Real interpolation with a function parameter

Thomas Lamby (joint work with S. Nicolay)

Journées du GDR AFHP 2022 - CORTE

October 25, 2022

- Two topological vector spaces A₀ and A₁ are compatible if there is a Hausdorff topological vector space H such that A₀ and A₁ are sub-spaces of H.
- M denotes the category of all normed vector spaces (a sub-category of all topological vector spaces).
- \bullet % denotes any sub-category of the category ${\mathscr N}$ that is closed under the operations sum and intersection
- \mathscr{C}_1 denotes the category of all compatible couples $\overline{A} = (A_0, A_1)$ of spaces in \mathscr{C} .

- Two topological vector spaces A₀ and A₁ are compatible if there is a Hausdorff topological vector space H such that A₀ and A₁ are sub-spaces of H.
- M denotes the category of all normed vector spaces (a sub-category of all topological vector spaces).
- \bullet % denotes any sub-category of the category ${\mathscr N}$ that is closed under the operations sum and intersection
- \mathscr{C}_1 denotes the category of all compatible couples $\overline{A} = (A_0, A_1)$ of spaces in \mathscr{C} .

- Two topological vector spaces A₀ and A₁ are compatible if there is a Hausdorff topological vector space H such that A₀ and A₁ are sub-spaces of H.
- M denotes the category of all normed vector spaces (a sub-category of all topological vector spaces).
- \bullet $\mathscr C$ denotes any sub-category of the category $\mathscr N$ that is closed under the operations sum and intersection
- \mathscr{C}_1 denotes the category of all compatible couples $\overline{A} = (A_0, A_1)$ of spaces in \mathscr{C} .

- Two topological vector spaces A₀ and A₁ are compatible if there is a Hausdorff topological vector space H such that A₀ and A₁ are sub-spaces of H.
- M denotes the category of all normed vector spaces (a sub-category of all topological vector spaces).
- \bullet $\mathscr C$ denotes any sub-category of the category $\mathscr N$ that is closed under the operations sum and intersection
- \mathscr{C}_1 denotes the category of all compatible couples $\overline{A} = (A_0, A_1)$ of spaces in \mathscr{C} .

More conventions

• The morphisms $T: (A_0, A_1) \to (B_0, B_1)$ in \mathscr{C}_1 are all bounded linear mappings from $A_0 + A_1$ to $B_0 + B_1$ such that

$$T_{A_0}: A_0 \to B_0, \quad T_{A_1}: A_1 \to B_1$$

are morphisms in \mathscr{C} .

• Two basic functors from \mathscr{C}_1 to \mathscr{C} : $\Sigma(T) = \Delta(T) = T$ and

$$\Delta(\overline{A}) = A_0 \cap A_1,$$

$$\Sigma(\overline{A}) = A_0 + A_1.$$

• Let $\overline{A} = (A_0, A_1)$ be a given couple in \mathscr{C}_1 . Then a space A in \mathscr{C} will be called an *intermediate space* between A_0 and A_1 (or with respect to \overline{A}) if

$$\Delta(\overline{A})\subset A\subset \Sigma(\overline{A}),$$

with continuous inclusions.

• The space A is called an *interpolation space* between A_0 and A_I (or with respect to \overline{A}) if in addition

$$T: \overline{A} \to \overline{A}$$
 implies $T: A \to A$.

• More generally, let \overline{A} and \overline{B} be two couples in \mathscr{C}_1 . Then we say that two spaces A and B in \mathscr{C} are interpolation spaces with respect to \overline{A} and \overline{B} if A and B are intermediate spaces with respect to \overline{A} and \overline{B} respectively, and if

$$T: \overline{A} \to \overline{B}$$
 implies $T: A \to B$.

• Let $\overline{A} = (A_0, A_1)$ be a given couple in \mathscr{C}_1 . Then a space A in \mathscr{C} will be called an *intermediate space* between A_0 and A_1 (or with respect to \overline{A}) if

$$\Delta(\overline{A}) \subset A \subset \Sigma(\overline{A}),$$

with continuous inclusions.

