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Résumé
Dans cette thèse de doctorat, nous analysons le potentiel d’un élément optique inno-
vant, nommé élément optique diffractif multicouches (multilayer diffractive optical ele-
ment, MLDOE). Cette recherche est menée dans le cadre de l’observation de la Terre
dans l’infrarouge thermique. Certaines applications infrarouges majeures ainsi que cer-
taines technologies de détection infrarouge forment le contexte de cette étude et amè-
nent les principales contraintes optiques. Un système optique est également soumis à
certaines aberrations intrinsèques: thermique et chromatique. Les différents leviers per-
mettant la conception optique infrarouge de haute résolution sont analysés par le budget
radiométrique, qui estime le signal lumineux reçu. L’élément diffractif multicouches in-
novant possède idéalement des performances optiques proches de la limite de diffraction,
et ce, sur une large gamme de longueurs d’onde. Ce manuscrit explore différentes modéli-
sations de cet élément, du tracé de rayons en passant par la discrétisation des équations
de Maxwell. Les performances optiques du MLDOE sont majoritairement le fruit des
matériaux qui le composent ainsi que de la forme que prennent ces couches diffractives.
Nous montrons que ces performances sont en réalité loin d’être idéales pour un grand
nombre de MLDOEs. Suite à de multiples optimisations, un arrangement de couches en
particulier atteint de hautes performances.

Mots clés: Infrarouge thermique, optique de Fourier, optique diffractive, ML-
DOE
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Abstract
This research contribution analyses the potential of an innovative optical component
called multilayer diffractive optical element (MLDOE) for infrared dual-band systems.
The present manuscript intends to develop a comprehensive background centred around
Earth infrared remote sensing. Infrared applications and detectors constrain the optical
designer, who must also account for the intrinsic thermal and chromatic optical aberra-
tions. The radiometric budget allows for understanding the available levers to build a
high-resolution infrared dual-band imager and to estimate the resulting SNR. The inno-
vative MLDOE ideally has a near-diffraction performance in the whole thermal infrared
waveband, with a suitable chromatic aberration. This manuscript deeply explores ML-
DOE modelling using ray-tracing and an exact electromagnetic approach. An MLDOE
optical performance is impacted by the material choice and the layer design, and is largely
overestimated in the literature. One MLDOE design arose, resulting from various opti-
misation studies.

Keywords: Dual-band infrared, Fourier optics, diffractive optics, MLDOE
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Introduction
This thesis work occurs within the context of infrared Earth remote sensing from space.
Following the trail led by the Arkyd-6 spacecraft, we aim to develop a compact multi-
band infrared imager that can embark on a CubeSat. Arkyd-6 is a 6U CubeSat technology
demonstration mission of Planetary Resources Inc. with the goal to explore potentially
useful resources on asteroids and develop technologies for asteroid mining. Arkyd-6 em-
barks a 26 m resolution mid-wave infrared camera that has proven valuable to detect
refinery flame towers hot spots in Algeria for demonstration purposes. To achieve the
feasibility study of a compact multi-band infrared camera and its design, we have divided
this manuscript into three parts, namely:

• Part I: Radiometric study

• Part II: Modelling tools

• Part III: Designing innovative dual-band camera

In Part I we propose to analyse the broad thesis context. Among the many infrared
applications for Earth remote sensing, we detail the monitoring of crop water stress, wild-
fires and volcanoes. These crucial applications come with their physics and requirements:
What is the detectable temperature variation? How many observations must be done
per day, per week? What is the best wavelength (or set of wavelengths) to map/detect
the studied phenomena? What is the most optimal Earth feature size to get a valuable
image? As a result, a 10 m ground sampling, imaged daily in dual-band MWIR/LWIR
infrared at a 1 °K temperature resolution, enables all these applications simultaneously.
We propose to use a constellation of CubeSats to ensure the essential daily coverage over
some of the largest crop fields. Any hot event occurring in the spacecraft’s field of view,
such as a wildfire or an eruption, can be accurately imaged since a single optical system
fulfils all the abovementioned requirements.

These requirements raise the main research challenge to overcome in this thesis: How to
build a dual-band infrared system compact enough to fit inside a CubeSat? To answer
this issue, we propose to study only cameras since they are generally more compact than
telescopes. Diffractive optics, whose innovations are at the heart of this thesis, are closely
tied to refractive systems as well. In General, the words "compact", "high resolution", and
"infrared" are antonymic, especially when multiple bandwidths are considered. There-
fore, we identify the various challenges of this thesis: Is it possible to build a dual-band
camera with one compact optical system and one detector? Is it possible to achieve suffi-
cient resolution? How to manage the inevitable infrared thermal and chromatic defocuses?

After developing a comprehensive radiometric study, we demonstrate the theoretical fea-
sibility of such a high-resolution camera, resulting in tied optical constraints. We are
able to solve the infrared intrinsic aberrations issue using dedicated optical design soft-
ware and an optimisation algorithm. This algorithm, resulting from a bibliographical
synthesis, is implemented and applied to reduce all inherent aberrations. To do so, the
camera extensively uses diffractive lenses, whose optical properties and compactness are
the bread-and-butter of this design. At this stage, however, the high-resolution camera
can only operate in MWIR due to the lack of dual-band diffractive lenses.
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Consequently, the main challenge tackled in this thesis becomes: Is it possible to extend
the behaviour of diffractive lenses in dual-wavebands?
The element answering this question is called a multilayer diffractive optical element
(MLDOE) and constitutes the main innovative topic of this thesis. Unfortunately, the
analytical MLDOE modelling method provided in the literature is inaccurate due to the
relatively high MLDOE thickness. Two major questions arise: How can we model the
MLDOE internal behaviour? How can we retrieve its fundamental optical figures of
merit?
To prepare for the study of this crucial question, we introduce multiple modelling tools in
Part II. Since our system relies on a complex, innovative micro-optical element, we must
combine various models to assess its performance accurately.
Responding to the second question, we develop a free-space wave propagation tool using
the angular spectrum method (Fourier optics). This computer-friendly tool is very fast
and accurate, calculating a wavefront phase and amplitude at any position along the
propagation direction. Consequently, it constitutes our go-to method for retrieving the
MLDOE focal length and its various figures of merit, such as the Strehl ratio. Since this
method only works in free space, it cannot describe how an MLDOE deforms a plane
wavefront.
Therefore, we propose using a combination of ray-tracing and Fourier optics, called the
ray model, to approximate the phase delay introduced by an MLDOE. This model is a
major innovation of this thesis and answers the question: How to estimate the perfor-
mance/behaviour of an MLDOE using a fast and parameterisable approach? This model
is crucial since it allows for swift, yet reliable, MLDOE shape and material optimisation.
For speed and parametrisation reasons, we have developed the ray-tracing calculator of
this model on Matlab. It is specific to MLDOEs, analytical, extremely rapid and as
accurate as professional three-dimensional ray-tracing tools (ASAP).
However, when high accuracy comes in to play, the Finite Differences Time Domain
(FDTD) method remains unmatched. This numerical method offers precise near-field
MLDOE modelling at the cost of a high computational effort. This method’s numerical
results are considered a reference in this thesis since our fine sampling ensures the validity
of its predictions. To our knowledge, only direct experimentation on an MLDOE prototype
can provide more trustable results.
These three approaches combined in Part III provide a valuable and innovative MLDOE
description. As already stated, using the ray model (or FDTD) with Fourier optics enables
a powerful and fast (or accurate) MLDOE modelling tool. We publish the result of this
approach with many MLDOE designs, F-numbers, and wavelength, to fully assess their
potential. In doing so, we demonstrate that the analytical designing equations cannot
produce performing MLDOEs, except on rare occasions. Having answered the modelling
question, we raise a final challenge: Is it possible to optimise an MLDOE to provide an
efficient dual-band component that could fit inside the designed camera?
First, we propose to optimise the choice of the material composing the MLDOE. We
look at three intuitive optical metrics: Total internal reflection, transmission, and total
thickness. They provide a simple, yet valuable, material combinations filtering tool. We
demonstrate that MLDOEs have higher performance when their gap is filled with a third
material instead of air, potentially increasing the difficulty of manufacturing them. We
define the most suitable materials to use, sorted between easy-to-manufacture and high-
performance materials.
The ray model is once more a powerful and innovative optimisation tool that can quickly
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estimate the best MLDOE shape, given a reference equation (extended scalar theory). We
also demonstrate the limits of our model compared to FDTD since it provides reliable but
non-optimal solutions with variable accuracy. Nonetheless, thanks to the ray model, we
still manage to design an efficient dual-band MLDOE using mouldable materials. Since we
have finally found a suitable dual-band diffractive element but lack the proper software to
integrate it into the MWIR camera, we focus on studying its manufacturing/assembling
tolerances. We show, using FDTD, that the groove thicknesses must be manufactured
under very tied tolerances of a few micrometres.
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Chapter 1
Spaceborne thermal infrared remote sensing
applications

Among the many infrared applications for Earth remote sensing, we detail the
monitoring of crop water stress, wildfires and volcanoes.Infrared monitoring has
enabled new irrigation strategies and innovative water management. Wildfires and
volcano eruptions are hazardous local events that threaten human lives, health
and ecosystems on a large scale. Their detection, monitoring and even prevention
(in the case of wildfires) are make-or-break issues of this century. This chapter
answers various earth remote sensing questions concerning the required spatial,
spectral, thermal, and temporal resolution of the imaging system. As a result,
a 10 m ground sampling, imaged daily in dual-band MWIR/LWIR infrared at a
1 °K temperature resolution, enables all these applications simultaneously. We
propose to use a constellation of small satellites to ensure the essential daily coverage.
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1.1. Thermal infrared applications and requirements

1.1 Thermal infrared applications and requirements

This section is based on the Fuegosat synthesis study [1], funded by the European Space
Agency (ESA). This introduction aims to classify many infrared (IR) remote sensing ap-
plications, providing a complete set of requirements (spatial, temporal, thermal, spectral
resolutions, algorithms). Thermal remote sensing applications are classified into three
categories: land & solid Earth, health & hazard and security & surveillance. A non-
exhaustive list of those applications is given [1]:

• Land and solid Earth:

– Water management (Section 1.2): Detection of water stress and evapotran-
spiration retrieval are key applications for water management purposes. Water
stress is a major environmental factor limiting plant productivity worldwide.
It occurs when evaporative losses cannot be sustained by the roots’ extraction
of water from the soil. Evapotranspiration describes the loss of water from the
Earth’s surface to the atmosphere (evaporation from the surface combined with
transpiration from the vegetation)

– Fire monitoring (Section 1.3): Wildfires are a major security hazard in nu-
merous countries around the world. They are responsible for vegetation resource
and property losses, global warming and air pollution.

– Volcano monitoring (Section 1.4): Volcanic eruptions pose serious hazards
to vegetation ecosystems, urban and communication networks, and threaten
populated regions.

– Earthquakes prevention

– Coal mine fires

• Health and hazard:

– Urban heat island

– Epidemiology

– Coastal inundation

– Industrial risks

• Security and surveillance:

– Detection of minefields

– Ship and port monitoring

– military

In this thesis, we will focus on three "land and solid Earth" topics that have high "priority"
[1]: water management, fire and volcano monitoring. Their requirements are detailed in
Table 1.1:
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Table 1.1: List of "land and solid Earth" topics tackled in this thesis [1], with their respective
requirements. The spectral bands written in orange are complementary wavebands that improve
IR detection.

In the following, we provide a detailed explanation of the topics mentioned above (water,
fire and volcano management).

1.2 Crop management

1.2.1 Vegetation remote sensing

Water is essential for plants’ growth, metabolic processes, and general health. Water stress
is one of the most critical limitations for plant growth, crop yield and food production
quality. Currently, about 80% to 90% of Earth’s global freshwater is used by humans,
and about two-thirds is consumed by agriculture for crop irrigation [2]. Due to global
warming and the increasing world population, agricultural water demand will further
increase. Therefore, a challenging task of this generation is to reduce the amount of water
used per unit yield, ensuring global food security. Precision agriculture offers new farming
methods to improve the sustainability of crop production.
Remote sensing offers a non-destructive method for measuring numerous physiological,
biochemical and structural crop characteristics (drought, disease, freeze) at different
scales. Thus, it is one of the key technologies used in precision agriculture [2]. The
detection of plant response to water stress involves multispectral remote sensing imaging:
Long wave infrared (LWIR; 8 – 14 µm), visible (VIS), near and shortwave infrared re-
flectance (VNIR/SWIR; 0.4 – 2.5 µm), and sun-induced fluorescence (SIF; 0.69 and 0.76
µm). The entire infrared spectrum is depicted in Figure 1.1.

Figure 1.1: Infrared spectrum.
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Crop fields display two vegetation types: the growing plant’s leaves and the soil. Green
plant leaves have very low reflectance and transmittance in the visible (VIS) due to strong
absorbance by pigments (chlorophyll) [3], which is not the case in the near-infrared (NIR)
waveband. Interestingly, plant stress results in lower chlorophyll concentration, broad-
ening the VIS reflectance spectrum and decreasing the NIR reflectance. Compared with
growing plants, most agricultural soils display a monotonic reflectance increase through-
out VIS and NIR [3]. Highly watered soils have a decreased reflectance, while dry soil
appears brighter. Therefore, many studies and vegetation index definitions use the VIS
and NIR wavebands. Vegetation indices provide quantitative metrics describing a plant’s
status and are extremely valuable for extracting plant signals from complex canopy spec-
tra. They are often based on differences, ratios or linear combinations of reflected light
in VIS and NIR wavebands [3]. For instance, a well-known vegetation index called the
"normalised difference vegetation index" (NDVI) is expressed as:

NDV I ≡ RNIR −RRED

RNIR +RRED

(1.1)

where RNIR and RRED are NIR and red reflectances. The NDVI performs exceptionally
well as a quantitative metric for tracking green biomass or leaf area index through the
season or for detecting uneven patterns of growth within a field [3]. The more specific
the index (narrow bandwidth), the more correlated to a particular physiological plant
response (and diagnostic) it will be.

In addition to these wavebands, thermal infrared spectra are of great use in identifying
temperature-related phenomena such as evapotranspiration or water stress. Plant leaves
and soils, having an average temperature of 300 °K, emit most of their infrared radiation
in the long wave infrared (LWIR) due to Planck’s law (see Chapter 3). Therefore, many
thermal indices, such as the "crop water stress index" (CWSI), the "stress-degree-day"
(SDD) or the "water deficit index" (WDI), have been created.

Finally, it is worth mentioning that plant response to environmental stress is not straight-
forward, as it is heavily impacted by illumination, topography, and meteorological condi-
tions [3].

1.2.2 Water stress

Water management refers to determining irrigation schedules and good practices. It is
based on plant status monitoring, evapotranspiration rates and crop coefficients. The
closure of a plant’s stomata is triggered as it depletes the soil water reserves (or if the
atmosphere is too dry). As a result, its transpiration cooling reduces, increasing its tem-
perature (relative to ambient air temperature / well-watered crop) [2, 3]. The temperature
variation range depends on the atmosphere evaporative demand and on the transpiration
characteristics of the plant species. Water stress generally causes physiological and bio-
chemical changes to plants, depending on the severity and duration of the water deficit.
Prolonged or severe water stress leads to irreversible damage to the photosynthetic ma-
chinery [2]. Figure 1.2 provides a chart linking the various plant stresses to the most
appropriate detection wavelengths:
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Figure 1.2: Most important relationships between primary plant stresses, the induced plant
responses, and the multispectral remote sensing techniques. The acronym "VIs" refers to "veg-
etation index". Original source: [2].

As previously stated, leaf transpiration reduces when plant water status decreases due to
active stomatal regulation. Consequently, the inhibited evaporative cooling effect leads to
higher leaf and canopy temperatures than in a well-watered plant. Usually, the leaf tem-
perature of a fully transpiring plant is about 2 – 5 °K below the ambient air temperature
[2]. Thermal remote sensing of leaf and canopy temperature is an established technique
to detect pre-visual water stress effects. However, temperature-based approaches suffer
from numerous noises: air temperature, humidity, vapour pressure deficit (VPD), wind
speed and incident radiation. Many water stress indices allow for quantitative assess-
ment of plant water stress by normalising measured leaf temperatures to environmental
conditions [2].

Stress Degree Day (SDD)

The "Stress Degree Day" (SDD), measured 1h30 after solar noon, is based on the difference
between canopy Tc and air Ta temperatures and assumes that plant water stress appears
whenever Tc − Ta > 0°K. The air temperature must be measured in-situ by a probe.

Crop Water Stress Index CWSI

The most commonly used improvement of the SDD is called the "Crop Water Stress
Index" (CWSI) [4]:

CWSI ≡ (Tc − Ta)M − (Tc − Ta)LL
(Tc − Ta)UL − (Tc − Ta)LL

(1.2)

where the subscripts M , LL and UL respectively denote measured, lower limit (no stress,
maximum potential transpiration rate), and upper limit (complete stress, no transpiration
/ closed stomata) [2, 4]. The CWSI does not only consider air temperature but also other
environmental factors (wind, radiation, VPD) and can theoretically be adapted to any
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crop under any meteorological conditions thanks to the boundary definitions. Wind speed
is the primary CWSI erroneous factor since it increases evapotranspiration, decreasing the
temperature differences between a canopy and ambient air [5].

For instance, the CWSI is applied to determine the best irrigation approach in a maize
field in [6]. New "deficit irrigation" strategies have been proposed for sustainable water
management, especially in arid/semi-arid regions. The crops are being allowed to expe-
rience some degree of water stress. They must be accurately monitored to avoid their
water stress from intensifying higher than a safe level, jeopardising the crop yield. In
the proposed example [6], HFDI and LFDI irrigation approaches are studied, standing
respectively for high and low-frequency deficit irrigation. The former consists of seven
low-depth irrigation events, while the latter consists of three high-depth irrigation events.
The CWSI is computed between July and September 2012 for both irrigation approaches
and presented in Figure 1.3:

Figure 1.3: Maise test field imaged on three dates (from top to bottom): July 19, July 26 and
August 9/2012. Images (a-c) are taken in the visible, while images (d-f) correspond to the CWSI
computed from thermal images. The maize field was separated into HFDI (right) and LFDI (left).
The centre rows delimit the two irrigation approaches and have not been irrigated, displaying
high CWSI. Visible images do not provide differences between the two deficit irrigation methods,
contrary to the CWSI. Original source: [6].
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Beyond determining the best irrigation strategy, Figure 1.3 highlights the advantages of
using infrared imaging over visible imaging when studying crop fields.

Thermal infrared wavebands and the CWSI are especially useful for detecting acute water
stress. The CWSI provides adequate lead time for irrigation scheduling in hot and dry
climates with high VPD, low wind speed variability, and low cloud cover [2, 4]. Conse-
quently, the CWSI is less responsive to plant and soil water conditions in humid locations
and is most responsive during clear skies and within a few hours of solar noon.

Finally, it is prevalent to have partial canopy cover, especially at the beginning of the
irrigation season. The temperature of dry, sunlit soil can be 30 °C greater than green,
transpiring vegetation, posing an overestimation bias to the CWSI. The temperature of
shaded soil is also usually different from vegetation, which may also introduce errors in
CWSI calculations [4]. The relationship between canopy and soil temperatures is given
by [5]:

{
T 4
b = fcT

4
b,c + (1− fcT

4
b,s)

Tc = Tb,c.ϵ
−1/4

(1.3)

where Tb is the brightness composite temperature, Tb,c is the brightness canopy tempera-
ture, Tb,s is the brightness soil temperature, fc is the proportion of canopy cover and Tc

is the canopy temperature, deduced from Tb,c using the canopy emissivity ϵ ≃ 0.96.

Water Deficit Index (WDI)

The water Deficit Index (WDI) is an extension of the CWSI that accounts for the soil
temperature and the partial canopy cover. The WDI is expressed similarly to Equation
1.2, replacing the canopy temperature Tc by the surface temperature Ts, referring to a
composite surface that may include both canopy and soil. Figure 1.4 graphically represents
this index as a trapezoid [4].

The WDI is more complicated to obtain than the CWSI since it requires reflectances
measurements (NDVI, red and NIR wavebands) to estimate the fraction of vegetation fcr.

Time-temperature threshold (TTT)

The time-temperature threshold (TTT) method is based on the fact that plant enzymes
are most productive under a relatively narrow range of temperatures, called the thermal
kinetic window [4]. This method is beneficial for irrigation scheduling and only requires
simple temperature measurements. In the TTT approach, the accumulated time for which
the canopy temperature exceeds a threshold temperature is used as a criterion to start
an irrigation event. This time-integrated method is more robust than the CWSI and the
WDI to meteorological variations.

A significant drawback of the TTT method is that it requires continuous canopy temper-
ature measurements throughout the daytime. It can be achieved at a fixed location but
is complicated and costly to provide at a remote location, when crop fields are extended.
However, the diurnal canopy temperature for remote locations can be predicted using a
scaling procedure based on the continuous temperature measurement at a fixed location
[4]:
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Figure 1.4: Water Deficit Index (WDI), defined as WDI = Y Z/XZ. Point 1 represents a non-
stressed fully covered canopy, point 2 represents a water-stressed fully covered canopy, point
3 corresponds to wet bare soil and point 4 corresponds to dry bare soil. The lower and upper
temperature limits are respectively (Ts−Ta)LL and (Ts−Ta)UL. The measured composite surface
temperature (Ts) is displayed at point Y. Adapted from [4].

Tc(t) = TE +
(Tc(t0)− TE)(TREF (t)− TE)

TREF (t0)− TE

(1.4)

where Tc(t) is the remote field location predicted canopy temperature at any time of day.
TE is the predawn canopy temperature, Tc(t0) is a one-time-of-day measurement taken at
a remote field location and TREF (t) is the stationary location reference temperature mea-
surement throughout the day. The scaling method enables calculating water stress indices
over a longer portion of the day (time-integrated water stress index) and automatise irri-
gation systems [4]. The TTT method improves crops and water management, providing
the timing for irrigation events. However, the exact amount of irrigation needed by the
soil remains unknown and depends on the soil water depletion in the root zone.

1.2.3 Evapotranspiration (ET) - Soil Water Balance

Soil water depletion is a crucial parameter that provides the necessary irrigation at a
particular location. According to [4], its measurement is complex and requires expen-
sive and radioactive in-situ probes (neutron probe), limiting the measurement frequency
and coverage. Therefore, soil water depletion is usually calculated between measurement
times using a soil water balance, where evapotranspiration (ET) is the primary sink [7].
Evapotranspiration combines evaporation and transpiration (vaporisation of liquid water
contained in plant tissues). When the crop is young, water is predominately lost by soil
evaporation, but once the crop is well developed and completely covers the soil, tran-
spiration becomes the main process [7]. Soil evaporation and crop transpiration deplete
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water from the root zone. If all fluxes other than evapotranspiration (ET) are known, the
evapotranspiration can be deduced from the change in soil water content (∆SW ):

ET = I + P −RO −DP + CR±∆SF ±∆SW (1.5)

Irrigation (I) and rainfall (P ) add water to the root zone. Part of I and P might be lost
by surface runoff (RO) and by deep percolation (DP ). Water might also be transported
upward by the capillary rise (CR) towards the root zone [7]. Figure 1.5 depicts the soil
water balance:

Figure 1.5: Soil water balance method for estimating evapotranspiration. Original source: [7].

