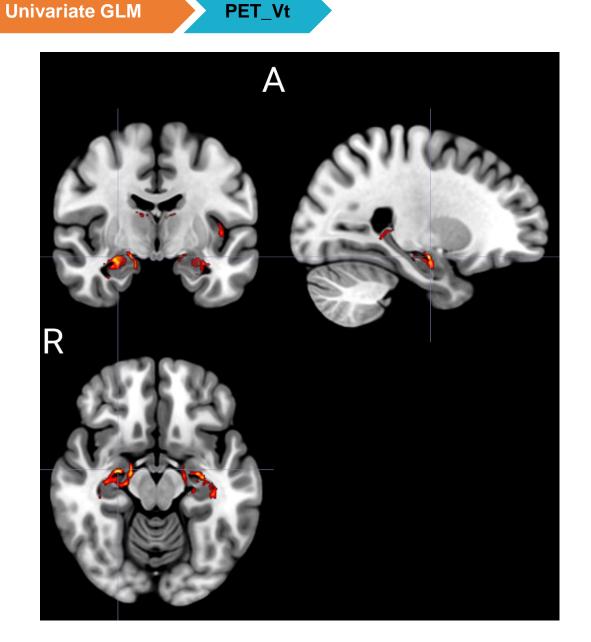
MTsat

set-lev	el	cluster-level					peak-level					
p	C	P _{FWE-corr}	q _{FDR-corr}	k _E	р _{ипсогг}	P _{FWE-corr}	q _{FDR-corr}	F	(Z_E)	р _{ипсогг}	mm mm mm	
0.845	3	0.001	0.001	1993	0.000	0.201	0.186	28.25	4.43	0.000	31 -7 -2	
						0.520	0.307	23.72	4.12	0.000	37 -21 -1	
						0.782	0.307	21.04	3.91	0.000	20 -11 -2	
		0.972	0.940	131	0.203	0.604	0.307	22.86	4.06	0.000	-66 -49 -1	
		0.636	0.486	315	0.057	0.997	0.752	16.28	3.48	0.000	-24 -10 -2	
						0.999	0.816	15.48	3.40	0.000	-19 -6 -3	

table shows 3 local maxima more than 8.0mm apart

Height threshold: F = 12.66, p = 0.001 (1.000)Extent threshold: k = 100 voxels, p = 0.264 (0.991)Expected voxels per cluster, <k> = 86.513Expected number of clusters, <c> = 4.67FWEp: 34.309, FDRp: Inf, FWEc: 1993, FDRc: 1993

Degrees of freedom = [1.0, 39.0] FWHM = 11.0 9.9 10.1 mm mm mm; 11.0 9.9 10.1 {voxels} Volume: 912858 = 912858 voxels = 689.3 resels Voxel size: 1.0 1.0 1.0 mm mm mm; (resel = 1098.45 voxels)


Table of results - AD vs HC - (P<0.001)

Objectives

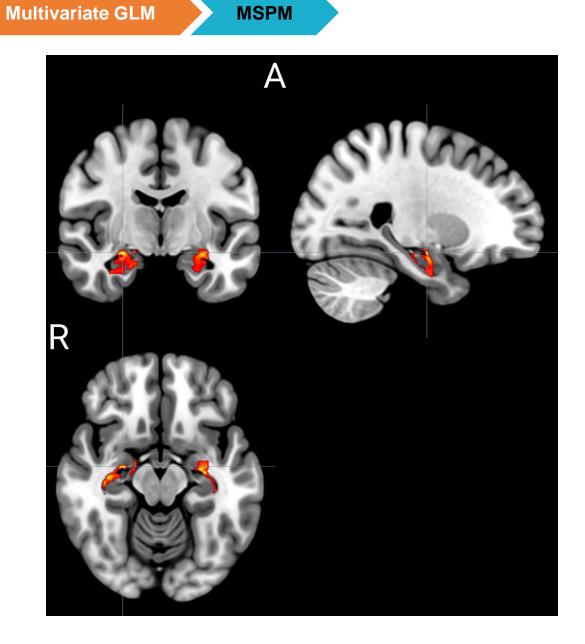
Results

set-level		(mm mm mm							
p	С	P _{FWE-corr}	q _{FDR-corr}	k _E	р _{uncorr}	P _{FWE-corr}	q _{FDR-corr}	F	(Z_E)	р _{ипсогг}	
0.000	6	0.000	0.012	8	0.002	0.001	0.108	64.16	6.01	0.000	25 -10 -
		0.006	0.170	2	0.085	0.001	0.108	64.07	6.01	0.000	14 -10 -
		0.001	0.032	5	0.011	0.001	0.108	63.74	6.00	0.000	18 -11 -
		0.015	0.211	1	0.211	0.010	0.355	54.13	5.67	0.000	40 49
		0.015	0.211	1	0.211	0.025	0.568	50.10	5.52	0.000	-29 -14 -
		0.015	0.211	1	0.211	0.026	0.568	49.87	5.51	0.000	-27 -12 -