• The space A is called an *interpolation space* between A_0 and A_I (or with respect to \overline{A}) if in addition

$$T: \overline{A} \to \overline{A} \text{ implies } T: A \to A.$$

• More generally, let \overline{A} and \overline{B} be two couples in \mathscr{C}_1 . Then we say that two spaces A and B in \mathscr{C} are interpolation spaces with respect to \overline{A} and \overline{B} if A and B are intermediate spaces with respect to \overline{A} and \overline{B} respectively, and if

$$T: \overline{A} \to \overline{B}$$
 implies $T: A \to B$.

• Let $\overline{A} = (A_0, A_1)$ be a given couple in \mathscr{C}_1 . Then a space A in \mathscr{C} will be called an *intermediate space* between A_0 and A_1 (or with respect to \overline{A}) if

$$\Delta(\overline{A})\subset A\subset \Sigma(\overline{A}),$$

with continuous inclusions.

• The space A is called an *interpolation space* between A_0 and A_I (or with respect to \overline{A}) if in addition

$$T: \overline{A} \to \overline{A}$$
 implies $T: A \to A$.

• More generally, let \overline{A} and \overline{B} be two couples in \mathscr{C}_1 . Then we say that two spaces A and B in \mathscr{C} are interpolation spaces with respect to \overline{A} and \overline{B} if A and B are intermediate spaces with respect to \overline{A} and \overline{B} respectively, and if

$$T: \overline{A} \to \overline{B}$$
 implies $T: A \to B$.

- If $||T||_{A,B} \le \max\{||T||_{A_0,B_0}, ||T||_{A_1,B_1}\}$ holds, we shall say that A and B are exact interpolation spaces.
- If $||T||_{A,B} \le C \max\{||T||_{A_0,B_0}, ||T||_{A_1,B_1}\}$ holds, we shall say that A and B are *uniform* interpolation spaces.
- ullet The interpolation spaces A and B are of exponent $heta \in [0,1]$ if

$$||T||_{A,B} \le C ||T||_{A_0,B_0}^{1-\theta} ||T||_{A_1,B_1}^{\theta}.$$

If C = 1, we say that A and B are exact of exponent θ .

Interpolation functor

• An interpolation functor on $\mathscr C$ is a functor F from $\mathscr C_1$ into $\mathscr C$ such that if $\overline A$ and $\overline B$ are couples in $\mathscr C_1$, then $F(\overline A)$ and $F(\overline B)$ are interpolation spaces with respect to $\overline A$ and $\overline B$ and

$$F(T) = T$$
 for all $T : \overline{A} \to \overline{B}$.

• F is a uniform (exact) interpolation functor if $F(\overline{A})$ and $F(\overline{B})$ are uniform (exact) interpolation spaces with respect to \overline{A} and \overline{B} . Similarly, F is (exact) of exponent θ if $F(\overline{A})$ and $F(\overline{B})$ are (exact) of exponent θ .

Interpolation functor

• An interpolation functor on $\mathscr C$ is a functor F from $\mathscr C_1$ into $\mathscr C$ such that if $\overline A$ and $\overline B$ are couples in $\mathscr C_1$, then $F(\overline A)$ and $F(\overline B)$ are interpolation spaces with respect to $\overline A$ and $\overline B$ and

$$F(T) = T$$
 for all $T : \overline{A} \to \overline{B}$.

• F is a uniform (exact) interpolation functor if $F(\overline{A})$ and $F(\overline{B})$ are uniform (exact) interpolation spaces with respect to \overline{A} and \overline{B} . Similarly, F is (exact) of exponent θ if $F(\overline{A})$ and $F(\overline{B})$ are (exact) of exponent θ .

Aronszajn-Gagliardo Theorem

Theorem

Consider the category \mathscr{B} of all Banach spaces. Let A be an interpolation space with respect to the couple \overline{A} . Then there exists a minimal exact interpolation functor F_0 on \mathscr{B} such that $F_0(\overline{A}) = A$.