The soil water balance method can usually only give ET estimates over long periods
(ten days). ET can also be calculated using the canopy temperature in an energy bal-
ance model. In this approach, canopy temperature measurements provide the real-time
feedback aspect. Since water stress indices are also derived from energy balance consid-
erations, they are related to ET in the following general form [4]:

ET = ETp(1−WSI) (1.6)

ETp is the potential ET when water is non-limiting (i.e. WSI = 0). Therefore, when
conditions are favourable, thermal remote sensing can compute the evapotranspiration
and inject it into a soil balance model to retrieve the soil water content (∆SW ). It
enables management strategies to reduce evapotranspiration losses and increase water
use efficiency.

In conclusion, to be useful for day-to-day, site-specific irrigation management, canopy
temperature data must have a spatial resolution of a few meters, a measurement frequency
of at most a week, and a turnaround time (i.e. the time from measurement to useful
information product) of a few minutes [4]. In addition, the field coverage must have an
adequate number of samples with enough spatial distribution. The thermal resolution
must be approxiamtely 1 °K to detect subtle temperature change and provide accurate
water stress map (Table 1.1).
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1.3 Wildfire remote sensing

Wildfires significantly impact environments and communities by changing the vegetation
composition, affecting the soil characteristics, the hydrologic regimes, causing property
losses and human casualties. The global climate is also affected by fire regimes, increasing
the vegetation’s susceptibility to wildfires and the amount of CO2 and aerosol releases
[8]. Between 1997 and 2008, global vegetation fires cumulatively burned 44.5 million
km2, equivalent to the combined area of North and South America (40% of the Earth’s
vegetated area) [9]. The origin of this biomass burning is multiple: planned or left to
spread, under human control or accidental/caused by natural phenomena. On average,
3.4% of the Earth’s vegetated area burns annually, resulting in large-scale effects on land
surface properties, atmospheric composition, and human health and security. Thereby,
wildfires release one-quarter of the global annual CO2 industrial emissions [9], which has
globally detectable effects on the atmosphere composition through the release of various
chemical compounds. On a regional scale, important fire events threaten human lives
and properties, considerably impacting national budgets. Air quality is degraded due to
significant smoke and haze events, affecting human health.

Vegetation fires occur sporadically over vast areas and are rapidly evolving in time. They
have an international scope but often occur in isolated regions, where their detection and
prevention are difficult. Consequently, thermal remote sensing constitutes a crucial tool
in their identification and study: fire extent mapping, fire regimes determination, char-
acterisation of fire impact and severity, estimation of fire emissions chemical composition
and vegetation recovery monitoring [8, 9].

Table 1.2 provides common multispectral spaceborne instruments used for fire ecology [8].

The light detection and ranging (lidar) approach is worth mentioning for creating highly
accurate digital terrain models and classifications [8]. However, lidar is out of the scope of
this thesis, and this section only treats thermal and visible fire remote sensing. Similarly,
the study of fire risk and fuel mapping (where and how fires occur) is not detailed in this
thesis since it relies on very high-resolution multispectral images in the visible (VIS) and
near-infrared (NIR) [8].

1.3.1 Physics of fire remote sensing

Vegetation combustion is a complex non-uniform process involving chemical reactions,
coupled heat/mass transfers. Biomass burning generates significant energy releases, in-
cluding radiant energy, detectable using the appropriate sensor and detection method. It
is estimated in [9] that 10% to 20% of a fire’s energy is radiated away from the combustion
zone in the form of electromagnetic radiation of multiple wavelengths. Fires radiate as
blackbodies, following Planck’s radiation law (see Equation 3.1). Thermal remote sensing
has some significant advantages compared to visible remote sensing due to the smoke
screen generated by burning vegetation. Visible radiations are strongly hindered by the
overlying smoke of already burned fuels, and only actively burning fires are detectable.
On the contrary, Figure 1.6 shows that the smoke becomes increasingly transparent at
longer IR wavelengths:
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Table 1.2: List of sensors commonly used in fire remote sensing ecology. While some sensors
have very high spatial resolutions (low Earth polar orbit), others have high spatial resolutions,
such as SEVIRI, operating from a geostationary orbit.

Figure 1.6: Forest fire remote sensing multispectral data from [9]. a) Composite VIS image of
a flaming combustion area. b) The false colour SWIR image of the same area illustrates the
ability to penetrate the smoke and discriminate between the actively burning area A and the
already burned area B. c) Spectra at locations A (flaming smoke-free fire) and B (smoke-covered
fire), identified in the inset of a). d) The "Advanced potassium band difference" (AKBD) metric,
measured in the same fire area, allows for retrieving the burning areas underneath the smoke.
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In Figure 1.6, SWIR wavebands easily identify the burning fuel area and the reflected solar
SWIR radiation from areas of already burned vegetation, even through smoke. NIR line
emission of burning vegetation allows for tracing chemical elements, such as potassium
and sodium (Figure 1.6 d). NIR can identify specific areas of flaming activities through
the smoke. However, the most reliable fire remote sensing detection wavebands,given by
Plank’s law, are the middle wave infrared (MWIR: 3-5 µm) and long wave infrared (LWIR
8-14 µm). Generally, the MWIR waveband is used for fire emissions that peak around
600°K. It has a lower solar radiation contribution than the SWIR waveband. LWIR
radiations enhance fire detection methods since they can go through the full depth of
Earth’s atmosphere and even through significant smoke, as depicted in Figure 1.7:

Figure 1.7: (a) MWIR and (b) LWIR forest fire remote sensing data from [9]. The nadir spatial
resolution (AVHRR sensor) is 1.1 km, meaning that fires are highly sub-pixel events. Using
the inverse Planck’s law, the spectral radiance measurements have been converted to brightness
temperatures (BT). MWIR pixels display much larger integrated BT than LWIR pixels. c) The
image difference between MWIR and LWIR BTs images allows for recovery of fire-affected pixels
particularly well.

Measuring the thermal radiation during combustion is called "active fire" remote sensing,
contrary to the passive solar reflectance observations used to detect burned scars. Taking
600°K and 1000°K as representative temperatures for smouldering and flaming combus-
tion, a fire has much higher MWIR thermal emission than its background (T ≃ 300°K).
Consequently, identifying actively burning fires only requires relatively simple detection
algorithms. It also means that hotspots count and fire location maps can be rapidly deliv-
ered to the users. High spatial resolution is not needed since the MWIR pixel-integrated
signal is significantly high. Though very detailed fire observations can be made through
smoke, meteorological cloud cover remains a problem. Fortunately, most fire-affected
regions have a fire season that coincides with a dryer period and a lower cloud cover.

1.3.2 Active fires spaceborne detection methods

As illustrated in Figure 1.6, flaming fires emit very significantly in the SWIR waveband.
However, the strong daytime solar reflections and the fact that many fires occur during
the day make the SWIR waveband less attractive than the MWIR waveband for fire mon-
itoring. MWIR imagery is sufficiently sensitive to fire thermal emissions (T ≃ 1000°K) to
detect even sub-pixel fires (Figure 1.7). In addition, cooler smouldering fires that might be
very difficult to detect in SWIR appear in MWIR. A simple active fire detection algorithm
would consist in applying a single threshold in the MWIR channel. However, due to solar
heating of bare ground or specular sunlight reflections, the MWIR signal can reach the
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threshold even for non-fire pixels, resulting in "false alarms" [9, 10]. The discrimination
is often made using additional spectral and spatial tests.

Instead of using the pixel-integrated spectral radiance metric, most active fire algorithms
work with the brightness temperature metric (BT), calculated using the inverse Planck’s
function. Thereby, areas of solar-heated ground (vegetation, bare soil, rocks) exhibit sim-
ilar BT in MWIR and LWIR. On the contrary, as previously explained, actively burning
sub-pixel fires exhibit a higher MWIR BT. Using dual MWIR/LWIR channels is a com-
mon feature of active fire remote sensing algorithms. Other channels, such as the visible
(VIS), enable sunglints discrimination from clouds or water bodies. An example of active
fire pixel thresholds is provided in Equation 1.7 and has been used for AVHRR pixels [9]:

BTMWIR > 314°K
BTMWIR −BTLWIR > 10°K
BTLWIR(clear sky)−BTLWIR < 6°K
BTLWIR < 310°K

(1.7)

Note that fixed threshold approaches are simple and work very well for individual scenes
but provide poor performance during multi-regional/multi-seasonal/multi-sensor analy-
ses. Hence, "contextual" active fire approaches are used in these scenarios, implying
multiple algorithm steps. A pixel thresholding method determines potential fire pix-
els (PFPs). It is followed by statistical tests operated on PFP’s immediate "ambient
background" surrounding to confirm whether or not PFPs are true fire pixels [10]. Mete-
orological clouds and thick smoke plumes are generally quite opaque even at long infrared
wavelengths, and may absorb a fire pixel’s IR radiation to the point where it appears as
a "non fire" pixel. Therefore, satellite-based active fire sensors also include cloudiness
metrics for each pixel, in conjunction with land/water classification and a mask of the
identified sunglint areas as depicted in Figure 1.8:

Figure 1.8: Fire masks in North Africa, created from Meteosat SEVIRI imagery [9]. The mask
delineates the pixels processed by the active fire detection algorithm. Other information such as
sunglint contamination is displayed.

In addition to polar orbiting instruments with a high spatial resolution (ASTER, 30 m),
geostationary sensors can detect fires with improved temporal resolution but a much lower
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spatial resolution (Meteosat SEVIRI instrument has a 3 km spatial resolution and a 15
min temporal resolution). The maximum temperature difference between two consecutive
scenes is ±15°K for a typical summer day in middle latitudes [10]. It becomes appropriate
to consider System 1.7 with a fire detection threshold increased by 5 °K in MWIR to avoid
any false alarm.

1.3.3 Burned area mapping

The relevance of spaceborne thermal remote sensing goes beyond the field of active fire
detection. Such measurements can be of precious value in identifying and mapping burned
areas. Burned area estimates provide accurate spatial representations of fire extents and
perimeters. It is crucial to map wildfire-affected regions to draw rehabilitation planning,
calculate the environmental and economical cost of fires and estimate gas and particulate
emissions on a global/regional scale [8]. The NIR and SWIR wavelengths are commonly
used for burned area mapping. Vegetation cover changes and bare soil / charred surface
proportions significantly impact reflectances. A low albedo characterises burned areas,
with exposed soil cover and presence of still smouldering combustion [9]. Burned areas
(BA) are commonly estimated using active fire images, counting the number of fire pixels
[8]:

BA(i, t) = apxNf (i, t) (1.8)

where i is the grid cell, t is the time period, Nf the number of detected fire pixels and apx
the pixel area. However, Equation 1.8 can be further enhanced using variable pixel areas,
distinguishing between herbaceous or tree cover, for instance. A temporal index based on
NIR data can also be used. It compares NIR pixel values at a given time (S1NIR) to the
average NIR reflectance (ICNIR) for all observations prior to the considered time [8]:

BA =
S1NIR − ICNIR

S1NIR + ICNIR

(1.9)

Appropriate sensors for burned area determination depend on the considered scale. At
the local scale, the same sensors as for burn severity mapping (Section 1.3.4) are used
(< 100 m spatial resolution). At regional and global scales, coarse spatial resolution is
appropriate (> 100 m) since the mapping of large areas over a short time (< 2 days) is
required. High temporal resolution is unnecessary, meaning that geostationary sensors
are not appropriate [8].

1.3.4 Burn severity assessment

The burn severity metric measures the wildfire impact on the landscape: vegetation mor-
tality, soil nutrient composition, and decreased infiltration due to soil hydrophobicity. The
normalised burn ratio (NBR) is a spectral index calculated using SWIR and NIR satellite
imagery data. The NIR waveband is sensitive to leaf structures of living vegetation, while
the SWIR waveband is sensitive to moisture content and soil conditions. Fire-affected
vegetation exhibits a decreased NIR reflectance and an increased SWIR reflectance [8].
The NBR is calculated pre and post-fire, and the difference NBR (dNBR) enables the
identification of areas of significant change. Figure 1.9 illustrates the dNBR ability to
determine various degrees of burn severity.
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Figure 1.9: The difference normalised burn ratio (dNBR) shows the burn severity levels for the
Thomas Fire, CA 2008. Using changes in NIR and SWIR reflectances, burn severity levels can
rapidly be identified [8] .

Burn severity assessment requires imagery with a high to moderate spatial resolution
(< 100 m), as coarser resolutions cannot detect burn severity patterns [8].

1.3.5 Fire characterization

The concept of fire monitoring involves the knowledge of fire temperature, active area,
intensity, and front. This task requires high temporal resolution sensors, typically geosta-
tionary satellites, to follow the fire evolution throughout its development. The complete
combustion of a fixed amount of biomass releases a relatively fixed amount of thermal
energy: the fuel heat yield [9]. The radiated fraction of the fuel heat yield is called fire
radiative power (FRP [MW]), and varies between 10% and 20%. Consequently, measuring
a fire’s IR radiation provides a way to estimate the amount of burned fuel. Approximating
Planck’s function with a power law, we get:

FRP = GSD(Lf − Lbg)σ/a (1.10)

Lf and Lbg denotes the fire and background emitted MWIR radiance [W.m−2.sr−1.µm−1].
σ = 5.67.10−8 [J.s−1.m−2.K−4] is the Stefan-Boltzmann constant, GSD is the ground
sampling distance (km2) and a [W.m−2.sr−1µm−1.K−4] depends on the sensor spectral
response. Equation 1.10 models a fire as a greybody with constant spectral emissivity.
The FRP allows estimating the fire’s destructive power and atmospheric emissions. For
high spatial resolution sensors, the sub-pixel analysis can identify the fire direction and
the flaming front, as displayed in Figure 1.10:
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Figure 1.10: Fire temperature, obtained using Equation 1.10 with the high resolution sensor
MODIS (left picture). With enough resolution, the flaming front and fire direction appear [10]
(right picture).

The real interest of IR remote sensing in early fire detection arises when the sensor time
resolution is ⩽ 15 min, which is currently only possible with geostationary satellites
(SEVIRI). The amount of burned biomass is directly linked to the fire radiative energy
(FRE, [MJ]) [10], expressed as:

FRE =

∫
FRP dt (1.11)

Geostationary satellites fail at detecting lower FRP fires, which are the most frequent.
An efficient solution is to blend FRP data with burned areas maps (Section 1.3.3).

1.4 Volcano monitoring

Volcano remote sensing is a primary scientific focus, reflecting that 500 million people live
under the direct or indirect threat of volcanic eruptions. Warning signs of eruptions are
inconsistent, and prediction time windows are inaccurate [11]. The study of heat fluxes,
temperature variations and cooling rates in active volcanic areas provides a fundamental
contribution to understanding volcanic processes and hazards. Thermal data is valuable
to detect precursors of eruptions onsets, combined with geophysical and geochemical phe-
nomena [11, 12]. For instance, temperature variations of fumaroles, open-conduit vents,
fractures, groundwater, and lava domes are often followed by eruptions [12]. Effusive
eruptions, resulting in lava flows, are well characterised by the lava temperature, among
other magma physical properties. These properties play a crucial role in determining lava
emplacement and flow length. For instance, the presence of lava tubes provides magma
insulation enabling much longer lava flows [12], accentuating the risks for human lives
and properties.
Spaceborne remote sensing provides tracking and mapping of thermal anomalies in inac-
cessible active volcano areas. In particular, thermal cameras represent powerful tools to
estimate surface temperature, ejecta velocity, cooling and effusion rates, and heat/mass
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fluxes. The MWIR waveband is particularly useful for volcanological applications since
it is susceptible to high temperatures (magma, fumaroles) and is less affected by atmo-
spheric attenuation (volcanic gases). In addition, the LWIR waveband is beneficial for
removing solar reflection, aerosol and ash optical effects. Daily records of thermal data
have enabled us to fix temperature thresholds for surveillance purposes and to gain more
profound knowledge about many volcanic phenomena: lava lake convection and degassing,
explosive activity, lava flowing within tubes, etc. [12].
Numerous factors affect the accuracy of apparent temperature measurements using ther-
mal cameras [12]:

• Emissivity, viewing angle and target roughness.

• Solar reflection and solar heating: The MWIR waveband is more polluted by so-
lar reflection than the LWIR. Solar heating reduces the contrast between volcanic
anomalies and their background, rendering them indistinguishable, especially for
relatively cool targets.

• Atmospheric effects, volcanic gas, aerosols and airborne ash: These particules absorb
infrared radiations, particularly in LWIR, suggesting the suitability of the MWIR
bandwidth for volcanological applications.

• Mixed pixel problem: The targeted anomaly temperature is diluted with a different
background temperature due to thermal heterogeneity at sub-pixel level.

A standard approach assumes that mixed pixels include only two thermal components: a
hot target and a cold background. The dual-band MWIR/LWIR method is used to retrieve
sub-pixel radiant temperatures and the portion of the pixel occupied by each of the two
thermal components. The dual-band method is beneficial for estimating lava surface
temperature (composed of hot glowing cracks and cool homogeneous crust), analysing
fumarolic activity, studying lava domes growth, and modelling lava flow core temperature
[12]).
The review [12] describes many volcano monitoring applications, falling into three cate-
gories:

• Monitoring and analysing non-eruptive/resting volcanoes to look for anomalous be-
haviours

• Searching for thermal anomalies that might represent eruption precursors

• Monitoring of ongoing eruptions

This section depicts two particular applications of thermal remote sensing for volcano
monitoring.

1.4.1 Lava bodies

Detecting hot volcanic features such as lava flows, domes, and lakes using visible imaging
is often impractical and unsafe. Sometimes, the lava bodies are masked by thick curtains
of volcanic gas and airborne ash, hampering observation. In such cases, the use of thermal
cameras can be valuable for eruption surveillance, for locating and distinguishing active
lava, as depicted in Figure 1.11:
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Figure 1.11: Activity of Mount Etna’s northeastern eruptive fissure on 28 October 2002. The
yellow-dashed rectangle in the visible photograph shows the area captured by the thermal image.
In the photograph, ash and gas emissions hide much of the scene. The thermal image identifies
two vents feeding strombolian activity and lava flows along the lowest segment of the eruptive
fissure. Original source [12]

The daily data produced by in-situ or orbiting thermal imagers are essential aids for civil
protection in the field of lava flow monitoring and vent maps. Thermal imagery enables
the identification and mapping of a wide range of lava flow feature [12]: eruptive fissures,
eruptive vents, active lava flows at different stages of an eruptive episode, morphology of
lava surface and lava channels, lava tube. Many lava lake studies use thermal imaging and
spectro-radiometry, revealing magma characteristics such as convection and heat radiation
processes, styles of magma activity, magma motion, crust evolution and ageing.

1.4.2 Explosive activity

Thermal investigation of explosive activity allows one to study eruptive dynamics such
as photoballistics and plume expansion. Observing the crater morphology is valuable
for predicting the explosion type, magnitude, and kind of expelled materials [12]. In
pre-eruptive phases, infrared images allow us to visualise the development of thermal
anomalies such as crater fractures, temperature and intensity increase within open-conduit
systems. Thermal images have proven useful to detect and discriminate different eruptive
styles and to track the explosion timing [12, 13]. The main eruption types, as well as the
particle ballistics, can be deduced from thermal images, as depicted in Figure 1.12 for the
Stromboli volcano (Italy).
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Figure 1.12: The main types of eruptions at Stromboli. Type 1 eruptions are ballistic-dominated,
with little to no visible plume due to the absence of ash-sized particles. Type 2 eruptions involve
the emission of an ash plume, with Type 2a containing significant ballistic particles and Type
2b having few ballistics. Arrows mark several large airborne particles. Original source: [13]

The qualitative explosive eruption classification provided in [13] for the Stromboli volcano
can be further refined using thermal imagers, providing the plume height, velocity, colli-
mation and particle type. Quantitative measurement can retrieve the maximum ballistic
height, the eruption duration, the plume velocity and acceleration trends.

1.5 Conclusion

Based on three high-priority thermal infrared applications (crop management, wildfire
detection and volcano monitoring), the main requirements, physical models and parame-
ters, and detection methods have been described in the previous sections. Our aim is not
to provide exhaustive information about these topics but to understand the requirements
for spaceborne infrared instruments. Table 1.1 describes the main resolution and related
applications of the three topics mentioned above. This study shows that a dual-band
MWIR-LWIR instrument with daily coverage, 1 °K thermal resolution and at least 10 m
spatial resolution is sufficient for most detection and monitoring applications. Wildfire,
hot spots and lava flow require coraser thermal and spatial resolution, from 50 m to 100
m. Monitoring actively burning fires requires at least 15 min temporal resolution.
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Infrared detectors

We have defined a set of general requirements for three infrared Earth remote sens-
ing applications in Chapter 1. Taking infrared images requires an optical assembly,
which is the main topic of this thesis, and a detector. The latter constrains the
fundamental optical parameters since its detectivity, minimum detectable tempera-
ture difference (noise equivalent difference temperature NEDT), and signal-to-noise
ratio (SNR) are closely related to the selected applications. Thereby, this chapter
presents infrared (IR) detector types, characteristics, noises and figures of merit.
This chapter is not a comprehensive review of infrared technologies but introduces
many necessary equations used in Chapter 3 radiometric budget. Finally, we propose
a short state-of-the-art review of dual-band IR detection technologies.
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Chapter 2. Infrared detectors

This chapter introduces infrared (IR) detection, the main IR detectors’ noises, and their
performance metrics. IR detectors are transducers that sample the incident IR radiation
and produce an electrical signal proportional to the total flux incident on the detector
surface. An IR detector comprises two main parts: the sensitive pixel matrix (FPA) and
the read-out integrated circuit (ROIC), attached to the FPA. The ROIC is an electronic
device that operates the photon-to-electrons conversion and records the electronic signal
for each pixel. Therefore, it is possible to define an IR detector using two concepts:
detection and read-out. Various FPA technologies and ROIC architectures are presented
in the following. Detectors are classified according to:

• The spectral bandpass

• The FPA technology and material

• The ROIC architecture

• The performance and noises

• The operating temperature, the weight and the size

2.1 Infrared detectors overview

There are two IR detectors families: Quantum and thermal detectors. Both types are sen-
sitive to photons but with different response mechanisms, leading to variations in speed,
spectral responsivity, and sensitivity (defined in Section 2.3). Thermal detectors rely on
a change in the sensing material’s electrical or mechanical properties (e.g., resistance, ca-
pacitance, voltage, mechanical displacement). This change is caused by the heating effect
of the incident IR radiation. Quantum detectors exploit the photoelectric effect: Incident
photons are converted into conducting electrons within the material. An absorbed pho-
ton instantaneously excites an electron from the nonconducting state into a conducting
state, causing a change in the electrical properties of the semiconductor material that an
external circuit can measure [14].