table shows 3 local maxima more than 8.0mm apart

Height threshold: F = 47.00, p = 0.000 (0.050)Extent threshold: k = 0 voxels Expected voxels per cluster, <k> = 0.686 Expected number of clusters, <c> = 0.07 FWEp: 47.001, FDRp: Inf, FWEc: 1, FDRc: 5

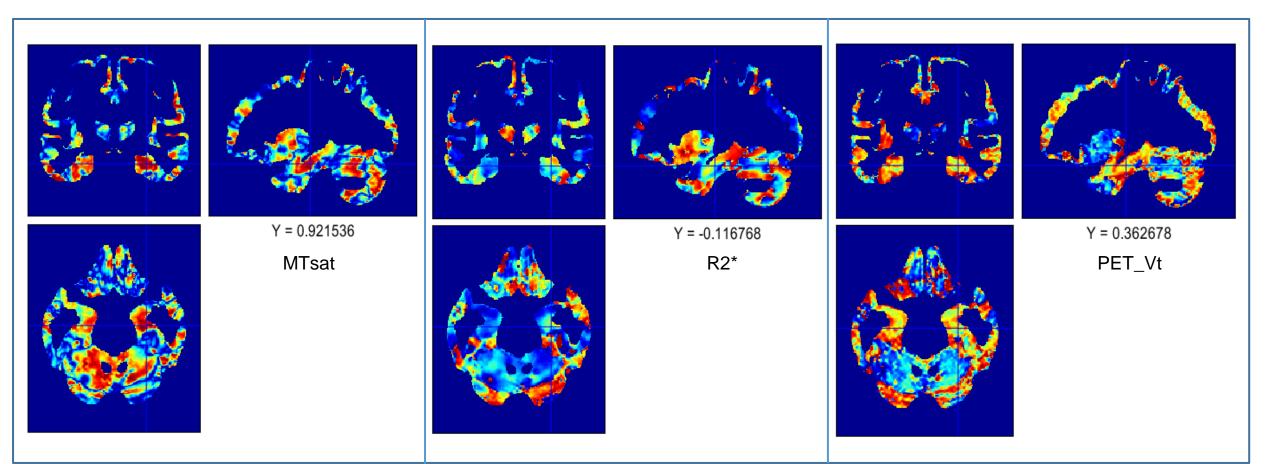
Degrees of freedom = [1.0, 39.0] FWHM = 4.0 3.9 4.1 mm mm mm; 4.0 3.9 4.1 {voxels} Volume: 1477777 = 1477777 voxels = 21987.7 resels Voxel size: 1.0 1.0 1.0 mm mm mm; (resel = 63.34 voxels)


Table of results - AD vs HC - (P<0.05 FWE)

Objectives

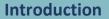
Results

set-level		c	luster-level			peak-level						mm mm mm		
р	С	P _{FWE-corr}	q _{FDR-corr}	k _E	р _{ипсогг}	P _{FWE-corr}	q _{FDR-corr}	F	(Z_E)	P _{uncorr}				
0.000	10	0.022	0.810	8	0.430	0.005	0.438	21.11	5.37	0.000	25	-10	-1	
		0.018	0.810	11	0.353	0.005	0.438	21.00	5.36	0.000	-27	-12	-1	
		0.027	0.810	5	0.540	0.026	0.998	17.65	5.00	0.000	35	-18	-1	
		0.041	0.810	1	0.810	0.028	0.998	17.51	4.99	0.000	40	49	2	
		0.041	0.810	1	0.810	0.037	0.998	16.99	4.92	0.000	37	52	2	
		0.041	0.810	1	0.810	0.040	0.998	16.80	4.90	0.000	35	-16	-1	
		0.041	0.810	1	0.810	0.045	0.998	16.59	4.88	0.000	-62	-44	3	
		0.041	0.810	1	0.810	0.046	0.998	16.55	4.87	0.000	30	-7	-2	
		0.041	0.810	1	0.810	0.047	0.998	16.51	4.87	0.000	8	34	-2	
		0.041	0.810	1	0.810	0.050	0.998	16.40	4.85	0.000	38	-25	-1	