Let $\overline{X}=(X_0,X_1)$ be a given couple in \mathscr{B}_1 . Then $X=F_0(\overline{X})$ consists of those $x\in \Sigma(\overline{X})$, which admit a representation

$$x = \sum_{j} T_{j} a_{j}$$
 (convergence in $\Sigma(\overline{X})$),

where $T_j: \overline{A} \to \overline{X}$, $a_j \in A$. Set

$$N_X(x) = \sum_j \max(\|T_j\|_{A_0,X_0}, \|T_j\|_{A_1,X_1}) \|a_j\|_A.$$

The norm in X is the infimum of $N_X(x)$ over all admissible representations of x.

Quid for interpolation functor of exponent θ ?

Theorem

Let $\theta \in [0,1]$, consider the category \mathscr{B} of all Banach spaces. Let A be an interpolation space of exponent θ with respect to the couple \overline{A} . Then there exists a minimal interpolation functor F_{θ} , which is exact and of exponent θ , such that $F_{\theta}(\overline{A}) = A$.

Let $\overline{X}=(X_0,X_1)$ be a given couple in \mathscr{B}_1 . Then $X=F_{\theta}(\overline{X})$ consists of those $x\in \Sigma(\overline{X})$, which admit a representation

$$x = \sum_{j} T_{j} a_{j}$$
 (convergence in $\Sigma(\overline{X})$),

where $T_j : \overline{A} \to \overline{X}$, $a_j \in A$. Set

$$N_{\theta}(x) = \sum_{j} \|T_{j}\|_{A_{0},X_{0}}^{1-\theta} \|T_{j}\|_{A_{1},X_{1}}^{\theta} \|a_{j}\|_{A}.$$

The norm in X is the infimum of $N_{\theta}(x)$ over all admissible representations of x.

The K-method

The K-operator of interpolation is defined for t>0 and $a\in \Sigma(\overline{A})$ by

$$K(t,a) = \inf\{\|a_0\|_{A_0} + t\|a_1\|_{A_1} : a = a_0 + a_1\}.$$

If $\theta \in (0,1)$ and $q \in [1,\infty]$, then a belongs to the interpolation space $K_{\theta,q}(A_0,A_1)$ if $a \in \Sigma(\overline{A})$ and

$$(2^{-\theta j}K(2^j,a))_{j\in\mathbb{Z}}\in I^q(\mathbb{Z}).$$

This last condition is equivalent to $t \mapsto t^{-\theta}K(t,a) \in L^q_*$.

For example, $B_{p,q}^s = K_{\alpha,q}(H_p^t, H_p^u)$ for $s = (1 - \alpha)t + \alpha u$. $K_{\theta,q}$ is an exact interpolation functor of exponent θ on the category \mathcal{N} .

The K-method

The K-operator of interpolation is defined for t>0 and $a\in \Sigma(\overline{A})$ by

$$K(t,a) = \inf\{\|a_0\|_{A_0} + t\|a_1\|_{A_1} : a = a_0 + a_1\}.$$

If $\theta \in (0,1)$ and $q \in [1,\infty]$, then a belongs to the interpolation space $K_{\theta,q}(A_0,A_1)$ if $a \in \Sigma(\overline{A})$ and

$$(2^{-\theta j}K(2^j,a))_{j\in\mathbb{Z}}\in I^q(\mathbb{Z}).$$

This last condition is equivalent to $t \mapsto t^{-\theta}K(t, a) \in L^q_*$.

For example, $B_{p,q}^s = K_{\alpha,q}(H_p^t, H_p^u)$ for $s = (1 - \alpha)t + \alpha u$.

 $K_{\theta,q}$ is an exact interpolation functor of exponent θ on the category \mathscr{N} .

Boyd functions

A function $\phi:(0,\infty)\to(0,\infty)$ is a *Boyd function* if it is continuous, $\phi(1)=1$ and

$$\bar{\phi}(t) := \sup_{s>0} \frac{\phi(st)}{\phi(s)} < \infty,$$

for all $t \in (0, \infty)$. The *lower* and *upper Boyd indices* of a Boyd function ϕ are defined by

$$\underline{b}(\phi) := \sup_{t < 1} \frac{\log \bar{\phi}(t)}{\log t} = \lim_{t \to 0} \frac{\log \bar{\phi}(t)}{\log t}$$

and

$$\overline{b}(\phi) := \inf_{t>1} \frac{\log \overline{\phi}(t)}{\log t} = \lim_{t \to \infty} \frac{\log \overline{\phi}(t)}{\log t}$$

respectively.