2.1.1 Thermal detectors

The sensitive part (mainly Vanadium Oxide V Ox, amorphous Silicon αSi, Silicon Nitride
Si3N4) is suspended on lags connected to a Silicon heat sink. An incoming IR radiation
is absorbed, heating the FPA and affecting a thermosensitive parameter. This variation
is converted to an electrical signal by a transductor and then processed by the ROIC
[15]. Therefore, thermal detectors must be thermally isolated from their surroundings
and have low thermal capacities to provide fast response [16]. Thermal detectors are
classified according to the nature of their varying thermosensitive parameter:

• Resistance variation → microbolometers

• Voltage variation → thermopiles

• Capacitance variation → pyroelectric detectors
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For instance, Figure 2.1 illustrates a microbolometer.

Figure 2.1: Scheme of a microbolometer. The incident IR radiation heats the absorber surface,
producing a variation of electric resistance recorded and processed by the read-out circuit. The
absorber is thermally isolated from its surroundings.

Thermal detectors are not sensitive to the incoming radiation’s wavelength but only to
the heat it produces. Therefore, they are not intrinsically able to select the desired
bandwidth and are limited only by the optical properties of the FPA material. Their
spectral characteristics can be modified using a bandpass filter or adequately choosing
the FPA material [17].

Thermal detectors rarely require cooling and can operate at room temperature, making
their price, consumption and size very affordable. Their integration with ROIC is excellent
since thermal detectors are usually fabricated using Si-compatible technologies [17].

Thermal detectors are characterized by their relatively low time response due to the
heating process. This time response is described in the following.

2.1.2 Quantum / photon detectors

Quantum (or photon) detectors are mainly semiconductors whose photonic characteris-
tics are selectively modified by suitable doping to achieve specific performance. Photon
detectors are split into photovoltaic detectors (photodiodes) and photoconductors. In the
first case, incident photons generate a voltage across a p–n junction in the semiconductor.
In the second case, they change the semiconductor’s electrical conductivity (resistivity)
by creating free charge carriers. In short, an absorbed photon instantaneously excites
an electron from a nonconducting state into a conducting state, causing a change in the
electrical properties of the semiconductor material that can be measured by the ROIC
[18]. The response of a photon detector depends on the number of incoming photons
(photon flux) that have an energy Eϕ > ℏν, where ν is the bandgap optical frequency. It
means that, unlike thermal detectors, a quantum detector can be designed to be sensitive
to a specific waveband (i.e. ν depends on the choice of semiconductor material, doping,
bandgap engineering).

Photon detectors have extremely fast response times (100 ns to 1 µms) due to their
quantum nature [15]. However, they must operate at cryogenic temperatures to reduce
the quantum noises making their cost, consumption and size much higher than thermal
detectors. Figure 2.2 displays a photon detector photography and scheme:
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Figure 2.2: a) Picture and b) FPA scheme of a photon detector. The picture shows the InSb
’Pelican D 640’ photodetector from SCD [19], and the scheme is taken from [20]. As shown in a),
a cryocooler (Stirling type) and a read-out circuit (ROIC) are integrated into the detector. The
FPA is thermally isolated from its surrounding by the dewar (vacuum) and only accepts light
radiation in the selected waveband, defined by the filter. The cold shield decreases the amount
of parasitic light.

2.1.3 Read-out circuit (ROIC) architectures

There are two types of Silicon ROIC: Charged coupled device (CCD) and complementary
metal-oxide-semiconductor (CMOS). In both architectures, the photon-electron conver-
sion is performed at each pixel and electrons are stored in potential wells during the
exposure time. A pixel is saturated or overexposed when the potential well capacity
reaches its maximum. The optimal exposure time, maximising the signal-to-noise ratio,
provides near-saturated pixels.

In the CCD architecture, the charges inside each pixel’s well move downwards, row by
row, towards a final row, as depicted in Figure 2.3:

Figure 2.3: Operational principle of the CCD ROIC architecture. The charges inside each pixel’s
well move downwards, row by row, towards a final row known as the read-out register. Adapted
from [21].

The charges in the final row (read-out register) move horizontally to a capacitor that
integrates them and provides an output voltage or current corresponding to each pixel.

In the CMOS architecture, the charges-to-current (or voltage) conversion is done indi-
vidually for each pixel. Each pixel possesses an "in-pixel" capacitor that integrates the
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charges contained in the potential well. In addition, a reset transistor cleans each pixel
after integration. The pixels are all connected to a read-out circuit that processes the
image.
As a summary, Table 2.1 provides a qualitative comparison of CMOS and CCD architec-
tures:

Table 2.1: Comparison of the main properties of CCD and CMOS ROIC architectures. Adapted
from [22].

CMOS detectors are more robust than CCDs, with higher responsivity and speed due
to their in-pixel integration, but at the cost of increased complexity and read-out noises.
Over the last two decades, CMOS ROICs have been considerably improved and used for
space applications due to their low consumption and size [22].

2.1.4 Response time

The response time is defined as the time needed to reach 63% of the maximum response
value after illumination by a Heaviside IR radiation step. Inversely, the response time also
characterizes the time needed to reach 37% of the maximal response value after switching
off the illumination [17]. For photodetectors, the response time is expressed in [µs] and
represented as a step function.
For thermal detectors, the response time is known as the thermal time constant τth [s],
expressed as [15, 16]:

τth =
Cth

gth
(2.1)

where Cth is the thermal capacity of the detector [J/°K] and gth is its thermal conductance
[W/°K]. Assuming a typical capacity of 250-300 nJ/K and a thermal conductance of 25
nW/K, τth = 10 ms. This typical response time is ten to a hundred longer than for pho-
todetectors and comparable to the spacecraft integration time (see Equation 3.12), which
can lead to a blurred image. Thereby, active imaging strategies such as the time delay
and integration (TDI) technique [21] are often required for thermal detectors. Note that
5 τth are necessary to reach 99% of the output signal. Finally, the thermal time constant
is a fixed value and cannot be reduced even by cooling down the detector.

The read-out time includes:

• the interval in which the charge is trapped into the potential wells
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• the time needed to transfer the charge towards the capacitor (CCD)

• the time needed to convert the charge into a voltage/current and to register it

The read-out time can be longer than the exposure time since it starts as soon as photons
are collected. Its duration depends on the range of frequency selected for the ROIC
operation and the level of noise accepted. In particular, the reading-out of the charge is
a critical process in terms of noise generation. ITR (integrate then read) mode is "slow"
but decreases the noise level compared to the IWR (integrate while reading) mode. Each
read-out is followed by a time interval that cleans the remaining charges. This process is
known as idling or clearing and is carried on by the reset transistor.

Figure 2.4 summarize the various steps and time interval required to take an image,
considering the ITR mode:

Figure 2.4: Characteristic time constants for the FPA and read-out circuits of IR detectors. The
read-out mode is ITR (integrate then read). Original source [22]

The detector’s frame rate (Hz) is defined as the maximal number of observations possibly
taken in one second. Slower and faster frame rate modes are often available, resulting in
a trade-off between the exposure time and the response time [22]. For instance, a thermal
detector with an 8 ms response time can operate at full resolution with a 30 Hz frame
rate (5 ∗ 8 = 24 ms < 1/30s). In the 60 Hz mode, the exposure time finishes before the
detector output signal has reached 95% of its final value [22].

2.2 Principal noises

2.2.1 Shot noise

The shot noise only occurs for photodetectors since it is related to photon counting. It
defines the noise coming from the random fluctuations of a stream of electrons as a result
of the discrete nature of the current carriers. Thereby, a continuous current is constituted
by short pulses and the mean-square current fluctuation averaged over an integration time
is called shot noise In,shot [A]. It is generally expressed as [23]:
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I2n,shot = 2Γ2q2(Gopt +Gth +R)∆f (2.2)

where q is the elementary electron charge [C], ∆f is the frequency bandwidth at which
the detector circuits operate [Hz], and Γ is the photoelectric gain (the ratio between the
number of electrons flowing through the electronic circuit and the number of absorbed
photons). The mean current noise is split into an optical signal generation rate Gopt caused
by the incident flux fluctuations, a thermal generation rate Gth (dark current noise) and
a recombination rate R. For cooled photodetectors, it is assumed that the shot noise is
dominated by Gopt: Gth = 0 and R = 0. The final expression of the shot noise is, therefore
[23]:

I2n,shot = 2ΦAηq2Γ2∆f (2.3)

η is the quantum efficiency, defined between 0 and 1 as the number of electron-hole pairs
generated per incident photon. A is the pixel size and Φ [photon/s] is the considered
photon flux [23]:

• Φ = ΦS is the signal photon flux. It is the ideal case; the signal photon noise entirely
determines the detector’s noise.

• Φ = ΦB is the background photon flux. It is the most frequent case; the background
signal dominates the detector’s noise.

2.2.2 Johnson noise

The second prominent photodetector noise, the Johnson noise, results from the stochastic
motion of charge carriers (to maintain thermal equilibrium) within a material of finite
resistance. For uncooled thermal bolometers, this noise arises from the temperature fluc-
tuations of the resistances receiving an incoming flux of photons [17]. It is expressed as a
current [A] for photodetectors and as a voltage [V] for thermal detectors:I2J = 4

kbT

R
∆f

V 2
J = 4kbTR∆f

(2.4)

where R is the semiconductor resistance [K/W], kb is the Boltzmann constant [J/K], T
is the detector temperature [°K] and ∆f is the detector electronics frequency bandwidth
[Hz]. The Johnson noise appears during the photon-electron conversion, and the read-
out [22]. Similarly to the dark current noise, cooling the detector drastically reduces the
thermal noise. The Johnson noise is a white noise dominant at high frequencies [17].

2.2.3 Flicker noise 1/f

The 1/f noise is related to imperfections in the material structure, and the electrical
contacts [17]. The 1/f noise is the main limitation of the microbolometer’s performance
[23]. Due to its complexity, the flicker noise is commonly described with an empirical
relation:
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
I21/f = K

iα

fβ
∆f

V 2
1/f = K

vα

fβ
∆f

(2.5)

where K is a proportionality factor, known as the 1/f parameter. i [A] and v [V] are re-
spectively the average current flow and voltage through the detector. ∆f is the frequency
bandwidth range of the detector circuits [Hz], α is a constant of value ≃ 2, and β is also
a constant that ranges from [0.5 to 1.5] with a general value of 1. f is the frequency of
oscillation of the fluctuations producing the flicker noise [22].

2.2.4 Temperature fluctuation noise

Only present for thermal detectors, the "temperature noise" arises from thermal fluctua-
tions in the detector caused by heat conductance variations between the detector and its
surrounding substrate. This noise is expressed using the variance in temperature ∆T as
[23]:

V 2
th = ξ2∆T

2
= ξ2

4kbT
2∆f

1 + ω2τ 2th
Rth (2.6)

Rth, the semiconductor resistance [K/W], is the principal heat loss mechanism and the key
design parameter that affects the temperature fluctuation noise. τth [s] is the thermal time
constant (Equation 2.1), ω is the voltage responsivity [Hz] and ξ [V/K] is a coefficient that
reflects "how well" the temperature variations translate into an electrical output voltage
[23].

2.2.5 Background temperature noise

Only present for thermal detectors, the background noise results from radiative heat
exchange between the detector at temperature Td and the surrounding environment at
temperature Tb. It is the ultimate limit of a thermal detector’s performance capability
and is given for a 2π field of view (FOV) [23]:

V 2
b =

8kbϵσA(T
5
d + T 5

b )

1 + ω2τ 2th
∆fξ2R2

th (2.7)

where σ is the Stefan–Boltzmann constant σ = 5.67.10−8 [W.m−2.K−4], ϵ is emissivity of
the detector and A [m2] the detector sensitive area.

2.3 Figures of merit

IR detectors convert the received IR flux to an electrical signal as tension or current
[15]. Their performance is measured using various figures of merit. The ideal detector
would have a maximal responsivity (i.e. sensitivity), a perfect spectral responsivity for the
considered waveband (photon detector), an instantaneous response time and a maximal
detectivity.
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2.3.1 Responsivity

An IR detector’s responsivity is the ratio of the root mean square (RMS) electrical output
signal (voltage Vs for a thermal detector or current Is for a photon detector) to the RMS
value of the input radiation power Φw [W] [23]. Voltage Rv and current RI responsivities
are respectively given in [V/W] and [A/W]:

Thermal: Rv(T, f) =
Vs

Φw

=
ξ∆T

Φw

= ξ
ϵRth√

1 + ω2τ 2th

Photon: RI(λ) =
Is(λ)

Φw

= ηqΓ
λ

ℏc

(2.8)

Each parameter has been described in Section 2.2. The ratio λ/ℏc is used to convert
the incident radiant power Φw [W] into an incident photon flux [photon/s], with ℏ =
6.626.10−34 [J.s/photon] and c = 3.1014 [µm/s].

Although responsivity is a valuable measurement to predict the signal level for a given
irradiance, it does not indicate the minimum detectable radiant flux. In other words, it
does not consider the amount of noise that ultimately determines the signal-to-noise ratio
(SNR).

2.3.2 Noise equivalent power (NEP) and detectivity (D)

The random fluctuations in a detector’s output limit its responsivity to a minimum de-
tectable power, known as the Noise Equivalent Power (NEP), expressed in Watts. The
NEP (i.e. the signal level that produces a unity SNR) measures the amount of radiative
power that produces an RMS signal Vs or Is equal to the noise VN or IN generated by the
detector when it is shuttered from a blackbody source.

NEP =
VN

Rv

=
IN
RI

(2.9)

The NEP must be specified for a particular source temperature T , modulation frequency
f , system bandwidth BW , and detector area (or pixel size) A [16]. The detectivity D is
defined as:

D =
1

NEP
(2.10)

2.3.3 Signal-to-noise ratio (SNR) and specific detectivity (D*)

The signal-to-noise ratio (SNR) is defined as [23]:

SNR =
Vs

VN

=
Is
IN

= ΦwD (2.11)

where Φw is the incident radiant power [W] and IN / VN are the current / voltage noises
defined in Section 2.2.

Since the detectivity D greatly varies depending on the temperature, detector area, band-
width and frequency, it is rarely used for comparisons. The detectivity is often normalized
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to a bandwidth of 1 Hz and detector area of 1 cm2. The normalized detectivity is called
the specific detectivity D∗ and is interpreted as the SNR for 1 W of incident radiant power
on a 1 cm2 detector at a noise equivalent bandwidth of 1 Hz. D∗ is expressed in Jones
[cm.H1/2

z .W] [18, 23]:

D∗ =

√
A∆f

NEP
=

√
A∆f

Φw

SNR (2.12)

where Φw is the incident radiant power [W], A is the detector area (or pixel size) [cm2],
and ∆f is the frequency bandwidth [Hz], at which the circuits of the detector operate.

For an ideal photon detector with a detectivity independent of any other parameter (not
background limited), D∗ linearly evolves with the wavelength and is often provided at the
cutoff wavelength λp, where the responsivity (or SNR) is the highest [18, 24]:

D∗
λ = D∗

peak

λ

λp

D∗(λ > λp) = 0

(2.13)

2.3.4 Noise Equivalent Difference Temperature (NEDT)

An object must produce a sufficient object-to-background apparent temperature differ-
ence to be detected and subsequently identified. The NEDT characterizes the thermal
sensitivity of an IR system. It is the minimal detectable temperature difference (between
the target and its background) generating a unity SNR, called "thermal resolution". The
NEDT is related to the SNR by [18, 24]:

NEDT ≡ ∆T

Vs/VN

=
TO − TB

SNR
(2.14)

The minimum detectable temperature difference between the target (Tt [°K]) and the
background (TB [°K]) is obtained when ∆T = Tt − TB = NEDT , leading to a SNR of 1.

2.4 Dual-band IR detectors state of the art

Due to the bulkiness of IR optical systems and the number of IR applications requiring
at least dual-band imaging, there is an increasing number of emerging multicolour IR
detectors. These detectors have built-in spectral selection capabilities and can produce
multicolour images without optical splitting devices (beamsplitter, filter wheel, filter ar-
ray), allowing for compact IR dual-band optical systems. This section, based on [22, 23],
provides a short review of the state-of-the-art multicolour IR detectors that are commer-
cially available or in development, giving their advantages and drawbacks.

Third-generation IR detectors emerged in 1990, bringing enhanced capabilities such as a
higher number of pixels, higher frame rates, better thermal resolution, and multicolour
functionality [23].

Progress in hybrid diffractive/refractive lens solutions for compact space IR imager 47



2.4. Dual-band IR detectors state of the art

2.4.1 HgCdTe (Mercury Cadmium Telluride or MCT) dual-band FPAs

HgCdTe detectors combine two photodiodes p-n junctions, separated by an interface with
different energy gaps, allowing for spectral selectivity. The unit cell consists of several
collocated detectors (layers), each sensitive to a different spectral band as depicted in
Figure 2.5:

Figure 2.5: Two architectures for an n-p-n back-illuminated dual-band detector pixel. The short-
wave IR flux is absorbed in the first layer (n), while the long-wave flux is transmitted through
the next layer. Thin barriers (p) separate the absorbing bands. a) Bias-selectable structure
(Raytheon) and b) Simultaneous design (Raytheon). Original source [23].

Back illumination refers to placing the wiring arrangement behind the sensitive part to
avoid reflection losses. The sequential mode detector has a single indium bump per unit
cell that permits sequential bias selectivity of the spectral bands, using the polarity of the
bias voltage. Switching times within the detector can be relatively short, on the order
of microseconds, so detection of slowly changing targets or images can be achieved by
switching rapidly between the MW and LW modes [23]. The crosstalks between the two
bands are a significant drawback of this simpler architecture.

Simultaneous dual-band detector architectures are often required for high-speed target
imaging. The response of the LW photodiode is maximum when the response of the MW
photodiode is minimum and vice versa. The MW photodiode acts as a bandpass filter
for the LW photodiode, considerably reducing the spectral crosstalk. The simultaneous
architecture needs an additional readout circuit in each unit cell allowing for independent
control over the two photodiodes. Note that the Silicon ROIC must be custom-designed
for each application since the flux levels can be very different in the two bands [23].

Based on the specification tables found in [22, 23] (Leonardo Condor II [25], Sofradir,
Selex MWIR/LWIR detectors), HgCdTe dual-band FPAs generally exhibit the following
characteristics:

• Spectral range: MWIR (dedicated), LWIR (dedicated), dual-band

• 640× 512 pixels with 24 µm pixel size

• NEDT (see Section 2.3): 20-30 mK

• Operating temperature: 80K

• Quantum efficiency: 70% without AR coating

• Charge capacity (dedicated): ≃ 107 electrons
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2.4.2 Dual-band quantum well infrared photoconductors (QWIPs)

The quantum well structure is formed in semiconductors when a material, for example,
the GaAs alloy, is introduced between two layers of a material with a wider bandgap, as
is it could be the case of aluminium or indium [22]. QWIPs provide ideal two-colour IR
FPAs because they only absorb IR radiation in a narrow spectral band. Thus a QWIP
provides zero spectral crosstalk when two spectral bands are more than a few microns
apart [23]. Dual-band QWIPs can be stacked vertically, similarly to HgCdTe dual-band
detectors, as shown in Figure 2.6:

Figure 2.6: a) Schematic representation of a dual-band QWIP detector structure and (b) typical
responsivity spectra at 77°K recorded simultaneously for two QWIPs at the same pixel. Original
source [23].

QWIPs have been principally designed by the Jet Propulsion Laboratory (JPL), QmagiQ,
the Army Research Laboratory, Goddard, Thales and AIM [23].

According to [26], the operating temperature of QWIP detectors is 40 K. It can go up to
100 K with a reduced signal-to-noise ratio (SNR), caused by the predominance of ther-
mally stimulated carriers over optically produced carriers. Multicolor QWIPs share the
advantages and disadvantages of QWIP single unit detectors, as the low quantum effi-
ciency (<10%) or the high dark current in comparison with HgCdTe FPAs. QWIPs are
intrinsically compatible with multi-band imaging and are much simpler to manufacture
than HgCdTe FPAs. Finally, the NETD is lower than 35 mK, similarly to typical pho-
todetectors. In conclusion, QWIPs are promising dual-band alternatives when low SNR
is not an issue.

2.4.3 Type-II InAs/GaInSb superlattice (T2SL) detectors

The concept of superlattice refers to a structure made of stacked layers of different ma-
terials. In the last decade, type-II InAs/GaInSb superlattices (T2SLS) have emerged as
the third candidate for third-generation IR detectors. One advantage of the T2SL is its
reduced pixel vertical structure (5 µm) compared to HgCdTe pixels (15 µm), allowing
higher photon transit time and, therefore, better performance at higher operating tem-
perature [26]. T2SL performance is excellent in LWIR, but the German company AIM
has made dual-band MWIR/MWIR detectors. The typical pixel pitch is 40 µm, and the
average operating temperature can go up to 80 K [22].
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2.4.4 Multicolor microbolometers

Microbolometers cannot separate multiple bandwidths but can be designed to operate on
a wide bandwidth (typically from 3 to 14 µm). The use of spatially distributed band-pass
filters on the FPA is necessary to make a multicolour microbolometer. Filtering often
uses selective transmission, interferences, liquid crystal and birefringence. The filtering
method needs to be chosen adequately, in line with the imaging strategy (snapshot or
scan) [22]. In the case of snapshot imaging, dual-band Fabry-Perot filters are widely used
for narrow or large wavebands. For example, a four-band LWIR microbolometer from
the French manufacturer ULIS has been designed for the MISTIGRI (Micro Satellite for
Thermal Ground Surface Imaging) satellite [27]. This device is displayed in Figure 2.7:

Figure 2.7: Four bands LWIR microbolometer from the French manufacturer ULIS, used in the
MISTIGRI satellite. The filter is manufactured by assembling four linear sliced filter elements,
so-called strips, each corresponding to one spectral band. Original source [27].
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Chapter 3
Radiometry

Earth remote sensing requires the combination of high-level science requirements
(Chapter 1), an optical assembly, and a detector (Chapter 2), providing valuable im-
ages. Based on the physics of radiometry, this chapter develops the many equations
that define the optical system and ensure the feasibility of the selected applications.
We perform a radiometric study in the bandwidth of interest and low Earth orbit for
the challenging crop monitoring application, considering accurate ground emission
and atmospheric transmission models. Through the combination of detection figures
of merit, paraxial optics, science requirements, and pixel size trade-off, we can fully
constrain the fundamental optical parameters (F-number, aperture, pixel size). A
sufficient SNR is obtained in LWIR and MWIR, respectively, considering the low-
temperature crop monitoring application and the high-temperature wildfire/volcano
monitoring applications. This comprehensive study demonstrates the theoretical
feasibility of these applications by a dual-band optical system, yet to design.
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3.1. Blackbody radiation

3.1 Blackbody radiation

A blackbody absorbs all incident radiations. Conversely, according to Kirchhoff’s law,
a blackbody is also a perfect radiator. Its emitted energy is theoretically maximal for
a given surface temperature T . Most thermal radiation sources can be assimilated to
blackbodies (Sun, wildfires, volcanoes), making the blackbody radiation laws the main
starting point of radiometric calculations [23]. Planck’s law describes the spectral emitted
radiance L(λ, T ) of a perfect blackbody as a function of its surface temperature T [°K]
and of the emitted radiation wavelength λ [µm]:


LW (λ, T ) =

2ℏc2

λ5

(
exp

[
ℏc

λkbT

]
− 1

)
LP (λ, T ) = LW .λ/ℏc

(3.1)

where ℏ = 6.62607004.10−34 J.s is the Planck’s constant, kb = 1.38064852.10−23 J/K is
the Boltzmann’s constant and c = 3.108 m/s is the speed of light in vacuum. The product
ℏc/λ is expressed in [J/photon] and allows to convert the "power" emitted radiance LW

[W.m−2.sr−1.µm−1] into a "photon" emitted radiance LP [Photon.s−1.m−2.sr−1.µm−1].
Physically, the emitted radiance is the flux ([W] or [Photon/s]) emitted by a blackbody
at surface temperature T , per unit of surface, per solid angle [sr] and wavelength.