table shows 3 local maxima more than 8.0mm apart

Height threshold: F = 16.40, p = 0.000 (0.050) Extent threshold: k = 0 voxels Expected voxels per cluster, <k> = 13.738 Expected number of clusters, <c> = 0.05 FWEp: 16.397, FDRp: Inf, FWEc: 1, FDRc: Inf Degrees of freedom = [3.0, 37.0] FWHM = 11.0 9.9 10.1 mm mm mm; 11.0 9.9 10.1 {voxels} Volume: 816797 = 816797 voxels = 689.3 resels Voxel size: 1.0 1.0 1.0 mm mm mm; (resel = 1098.45 voxels)

Table of results - AD vs HC - (P<0.05 FWE)



Take home message:

- Quantitative maps can be used to assess AD in its early stages.
- Alteration in myelin content and synaptic density in early AD occurs in the hippocampus.
- Accounting for the interactions between myelin, iron, and SV2A protein we can get a more accurate characterization of the difference between the groups of AD and HC.
- Multivariate GLM model is preferable to multiple univariate models to test for AD, which relies on a cascade of processes.

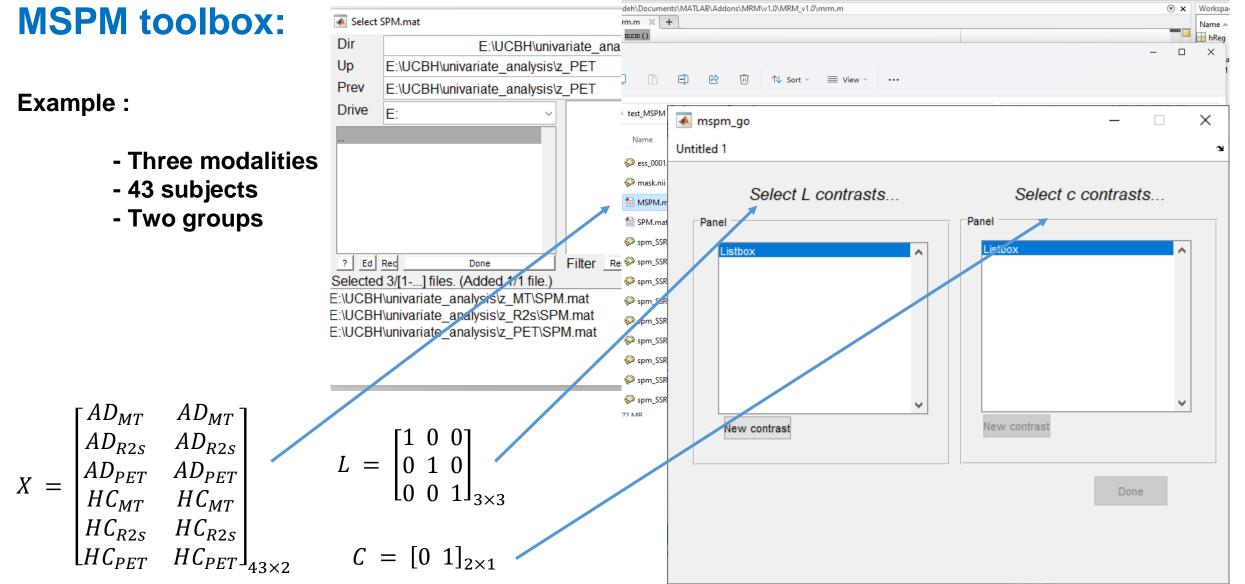
Methods

THANK YOU!

https://hdl.handle.net/2268/296010

Re

Results


Mtsat(P<0.001 FWE uncorrected at voxel level analysis)

Cluster number	Coordinate at peak	F-Value at peak	Cluster P-value*	Cluster size	Brain region
1	(28 –7 –27)	26.58	0.002	1993	Right hippocampus
	PET_vt (P	<0.05 FWE co	rrected at voxe	l level analysis)	
1	(25,-10,-14)	64.16	0.000	8	Right hippocampus
2	(14,-10,-21)	64.07	0.006	2	Right hippocampus
3	(18,-11,-13)	63.74	0.001	5	Right amygdala
	Multimodal (P<0.05 FWE o	corrected at vo	kel level analysis)	
1	(25,-10,-14)	21.11	0.022	8	Right hippocampus
2	(-27,-12,-15)	50.10	0.018	11	Left hippocampus
3	(35,-18,-13)	34.02	0.027	5	Right hippocampus

Objectives

Methods