Boyd functions

A function $\phi:(0,\infty)\to(0,\infty)$ is a *Boyd function* if it is continuous, $\phi(1)=1$ and

$$\bar{\phi}(t) := \sup_{s>0} \frac{\phi(st)}{\phi(s)} < \infty,$$

for all $t \in (0, \infty)$. The *lower* and *upper Boyd indices* of a Boyd function ϕ are defined by

$$\underline{b}(\phi) := \sup_{t < 1} \frac{\log \bar{\phi}(t)}{\log t} = \lim_{t \to 0} \frac{\log \bar{\phi}(t)}{\log t}$$

and

$$\overline{b}(\phi) := \inf_{t>1} \frac{\log \overline{\phi}(t)}{\log t} = \lim_{t\to\infty} \frac{\log \overline{\phi}(t)}{\log t},$$

respectively.

A sequence $\sigma=(\sigma_j)_{j\in\mathbb{N}}$ of positive real numbers is admissible if there exists a constant C>0 such that $C^{-1}\sigma_j\leq\sigma_{j+1}\leq C\sigma_j$ for all j. Let $\underline{\sigma}_j:=\inf_{k\geq 1}\sigma_{j+k}/\sigma_k$ and $\overline{\sigma}_j:=\sup_{k\geq 1}\sigma_{j+k}/\sigma_k$. The lower and upper Boyd indices of σ are defined by

$$\underline{s}(\sigma) := \lim_{j} \frac{\log \underline{\sigma_{j}}}{\log 2^{j}} \quad \text{ and } \quad \overline{s}(\sigma) := \lim_{j} \frac{\log \overline{\sigma_{j}}}{\log 2^{j}}$$

Given an admissible sequence σ , the function

$$\phi_{\sigma}(t) := \left\{ \begin{array}{ll} \frac{\sigma_{j+1} - \sigma_j}{2^j} (t - 2^j) + \sigma_j & \text{if } t \in [2^j, 2^{j+1}), j \in \mathbb{N}_0 \\ \sigma_0 & \text{if } t \in (0, 1) \end{array} \right.$$

with $\sigma_0=1$ is a Boyd function

If
$$\phi \in \mathcal{B}$$
, $\sigma_j = \phi(2^j)$ and $\theta_j = 1/\phi(2^{-j})$ then

$$\underline{b}(\phi) = \min\{\underline{s}(\sigma), \underline{s}(\theta)\}\$$
 and $\overline{b}(\phi) = \max\{\overline{s}(\sigma), \overline{s}(\theta)\}.$

A sequence $\sigma=(\sigma_j)_{j\in\mathbb{N}}$ of positive real numbers is admissible if there exists a constant C>0 such that $C^{-1}\sigma_j\leq\sigma_{j+1}\leq C\sigma_j$ for all j. Let $\underline{\sigma}_j:=\inf_{k\geq 1}\sigma_{j+k}/\sigma_k$ and $\overline{\sigma}_j:=\sup_{k\geq 1}\sigma_{j+k}/\sigma_k$. The lower and upper Boyd indices of σ are defined by

$$\underline{s}(\sigma) := \lim_j \frac{\log \underline{\sigma_j}}{\log 2^j} \quad \text{ and } \quad \overline{s}(\sigma) := \lim_j \frac{\log \overline{\sigma_j}}{\log 2^j}.$$

Given an admissible sequence σ , the function

$$\phi_{\sigma}(t) := \begin{cases} \frac{\sigma_{j+1} - \sigma_j}{2^j} (t - 2^j) + \sigma_j & \text{if } t \in [2^j, 2^{j+1}), j \in \mathbb{N}_0 \\ \sigma_0 & \text{if } t \in (0, 1) \end{cases}$$

with $\sigma_0 = 1$ is a Boyd function.