The spectral exitance (in Watt and photon/s) is defined as:

{
MW (λ, T ) = πLW

MP (λ, T ) = πLP

(3.2)

Mλ(T ) does not depend on the solid angle. A blackbody at surface temperature T has
its peak exitance at a certain wavelength (λW for MW and λP for MP ). The thermal
variation of the peak exitance wavelength is given by Wien’s displacement law:



∂LW

∂λ
= 0⇔ (x− 5)ex + 5 = 0⇔ λW = 2898/T

∂LP

∂λ
= 0⇔ (x− 4)ex + 4 = 0⇔ λP = 3670/T

x =
ℏc

λkbT

(3.3)

Figure 3.1 depicts Planck’s law and Wien’s displacement law:
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(a) Power exitance units. (b) Photon flux exitance units.

Figure 3.1: Graphical representation (log scale) of Planck’s law (Equation 3.2) and Wien’s dis-
placement law (Equation 3.3) considering: a) Power (W) units and b) Photon flux (Photon/s)
units. Five bandwidths are displayed: the visible B (blue), G (green) and R (red) bands, along
with the infrared M (MWIR) and L (LWIR) bands.

From Figure 3.1, we deduce that a blackbody at 5800 °K, such as the Sun, will predomi-
nantly emit around 580 nm, which corresponds to the visible (green) light. The Earth’s
average temperature is around 300 °K, so it primarily emits light around 10 µm. Hotter
temperature events, such as wildfires (700 °K), will therefore have their peak emission
intensity in the MWIR waveband.

The total integrated exitance M∆λ
(T ) inside a waveband ∆λ = λb − λa depends on the

considered blackbody temperature:

M∆λ
(T ) =

λb∫
λa

2ℏc2

λ5

(
exp

[
ℏc

λkbT

]
− 1

) dλ (3.4)

It is shown in [23] that MLWIR > MMWIR as long as the blackbody source has a
temperature lower than 600 °K, meaning that the LWIR waveband is advantageous
for low-temperature targets. When ∆λ → ∞, we retrieve the Stefan Boltzmann law
M∞(T ) = σT 4, with σ = 5.67.10−12 [W.cm−2.K−4]. However, the integrated exitance is
not the only criterion to consider.
The thermal variation of the spectral exitance MW (λ, T ) can be approximated by [28]:

∂MW (λ, T )

∂T
=

2πℏ2c3 exp
[

ℏc
λkbT

]
kbλ6T 2

(
exp

[
ℏc

λkbT

]
− 1

)2 ≃
ℏc

λkbT 2
MW (λ, T ) (3.5)

Equation 3.5 assumes that λ << ℏc/kbT , which is valid for λ ≃ λWien defined in System
3.3 [23]. It is important for a system operating in a certain waveband to compute the
wavelength for which the source (target) exitance changes the most with the temperature.
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This question is fundamental for the sensitivity of an IR system and is referred to as
"thermal contrast" [23]. For a source of temperature 300 °K, the maximum contrast
occurs at λ = 8 µm, which is not the wavelength corresponding to the peak exitance.

3.2 Spectral radiance at the top of atmosphere

This section describes the IR spectral radiance received by a low Earth orbit (LEO)
observation satellite. This radiance is denoted "top of atmosphere" (TOA) radiance
and computed in the middle wave (MWIR) and in the long wave (LWIR) wavebands.
Classically, the MWIR waveband spans from 3 to 6 µm, while the LWIR waveband spans
from 6 to 14 µm. A LEO spacecraft receives IR signals from four sources: The Sun direct
and reflected light (albedo), the Earth and the spacecraft itself. These fluxes are depicted
in Figure 3.2:

Figure 3.2: Considered IR fluxes for a LEO spacecraft. The orange arrows show the sun emitted
spectral radiances: LSE occurs between the Sun and the Earth, and LTOA

S occurs at the top of the
atmosphere (TOA) after reflection on the ground (albedo α). The TOA Earth thermal emission
LTOA
E depends on the spectral emissivity ϵ and is displayed in red. Tatm is the atmospheric

transmission. Finally, the yellow arrow describes the spacecraft’s internal heat dissipation flux.
The flux coming directly from the Sun is assumed null since the spacecraft is turned towards the
Earth.

The spacecraft emits IR light due to its internal dissipation. In this thesis, for simplicity,
we consider that the optical system and the detector are thermally shielded from their
surrondings. The lenses composing the optical system have a high infrared transmission
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and therefore do not get heated by absorption. We suppose that they do not generate
parasitic infrared light, resulting in zero internal flux contribution. The spectral modeling
of ϵ, α and Tatm is taken from [29]. In addition, the emissivity and albedo models include
various ground materials (grass, ice, trees).

As previously said, the Sun is considered to be a perfect blackbody, with an average
temperature of 5800 °K. Planck’s law gives the emitted Sun radiance per solid angle and
unit of power: LS(λ) [W.m−2.sr−1.µm−1]. The Sun-Earth solid angle ωS−E [sr] is expressed
as:

ωS−E = π

(
RS

DSE

)2

= 6.7905.10−5 (3.6)

using RS = 695508 km (Sun radius) and DSE = 1.496.108 km (Sun-Earth distance). The
sun exitance LSE(λ) [W.m−2.µm−1] reaching 1 m2 of Earth ground is expressed by:

LSE(λ) = LS.ωS−E.Tatm (3.7)

For instance, the average solar irradiance on Earth is around 1400 W/m² at λ = 0.5 µm
and only 0.5 W/m² at λ = 8 µm (Tatm = 0.75). A portion of this radiance is reflected in
space. Considering that the ground acts as a Lambertian source (i.e. it reflects lights in
a 2π sr hemisphere), the TOA solar albedo contribution LTOA

S (λ) [W.m−2.sr−1.µm−1] is
given by:

LTOA
S (λ) =

1

2π
LSE.α.Tatm =

1

2π
LS.ωS−E.α.T

2
atm (3.8)

We use the same reasoning to compute the Earth’s thermal emission. However, unlike
the Sun, considered as a perfect blackbody, the Earth’s surface is inhomogeneous, with
variable temperatures and ground types. Thereby, the Earth is a "grey-body", with a
thermal radiance LE given by Planck’s law and modulated by an emissivity function ϵ(λ).
The TOA Earth IR radiance, LTOA

E (λ) [W.m−2.sr−1.µm−1] is expressed as:

LTOA
E (λ) = LE.ϵ.Tatm (3.9)

LTOA
E and LTOA

S are displayed in Figure 3.3 for low temperature targets and in Figure 3.4
for high temperature targets. The considered ground surface is a mixing of "soil" and
"grass" [29].
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Figure 3.3: Earth TOA IR spectral radiance for various low temperature ground targets. The
emissivity and albedo are deduced from [29], considering a mix of "soil" and "grass" scene. The
Sun reflection contribution is displayed in magenta.

Figure 3.4: Earth TOA IR spectral radiance for various high temperature ground targets. The
emissivity and albedo are deduced from [29], considering a mix of "soil" and "grass" scene. The
Sun reflection contribution is displayed in magenta.

The solar component is negligible for wavelengths larger than 4.4 µm, or scene temper-
atures Ts ≥ 350 °K. Two opaque atmospheric windows are present between 4.2 and 4.4
µm and between 5.5 and 8 µm. The first window is due to the absorption by CO2 and
N2O. The second absorption window is caused by N2O and CH4. Consequently, this
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thesis defines two appropriate Earth IR imaging wavebands: the MWIR spans from 4.4
to 5.5 µm and the LWIR spans from 8 to 14 µm.

3.2.1 Advantages of LWIR/MWIR dual-band

According to [14], the 8–14 µm band is preferred for high-performance thermal imaging
because of its higher sensitivity to ambient temperature objects (300 °K, see Equation
3.3) as well as its better transmission through mist and smoke. However, the 3–5 µm band
may be more appropriate for hotter objects or if sensitivity is less critical than contrast.

The thermal contrast C [K−1] is an important parameter for IR imaging devices. It is
given by [23]:

C =
1

M(λ, T )

∂M(λ, T )

∂T
≃ ℏc

λkbT 2
(3.10)

A thermal image arises from temperature variations or differences in emissivity within
a scene. When the temperatures of a target and its background are similar, detection
becomes very difficult. Figure 3.5 displays the thermal contrast in both MWIR and
LWIR wavebands for multiple scene temperatures:

Figure 3.5: Thermal contrast in MWIR (red) and LWIR (blue) for various scene temperatures
(Eq. 3.10).

For instance, the contrast in the MWIR band for a 300 °K target is 3.5% while it is only
1.6% in the LWIR band. The LWIR band has a high sensitivity for ambient temperature
objects, but the MWIR band has better contrast. The other advantage of the MWIR
band is the smaller aperture diameter required to obtain a particular resolution (ground
sampling distance GSD) due to weaker diffraction effects. Some detectors may operate at
higher temperatures (thermoelectric cooling) in MWIR than in LWIR, where cryogenic
cooling is often required (about 77 °K for LWIR photon detectors).
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In summary, MWIR and LWIR spectral bands differ substantially concerning the back-
ground flux, scene characteristics, thermal contrast and atmospheric transmission under
diverse weather conditions. Factors favouring MWIR applications are higher contrast, su-
perior clear-weather performance (favourable weather conditions in most countries of Asia
and Africa), higher transmittivity in high humidity and higher resolution due to smaller
diffraction blur spot. Factors favouring LWIR applications are better performance in
fog and dust conditions, winter haze (typical weather conditions in West Europe, North
USA, and Canada), higher immunity to atmospheric turbulence and reduced sensitivity
to solar glints and fire flares. The possibility of achieving a higher signal-to-noise ratio
(SNR) due to greater radiance levels in the LWIR spectral range is not persuasive since
the background photon fluxes are higher to the same extent [14].

3.3 Parametric study

3.3.1 Radiant power and electrical signal

In this section, we express the radiant power Φw,λ and the electrical signal S detected
by one pixel based on the main optical parameters of a dual-band camera. The optical
system is modelled in the simple paraxial regime, where all parameters are geometrically
related to each other, as illustrated in Figure 3.6:

Figure 3.6: Geometric representation of an imaging system in the paraxial regime.

The fundamental paraxial relation derived from Figure 3.6 is:

2 tan (iFoV/2) ≃ tan (iFoV ) =
GSD

H
=

Px

F/♯D
(3.11)

where GSD is the ground sampling distance, H is the spacecraft altitude, D is the pupil
diameter, and Px is the pixel size. iFoV represents the instantaneous field of view (FoV),
i.e. the FoV seen by exactly one pixel. The spacecraft integration time can be calculated
as well, using:

Ti =
GSD

Vsat

=
GSD

2π

T0

r −Reωe

(3.12)
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Re is the Earth radius, r = Re +H is the orbit radius and T0 = 2π
√
r3/µe is the Earth

rotation period. µe = 398600.4418 km3/s2 is the Earth gravitational parameter and
ωe = 7.2921159.10−5 rad/s is the Earth angular velocity. Here we take the assumption of a
passive spacecraft with constant speed, making a linear scan of the GSD. Assuming a LEO
altitude, the spacecraft speed is ≃ 7.1 km/s. According to Equation 3.12, the integration
time is proportional to the GSD, for instance, with a 100 m GSD, the integration time is
Ti ≃ 14 ms.

The Earth TOA thermal radiance LTOA
E [W.m−2.sr−1.µm−1] has been calculated in Equa-

tion 3.9. Only a portion of this radiance effectively enters the optical system and reaches
the detector. The concept of etendue conservation is used to compute the radiant power
on the detector. It is based on the geometric representation depicted in Figure 3.7:

Figure 3.7: Radiant power collected by an optical system using the conservation of the etendue
E = AΩ = cte, where A is an area [m2] and Ω the related solid angle [sr].

The etendue characterizes how "spread out" the light is (area and solid angle) and is
a constant inside an optical system. Based on Figure 3.7 scheme, the etendue can be
written as:

E = AobjΩlens = AsoΩobj =
AsoAobj

H2
=

AsoAimg

f 2
=

πp2x
4F/♯2

(3.13)

where Aso and Aimg are respectively the collection area of the optics (for a circular aper-
ture, Aso = πD2/4) and the pixel area p2x. The radiant power Φw,λ [W.µm.m−1] reaching
a pixel is therefore expressed as [23]:

Φw,λ = LTOA
E .E.Topt =

p2xTopt

4F/♯2
Mλ(T ) (3.14)

Topt represents the total transmission coefficient of the optical system, including optical
interface transmission and diffraction losses. The atmosphere spectral transmission and
the ground spectral emissivity are included in the radiant exitance Mλ.

Condidering a photodetector, this radiant power is converted into an electron flux by
the photoelectric effect. The quantum efficiency η represents the ability of the pixel to
convert an incoming photon signal into electrical charges. The integrated electron flux
Φe− [e−.s−1] reaching a detector pixel per second is expressed as:

Φe− =

∫
λ

Φw,λ
λ

ℏc
η dλ (3.15)
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During an exposure time t [ms], the total electrical signal S [e−] generated and stored in
each pixel is:

S = t.Φe− (3.16)

If the total integration time t = Ti is used, the electrical signal is directly related to the
GSD.

3.3.2 NEDT and SNR

We provide the NEDT expression based on the optical system and detector parameters in
the following. Here, the NEDT is defined and expressed in terms of voltage (thermal de-
tector), but the calculation is identical using a current (photon detector). The integrated
signal voltage Vs is expressed using Equations 2.8, 2.9 and 2.12:

Vs =

∫
λ

Rv(λ)Φw,λ dλ =

∫
λ

VN

NEP
Φw,λ dλ =

VN√
A∆f

∫
λ

D∗Φw,λ dλ (3.17)

The spectral radiant power Φw,λ [W/µm] is expressed in Equation 3.14. The specific
detectivity D∗ does not depend on the target temperature, leading to the expression of
the NEDT [23, 24]:

NEDT ≡ VN
∂T

∂Vs

= VN

(
∂Vs

∂T

)−1

=
4F/♯2

Topt

√
∆f

A

∫
λ

∂Mλ

∂T
(TB)D

∗ dλ

−1

(3.18)

In the ideal case of a photon detector with D∗ independent of other parameters (the
detector is not background limited), D∗ can be simplified using Equation 2.13 [24]. In
addition, Equation 3.5 can also be used to remove the temperature derivative:

∂Mλ

∂T
(TB)D

∗ ≃ ℏc
λpkbT 2

B

MλD
∗
peak(λp) (3.19)

kb = 1.38064852.10−23 J/K is the Boltzmann’s constant and TB is the background tem-
perature. λp denotes the peak detectivity wavelength, defined in Equation 2.13. The final
NEDT expression is [24]:

NEDT ≃ ΛF/♯2
√

∆f

A
(3.20)

where the constant Λ =
4kbλpT

2
B

ToptℏcD∗
peak

[
λp∫
λ1

Mλ(TB) dλ

]−1

depends only on the background

temperature TB. The T 2
B dependency is confusing at first sight since the NEDT should

decrease for higher background temperatures. In fact we have T 2
B <<

λp∫
λ1

Mλ(TB) dλ, mak-

ing the NEDT much smaller for high background temperatures.
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The best thermal sensitivity corresponds to the lowest NEDT and, therefore, to the high-
est spectral exitance. It is obtained at the peak wavelength of the spectral exitance Mλ.
The

√
∆f dependency is intuitive, since it is shown in Section 2.2 that the RMS noise

is proportional to
√

∆f . In addition, better NEDT results from lower F/♯ because more
flux is captured by the detector, increasing the SNR. The 1/

√
A dependency is critical:

The RMS noise increases as the square root of the pixel area. A trade-off must be made
between thermal sensitivity (large pixels) and spatial resolution (small pixels).

For a scanning system, the frequency bandwidth ∆f can be estimated using the dwelltime
τd as [24]:

∆f =
π

4τd
=

FoVX .FoVY

FoV2
i

πFR

4Nηsc
(3.21)

where FoVX , FoVY and FoVi denote the detector X and Y fields of view and the instan-
taneous pixel field of view. FR is the frame rate, N is the number of pixels per scan line
and ηsc = 0.82 is the scan efficiency.

In the following, we study the LWIR NEDT in a particular detection scenario. The
background temperature is set to 300 °K, and we define λ1 = 8 µm and λp = 12 µm. We
take D∗

peak = 1011 [cm.Hz1/2.W−1] as standard peak detectivity value. We arbitrarily set
500 scan lines, containing each N = 600 pixels, and a 30 Hz frame rate leading to ∆f = 10
kHz. The lens transmission is 0.8 while the pixel encircled energy Ec is computed for any
(px, F/♯) couple using a Bessel function. We obtain a total transmission of Topt = 0.8.Ec.
Figure 3.8 displays the resulting LWIR NEDT map for various pixel sizes and F-numbers.

Figure 3.8: NEDT [°K] contour map computed using Equation 3.20 in LWIR. The white cross
correponds to the NEDT value considering an F/1.5 system with a 8 µm pixel pitch, as explained
in Section 3.4.1. The considered detector operates in a frequency bandwidth ∆f = 10 kHz and
a peak detectivity D∗

peak = 1011 [cm.Hz1/2.W−1]. The background temperature TB is set to 300
°K.

The MWIR NEDT contour plot is displayed in Section 3.5 Figure 3.14 for completness.
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3.4 Radiometric budget

In this section, we use the previously derived quantities to evaluate the radiometric budget
of a LEO dual-band mission. We study this budget by considering the challenging crop
water assessment application (Section 1.2). The requirements defined in Table 1.1 stated
a ≃ 10 m GSD, with 1 °K thermal resolution. Crop field mapping is ideally done in both
MWIR and LWIR wavebands, to ensure c-high contrast, meteorological robustness.

3.4.1 Pixel size trade-off

The pixel size is a fundamental parameter involved in every radiometric relation. The
optics (O), detector (det) and optical system (SO) modulation transfer functions (MTFs)
are expressed as [30].



MTFO =
2

π

cos −1

(
u

uO

)
− u

uO

√
1−

(
u

uO

)2


MTFdet = sinc

(
π
u

ud

)
MTFSO = MTFO ×MTFdet

(3.22)

where u [cycles/mm] represents a spatial frequency. The optical and detector cutoff
frequencies uO and ud are expressed as:


uO =

1

λF

ud =
1

px

(3.23)

where F is the optics F-number, and px is the pixel size. Note that ud is defined at the
first zero of MTFdet since this function is defined for u ∈ [−∞;∞] [30]. Camera resolution
depends upon the optical blur diameter and the detector size. In the spatial domain, λ/px
is the ratio of the Airy disc diameter to the detector size. In the frequency domain, it is
the ratio of the detector cutoff to the optics cutoff:

ud

uO

=
λF

px
(3.24)

Table 3.1 depicts two important limiting cases:
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Table 3.1: Detector-limited VS optics-limited performance. The denomination "detector" repre-
sents a pixel in this case. Original source [31].

λF/px uniquely defines the shape of the optics/detector MTF combination. The sampling
frequency uS is equal to the detector cutoff frequency ud, and the Nyquist frequency is
therefore defined as uN = ud/2. The optics-limited and detector-limited condition are
illustrated in Figure 3.9:

Figure 3.9: Optics MTF (MTFO) and detector MTF (MTFdet) curves for various Fλ/px condi-
tions describing the different regions within the design space. Spatial frequencies are normalized
to the detector cutoff ud. Original source [32]. Recall that Fλ/px = 2 ⇔ uO = uN and that
2.44=1/0.41. Each optical MTF curve assumes a diffraction-limited system with no aberrations.

Figure 3.9 presents a Fλ/px trade-off between sharpness and aliasing. High Fλ/px values
reduce aliasing and in-band MTFO, reducing contrast and edge sharpness in the final
image. This effect is increased in reality since a reconstruction filter must be used to
convert digital data into viewable analogic information. Reconstruction filters can be of
many types [33] and create artefacts, reducing further the image quality. However, these
artefacts frequencies (or spurious response) are mostly out-of-band for high Fλ/px [30].
Therefore, in the following, the pixel size is locked to the F-number by Fλ/px = 2 in both
MWIR and LWIR wavebands. It leads to an Airy spot sampled by 4.88 pixels, with a
central pixel receiving 20% of the total energy, as displayed in Figure 3.10:
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(a) Detector-limited: Fλ/px = 0.41. (b) Optics-limited: Fλ/px = 2.

Figure 3.10: Logarithm of the normalized airy pattern (PSF): a) Detector-limited: Fλ/px = 0.41
and b) optics-limited Fλ/px = 2. For simplicity, the incoming radiation coincides with the pixel
centre. The worst case wavelength λ0 = 10 µm is used with F/♯ = 1.5. The green rectangles
delimit the square pixels. The energy integrated inside each pixel is displayed in green, showing
the energy distribution in %. In the chosen case b), 4.88 pixels sample the Airy blur spot.

We consider a 5 µm MWIR wavelength and a 10 µm LWIR wavelength and we lock the
ratio λ0F/px = 2. Figure 3.11 illustrates the GSD evolution in MWIR and LWIR:

(a) MWIR waveband: λ0 = 5 µm. (b) LWIR waveband: λ0 = 10 µm.

Figure 3.11: GSD evolution with the aperture diameter D (mm) and the Fλ/px ratio, represented
in a contour map. We consider an F/1.5 system at a 400 km LEO altitude. Particular GSD
vaules are indicated with a red cross, assuming a 90 mm diameter aperture, with λ0F/px = 2.

3.4.2 SNR calculation

Based on the previous parametric studies, we fix most of the system parameters as shown
in Table 3.2:
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Table 3.2: Optical parameters fixed for the SNR calculation.

We define the total optical transmission Topt as the average "glass transmission" times
the pixel’s "ensquared energy", given in Figure 3.10b): Topt = 0.8× 0.2 = 0.16.
Figure 3.12 shows the electrical flux reaching each pixel for various scene temperatures.
The electrical flux is integrated for MWIR and LWIR wavebands (in [e-/s] and [W]) and
comes from the Earth emission and the Solar reflection.

(a) Electrical flux in [e−/s]. (b) Radiant power [W].

Figure 3.12: a) Electrical flux [e-/s] and b) radiant power [W] reaching each pixel, integrated
in MWIR and LWIR wavebands, for various scene temperatures. The red and blue dotted lines
represent the solar reflection contribution.