If
$$\phi \in \mathcal{B}$$
, $\sigma_j = \phi(2^j)$ and $\theta_j = 1/\phi(2^{-j})$ then

$$\underline{b}(\phi) = \min\{\underline{s}(\sigma), \underline{s}(\theta)\}$$
 and $\overline{b}(\phi) = \max\{\overline{s}(\sigma), \overline{s}(\theta)\}.$

A sequence $\sigma=(\sigma_j)_{j\in\mathbb{N}}$ of positive real numbers is admissible if there exists a constant C>0 such that $C^{-1}\sigma_j\leq\sigma_{j+1}\leq C\sigma_j$ for all j. Let $\underline{\sigma}_j:=\inf_{k\geq 1}\sigma_{j+k}/\sigma_k$ and $\overline{\sigma}_j:=\sup_{k\geq 1}\sigma_{j+k}/\sigma_k$. The lower and upper Boyd indices of σ are defined by

$$\underline{s}(\sigma) := \lim_{j} \frac{\log \underline{\sigma_{j}}}{\log 2^{j}} \quad \text{ and } \quad \overline{s}(\sigma) := \lim_{j} \frac{\log \overline{\sigma_{j}}}{\log 2^{j}}.$$

Given an admissible sequence σ , the function

$$\phi_{\sigma}(t) := \left\{ \begin{array}{ll} \frac{\sigma_{j+1} - \sigma_{j}}{2^{j}} (t - 2^{j}) + \sigma_{j} & \text{if } t \in [2^{j}, 2^{j+1}), j \in \mathbb{N}_{0} \\ \sigma_{0} & \text{if } t \in (0, 1) \end{array} \right.,$$

with $\sigma_0=1$ is a Boyd function.

If
$$\phi \in \mathcal{B}$$
, $\sigma_j = \phi(2^j)$ and $\theta_j = 1/\phi(2^{-j})$ then

$$\underline{b}(\phi) = \min\{\underline{s}(\sigma), \underline{s}(\theta)\}$$
 and $\overline{b}(\phi) = \max\{\overline{s}(\sigma), \overline{s}(\theta)\}$.

A sequence $\sigma=(\sigma_j)_{j\in\mathbb{N}}$ of positive real numbers is admissible if there exists a constant C>0 such that $C^{-1}\sigma_j\leq\sigma_{j+1}\leq C\sigma_j$ for all j. Let $\underline{\sigma}_j:=\inf_{k\geq 1}\sigma_{j+k}/\sigma_k$ and $\overline{\sigma}_j:=\sup_{k\geq 1}\sigma_{j+k}/\sigma_k$. The lower and upper Boyd indices of σ are defined by

$$\underline{s}(\sigma) := \lim_j \frac{\log \underline{\sigma_j}}{\log 2^j} \quad \text{ and } \quad \overline{s}(\sigma) := \lim_j \frac{\log \overline{\sigma_j}}{\log 2^j}.$$

Given an admissible sequence σ , the function

$$\phi_{\sigma}(t) := \left\{ \begin{array}{ll} \frac{\sigma_{j+1} - \sigma_{j}}{2^{j}} (t - 2^{j}) + \sigma_{j} & \text{if } t \in [2^{j}, 2^{j+1}), j \in \mathbb{N}_{0} \\ \sigma_{0} & \text{if } t \in (0, 1) \end{array} \right.,$$

with $\sigma_0=1$ is a Boyd function.

If
$$\phi \in \mathcal{B}$$
, $\sigma_i = \phi(2^j)$ and $\theta_i = 1/\phi(2^{-j})$ then

$$\underline{b}(\phi) = \min\{\underline{s}(\sigma), \underline{s}(\theta)\}$$
 and $\overline{b}(\phi) = \max\{\overline{s}(\sigma), \overline{s}(\theta)\}.$

Boyd function and admissible sequence

Some elementary examples :

$$\phi_{\sigma}(t) = \begin{cases} \frac{\sigma_{j+1} - \sigma_{j}}{2^{j}} (t - 2^{j}) + \sigma_{j} & \text{if } t \in [2^{j}, 2^{j+1}), \\ \frac{1/\sigma_{j} - 1/\sigma_{j+1}}{2^{j}} (t - 2^{-j-1}) + 1/\sigma_{j+1} & \text{if } t \in (2^{-j-1}, 2^{-j}]. \end{cases}$$

$$\phi_{\sigma}(t) = \begin{cases} \frac{\sigma_{j+1} - \sigma_{j}}{2^{j}} (t - 2^{j}) + \sigma_{j} & \text{if } t \in [2^{j}, 2^{j+1}), j \in \mathbb{N}_{0} \\ \frac{1}{\phi(1/t)} & \text{if } t \in (0, 1) \end{cases}$$

$$\phi_{\sigma}(t) = \begin{cases} \frac{\sigma_{j+1} - \sigma_{j}}{2^{j}} (t - 2^{j}) + \sigma_{j} & \text{if } t \in [2^{j}, 2^{j+1}), j \in \mathbb{N}_{0} \\ t^{s} & \text{if } t \in (0, 1) \end{cases}$$

where s satisfies $\underline{s}(\sigma) \leq s \leq \overline{s}(\sigma)$.

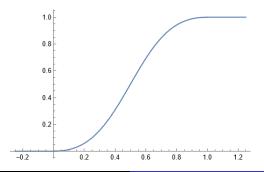
Let

$$f(x) = \begin{cases} e^{-1/x} & \text{if } x \ge 0\\ 0 & \text{else} \end{cases}$$

to define

$$g: x \mapsto \frac{f(x)}{f(x) + f(1-x)}$$

on [0, 1].



$$\begin{pmatrix} X \\ Y \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

For $j \in \mathbb{N}$, we set

$$\begin{cases} X_j = 2^j \cos \alpha + \sigma_j \sin \alpha \\ Y_j = -2^j \sin \alpha + \sigma_j \cos \alpha \end{cases},$$
$$\xi^{(j)}(X) = \frac{X - X_j}{X_{j+1} - X_j}$$

and

$$\tau^{(j)}(X) = Y_j + (Y_{j+1} - Y_j)X$$

to consider the curve

$$Y = \tau^{(j)}(g(\xi^{(j)}(X)))$$

on
$$[X_i, X_{i+1}]$$
.

It gives rise to

$$Y(y) = \tau^{(j)}(g(\xi^{(j)}(X(x))))$$

on the original Euclidean plane.

Let $\eta_j^{(\alpha)}$ be the function $x \mapsto y$ on $[2^j, 2^{j+1}]$. We can construct $\phi \in \mathcal{B}$ by setting

$$\phi(t) = \begin{cases} \eta_j^{(\alpha)}(t) & \text{if } t \in [2^j, 2^{j+1}), j \in \mathbb{N}_0 \\ \frac{1}{\phi(1/t)} & \text{if } t \in (0, 1) \end{cases}$$

It gives rise to

$$Y(y) = \tau^{(j)}(g(\xi^{(j)}(X(x))))$$

on the original Euclidean plane.

Let $\eta_j^{(\alpha)}$ be the function $x \mapsto y$ on $[2^j, 2^{j+1}]$.

We can construct $\phi \in \mathcal{B}$ by setting

$$\phi(t) = \begin{cases} \eta_j^{(\alpha)}(t) & \text{if } t \in [2^j, 2^{j+1}), j \in \mathbb{N}_0 \\ \frac{1}{\phi(1/t)} & \text{if } t \in (0, 1) \end{cases}.$$

For $\alpha = 0$, we explicitly get

$$\eta_j^{(0)}(t) = \sigma_j + \frac{\sigma_{j+1} - \sigma_j}{1 + (\frac{t-2^{j+1}}{t-2^j})^2}.$$

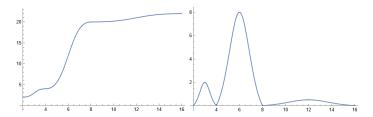


Figure: The function $\eta^{(\alpha)}$ (left panel) and its derivative (right panel) for $\alpha=0$ and σ such that $\sigma_1=2$, $\sigma_2=4$, $\sigma_3=20$ and $\sigma_4=22$.