Figure 3.12 Assumes an homogeneous GSD, made of 70% cropland [29]. Finally, the SNR
is illustrated in Figure 3.13 for the LWIR waveband, based on the NEDT (Figure 3.8) for
various scene and background temperatures.
The MWIR SNR contour plot is displayed in Section 3.5 Figure 3.15 for completness.
Considering the LWIR waveband and the crop water monitoring application, the result-
ing SNR is around 25 with a 0.3 °K thermal resolution (i.e. NEDT in Figure 3.8). The
theoretical GSD is 24 m, providinga high resolution LWIR image, even if it exceeds the 10
m resolution threshold. However, the latter is achieved in MWIR, with a higher thermal
resolution of 8 °K but at the cost of a very low SNR of 1.

In conclusion, the small pixel size choice nearly fulfils the challenging requirement GSD ≃
10 m. Sampling the PSF at the Nyquist frequency removes aliasing while keeping a
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Figure 3.13: LWIR SNR contour plot for various scene and background temperatures. The
white cross displays the SNR value of the considered optical configuration, assuming a 300 °K
background and 310 °K scene.

relatively high 25 LWIR SNR. The SNR could be further improved by increasing the
pixel size, for instance, until Fλ/px = 1, at the cost of some aliasing. However, the strong
GSD requirement could not be fulfilled, at least in LWIR. The MWIR waveband enables
high resolution images at the cost of the SNR if the background an scene temperatures are
kept low (around 300 °K). However, as depicted in Figure 3.15, when the scene has a high
temperature, the MWIR SNR highly increases, making the optical system very efficient
for high resolution and high scene temperatures imaging. Another lever to increasing the
SNR would be modifying the detector’s operating frequency bandwidth ∆f or the peak
detectivity. Since the selected detectivity is already high, only increasing the detector’s
operating frequency would really impact the SNR.

3.5 Annex
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Figure 3.14: NEDT [°K] contour map computed using Equation 3.20 in MWIR. The white cross
correponds to the NEDT value considering an F/1.5 system with a 8 µm pixel pitch, as explained
in Section 3.4.1. The considered detector operates in a frequency bandwidth ∆f = 10 kHz and
a peak detectivity D∗

peak = 1011 [cm.Hz1/2.W−1]. The background temperature TB is set to 300
°K.

Figure 3.15: MWIR SNR contour plot for various scene and background temperatures. White
crosses display the SNR value of the considered optical configuration, assuming a 300 °K back-
ground and 310 °K or 600 °K scenes.
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Chapter 4
Introduction to Fourier Optics

The following chapters introduce modelling tools and methods for a specific ap-
plication: the multilayer diffractive optical element (MLDOE), defined in Chapter
9. After designing a MWIR camera in Chapter 7, following the requirements estab-
lished in Part I, we have been unable to extend it to LWIR using standard diffractive
lenses (Chapter 8). Fortunately, the MLDOE constitutes a prominent candidate for
building a dual-band hybrid and compact camera. The modelling of this complex
diffractive element is the topic of this chapter, in which We develop a free-space
wave propagation tool using the angular spectrum method (Fourier optics). This
computer-friendly tool is very fast and accurate, calculating a wavefront phase and
amplitude at any position along the propagation direction. Consequently, it con-
stitutes our go-to method for retrieving the MLDOE focal length and its various
figures of merit, such as the Strehl ratio. Since this method only works in free space,
it cannot describe how an MLDOE deforms a plane wavefront. We end this chap-
ter by describing various improvements to the method, related to its sampling and
off-axis version.
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Chapter 4. Introduction to Fourier Optics

In this Chapter, vectors are written in bold.

4.1 Angular spectrum representation

An electromagnetic wave propagating in a medium free of charge and current obeys the
fundamental Maxwell’s equations, given in MKS units:

∇.ϵE = 0

∇.µH = 0

∇× E = −µ∂H
∂t

∇×H = ϵ
∂E
∂t

(4.1)

E is the electric vector field, with scalar components (Ex,Ey,Ez), and H is the magnetic
vector field, with components (Hx,Hy,Hz). ϵ and µ respectively are the permeability
and permittivity of the dielectric medium in which the wave propagates. The E and
H fields are functions of both position P and time t. The symbols × and . represent
the vector cross product and the vector dot product. The nabla operator is written:

∇ =
∂

∂x
i +

∂

∂x
j +

∂

∂x
k, where i, j and k are unit vectors in the x, y, and z directions,

respectively.
We assume that the propagation medium has the following properties:

• Dielectric

• Linear: the superposition property of linear systems holds

• Homogeneous: The permittivity (ϵ) is constant throughout the wavelength region of
propagation

• Nondispersive: In the region of propagation, the permittivity (ϵ) is wavelength in-
dependent.

• Nonmagnetic: the magnetic permeability µ = µ0, the permeability of vacuum

Such medium will be referred to as "free space" in the following. Under those assumptions,
Maxwell’s equations take a simplified form and are uncoupled. The analytical study of
Maxwell’s equation in free space, shown in the following, involves Fourier transforms.
This research field is therefore called "Fourier Optics" and was introduced by Joseph W.
Goodman [34]. This section explains the main steps to developing the rigorous free-space
propagation method called "The angular spectrum of plane waves" (AS). It is exclusively
based on the work of Goodman [34].

4.1.1 Helmholtz equation

We first introduce two well-known quantities: the velocity of propagation in vacuum c
and the refractive index n:

c =
1

√
ϵ0µ0

(4.2)
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n =
√

ϵ/ϵ0 (4.3)

where ϵ0 is the vacuum permittivity. We also recall a well-known vector identity:

∇× (∇× E) = ∇(∇.E)−∇2E (4.4)

where ∇2 is the Laplacian operator. Applying the ∇× operation to the left and right
sides of Equation 4.1 for the previously described free space medium yields:

∇2E− n2

c2
∂2E
∂t2

=
−→
0 (4.5)

This equation also applies to the magnetic field H. Since the vectorial wave Equation
4.5 is obeyed for both electric and magnetic fields, it is also obeyed for all the scalar
components (Ex,Ey,Ez,Hx,Hy,Hz). Therefore it is possible to summarize the behaviour
of all components of E and H through a single scalar wave equation:

∇2u(P, t)− n2

c2
∂2u(P, t)

∂t2
= 0 (4.6)

where u(P, t) represents any of the scalar fields components, with explicit dependency in
the position P and the time t. Recall that Equation 4.6 is only valid in free space. For
example, the permittivity ϵ(P) becomes position-dependent if the medium is inhomoge-
neous. The wave Equation 4.5 becomes:

∇2E + 2∇(E.∇ lnn(P))− n2P (P)

c2
∂2E
∂t2

=
−→
0 (4.7)

The refractive index is now position-dependent, and the added term introduces a coupling
between the various components of the electric field: Ex, Ey, and Ez may no longer sat-
isfy the same wave equation. This coupling is critical, for example, when light propagates
through a "thick" dielectric diffraction grating. A similar effect occurs at the boundary
with another medium. At this boundary, a coupling is also introduced between E and
H and between their respective scalar components. Consequently, even though Equation
4.6 is exact inside a homogeneous medium, it becomes an approximation at the bound-
aries. The error will remain small if the boundary condition affects a small part of the
propagation area (see Section 4.2.2).
In the following, we consider a monochromatic wave. A scalar field of optical frequency
ν can be explicitly expressed as:

u(P, t) = A(P) cos (2πνt+ Φ(P)) (4.8)

where A(P) and Φ(P) are the amplitude and phase of the wave, at position P. The field
complex "phasor" is defined as:

U(P) = A(P) exp [iΦ(P)] (4.9)

The scalar field is often written using the complex phasor notation:

u(P, t) = Re(U(P) exp [i2πνt]) (4.10)
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If the real disturbance u(P,t) represents an optical wave propagating inside a free space
medium, it must satisfy the scalar wave Equation 4.6. Using the exponential notation of
the field (Equation 4.9) leads to the time-independent Helmholtz equation:

(∇2 + k2)U(P) = 0 (4.11)

where k is called the "wave number", defined by:

k ≡ 2πn
ν

c
=

2π

λ
(4.12)

λ is the wavelength of the wave propagating inside the dielectric medium (λ = c/nν). In
conclusion, the complex phasor of any monochromatic scalar field propagating in a free
space medium must satisfy the time-independent Helmholtz equation. This equation is
exact as long as no boundary is met and as long as the medium satisfies the free space
conditions.

4.1.2 Angular spectrum propagation method

This section describes an exact wave propagation method based on the Helmholtz equa-
tion. Let us assume that a scalar field U(x, y, 0) is incident on a plane z = 0, and we want
to propagate this field in free space medium until a parallel plane z > 0 along the z-axis
(optical axis).

The initial scalar field U(x, y, 0) has a two-dimensional Fourier transform given by:

A(u, v, 0) =

+∞∫∫
−∞

U(x, y, 0) exp [−i2π(ux+ vy)] dxdy (4.13)

The inverse Fourier transform physically describes the field U(x, y, 0) as a collection of
simpler complex-exponential functions: plane waves.

U(x, y, 0) =

+∞∫∫
−∞

A(u, v, 0) exp [i2π(ux+ vy)] dudv (4.14)

To understand the relation of the above integrand functions with plane waves, we need
to consider the general formulation of a plane wave propagating along the wave vector k.
We are only interested in the complex phasor of this wave, written as:

PW (x, y, z) = exp[ik.P]

= exp

[
i
2π

λ
(αx+ βy)

]
exp

[
i
2π

λ
γz

]
(4.15)

where (α, β, γ) are the direction cosines of the wave vector k of magnitude |k| = 2π

λ
. Note

that the direction cosines are interrelated through:

γ =
√

1− α2 − β2 (4.16)
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Now the exponential functions of Equation 4.14 appear has plane waves propagating along

the wave vector
−→
k =

2π

λ
(αx + βy + γz) with:

α = λu

β = λv

γ =
√

1− (λu)2 − (λv)2
(4.17)

We define the Angular spectrum of the disturbance U(x, y, 0) as:

A(
α

λ
,
β

λ
, 0) =

+∞∫∫
−∞

U(x, y, 0) exp

[
−i2π(α

λ
x+

β

λ
y)

]
dxdy (4.18)

The unknown field U(x, y, z) in a plane z > 0 can also be represented by a Fourier
transform in the same way as in Equation 4.18. The inverse Fourier transform leads to:

U(x, y, z) =

+∞∫∫
−∞

A(
α

λ
,
β

λ
; z) exp

[
i2π(

α

λ
x+

β

λ
y)

]
d
α

λ
d
β

λ
(4.19)

U(x, y, z) must also satisfy the Helmholtz equation (4.11), leading to the differential equa-
tion:

+∞∫∫
−∞

[∇2 + k2]

(
A(

α

λ
,
β

λ
; z) exp

[
i2π(

α

λ
x+

β

λ
y)

])
d
α

λ
d
β

λ
= 0

⇔ d2

dz2
A(

α

λ
,
β

λ
; z) + (

2π

λ
)2[1− α2 − β2]A(

α

λ
,
β

λ
; z) = 0

(4.20)

The solution is elementary:

A(
α

λ
,
β

λ
; z) = A(

α

λ
,
β

λ
; 0) exp

[
i
2π

λ
z
√
1− α2 − β2

]
(4.21)

Two cases arise from this equation:

• (α2 + β2 < 1): The effect of propagating a field over a distance z is to apply a
phase shift to every plane wave component of the field. Each plane wave component
propagates at a different angle and will travel a different optical path, introducing
a relative phase delay. The propagated field is the superposition of all propagated
plane waves.

• (α2 + β2 > 1): The field necessarily has a boundary condition where this situation
can arise. α and β are no more interpreted as direction cosines. In this situation,
the wave components are rapidly attenuated and are called "evanescent waves" and
carry no energy away from the boundary (aperture).

Progress in hybrid diffractive/refractive lens solutions for compact space IR imager 74



Chapter 4. Introduction to Fourier Optics

Finally, the angular spectrum method can be written in terms of Fourier transforms:

{
U(x, y; z) = F−1{F{U(x, y; 0)}Hz(u, v)}

Hz(u, v) = F{hz(x, y)} = exp
[
ikz
√

1− (λu)2 − (λv)2
] (4.22)

The spatial frequencies (u, v) must satisfy :

u2 + v2 <
1

λ2
(4.23)

In conclusion, the angular spectrum method is an exact optical propagation tool for a
scalar wave evolving in free space, between two parallel planes.

4.2 Fourier optics propagation on Matlab

We have developed a Matlab Fourier optics propagator based on the angular spectrum
method (AS) to study the imaging performances of some innovative diffractive lenses.
The Matlab implementation of the angular spectrum method is greatly inspired by the
Matlab tutorial [35]. In addition to the examples shown hereafter, our Matlab propagator
has been validated using many optical cases (grating, Fresnel zone plate) originating from
[35]. This section explains the simulation process behind the propagator and displays the
results obtained in some particular optical examples.

Figure 4.1 represents the treatment of a monochromatic scalar field:

Figure 4.1: Diagram showing the treatment of a complex monochromatic scalar field using Fourier
optics. The studied optical element is represented by a 2D phase and amplitude function: Φ(x, y)
and A(x, y), inside an aperture W (x, y). The resulting scalar field in the input plane (z = 0) is
propagated in the frequency domain, using the angular spectrum (AS) method [34]. The field
U(x, y; z) is evaluated in the target plane (z > 0) using different metrics (point spread function
(PSF), modulation transfer function (MTF), Strehl ratio).

The propagation is divided into two steps: Obtaining the field after the optical element
and propagating this field to an image plane. The last step is described by System 4.22,
involving Fourier transform. In Figure 4.1, an optical component is described by a complex
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field phasor U(x, u; 0) = U0W (x, y)A(x, y) exp [iΦ(x, y)]. W (x, y) is the aperture function
defining the physical extension of the field. A(x, y) and Φ(x, y) are the amplitude and
phase functions of the field phasor. This diagram describes how the phase delay introduced
by the optical component leads to a wavefront in the image plane. Note that one can
apply this propagation process regardless of the expression of the functions A(x, y) and
Φ(x, y). Finally, at the image plane, various optical performance metrics are computed.
The Point Spread Function (PSF) is defined as:

PSF = |U(x, y; z)|2 (4.24)

The PSF gives the impulse response in the image plane of a plane wave affected by an
imaging element. This impulse response is limited by the diffraction pattern created by
the aperture edges on the image plane for an aberration-free element.

The MTF (Modulation Transfer Function) is defined as the Fourier transform of the PSF.
The MTF describes how spatial frequencies are "transmitted" through an optical system.
The MTF gives a contrast value (from 0 to 1) to each frequency in the image plane. While
initially maximal for an infinite number of frequencies, the contrast drops drastically due
to the diffraction-limited nature of optical systems (i.e. the PSF is not a Dirac). This effect
strengthens when aberrations are present. As a result, spatial frequencies progressively
lose contrast when they increase until a cutoff frequency. This frequency is the maximal
possible frequency that can be imaged and is defined for an incoherent source as:

fc =
1

λF/♯
(4.25)

For an incoherent diffraction-limited imaging system, the analytical MTF is defined as
[35]:

MTFan(ν) =
2

π
Real

arccos( ν

fc

)
− ν

fc

√
1−

(
ν

fc

)2
 (4.26)

where ν a the spatial frequency. The analytical MTF is null for frequencies ν > fc.

Finally, the Strehl ratio is defined as the ratio of the MTF over the analytical MTF.
Diffraction-limited optical components have a Strehl ratio of 1. This ratio is often used
to describe the amount of aberrations present in an optical system but can also give
interesting clues about the "focalization efficiency". In the case of diffractive optics, we
use the Strehl ratio to evaluate the diffraction efficiency at the focal plane.

4.2.1 Validation of the propagator: circular aperture

In this Section, the propagator described in Figure 4.1 and implemented using Matlab
is tested. An initial field propagates through a tiny circular aperture and is evaluated
far from the source plane. We expect the pattern observed in the image plane to be
a Fraunhofer diffraction pattern: the so-called Airy-disk. The simulation setup consists
of a hole of 1 mm diameter (D) centred inside a 20 mm squared simulation window,
with M = 1024 samples in the x and y directions. The image plane is parallel to the
source plane and situated 2000 mm away. We use a wavelength of 532 nm, which gives a
theoretical Airy radius of:
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RAiry = 1.22λ
f

D
≃ 1.3 mm (4.27)

(a) PSF at the plane z = 2000 mm. (b) PSF along the optical axis.

Figure 4.2: Angular spectrum of a plane wave propagating in free space through a 1 mm diameter
circular aperture (plane z = 0 mm). a) PSF (logarithmic scale) at the plane z = 2000 mm. b)
PSF (logarithmic scale) along the optical axis. The first zero of the Airy pattern is obtained at
a radius of 1.3 mm. Edge effects are present in both figures causing unwanted reflections.

Figure 4.2 a. shows that the first zero of the Airy function is obtained for a radius of
1.3 mm, as expected by Equation 4.27. However, the Airy pattern is disturbed at the
edges of the simulation window. This disturbance originates from the field reflecting at
the edges of the simulation window (Figure 4.2 b.).

4.2.2 Bandlimited angular spectrum

In this section, based on the work of K. Matsushima [36], we discuss some sampling
precautions to take when using the angular spectrum method (Equation 4.22).

The angular spectrum method involves Fourier transforms, which are calculated in prac-
tice using discrete Fourier transforms (DFTs). However, DFTs are numerically exact when
periodic fields are involved in space and frequency domains. In this case, the convolution
with the transfer function Hz is "circular" (signal processing term). Therefore, for ape-
riodic functions such as the aperture function or the transfer function Hz, the circular
convolution causes numerical errors at the edges of the computation window. When the
extent of the field is comparable to the computation window size, the angular spectrum is
no longer considered accurate (Figure 4.2 b.). The solution discussed in [36] is to double
the input window size using zero-adding artificially. By doing so, the initial field extent
is sufficiently small compared to the sampling window to convert the circular convolution
into a linear one when propagating the field. After the propagation, the resulting field is
clipped to retrieve the original sampling. This process is depicted in Figure 4.3:

As seen in Figure 4.2, some aliasing artefacts occur in the output plane and during the
propagation. This effect is not caused by the previously mentioned circular convolution
issue since the sampling window is 20 times higher than the aperture (hole of 1 mm
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Figure 4.3: Zero-padding process: conversion of a circular convolution into a linear convolution.
The initial sampling window is extended to avoid any numerical error at the edges. The output
field is clipped to retrieve the original sampling. Original source [36].

diameter). As explained by Matsushima [36], the aliasing issue comes from the sampling
of the transfer function Hz. The transfer function Hz(u, v), defined in the frequency
domain, is rewritten here for clarity:

Hz(u, v) = exp [i2πzΦ] = exp [i2πz
√
λ−2 − u2 − v2] (4.28)

u and v are spatial frequencies. Figure 4.4 shows a one dimensional plot of the transfer
function:

Figure 4.4: One dimensional transfer function Hz(u). After a certain high frequency (black
dashed curves), the transfer function becomes aliased, causing numerical artefacts in the propa-
gated field.

The aliasing effect shown in Figure 4.4 cannot be solved by increasing the number of sam-
ples because it will also increase the maximal spatial frequency. The transfer function is a
kind of chirp function with respect to u: the signal frequency increases exponentially with
u. The denomination "signal frequency" represents the frequency of peaks and valleys in
the function Hz(u) and is not a physical frequency. The solution brought by Matsushima
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[36] is to artificially limit the transfer function to a maximal spatial frequency, depicted
with black dashed lines in Figure 4.4. The calculation of this maximal sampling frequency
ulimit is detailed in [36] but the main steps are written here for completeness.

According to [34], the local signal frequency of the function Hz(u) = exp [iΦ(u)], is given
by:

fu =
1

2π

∂Φ

∂u
(4.29)

with Φ(u) = 2πz
√
λ−2 − u2. The spatial frequency limit ulimit can be retrieved using the

Nyquist sampling theorem:

∆u−1 ≥ 2|fu| (4.30)

Here, note that the sampling interval of the spatial frequency u: ∆u is defined as ∆u =
(2S)−1 because of the zero-padding process of the sampling window previously described.
Finally, the spatial frequency limitation that avoids aliasing is given by:

ulimit ≡ [λ
√

(2∆uz)2 + 1]−1 (4.31)

As a result, the transfer function must be clipped within a bandwidth of 2ulimit. In two
dimensions, the bandlimited transfer function Hz(u, v) is defined as:

H ′
z(u, v) = Hz(u, v)rect(

u

2ulimit

)rect(
v

2vlimit

) (4.32)

where vlimit = [λ
√

(2∆vz)2 + 1]−1 and rect(x) is a rectangular function of unity half width
[37]. Using this clipping of the transfer function, Figure 4.5 is obtained, following the exact
same setup as Figure 4.2:

(a) PSF at the plane z = 2000 mm. (b) PSF along the optical axis.

Figure 4.5: Angular spectrum of a plane wave propagating in free space through a 1 mm diameter
circular aperture (plane z = 0 mm). a) PSF (logarithmic scale) at the plane z = 2000 mm. b)
PSF (logarithmic scale) along the optical axis. The first zero of the Airy pattern is obtained at a
radius of 1.3 mm. Aliasing has been removed using the bandlimited transfer function (Equation
4.32.)
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So far, we have described a necessary condition to avoid the aliasing of the transfer
function. However, this bandlimited region may be insufficient to propagate the field. In
[36], Matshumima provides a geometrical model to give the value of the highest spatial
frequency that is "physically" needed. He showed that, in any case, this required frequency
was included in the rectangle region previously computed (Equation 4.32). Therefore, the
presented method always satisfies the sampling theorem and the minimum bandwidth
condition.

4.2.3 Off-axis propagation using the AS method

The angular spectrum method suffers from the intrinsic sampling limitations detailed
in Section 4.2.2. However, they are not the only limitations of this wave propagation
method. The Fourier transform definition (Equation 4.22) of the angular spectrum implies
that the source and target planes have the same size, are parallel to each other and are
perpendicular to the propagation direction. We can only simulate a field with divergence
smaller than the sampling window. Therefore, the sampling window size must be increased
to encompass the whole beam in case of a diverging or off-axis field. This process of
extending the sampling window is depicted in Figure 4.6 a):

Figure 4.6: Calculation of the diffracted field using (a) extended sampling window and (b) shifted
angular spectrum propagation, where the region of interest is apart from the optical axis in the
destination pane. In Figure 4.6 a., the output field must be clipped to recover a resulting field
of the same size as initially.

A more efficient propagation method, developed by K. Matsushima in [38] is called shifted
angular spectrum (Figure 4.6 b)). It allows for computing the angular spectrum for off-
axis propagation. Instead of extending the input and output planes to encompass the
field, this method includes shifting the target plane in the x and y directions. Therefore,
this method does not require extending the size of the sampling window.