If $\alpha > 0$ is small enough, we get a function $\eta_j^{(\alpha)}$ whose explicit form is far more complicated.

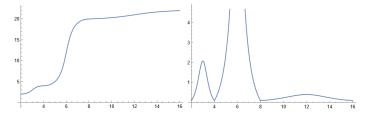


Figure: The function $\eta^{(\alpha)}$ (left panel) and its derivative (right panel) for $\alpha=0.1$ and σ such that $\sigma_1=2$, $\sigma_2=4$, $\sigma_3=20$ and $\sigma_4=22$.

Let \mathcal{B}' denote the set of functions $f:I\to I$ that belong to $C^1(I)$ with f(1)=1 and satisfy

$$0 < \inf_{t>0} t \frac{|f'(t)|}{f(t)} \le \sup_{t>0} t \frac{|f'(t)|}{f(t)} < \infty.$$

One can show that \mathcal{B}' is a subset of \mathcal{B} . If $\phi \in \mathcal{B}$ with $\underline{b}(\phi) > 0$ (resp. $\overline{b}(\phi) < 0$), then there exists a non-decreasing bijection (resp. a non-increasing bijection) $\psi \in \mathcal{B}'$ such that $\phi \sim \psi$ and $\psi^{-1} \in \mathcal{B}'$

Proposition

If $\phi \in \mathcal{B}$ is such that $\underline{b}(\phi) > 0$ or $\overline{b}(\phi) < 0$, then there exists $\xi \in \mathcal{B}' \cap C^{\infty}(I)$ such that $\xi \sim \phi$.

Generalized Interpolation

ullet The interpolation spaces A and B are of exponent $\phi \in \mathcal{B}$ if

$$||T||_{A,B} \le C \overline{\psi}(||T||_{A_0,X_0})\overline{\phi}(||T||_{A_1,X_1}),$$

where $\psi(t) = t/\phi(t)$ for all t > 0. If C = 1, we say that A and B are exact of exponent ϕ .

- F is an (exact) interpolation functor of $exponent \ \phi \in \mathcal{B}$ if $F(\overline{A})$ and $F(\overline{B})$ are (exact) of exponent ϕ .
- Let $\phi \in \mathcal{B}$ and $q \in [1, \infty]$, we let $K_{\phi,q}(\overline{A})$ denote the space of all $a \in \Sigma(\overline{A})$ such that

$$\|a\|_{\phi,q,K}:=\int_0^\infty (rac{1}{\phi(t)}K(t,a))^qrac{dt}{t}<\infty$$

holds.

 $K_{\phi,q}$ is an exact interpolation functor of exponent $\phi \in \mathcal{B}$ on the category \mathscr{N} .

Generalized Interpolation

ullet The interpolation spaces A and B are of exponent $\phi \in \mathcal{B}$ if

$$||T||_{A,B} \le C \overline{\psi}(||T||_{A_0,X_0})\overline{\phi}(||T||_{A_1,X_1}),$$

where $\psi(t) = t/\phi(t)$ for all t > 0. If C = 1, we say that A and B are exact of exponent ϕ .

- F is an (exact) interpolation functor of $exponent \ \phi \in \mathcal{B}$ if $F(\overline{A})$ and $F(\overline{B})$ are (exact) of exponent ϕ .
- Let $\phi \in \mathcal{B}$ and $q \in [1, \infty]$, we let $K_{\phi,q}(\overline{A})$ denote the space of all $a \in \Sigma(\overline{A})$ such that

$$\|a\|_{\phi,q,K}:=\int_0^\infty (rac{1}{\phi(t)}K(t,a))^qrac{dt}{t}<\infty$$

holds.

 $K_{\phi,q}$ is an exact interpolation functor of exponent $\phi \in \mathcal{B}$ on the category \mathscr{N} .

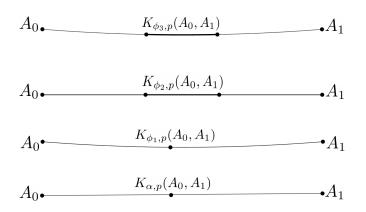


Figure: Differents interpolation spaces where for example $\phi_1(t) = t^{\alpha} \log(1/t)$, $\phi_2(t) = t^{\alpha} \chi_{]0,1]} + t^{\beta} \chi_{]1,\infty[}$ and $\phi_3(t) = (t^{\alpha} \chi_{]0,1]} + t^{\beta} \chi_{]1,\infty[}) \log(1/t)$.

The K-method

Given $\phi, \gamma \in \mathcal{B}$ and $q \in [1, \infty]$, a belongs to the generalized interpolation space $[A_0, A_1]_{\phi, q}^{\gamma}$ if $a \in A_0 + A_1$ and

$$||a||_{[A_0,A_1]_{\phi,a}^{\gamma}} := ||\phi(t)^{-1}K(\gamma(t),a)||_{L_*^q} < \infty.$$

Proposition

If $\phi, \gamma \in \mathcal{B}$ and $q \in [1, \infty]$, then a belongs to $[A_0, A_1]_{\phi, q}^{\gamma}$ if and only if $\sum_{j \in \mathbb{Z}} \left(\frac{1}{\phi(2^j)} K(\gamma(2^j), a)\right)^q < \infty$.

Proposition

Let $\phi, \gamma \in \mathcal{B}$ and $q \in [1, \infty]$; if $\underline{b}(\gamma) > 0$, then there exists $\xi \in \mathcal{B}'_+$ such that $\xi \sim \gamma$ and

$$[A_0, A_1]_{\phi, q}^{\gamma} = K_{\phi \circ \xi^{-1}, q}(A_0, A_1).$$

The K-method

Given $\phi, \gamma \in \mathcal{B}$ and $q \in [1, \infty]$, a belongs to the generalized interpolation space $[A_0, A_1]_{\phi, q}^{\gamma}$ if $a \in A_0 + A_1$ and

$$||a||_{[A_0,A_1]_{\phi,a}^{\gamma}} := ||\phi(t)^{-1}K(\gamma(t),a)||_{L_*^q} < \infty.$$

Proposition

If $\phi, \gamma \in \mathcal{B}$ and $q \in [1, \infty]$, then a belongs to $[A_0, A_1]_{\phi, q}^{\gamma}$ if and only if $\sum_{j \in \mathbb{Z}} \left(\frac{1}{\phi(2^j)} K(\gamma(2^j), a)\right)^q < \infty$.

Proposition

Let $\phi, \gamma \in \mathcal{B}$ and $q \in [1, \infty]$; if $\underline{b}(\gamma) > 0$, then there exists $\xi \in \mathcal{B}'_+$ such that $\xi \sim \gamma$ and

$$[A_0,A_1]_{\phi,q}^{\gamma}=K_{\phi\circ\xi^{-1},q}(A_0,A_1).$$

Quid for AG with interpolation functor of exponent ϕ ?

Theorem

Let $\phi \in \mathcal{B}$ such that $0 \leq \underline{b}(\phi) \leq \overline{b}(\phi) \leq 1$, consider the category \mathcal{B} of all Banach spaces. Let A be an interpolation space of exponent ϕ with respect to the couple \overline{A} . Then there exists a minimal interpolation functor F_{ϕ} , which is exact and of exponent ϕ , such that $F_{\phi}(\overline{A}) = A$.

Let $\overline{X}=(X_0,X_1)$ be a given couple in \mathscr{B}_1 . Then $X=F_\phi(\overline{X})$ consists of those $x\in \Sigma(\overline{X})$, which admit a representation

$$x = \sum_{j} T_{j} a_{j}$$
 (convergence in $\Sigma(\overline{X})$),

where $T_j: \overline{A} \to \overline{X}$, $a_j \in A$. Set

$$N_{\phi}(x) = \sum_{j} \overline{\psi}(\|T_{j}\|_{A_{0},X_{0}})\overline{\phi}(\|T_{j}\|_{A_{1},X_{1}})\|a_{j}\|_{A}.$$

The norm in X is the infimum of the $N_{\phi}(x)$.

Thank you for your attention!