The source field u(x, y, 0) is given in the source plane (x, y, 0) while the destination field
u(x̂, ŷ, z0) is given in the destination plane (x̂, ŷ, z0). The origin of the lateral coordinates
x̂ and ŷ is shifted from the source coordinates as follows:{

x̂ = x− x0

ŷ = y − y0
(4.33)

The angular spectrum method (Equation 4.22) is rewritten as:
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
U(x̂, ŷ; z0) = F−1{F{U(x, y; 0)}H(u, v; z0)}
H(u, v; z0) = exp [i2π(x0u+ y0v + z0w)]

w(u, v) =
√
λ−2 − u2 − v2

(4.34)

The demonstration of this expression is detailed in [38]. The The demonstration of this
expression is done in detail in [38]. The simple numerical implementations of Equation
4.34 will likely cause huge sampling problems if the shifted transfer function is not ban-
dlimited. Using the same reasoning as in Section 4.2.2, the bandlimited angular spectrum
(Equation 4.32) is rewritten as:

H ′(u, v; z0) = H(u, v; z0)rect

(
u− u0

uwidth

)
rect

(
v − v0

vwidth

)
(4.35)

where rect(x) is a rectangular function of unity half width ([37]), u0, v0, uwidth, vwidth are
defined in Table 4.1 [38]:

Table 4.1: Constants used for the bandlimiting process to avoid aliasing errors.

Sx and Sy are the sampling window sizes in both the x and y directions. Finally, the
constants ulimit and vlimit have a similar expression than in Equation 4.31:


u
(±)
limit ≡

[
z20

(
x0 ±

1

2∆u

)−2

+ 1

]−1/2

λ−1

v
(±)
limit ≡

[
z20

(
y0 ±

1

2∆v

)−2

+ 1

]−1/2

λ−1

(4.36)

When x0 = 0 and y0 = 0, Equation 4.36 reduces to the previous definition of ulimit

and vlimit (Equation 4.31) in Section 4.2.2. Recall that the frequency sampling interval
∆u = (2Sx)

−1 is due to the zero padding process to avoid edges numerical errors.

We now apply the shifted angular spectrum method to an off-axis plane wave going
through a circular aperture. We use the same setup as in [38] for validation: the window
size S = Sy = Sx = 8.192 mm, the aperture diameter D = 6 mm and the wavelength
λ = 532 nm. The target plane is located as z0 = 400 mm, and we consider a shift of
x0 = 10 mm. The incidence angle θ = 1.5°. The results are displayed in Figure 4.7:
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(a) Extended AS (b) shifted AS not bandlimited. (c) shifted bandlimited AS.

Figure 4.7: Angular spectrum of an off-axis (θ = 1.5°) plane wave propagating in free space
through a 6 mm diameter circular aperture (plane z = 0 mm). The PSF at the destination plane
(z = 400) is computed in three different cases: a) conventional AS with 3x extended sampling
window, b) shifted AS not bandlimited, and c) shifted bandlimited AS. The extended sampling
in a) is insufficient to recover the field divergence, and aliasing can be seen in b)

Figure 4.7a shows that increasing the sampling window three times is still insufficient to
recover the target field in this case. The computation effort is, therefore, very limiting
if the conventional angular spectrum method is considered for off-axis simulations. Fig-
ure 4.7b displays the result of the shifted method: the target plane is centred around
x̂ = x − x0, encompassing the output field. However, aliasing can be seen because the
transfer function has not been bandlimited (Equation 4.35), contrary to Figure 4.7c. The
numerical implementation of the shifted angular spectrum is therefore validated, the re-
sults being identical to those obtained in [38] with the same simulation setup.
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Chapter 5
Analytic optical path length calculator

Following the development of MLDOE modelling tools started in Chapter 4, we pro-
pose using a combination of ray-tracing and Fourier optics, called the ray model,
to approximate the phase delay introduced by an MLDOE (Chapters 10, 12). This
model is a significant innovation of this thesis and enables estimating the perfor-
mance/behaviour of an MLDOE using a fast and parameterisable approach. This
chapter details the development of an analytical ray-tracing calculator implemented
on Matlab. For speed and parametrisation reasons, we have created this calcula-
tor specifically for MLDOEs and validated it using professional three-dimensional
ray-tracing tools (ASAP). We analytically and simultaneously retrieve all the rays’
optical path length (OPL) using Snell’s law of refraction. This is possible since
the surface equation of an MLDOE is perfectly known, rendering the determina-
tion of intersections, normal derivatives, and refractions analytical. Our calculator
is accurate since very few approximations are made, and extremely fast since only
element-wise matrix multiplications are needed to treat thousands of rays.
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5.1. Introduction

5.1 Introduction

This chapter explains the development of an analytical optical path length (OPL) cal-
culator based on ray tracing. This software is dedicated to studying specific optical
components called multilayer diffractive optical elements (MLDOEs) but is also applica-
ble to refractive lenses as a validation use case. Its goal is to provide a fast and specific
OPL calculator that can analytically compute thousands of rays in a few seconds, to be
used as an MLDOE optimisation tool. "Analytic" refers to the calculation of rays, whose
directions and intersections with optical interfaces are handled analytically. Processing
the OPL of diffractive elements based on ray-tracing is a method already used in [39, 40].
It is discussed in Chapter 10, providing an alternative phase modelling tool for MLDOEs.

With high speed and accuracy, powerful existing ray-tracing software such as CodeV and
ASAP allows one to optimise/model any refractive optical systems, even the most complex
ones. However, they are not specifically designed to compute OPLs or treat complex
diffractive elements. While it is possible in ASAP to build an MLDOE, trace rays and
export the optical path lengths, it is not a convenient method. It requires a high amount
of time, and the results must be exported to Matlab, where the main phase modelling and
optical propagation code are implemented (See Chapters 4 and 10). In addition, using a
single software such as ASAP does not guarantee the validity of the results since many
mistakes can occur during the definition of the MLDOE layout, the source and during
the Matlab importation process. This chapter provides the mathematical and algorithmic
descriptions of the analytical OPL calculator developed in Matlab. It has been validated
using both CodeV and ASAP in the case of refractive lenses and MLDOEs. This software
has four requirements:

• To be much faster than ASAP or CodeV for a high number of rays

• To remain simple and parametric

• To provide accurate OPL values.

• To be specific for MLDOEs and refractive lenses

The Matlab calculator is compared to CodeV or ASAP, using optical metrics such as the
spot, the MTF or the PSF. Optical metrics are retrieved by computing the diffracted field
at the focal plane using Fourier optics. The initial scalar fields are defined using the OPL
calculated by Matlab, CodeV and ASAP.

For MLDOEs, we make some approximations for particularly complex ray paths (multi-
ple refractions on interfaces, total internal reflection). However, the Matlab software is
accurate as long as the optical results after Fourier optics propagation match the exact
ASAP or CodeV outputs. In addition, this analytic OPL calculator only gives in fine,
an MLDOE phase approximation that will always be much less accurate than rigorous
electromagnetic calculations. Therefore, analytical ray tracing is more than sufficient.

The following sections describe the algorithmic and mathematical principle behind the
Matlab analytic OPL calculator and the validation using CodeV and ASAP for refractive
lenses and MLDOEs.
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5.2 Ray-tracing formalism for Matlab

5.2.1 Fundamental steps and equations

This section describes the main steps and fundamental equations involved in the analytic
ray-tracing algorithm. The vectors are written in bold and are considered unitary. Each
interface is described by an analytical equation f(x, y, z) = 0, allowing one to compute its
precise intersection with any ray. The "analytic" requirement eliminates any sampling is-
sue, ensuring the speed of the implemented OPL calculator. The main steps are described
in Figure 5.1:

Figure 5.1: Ray-tracing steps implemented in the analytical calculator to obtain the optical path
length (OPL) of any ray inside an optical element.

In the following, we mathematically describe the four main steps illustrated in Figure 5.1:

Step 1:

The source plane is the plane where all the OPL calculations originate. Therefore, it must
bust orthogonal to the initial beam (parallel rays). For on-axis calculation, the source
plane is defined in z = 0 and constitutes the aperture stop (AS). All the rays coming
from various fields of view intersect by definition at the source plane z = 0. The first
optical interface also starts in z = 0. The direction vector of any ray is trivially I(0, 0, 1).
For off-axis incidences, the source plane is tilted to remain perpendicular to the beam, as
displayed in Figure 5.2:
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Figure 5.2: Example of a CodeV ZnS F/3 biconvex lens. On-axis (red) and off-axis (green)
incidences are represented. The off-axis angle is θx = 7.125°. The red plane at z = 0 is
the aperture stop, where all the FoVs intersect, and is also the on-axis source plane for OPL
calculations. The tilted green plane is perpendicular to the green beam and defines the off-axis
OPL source. Finally, OPL computations end at the black plane, located at the back of the
biconvex lens.

The director coefficient of the off-axis beam U(a, b, c) is expressed for any incidence angles
(θx, θy) as: 

U(a, b, c) = Rx ∗Ry ∗
[
0 0 1

]
Rx =

 1 0 0
cos θx − sin θx 0
0 sin θx cos θx


Ry =

 cos θy 0 sin θy
0 1 0

− sin θy 0 cos θy


(5.1)

We normalize the vector U so that: a2 + b2 + c2 = 1. Any off-axis incident ray is normal
to the source plane P , defined by the equation:

ax+ by + cz + d = 0⇔ d = −axp − byp − czp (5.2)

The parameter d is defined by the intersection point P (xp, yp, zp) between the source plane
P and the aperture stop. When the source plane P is titled, the initial position (xi, yi, zi)
of each ray on this plane must be computed. We start with a grid of rays (x0, y0, z0)
defined at the aperture stop plane (vertical plane z0 = 0). The titled initial direction
coefficient U(a,b,c) has been given in Equation 5.1. We then compute all the intersection
points (xi, yi, zi) between the rays and the source plane:

xi =
a

c
(zi − z0) + x0

yi =
b

c
(zi − z0) + y0

zi = (−axi − byi − d)/c

⇔ zi = −
a2 + b2

c2
zi +

a2 + b2

c2
z0 −

ax0 + by0 + d

c
⇔ zi = z0(1− c2)− c(ax0 + by0 + d)

(5.3)
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The first OPL value, between the source plane and the aperture stop z = 0 is simply
given by: OPL =

√
(x0 − xi)2 + (y0 − yi)2 + (z0 − zi)2.

Step 2:

The intersection point P (x, y, z) between a ray and an optical interface f(x, y, z) = 0 is
obtained by solving an intersection equation. A ray is described in 3D by a line, directed
by I(ai, bi, ci), and starting at the previous intersection point P0(x0, y0, z0). We have:

bi(z − z0)− ci(y − y0) = 0

ci(x− x0)− ai(z − z0) = 0

ai(y − y0)− bi(x− x0) = 0

f(x, y, z) = 0

(5.4)

The first three equations mean that P (x, y, z) is on the line passing by P0 with direction
vector I. The last equation is the interface analytical equation z = f(x, y). System 5.4
can be solved by substitution to find P (x, y, z).
Optical interfaces with circular symmetry display a general profile called "aspheric". The
expression of this profile in the z direction for any radius r is [41]:

z(r) =
r2

R +R

√
1− (1 + k)

r2

R2

+ α4r
4 + α6r

6 + ... (5.5)

R represents the curvature radius of the sphere associated with the aspheric profile. The
first term of Equation 5.5 describes a conic profile, with conic constant k. The additive
aspheric terms αi are often set to 0 unless specific aberration correction is needed. In
the following, for simplicity, we consider conic interfaces only (αi = 0). Two particular
profiles arise: the spherical profile (k = 0) and the parabolic profile (k = −1):

zsph(r) =
r2

R +
√
R2 − r2

zparab(r) =
r2

2R

(5.6)

Note that solving system 5.4 using a conic (spherical or parabolic) profile always leads to
two solutions (one is out of the design bounds).

Step 3:

An incident ray, intersecting an interface of equation f(x, y, z) = 0 at the coordinate
points P0(x0, y0, z0) with an initial 3D direction vector I(ai, bi, ci) will be refracted in
the direction R(ar, br, cr) following Snell’s law of refraction. This direction is defined
according to the normal leaving the interface at point P0: N(an, bn, cn). The normal N
direction vector is mathematically defined by:

N(an, bn, cn) = ∇f ∗ (x0, y0, 1) =

(
x0

df

dx
(x0), y0

df

dy
(y0),

df

dz
(z0)

)
(5.7)
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The vectors I, R, N are considered unitary in the following. Using the vectorial ex-
pression of Snell’s law [42] is more practical to eliminate sign problems coming from
trigonometric function inversions. We define n1 and n2 as the refractive indexes of the
media, respectively, before and after the interface. θi and θr are the incident and refracted
angles defined relative to the normal. The vectorial Snell’s law is expressed as:

R =
n1

n2

.I +
[
n1

n2

. cos(θi)− cos(θr)

]
.N (5.8)

With the expression of the cosines being :
cos(θi) = I.N

cos(θr) =

√
1− (

n1

n2

)2(1− cos2(θi)
(5.9)

Step 4:

The optical path length (OPL) followed by a ray between two interfaces i and i + 1 is
defined as the euclidean length of the line joining these interfaces times the refractive
index n of the propagating medium:

OPL(i, i+ 1) = n
√

(xi+1 − xi)2 + (yi+1 − yi)2 + (zi+1 − zi)2 (5.10)

The two points Pi(xi, yi, zi); Pi+1(xi+1, yi+1, zi+1) define the intersections of the ray re-
spectively with interfaces i and i+1. They are sufficient to define the entire ray between
these interfaces.

These four steps are very general and can be applied to any interface of equation f(x, y, z) =
0. Only the intersection point and interface normal direction N depend on the specific
optical layout (lens, MLDOE).

5.2.2 Resolution in the case of a conic lens

In the case of a conic lens of conic constant k, whose interface is defined by Equation 5.5,
System 5.4 becomes: 

x =
ai
bi
(y − y0) + x0

z =
ci
bi
(y − y0) + z0

z =
r2

R +R

√
1− (1 + k)

r2

R2

+ S

r2 = x2 + y2

(5.11)

S represents a profile shift along the optical axis z, defining the profile position on the z
axis. We simplify the z equation, the symbol √. representing the content of the square
root for clarity:
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

z =
r2

R +R
√
.
+ S

⇔(z − S)R + (z − S)R
√
. = r2

⇔√. = r2

(z − S)R
− 1

⇒1− (1 + k)
r2

R2
=

r4

(z − S)2R2
− 2

r2

(z − S)R
+ 1

⇔(1 + k)(z − S)2 − 2R(z − S) + r2 = 0

(5.12)

Two cases occur depending on the values of the direction vector (ai, bi, ci). Note that
ci ̸= 0 is always true if the rays travel in the Z direction.

Case: bi ̸= 0

This case occurs for most of the rays. The expressions of r2 and z2 are rather "bulky" y2

and y polynomials. The second-degree equation to solve is given by:

x =
ai
bi
(y − y0) + x0

z =
ci
bi
(y − y0) + z0

Ay2 +By + C = 0

⇒ A = (1 +
a2i
b2i
) + (1 + k)

c2i
b2i

⇒ B = −2Rci
bi

+

(
2x0

ai
bi
− 2y0

a2i
b2i

)
+ (1 + k)

[
2(z0 − S)

ci
bi
− 2y0

c2i
b2i

]
⇒ C = −2R

[
(z0 − S)− y0

ci
bi

]
+

(
y20

a2i
b2i
− 2x0y0

ai
bi

+ x2
0

)
+ (1 + k)

[
(z0 − S)2 + y20 − 2y0(z0 − S)

ci
bi

]

(5.13)

Case: bi = 0

In this case, using Systems 5.4 and 5.12, we have a second degree equation in z to solve:

y = y0

x =
ai
ci
(z − z0) + x0

(1 + k)(z − S)2 − 2R(z − S) + (x2 + y20) = 0⇔ Az2 +Bz + C = 0

⇒ A = 1 + k +
a2i
c2i

⇒ B = −2S(1 + k)− 2R− 2z0
a2i
c2i

+ 2x0
ai
ci

⇒ C = (1 + k)S2 + 2RS + z20
a2i
c2i

+ y20 + x2
0 − 2z0x0

ai
ci

(5.14)
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Solving the second-degree equation allows precisely defining the intersection point P (x, y, z)
between a ray and any conic interface. This analytic solution is fast and efficient since it
does not require sampling or numerical resolution.

Finally, we provide the partial derivative expressions of the conic profile necessary to
compute the normal (Equation 5.7). Recall that the interface is defined by an equation
of the type f(x, y, z) = 0.



df

dx
=

x

R

√
1− (1 + k)

x2

R2

df

dy
=

y

R

√
1− (1 + k)

y2

R2

df

dz
= −1

(5.15)

5.2.3 Validation in the case of a conic lens

In this section, we validate the implemented software in the case of an F/3 ZnS lens.
CodeV optimises the curvature radius and image plane distance, using an aperture diam-
eter D = 10 mm. The selected lens is biconvex, with a parabolic shape for simplicity.
Two incidence angles are considered: θx = 0° and θx = 7°. A macro is defined in CodeV to
compute the OPL of 1024*1024 rays inside the aperture (Real ray trace function inside a
loop) and to record them in a text file. A similar process is done in ASAP (functions LIST
POS and IO OUTPUT ). ASAP generates an output file with three columns, recording
the ray position (x and y) and OPL at the last interface for each ray. The Matlab func-
tion ScatteredInterpolent allows to retrieve the OPL map from the 3 vectors (x, y,OPL).
CodeV gives a similar output but only provides the length of the ray and its coordinate
at each interface. Therefore, the total OPL must be calculated afterwards.

When computing OPLs in CodeV and ASAP, one must be careful to define the source
accordingly to step 1: tilting the source for off-axis incidences and defining the STOP
surface at the lens vertex. The layout generated in Matlab is displayed in Figure 5.3:

The phase delay generated by the ZnS lens is directly computed in Matlab for the three
software: analytical ray-trace, ASAP and CodeV, for both on-axis and off-axis incidences.
The PSF and MTF at the detector plane result from the Fourier propagation of an initial
scalar field, defined by the OPL, following the process described in Figure 4.1. The MTF
for each software is shown in Figure 5.4:
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Figure 5.3: 3D ZnS lens layout generated in Matlab. The source plane is tilted to an angle
θ = 7°, perpendicular to the beam. The OPL is recorded on the plane interface just after the
lens. The focal plane is located at z = 30 mm.

Figure 5.4: On-axis and off-axis MTF for Matlab, CodeV and ASAP OPL calculations. The
MTF is retrieved at the focal plane using Fourier optics (see 4.1), based on the OPLs provided
by each software. The curves perfectly match, showing that all three software provide the same
accuracy.

Figure 5.4 MTF curve is based on the OPL maps recorded by each software (Matlab
analytical OPL calculator, CodeV and ASAP). The time needed to obtain such result
greatly varies depending on the software:

• CodeV: 45 min have been necessary to produce the on-axis and off-axis file data,
plus 40s to read the output file and get the OPL map in Matlab. This huge time
demand comes from calculating the OPL in CodeV, ray by ray, using a loop and the
real ray trace function.

• ASAP: 160 s have been necessary to produce the on-axis and off-axis file data, plus
40s to read the output file and get the OPL map in Matlab. This high time demand
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is caused by the ray trace process, which is quite long for such a high number of
rays.

• Matlab analytic engine: 3s are necessary to provide the full 1024*1024 OPL map for
both on-axis and off-axis incidences. This speed comes from the analytic resolution
of the ray-tracing process, which is equivalent to adding and multiplying matrices
element-wise. Besides, no time or action by the user is required to read an output
file.

This performance and time comparative study demonstrates the Matlab analytical calcu-
lator potential for OPL calculation, which can be easily used as an optimisation tool.

5.3 Adaptations in the case of MLDOEs

MLDOEs are more challenging than lenses because they are composed of multiple, shifted
portions of parabolas. We have demonstrated the MLDOE profile equation for all config-
urations in Equation 9.40 (Chapter 9. In this chapter, we use the profile equation of the
first layer, assumed to be converging, for simplicity. It is rewritten here for clarity:

Z(r ∈ [rm; rm+1[) = −H
(
m− r2

r21

)
+ S (5.16)

According to Equation 9.40, if the zone is diverging, m should be replaced by m + 1.
Similarly, if the second layer is considered instead of the first, reverse the sign of H
(whose value also depends on the layer).
This profile equation describes a parabola with a radius of curvature R = r21/2H, shifted
by an amount −Hm + S that varies depending on the diffractive zone m. Similarly to
the lens case, a shift S is added to place the MLDOE layer at any position z > 0 on
the optical axis. r1 is the radius of the central zone and H(i) is the constant height of
the diffractive zones, considering the layer i = 1, 2. In this section, we consider a more
general case, where the height H = Hm and the shift S = Sm vary for each zone, thus
also making the curvature radius variable. This general case corresponds to the extended
scalar theory optimisation discussed in detail in Chapter 12.
Only two things differ from the ray-tracing algorithm depicted in Section 5.2: The an-
alytical intersection with an MLDOE layer (step 3) and the expression of the interface
normal (step 2). Equation 5.16 raises the issue of the diffractive zone knowledge: the
equation can be solved for many zones m, but only one gives the correct intersection.
Consequently, the correct zone must be found before computing the intersection, which
seems paradoxical. The possible intersections between an MLDOE layer and a ray are
depicted in Figure 5.5.
The layout depicted in Figure 5.5 provides a simple way to retrieve the right intersection
zone. The intersection of the initial point AI with the plane ZII , located just after the
layer, is computed: AII . The right zone is retrieved by comparing the coordinates of AII

with the zone radii rm−1, rm and rm+1. As shown in Figure 5.5, the right intersection
zone is not trivial and many cases can occur:

• The ray hits the parabola of the same zone m

• The ray hits the parabola of another zone m− 1 (or m+ 1 if diverging layer)
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Figure 5.5: Possible intersections between a ray and an MLDOE layer. Depending on the ray
position and direction, the intersection can occur: With a parabola of the same zone m: AII

(green), with a parabola of another zone m − 1 (or m + 1): A′
II (red) or with a vertical edge:

A′′
II (orange). The analytical calculator does not handle more complex options, such as multiple

refractions on the same zone or total internal reflection. The right zone is given by comparing
the coordinates of points AII , A′

II and A′′
II with the zone radii rm−1, rm and rm+1, before solving

the intersection.

• The ray hits a vertical edge between two parabolas at radius rm (or rm−1 if diverging
layer)

• The ray is refracted multiple times by a zone or its edge

• The ray is reflected (total internal reflection)

The first three cases provide the value of the correct zone and are handled analytically,
which is not the case in the last two cases. These are more complex, thus, very hard
to handle mathematically without increasing the OPL calculator complexity. Such rays
are called "missed" in the following. The OPL of a missed ray is approximated to its
last value (before being marked as "missed"). Recall that this analytical OPL calculator
is used as an approximation to describe diffractive optics behaviours; thus, perfect ray
tracing is not mandatory. In addition, these situations only appear for a minority of the
rays. Thereby, less than 1% of the rays hit another zone (A′

II and A′′
II in Figure 5.5), and

only a few of these rays cannot be handled analytically. Therefore, their impact on the
final OPL map is negligible, as shown in the following. Step 3 becomes, in the case of an
MLDOE:

• Compute the ray intersections with plane zII : AII

• Find the right zone m and the intersecting interface profile type: parabola or r = cte
edge.

• Compute the height Hm and the shift Sm for the previously found zone m

• Compute the intersection point between the ray (starting at AI) and the MLDOE
interface
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• Compute the derivatives and the normal N (step 2) based on the interface profile

The exact intersection point computation (for a parabolic zone or a vertical edge) and
the normal derivative determination are detailed in Annex 17 in the case of an MLDOE.

5.4 Validation of MLDOE OPL calculation using ASAP

In this section, we validate the implemented calculator in the case of a ZnS-Air-Ge F/15
MLDOE with 15 diffractive zones. The selected three-dimensional MLDOE layout is cre-
ated in ASAP as explained hereafter in Section 5.4.1. Section 5.4.2 studies the constant
zone height case: H1 and H2 are designed following the MLDOE TEA profile design of
Equation 9.11. Section 5.4.3 analyses similar figure of merits but considering an ML-
DOE with variable zone heights H1(m) and H2(m) (See the MLDOE extended scalar
theory profile design in Equations 12.4 and 12.5). For each case, two incidence angles are
considered: θx = 0° and θx = 5°.
Apart from the layout, we use the same source definition, OPL recording functions and
Matlab reading function as for the refractive lens case, ensuring the validity of the ASAP
output.

5.4.1 ASAP 3D MLDOE layout creation

Without going into too many script details, this section describes the main steps to creat-
ing a three-dimensional MLDOE layout in ASAP to perform a rigorous OPL calculation.
For visualisation purposes, only in the presented layout of Figure 5.7 the number of zones
has been decreased to 7 (F/20).
First, we recall to the reader the main MLDOE design parameters:

• F-number (F/♯), aperture diameter D and number of diffractive zones N . These
parameters are linked by Equation 9.31, rewritten here for clarity:

N =
D

8λF/♯λ
(5.17)

• The design wavelengths are λ1 = 4.7 µm and λ2 = 10.4 µm according to Section
9.2.1.

• Layer 1, 2 and the gap can be made of any IR material. Their indices are respectively
named n1, n2 and ng. The right MLDOE configuration must be selected as described
in Section 9.5.

• The diffractive zones m are annular rings of parabolic shape and thickness Hi(m),
defined by Equation 9.11. They are defined by a curvature radius Rm, a radius
XII(m) and a central obscuration XI(m). Using Relations 9.1 and 9.11, we have:

XII(m > 1) =
√
mXII(1)

XI(m > 1) = XII(m− 1)

XI(1) = 0

XII(1) =
√

2λ1f(λ1)

Rm =
X2

II(1)

2Hi(m)

(5.18)
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Note that the sign of the curvature radius Rm depends on the layer configuration
and must be adapted in Equation 5.18.

• If the MLDOE is designed according to the thin element approximation (Chapter
9), the thickness of layer i: Hi is constant for the entire layer, and given by Equation
9.11.

• On the contrary, if the thin element approximation is not considered, the layer
thickness Hi(m) can vary for each zone m (Chapter 12).

Based on the previous design parameters, The parametric creation of a three-dimensional
MLDOE in ASAP follows multiple steps, described in Figure 5.6:

Figure 5.6: 3D MLDOE layout creation process in ASAP. A macro is defined to generate an
HDOE layer. Each zone is an annular parabolic ring, defined by a curvature radius Rm, a radius
XII(m) and a central obscuration XI(m). A shift along Z: Zshift is necessary to obtain a Fresnel
zone pattern, (See for instance Figure 6.72). Finally, a closed volume is generated by adding a
backplane and an edge to the MLDOE

The resulting three-dimensional MLDOE is displayed in Figure 5.7, based on the ASAP
visualization panel.

5.4.2 Results for constant heights

As previously mentioned, the time needed to generate the MLDOE 1024*1024 OPL map
in Matlab, using the ASAP software, is around 200 s, while it takes only a few seconds for
the analytical calculator. After generating the OPL maps, similarly to the lens case, the
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Figure 5.7: 3D ZnS-Air-Ge MLDOE layout viewed in ASAP. We have hidden the Ge layer to see
the ZnS layer layout. Only seven diffractive zones are considered (F/20 design) for visualisation
purposes. The displayed layer is diverging, as shown by the orientation of the parabolas. A
tube along the z direction makes the link between two adjacent zones, as explained in Figure 5.6
process.

PSF and MTF are provided by the Fourier propagation of the phase map (initial field)
to the detector plane (output field), following the process described in Figure 4.1. The
MTF at the best focal plane z = 110 mm is shown in Figure 5.8.

Figure 5.8: On-axis and off-axis MTF comparison between Matlab and ASAP OPL calculations.
We consider a ZnS-Air-Ge F/15 MLDOE with constant zone height (Equation 9.11). The MTF
is retrieved at the focal plane using Fourier optics (see 4.1), based on the OPLs provided by each
software. The curves match excellently, showing that the Matlab OPL calculator is as accurate
as it is fast.

The MTF curves, shown in Figure 5.8, provide a near-perfect match between the Matlab
analytical calculator and the reference ASAP software. The associated PSF and Strehl
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ratio values along the optical axis are depicted in Figure 5.9 (on-axis case).

(a) Iz using analytical Matlab calculator. (b) Iz using exact ASAP software.

Figure 5.9: PSF along the optical axis Z. The MLDOE is located at z = 0 mm, while the best
focal plane, defined as the plane providing the highest Strehl ratio (S), is located at z = 110
mm. The PSF is displayed on a logarithmic scale to emphasise the beam details. Two software
are considered: a) Matlab analytic OPL engine. b) ASAP ray-tracing engine.

The irradiance patterns shown in Figures 5.9a and 5.9b are similar, depicting the same
"best" focus and very close Strehl ratios. Interestingly, this MLDOE design is not optimal,
as displayed by the MTF and irradiance. The extreme zones do not contribute to the
focus energy, explaining the low Strehl ratio value. This effect is caused by the high ratio
between height and period for the extreme zones. Therefore, this design is a worst-case
ray tracing scenario.

5.4.3 Results for variable heights

The optical performances obtained in Figures 5.8 and 5.9 can be enhanced by optimizing
the height of each zone instead of having a constant value. This process is detailed
in Chapter 12, and the optimised zone results are used in this section to compare the
output results of the Matlab analytical OPL calculator and ASAP software. The MTF
comparative study is displayed in Figure 5.10:

The irradiance, computed along axis for on-axis incidence, is pictured in Figure 5.11:
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Figure 5.10: On-axis and off-axis MTF comparison between Matlab and ASAP OPL calculations.
We consider a ZnS-Air-Ge F/15 MLDOE with variable zone height (Equations 12.4 and 12.5).
The MTF is retrieved at the focal plane using Fourier optics (see 4.1), based on the OPLs
provided by each software. The curves match excellently, showing that the Matlab calculator is
perfectly accurate.

(a) Iz using analytical Matlab calculator. (b) Iz using exact ASAP software.

Figure 5.11: PSF along the optical axis Z. The MLDOE is located at z = 0 mm, while the best
focal plane, defined as the plane providing the highest Strehl ratio (S), is located at z = 110
mm. The PSF is displayed on a logarithmic scale to emphasise the beam details. Two software
are considered: a) Matlab analytical OPL calculator. b) ASAP ray-tracing engine.

Resulting of this analysis, our Matlab OPL calculator gives perfectly accurate results but
uses a much faster algorithm.
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Chapter 6
Finite difference time domain method

This chapter concludes the tryptic about defining MLDOE modelling tools. In Chap-
ter 4, we have implemented an exact free space wave propagator to retrieve various
optical metrics at the detector plane. Chapter 5 explains and justifies the devel-
opment of an analytical OPL calculator, extensively used to estimate the MLDOE
internal behaviour. However, when high accuracy is needed, we use the Finite Dif-
ferences Time Domain (FDTD) numerical approach instead of the OPL calculator.
This numerical method offers precise near-field MLDOE modelling at a high com-
putational effort cost. This method’s numerical results are considered a reference
in this thesis since. Thereby, we perform a worst-case sampling study to ensure
the validity of FDTD predictions for every MLDOE layout and wavelength. To our
knowledge, only direct experimentation on an MLDOE prototype can provide more
trustable results. This chapter also explains the two-dimensional MLDOE layout
creation in the OptiFDTD software.
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6.1. FDTD principle

6.1 FDTD principle

This section describes the formulation of the rigorous numerical method called "Finite
Differences Time Domain" (FDTD). It is entirely based on the technical background doc-
umentation provided by the specialised company Optiwave for their software OptiFDTD,
Version 16.0 RC, for Microsoft Windows 10 64-bit [43, 44].

6.1.1 2D FDTD equations

The FDTD approach numerically solves the time-dependent Maxwell’s curl equations.
The lossless and source-free expressions are:



∂Hx

∂t
=

1

µ0

[
∂Ey

∂z
− ∂Ez

∂y
]

∂Hy

∂t
=

1

µ0

[
∂Ez

∂x
− ∂Ex

∂z
]

∂Hz

∂t
=

1

µ0

[
∂Ex

∂y
− ∂Ey

∂x
]

∂Ex

∂t
= −1

ϵ
[
∂Hy

∂z
− ∂Hz

∂y
]

∂Ey

∂t
= −1

ϵ
[
∂Hz

∂x
− ∂Hx

∂z
]

∂Ez

∂t
= −1

ϵ
[
∂Hx

∂y
− ∂Hy

∂x
]

(6.1)

The optical component lies in the XZ plane in two dimensions (infinite along the Y axis),
and the propagation is along the Z axis. The two-dimensional domain removes any term
containing a spatial derivative in Y, partially uncoupling the six Maxwell’s equations.
Equations 6.1 can be separated in two groups: (Ex, Ez, Hy) is the TM group while (Ey,
Hz, Hx) forms the TE group. By convention, the transverse electric (TE) group goes with
the electric wave equation along the axis perpendicular to the direction of propagation. In
contrast, the Transverse Magnetic (TM) designation goes to the group with the magnetic
wave equation along y. TE and TM waves are treated independently, meaning that any
2D FDTD simulation is either a TE or TM simulation (i.e. the full unpolarised field
requires two simulations).

Each field is represented in a 2D array of indices i, k: [Ex(i, k), Ey(i, k), Ez(i, k), Hx(i, k),
Hy(i, k), Hz(i, k)]. The indices i and k respectively account for the number of space steps
in the X and Z directions. Figure 6.1 shows the location of the field components in the
mesh i, k in the case of TE wave:
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Figure 6.1: Location of the TE field components in the computational domain. The distribution
of the TE fields is based upon the two-dimensional Yee Cell. The Ey field is the centre of the
spatial cells defined by the dashed lines. The magnetic fields, Hx and Hz, are associated with
cell edges. The fields are offset so that the derivatives within Maxwell’s equations are discretised
and expressed using central finite differences, ensuring second-order accuracy in both space and
time [44].

TM waves work similarly to Figure 6.1, with the Hy field in the centre of the cell and
both Ex, and Ez fields on the edges. In the case of TE waves, Maxwell’s equations are
discretised along the grid:
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(6.2)

where

• n is the discretized time step

• ∆x is the size in real units of a space step along the X direction

• ∆z is the size in real units of a space step along the Z direction

• ∆t is the size in real units of a time step

Section 6.3 describes the constraints and implications on the time and spatial step choice.
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6.1.2 Three-dimensional FDTD equations

In three dimensions, each field components is represented by a 3D array of indices i, k:
[Ex(i, j, k), Ey(i, j, k), Ez(i, j, k), Hx(i, j, k), Hy(i, j, k), Hz(i, j, k)]. This array, composed
of so-called three-dimensional "Yee cells", is depicted in Figure 6.2

Figure 6.2: Complete three dimensional Yee cell [44]. E and H are spaced 1/2 step in both
space and time and interleaved such that central difference expressions for components have the
required information. In this algorithm, the E and H fields are solved in a leapfrog fashion where
E fields are calculated using H from the previous half-time step and then vice versa.

The source-free time domain vectorial Maxwell’s equations are given in differential form
by:


µ
∂H
∂t

= −∇× E

ϵ
∂E
∂t

+ σE = ∇×H
(6.3)

These equations can be discretized on the three-dimensional Yee cell, with recursive defi-
nition given in [44], similarly to Equations 6.2.

6.1.3 Boundary conditions

FDTD can only simulate and compute a vectorial field inside a wafer enclosed by physical
boundaries. Fields, such as plane waves, cannot extend infinitely and must be studied
inside a finite domain whose size dramatically impacts the sampling. The FDTD method
proposes a set of boundary conditions, providing the required information to update the
EM field components at the edges of the simulation domain. Three boundary conditions
are used in this study:

• Anisotropic Perfectly Matched Layer (APML)

• Perfect Electric Conductor (PEC)

• Perfect Magnetic Conductor (PMC)
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These boundaries guarantee the field’s behaviour when it reaches the edge of the com-
putational window: absorption and reflection of its components. In two dimensions, the
simulation space is a rectangle, bounded on the top (+x), bottom (−x), left (−z) and
right (+z). Waves travel in the Z direction.

The −z and +z sides are set as APML boundaries: the refractive index within the simu-
lation domain is matched, reducing reflections, but a loss is introduced through the layer
so that no field returns to the simulation domain when it is reflected. APML bound-
aries perfectly simulate unbounded wave propagation, acting as an absorbing boundary.
However, unwanted diffraction effects at the edges of the aperture may occur if only the
APML boundary is used, especially for plane waves. Figure 6.3 shows the propagation of
a TM plane wave (Hy) bounded at all sides by APML condition:

Figure 6.3: Hy component of a TM plane wave propagating in the Z direction. The boundaries
(+x, −x, +z, −z) are all set with a field absorbing condition: APML. Undesired diffraction
effects occur at the edge of the aperture +x and −x. Note that no reflection occurs at sides −z
and +z due to the APML boundaries.

The +x and −x sides are set to PEC (TM simulation) or PMC (TE simulation) to
avoid diffraction by the computational edges, which is not physically meaningful. These
boundaries act as mirrors for certain field components and are widely used for plane wave
simulations. Thereby, Figure 6.4 depicts how the PEC boundary operates on the E and
H fields:

Figure 6.4: Description of the Perfect Electric Conductor (PEC) boundary. The E field perpen-
dicular to the boundary can "cross", resulting in the parallel component being null. Similarly,
the perpendicular H component is null, while the parallel H component is the same for each side
of the line. When the wave propagation direction is Z, it means that the parallel H component
does not "see" the boundary, avoiding any interaction (diffraction) with it.
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To avoid any diffraction effect, no interaction must occur between the wave and the +x
and −x sides. According to Figure 6.4, this is possible for the parallel H field using a
PEC boundary. In other words, a TM wave suffers no diffraction by the edge with a
PEC boundary on the +x and −x sides (similarly, TE waves should be used with a PMC
boundary). As a result, Figure 6.5 shows the same plane wave as in Figure 6.3, but with
+x and −x PEC boundaries:

Figure 6.5: Hy component of a TM plane wave propagating in the Z direction. The boundaries
+x and −x are set to PEC, while +z and −z are set to APML. No undesired diffraction effects
occur at the edge of the aperture +x and −x, and the amplitude of the field remains perfectly
constant. Note that no reflection occurs at sides −z and +z due to the APML boundaries.

6.2 MLDOE FDTD Layout

6.2.1 Two-dimensional MLDOE layout creation

A complex FDTD layout is constituted of basic polygons such as linear or curved waveg-
uides, elliptic or spherical lenses, cylinders, etc... Each polygon has a specific material.
Superposing basic surfaces with specific refractive indices generate complex FDTD lay-
outs. Finally, a source plane is defined (pulse source, Gaussian source, plane wave source)
with some observation areas or planes (detectors). Figure 6.6 depicts a hand-made two-
dimensional FDTD layout example.

Compared to the simple handmade example of Figure 6.6, more complex layouts often
require a script when many built-in surfaces and precise parametrisation are needed.
Thereby, we have implemented an MLDOE layout creation function in Matlab, produc-
ing an FDTD script that can directly be imported and used in OptiFDTD. MLDOEs
are made of two Fresnel HDOEs (See Chapter 9) with parabolic zone shapes. Fortu-
nately, parabolas are part of the available OptiFDTD built-in surfaces. In OptiFDTD,
an MLDOE layer is formed by adding shifted and truncated parabolas. As explained in
Section 9.5, depending on their materials, MLDOEs can have various layer configurations
such as converging-converging, diverging-converging, converging-diverging and diverging-
diverging. This configuration must be taken into account when designing the FDTD
layout. For instance, we consider an arbitrary converging-converging MLDOE. The main
steps leading to its creation are illustrated in Figure 6.7:
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(a) FDTD layout made by adding various built-in
parametric shapes

(b) Resulting refractive index variation

Figure 6.6: Creation of an arbitrary FDTD layout by adding a linear waveguide, an arc waveg-
uide and a spherical lens. The source and observation planes are displayed respectively in red
and green. The various shape profiles and materials are sorted in the left panel of Figure 6.6a.
Figure 6.6b shows the two-dimensional refractive index of the layout assembly. The x coordi-
nate represents the radial dimension, while the z coordinate represents the optical axis (light
propagation direction).

Figure 6.7: Steps leading to creating an arbitrary converging-converging IRG24-IR27-AgCl ML-
DOE. The source starts on the red vertical line, whereas the detector lies on the green line. Step
1 (left): parametrise and place truncated parabolas made of AgCl (second layer first) until step
2 is reached. Step 2: Note that the shape of layer 2 appears when taking only the left side of
the green observation plane. Nonetheless, the entire shifted parabolas used to construct layer 2
are still visible. Step 3: Remove the AgCl construction parabolas by adding a linear rectangle
filled with air above them. The same principle allows placing the IRG27 gap layer on the left of
the AgCl parabolas. Step 4: IRG24 parabolas are added above the IRG27 gap layer using the
same method as in step 1. The construction part of the IRG24 parabolas is out of the wafer.
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Figure 6.7 explains how to create a two-dimensional MLDOE layout in FDTD using
parabolas. Any MLDOE of any thickness and material can be created, except for the
diverging-diverging configuration. Thereby, following the additive process described in
Figure 6.7, A diverging-diverging MLDOE can not be created because the construction
parabolas of one layer will always cover the other layer. Note that only a half MLDOE
is needed because of its circular symmetry. This symmetry will help with the sampling
specification. Finally, the MLDOE refractive index map is displayed in Figure 6.8:

Figure 6.8: Refractive index map considering the arbitrary IRG24-IRG27-AgCl MLDOE layout
resulting from Figure 6.7. Only a half MLDOE is required in the x dimension due to circular
symmetry, alleviating the sampling demand. The displayed image is not on scale (z in µm and
x in mm).

6.2.2 Three-dimensional MLDOE layout creation

Unfortunately, OptiFDTD does not provide as many basic shapes in three dimensions
as in two. The built-in three-dimensional components are the sphere, the ellipsoid, the
cylinder and the block. Accordingly, previously used two-dimensional truncated parabolas
cannot be transposed into three-dimensional objects (only extruded in the Y dimension).
Nonetheless, OptiFDTD allows importing a .IGES file (defining a volume) and enables
associating it with a material. We generate three-dimensional .IGES files using the optical
modeling software ASAP (See Figures 5.6 and 5.7). Each .IGES file defines an "empty"
layer as a closed volume.
The importation and handling of .IGES files is pretty simple in OptiFDTD. Each layer
can be scaled to the desired dimensions and filled with a material. A final step is required
if the gap material differs from the background material. The separation between two
imported volumes is not a volume and is filled by the ambient medium. Consequently,
a three-dimensional cylinder volume, filled with the gap material, is added between the
two layers. It is then defined as 1st volume in the hierarchy ("front component"). The
addition of volumes, similarly to the addition of surfaces (Figure 6.7), allows to create
complex three-dimensional layouts.

6.3 FDTD sampling study

There are two fundamental constraints to the FDTD method regarding the simulation
space discretisation. The first concerns the spatial step size (∆x, ∆y, ∆z), impacting
the simulation accuracy. The second is the time step size (∆t), defining the simulation
stability. This section discusses the step size constraints and the rules of thumb to apply.
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A large spatial step size (coarse sampling grid) affects the simulation results in two ways:

• The resolution is not fine enough to properly characterise either the source or the
structure under test (sub-wavelength feature, for instance).

• Numerical dispersion can be introduced resulting from the derivatives discretisation.

As a rule of thumb, the source is properly represented when the spatial steps ∆x, ∆y and
∆z are set to one-tenth of the simulation wavelength [44]. Note that the wavelength is
taken inside the medium of highest refractive index. This resolution might be increased if
the layout is made of complex sub-wavelength features. This criteria defines the so-called
"auto settings" and is written as:

max (∆x,∆y,∆z) ≤
λmin

10nmax

(6.4)

where nmax is the maximum refractive index value in the computational domain. If the
layout contains sub-wavelength structures, it is good practice to set the spatial resolution
to one-tenth of the smallest feature size.
Sizing the time step according to the Courant-Friedrichs-Levy (CFL) condition ensures
the numerical stability of the solution. This condition defines the "auto setting" in time
for OptiFDTD simulations. The CFL condition is expressed as [44]:

∆t ≤
1

ν

√
1

∆2
x

+
1

∆2
y

+
1

∆2
z

(6.5)

where ν is the speed of the light inside the medium of the highest refractive index. For
two-dimensional simulations, the term ∆y in Equations 6.4 and 6.5 is obviously set to 0.
Convergence testing in space and time is always required to guarantee the validity of the
results. In the frame of the MLDOE study using FDTD, convergence testing is not a
straightforward process because the output field produced by OptiFDTD corresponds to
the near-field. A convergence study process is developed as shown in Figure 6.9.
The convergence study described in Figure 6.9 leads to Figure 6.10.
Resulting from Figure 6.10, the sampling that is sufficient to ensure convergence and
stability in the worst case is:

• Nx = 20000 samples (∆x =
D

2Nx

= 0.25 µm)

• Ny = Nx (∆y = ∆x) in 3D because of the circular symmetry.

• Nt = 5000 samples

• ∆z and ∆t : "auto" setting. Their value therefore depends on the selected MLDOE
layout, accordingly to Equations 6.4 and 6.5.

This study corresponds to a worst case MLDOE design, meaning that it remains valid
regardless of the simulated MLDOE, as long as the F-number F/♯ ≥ 10, the aperture
diameter D ≤ 10 mm and the minimal wavelength λmin ≥ 4.4 µm.
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Figure 6.9: FDTD convergence study. A worst-case MLDOE layout is created (low F-number
and wavelength) with a Ge layer (highest refractive index). Only half the aperture is needed by
symmetry. The number of spatial and time steps Nx, and Nt are variables. The steps ∆z, ∆x

and ∆t are set as "auto", as defined in Equations 6.4 and 6.5. The one-dimensional near-field
is then computed (TE gives Ey(x) and TM gives Ex(x)). the Ez component is negligible along
the propagation direction (evanescent). Matlab is then used to propagate (Ey(x), Ex(x)) to the
focal plane (Fourier optics) and generate the Strehl ratio, used as a convergence metric. Since
Fourier optics only operates with two-dimensional fields, we use the circular symmetry to extend
(Ey(x), Ex(x)) in two dimensions.
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Figure 6.10: FDTD sampling convergence curve for a worst-case ZnS-Air-Ge MLDOE (see Figure
6.9). The metric associated with each sampling is the Strehl ratio, computed at the "best" focal
plane. The number of sampling steps Nz along the optical axis and the sampling steps ∆z,
Deltax and ∆t are automatically set by OptiFDTD (CFL condition). Nx and Nt are the number
of samples in the radial dimension and in time.
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Chapter 7
Athermal design of a MWIR camera

Following the optical requirements drawn in Chapter 3, this chapter analyses the de-
signing process of an athermal MWIR camera with diffraction-limited performance.
We present the optimised MWIR optical design and raise the critical issue of extend-
ing this camera to the LWIR band. In the following chapters, this question leads to
studying innovative dual-band diffractive lenses, such as the multilayer diffractive
optical element. In this Chapter, We synthesise some literature references to build
a passive athermalisation algorithm for air-spaced thin lenses (diffractive or refrac-
tive). The so-called "achromat athermal system" is impractical to solve directly
since it heavily impacts the design performance and does not provide realistic hous-
ing materials. Therefore, we perform an iterative study based on the "equivalent
lens" principle to minimise image quality loss and ensure the existence of appro-
priate housing material. The athermal algorithm results in a hybrid MWIR design
passively withstanding ±50°K without any image quality losses.
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In this chapter, we propose to build and optimise an optical system following the require-
ments established in Chapter 3. The professional optimisation software CodeV guaran-
tees the design specification and minimises the amount of optical aberrations (defocus,
spherical, coma, astigmatism, petzval, distortion). In addition to these shape-related
aberrations, optical elements intrinsically suffer from chromatic and thermal defocuses
due to wavelength and temperature changes. For instance, lens thickness, curvature and
refractive index vary as the surrounding temperature is modified. The variation of these
optical parameters induces a focal shift called "thermal defocus". The latter significantly
degrades the image quality if the detector does not actively move (piezoelectric motor)
to compensate for it. Consequently, a passive infrared refractive system, composed of
lenses held by a housing material, should follow an optimisation procedure that considers
thermal and chromatic variations.

This chapter describes how to build such an athermal optimisation algorithm using various
literature references. Then we apply this algorithm using a CodeV handmade macro to
design a MWIR athermal achromatic performing hybrid design.

7.1 Thermo-optical parameters

In this section, we introduce the thermo-optical parameters for refractive and diffractive
lenses.

We define αL and αH as the thermal coefficients of expansion (TCE) of a lens and its
housing. When a temperature variation dT occurs, a lens’s main optical parameters vary
following [45, 46]:

• Radii of curvature R −→ R + dR = R(1 + αLdT )

• Thicknesses D −→ D + dD = D(1 + αLdT )

• Air spaces L −→ L+ dL = L(1 + αHdT )

• Refraction index n −→ n+ dn = n+ (
dn

dT
dT )

This can be rewritten into:



dR

dT
= RαL

dD

dT
= DαL

dL

dT
= LαH

(7.1)

αL, αH and dn/dT are tabulated values for a lot of materials in a certain range of tem-
perature.
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Figure 7.1: Definition of thermally varying parameters for a lens mounted in a housing.

7.1.1 Refractive lens

The optical power Φ of a refractive lens is defined as the inverse of its focal length f :

Φ =
1

f
(7.2)

A trivial derivative relation is given here for any variable X, as it will be useful in the
following:

1

ϕ

∂ϕ

∂X
= − 1

f

∂f

∂X
(7.3)

For a thin refractive lens, the optical power is related to the refractive index n and radii
of curvatures R1 and R2 by:

Φ = (n− 1)(
1

R1

− 1

R2

) (7.4)

The thermal dispersive power γ, sometimes called optomechanical coefficient, is defined
as [47, 48]:

γ =
1

ϕ

∂ϕ

∂T
(7.5)

Using Equations 7.3 and 7.4, we obtain:

γ =
1

n− 1

∂n

∂T
+

1

(
1

R1

− 1

R2

)
(− 1

R2
1

dR1

dT
+

1

R2
2

dR2

dT
) (7.6)
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Introducing Equation 7.1 in Equation 7.6 leads to the expression of γ:

γ =
1

n− 1

∂n

∂T
− αL (7.7)

The chromatic dispersive power ω is defined as [47, 48]:

ω = −∆ϕ

ϕ
= − 1

Φ
∆λ

∂Φ

∂λ
(7.8)

Using the thin lens model (Equation 7.4) into Equation 7.8 provides the expression of ω:

ω = −∆λ
∂n

∂λ

1

n(λ)− 1
> 0 (7.9)

In the following, for all the considered IR materials, the chromatic dispersive power ω is
always positive in the case of a thin lens (See Annex 16 and Table 7.1).

7.1.2 Diffractive lens

A diffractive optical element (DOE) is represented in Figure 7.2:

Figure 7.2: Schematic diagram of a diffractive optical element (DOE) [49]. See Chapter 8.

DOEs are deeply studied in Chapter 8. In short, a DOE is made of circular zones, each
having a different optical path difference (OPD) as displayed in Figure 7.2. To impose
constructive interferences, the OPD between each zone must be increased by λ0, the
"design wavelength". The nth zone OPD is given by: OPDn = f(λ0) + nλ0. Applying
Pythagorean theorem allows to approximate the nth zone radius rn:

r2n = 2nλ0f(λ0) (7.10)

When a DOE is illuminated at a wavelength λ, its focal distance f(λ) is modified following
[50]:
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f(λ) = f(λ0)
λ0

λ
(7.11)

Introducing Equation 7.11 in the definition of the chromatic dispersive power ω (Equation
7.8) leads to:

ω = −∆Φ

Φ
= −Φ0∆λ

λ0Φλ

= −∆λ

λ
< 0 (7.12)

∆λ = λL−λS, with λL and λS the longest and the shortest wavelengths of the considered
waveband. ω is always negative for a DOE, contrary to refractive thin lenses. This allows
very good chromatic correction when DOEs and refractive lenses are combined together
(hybrid lens).

Each zone radius rn varies with the temperature as described in Equation 7.1. Using the
definition of the thermal dispersive power γ (Equation 7.5) as well as the nth zone radius
expression (Equation 7.10) leads to:

γ =
1

ϕ

∂ϕ

∂T
= − 1

f

∂f

∂T
=

1

r2n
∗ d

dT
[r2n] =

−2rn
r2n
∗ d

dT
[rn] = −2αL < 0 (7.13)

A DOE thermal power is always negative and entirely defined by the material choice.
Since the majority of infrared materials have positive thermal powers (see Table 7.1),
Equation 7.13 is extremely useful for passive athermalisation using hybrid lenses.

7.2 IR materials

This section describes a handful of IR materials. Theoretically, the chromatic and thermal
powers ω and γ, introduced in Section 7.1, are functions of the temperature and the
wavelength. Compared to the visible, the number of IR materials (transparent between
3 µm and 12 µm) is very small. These materials are often expensive semiconductors with
different transmission ranges, as shown in Figure 7.3:
Some IR materials such as NaCl, KCl are not considered since they are soluble in water,
rendering them difficult to polish. In addition, materials that are too hard and cannot be
diamond turned, such as Sapphire, are discarded. Figure 7.3 transmission ranges come
from CRYSTRAN website [52] for regular materials and from SCHOTT datasheets [53]
for IRG chalcogenide family. The following material descriptions come from [54].

7.2.1 IR materials description

Models of refractive index and transmission over the MWIR and LWIR wavebands are
described in Annex 16. In this section, we provide a short description of the selected IR
materials.

• Ge (Germanium) has the highest refractive index among all the IR materials and
also the highest dn/dT , which makes athermalisation a difficult issue. Its optical
transmission starts degrading at 100°C, which is not a problem for space applications.
It is usually less expensive than ZnSe and ZnS. It is diamond turnable and can be
manufactured as an aspheric or diffractive lens. Its average transmission is only 47%
over the MWIR-LWIR wavebands (uncoated).
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Figure 7.3: Transmission range for IR optical materials. [51].

• ZnSe (zinc Selenide) has a high resistance to thermal shock. Since its hardness is
relatively low, coatings can be applied to protect it. ZnSe is very expensive. It is
diamond turnable and can be manufactured as an aspheric or a diffractive lens. Its
average transmission is 70% over the LWIR-LWIR wavebands.

• ZnS (Zinc Sulphide) is used in two forms: clear grade and regular grade. The
clear grade form is purified to transmit homogeneously from the VIS to the LWIR
waveband. Therefore, we will use clear grade ZnS, which also has low absorption in
MWIR. ZnS clear grade is one-third harder than ZnSe. It is diamond turnable and
can be manufactured as an aspheric or a diffractive lens. The clear grade average
transmission is 75% until 10 µm and 65% afterwards.

• GaAs (Galium Arsenide) has a very similar hardness to Ge but is generally more
expensive. It is commonly used in applications where hardness and durability are
essential. It is diamond turnable and can be manufactured as an aspheric or a
diffractive lens. It has an average transmission of only 55% over the MWIR-LWIR
wavebands.

• CdTe (cadmium Telluride): Extra handling and safety precautions are required when
machining CdTe due to its toxicity. Thus, only a few companies provide CdTe lens
manufacturing. It has one of the highest densities among the IR materials and is also
more expensive than Ge and ZnSe. It is diamond turnable and can be manufactured
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as an aspheric or a diffractive lens. It has an average transmission of 65% in the
MWIR-LWIR wavebands.

• AgCl (Silver Chloride) can easily be polished due to its low hardness but can also be
deformed under heat and pressure. Its average transmission is 80% in the MWIR-
LWIR wavebands. It darkens when exposed to sunlight which does not affect its IR
transmission.

• Chalcogenides: These materials are composed of Ge, As, Se and Te in various pro-
portions. We only consider chalcogenides from SCHOTT because they are very
similar to the six other chalcogenide families, and only SCHOTT datasheets provide
their dispersion formulas. Chalcogenides from UMICORE (gasir), VITRON (IG),
AMTIR, LightPAth (BD) are equivalent:

– Ge33As12Se55: IRG22, IG2, AMTIR1, GASIR1.

– Ge30As13Se32Te25: IRG23, IG3.

– Ge10As40Se50: IRG24, IG4.

– Ge28Sb12Se60: IRG25, IG5, AMTIR3, BD2.

– As40Se60: IRG26, IG6, AMTIR2, GASIR5.

– As40S60: IRG27, AMTIR6.

Compared to other IR materials, Chalcogenides have low refractive indices, low
dn/dT and ω. They are polishable, diamond turnable and moldable, potentially
making them "cheaper" than other IR materials for mass production applications.
Chalcogenides have ∼ 100% average transmission until 11µm, which decreases to
40% afterwards (except for IRG26).

7.2.2 Thermal and chromatic powers approximation

The refractive index of a material depends on the wavelength and, especially for IR
materials, on the temperature. Consequently, we provide dispersion formulas n(λ, T ) for
all IR material in Annex 16. The resulting refractive indices have been cross-checked for
many λ and T with the reference site refractiveindex.info, and the values matched until
the thousandth. Consequently, ω and γ also depend on λ and T . Their variations are
presented in Annex 16 for all materials. This analysis shows that the chromatic power ω
is nearly independent of the temperature. For each IR material, γ varies very little with
(λ, T ). Consequently, we can provide approximate values of γ and ω for each material in
MWIR and LWIR wavebands. The results are synthesized in Table 7.1:
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Table 7.1: Approximated γ and ω values for all IR materials in the MWIR and LWIR wavebands.
Refractive and diffractive cases are displayed (Equations 7.7, 7.9, 7.13 and 7.12). TEC and γ
values are expressed in [10−6.K−1] while ω is given in 10−3.

Table 7.1 shows that thermal power γ is nearly constant in both wavebands for each
material. On the contrary, the dispersive power ω is higher in LWIR than in MWIR.
Thereby, the larger the waveband, the higher the dispersive power. Consequently, the
waveband choice only impacts the achromatisation of the design, which is harder to per-
form in LWIR. Note that diffractive elements have a very high negative chromatic power
that does not depend on the material. Therefore, to compensate for much lower refractive
positive ω, DOEs must be designed with low optical powers. As for the diffractive thermal
power, it only depends on a material’s TCE, according to Equation 7.13.

7.3 Design of thin lenses in contact

We have introduced three major parameters in Section 7.1. The optical power Φ defines
the "converging ability" of a lens. Under a temperature and wavelength variation, the
resulting defocus is characterized by the chromatic and thermal powers (ω and γ). An
achromat optical design should provide the required effective focal length with minimal
aberrations while keeping its effective ω and γ as low as possible. We have demonstrated
that ω and γ are impacted mainly by lens material and focal length.

7.3.1 Single lens case

The dispersive ability of a lens is characterized by its dispersive power ω, defined in Equa-
tion 7.9. Note that this definition applies to refractive and diffractive lenses. Only the
developed expression depends on the type of lens (see Equations 7.9 and 7.12). The chro-
matic defocus ∆λf can be expressed over the waveband ∆λ for any lens, using Equation
7.8:
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

ω = −∆λ

Φ

∂Φ

∂λ

= −f∆λ
∂1/f

∂λ

=
∆λ

f

∂f

∂λ

⇔ ∂f

∂λ
=

fω

∆λ
⇒ ∆λf = ωf

(7.14)

Similarly for the thermal defocus ∆Tf , using the definition of γ (Equation 7.5):

γ =
1

Φ

∂Φ

∂T

=
1

f

∂f

∂T

⇔ ∂f

∂T
= −fγ

⇒ ∆Tf = −γf∆T

(7.15)

The thermal variation ∆T will cause a total defocus ∆z coming from the intrinsic thermal
lens focal shift ∆Tf and from the housing deformation ∆L. Using Equations 7.1 and 7.15,
the total amount of thermal defocus is expressed as [55]:

∆z = |(∆L−∆Tf)| = |∆T (LαH + fγ)| (7.16)

For a single lens and object at infinity, the housing length L is equal to the focal length
f as shown in Figure 7.1. We get the total thermal defocus [56]:

∆z = |f∆T (γ + αH)| (7.17)

From aberration theory, the depth of focus for a diffraction-limited imaging system (OPD
λ/4) is:

∆z = |2λ(F/#)2| (7.18)

As a result, the maximal temperature variation ∆T that a single lens (refractive or diffrac-
tive) can withstand to keep the same optical performance is given by:

∆Tmax =

∣∣∣∣ 2λ(F/#)

D(γ + αH)

∣∣∣∣ (7.19)

where F/# is the F-number of the optical system, defined as F/# = f/D with D the
pupil diameter. As an example, the maximal temperature variations that a Ge lens can
withstand at 10 µm are shown in Figure 7.4:

For instance, we consider a 200 mm F/2 Germanium lens in an aluminium housing oper-
ating at 10 microns. With γ = 130×10−6, and αH = 23×10−6, the tolerable temperature
difference until the thermal defocus becomes unacceptable is only 2.6°C.
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Figure 7.4: Tolerable temperature variations for a thin refractive Ge lens at 10 µm [55]

7.3.2 Case of multiple thin lenses in contact

In this section, we explain how to correct the chromatic and thermal defocuses of j
thin refractive or diffractive lenses in contact. Starting with two separated lenses, the
Gullstrand formula, demonstrated in [57], links the total optical power ϕtot to the powers
of the two lenses composing the system:

ϕtot = Φ1 + Φ2 −
e

n
Φ1Φ2 (7.20)

with n the refractive index of the medium between the two lenses, whose principal planes
are separated by a distance e. In the case of thin lenses in contact, the formula reduces
to ϕtot = Φ1 + Φ2. More generally, for j thin refractive/diffractive lenses in contact, we
have:

ϕtot =

j∑
i=1

Φi (7.21)

Using Relation 7.21, we can apply the definition of ω (Equation 7.8) to any set of j lenses
in contact: 

j∑
i=1

∂Φi

∂λ
=

j∑
i=1

(−∆λωiΦi)

⇔ ∂

∂λ

[
j∑

i=1

Φi

]
= −∆λ

j∑
i=1

ωiΦi

⇔ ∂Φtot

∂λ
(λ) = −∆λ

j∑
i=1

ωi(λ,∆λ)Φi(λ)

(7.22)

We assume that the lens system is designed at a wavelength λ1, resulting in an effective
optical power Φtot(λ1). For another wavelength λi, we define the notations ∆λk =∧ λk−λ1
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and ∆λk
Φtot =∧ Φtot(λk)−Φtot(λ1). The chromatic aberration can be corrected for k ∈ [2, j]

distinct wavelengths λ2..k using Equation 7.22:



∆λ2Φtot = 0⇔
j∑

i=1

ωi(λ1,∆λ2)Φi(λ1) = 0

...

∆λk
Φtot = 0⇔

j∑
i=1

ωi(λ1,∆λk)Φi(λ1) = 0

(7.23)

When k = 2, System 7.23 is called an achromat system and allows for correcting the
chromatic focal shift for two distinct wavelengths. Note that System 7.23 is valid as
long as the lenses are in contact, regardless of the type of lenses. The difference between
refractive and diffractive lenses arise from the expression of ωi(λ1,∆λ), given in Equations
7.9 and 7.12. In the case of an achromat doublet (j = k = 2), one lens must be diverging
(Φ1 < 0) while the second must be converging (Φ2 > 0). Both lenses must be made of
different materials, preferably with low and high dispersion.

A similar process can be applied to express the thermal defocus of j thin lenses in contact:



j∑
i=1

∂Φi

∂T
=

j∑
i=1

γiΦi

⇔ ∂Φtot

∂T
=

j∑
i=1

γi(T )Φi

⇔ ∂ftot
∂T

= −f 2∂Φtot

∂T
= −f 2

j∑
i=1

γi(T )Φi

(7.24)

The total thermal defocus ∆z expressed in Equation 7.17 can be generalized for j thin
lenses in contact [56]:

∆z =

∣∣∣∣∣f
[

j∑
i=1

(γiΦi) + αH

]
∆T

∣∣∣∣∣ (7.25)

7.3.3 Designing an achromat athermal triplet

Using a triplet lens system is the simplest way to correct both thermal and chromatic
aberrations. Remind that each IR material can be defined by two coefficients γ (thermal)
and ω (chromatic). For j thin lenses in contact, the conditions for power conservation,
achromatisation and athermalisation are provided by Equations 7.23 and 7.25 [56]:
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

j∑
i=1

Φi = Φ

∆λf = 0⇔
j∑

i=1

ωiΦi = 0

∆z = 0⇔
j∑

i=1

γiΦi = −αHΦ

(7.26)

Recall that System 7.26 is valid regardless of the type of thin lenses. The refractive or
diffractive nature of lens i only impacts the expression of γi and ωi, provided in Section
7.1. System 7.26 has three equations, meaning that at least three distinct materials must
be used to have a unique design solution (Φ1,Φ2,Φ3). However, it is possible to find a
combination of only two materials that is achromatic and athermal. Considering a lens
doublet, we solve System 7.26, leading to the athermal condition:

1

ω1

(γ1 + αH) =
1

ω2

(γ2 + αH) (7.27)

In the case of a thin lens triplet with three distinct materials, System 7.26 is written in
matricial form and solved by multiplying the second member with the inverted matrix
given by:

Φ1

Φ2

Φ3

 =
1

det

γ3ω2 − γ2ω3 γ2 − γ3 ω3 − ω2

γ1ω3 − γ3ω1 γ3 − γ1 ω1 − ω3

γ2ω1 − γ1ω2 γ1 − γ2 ω2 − ω1

  Φ
0

−ΦαH

 (7.28)

det is the determinant of the system, defined by :

det = ω1(γ2 − γ3) + ω3(γ1 − γ2) + ω2(γ3 − γ1) (7.29)

7.4 Design of thin air-spaced lenses

In this section, we study the design of refractive systems with any number of air-spaced
thin lenses. The effect of a temperature variation on a refractive system is illustrated in
figure 7.5:
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Figure 7.5: Configuration of an optical system containing k thin lenses separated by k-1 spaces.
All design parameters vary when the temperature changes from T1 to T2. hi represents the
paraxial ray height of lens i, and fb is the back focal length of the system.

The relation between the total power and the power of each lens (Equation 7.21) must be
adapted to take air spaces into account. Figure 7.6 describes the layout of two air-spaced
thin lenses:

Figure 7.6: Optical system containing 2 thin lenses.

From Figure 7.6 layout, we deduce:

h2

h1

=
−f1 + e

−f1
= 1− eΦ1 (7.30)

Using the Gullstrand formula (Equation 7.20) for two air-spaced thin lenses:

Φ = Φ1 +
h2

h1

Φ2 (7.31)

This relation generalizes to any number of thin air-spaced lenses. We weight the power Φi

of lens i by the ratio hi/h1, where hi and h1 are respectively the ith and first lens paraxial
ray height. For an optical system containing k thin lenses separated by k − 1 spaces, we
re-define the optical power of each element i as [58]:
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Φ′
i =∧

hi

h1

Φi (7.32)

We can re-write the athermal and achromat equations for an air-spaced optical system as
[59]:

Total power:
1

f
= Φ =

k∑
i=1

Φ′
i (7.33)

Achromatism: ∆λf =
1

Φ2

k∑
i=1

ωiΦ
′
i = 0 (7.34)

The total defocus amount is computed as the difference between the housing expansion
and the thermal focal shift. We also make the approximation that the optical powers vary
much more than the paraxial ray heights [59]:

∂Φ′
i

∂T
≃ hi

h1

∂Φi

∂T
(7.35)

The athermal equation for k air-spaced thin lenses (Equation 7.25) becomes:

Athermalism :
∆Tf

∆T
= −f

(
f

k∑
i=1

γiΦ
′
i + LαH

)
= 0 (7.36)

For an object at infinity, the housing length L equals the effective focal length f . The
final athermal achromat system for k thin lenses separated by k − 1 spaces is given by:

k∑
i=1

Φ′
i = Φ

k∑
i=1

ωiΦ
′
i = 0

k∑
i=1

γiΦ
′
i = −αHΦ

(7.37)

7.4.1 Equivalent lens model

System 7.37 can be solved with a unique solution (Φ1, ...,Φk) given k materials, a housing
material TEC and the required effective focal length. However, since System 7.37 is not
meant for aberration correction, this approach is unlikely to result in a performing design.
In addition, System 7.37 relies on lenses material but does not provide any material se-
lection method. Due to an important number of potential glasses and housing materials,
combining all the possible choices to find the best one (which is not guaranteed to perform
well) is extremely time-consuming and very challenging. In this section, we describe the
"equivalent lens model" [59]. It allows determining suitable material combinations that
do not degrade the design merit functions. It involves a graphical representation of the
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lens system.

We consider a refractive system made of K thin lenses separated by K − 1 spaces. It is
possible to build an equivalent system where k − 1 lenses are replaced by an "equivalent
lens" called Le. The only remaining lens is called Lj. Hence, the system has now three
equations for only two lenses, Le and Lj. The equivalent lens Le is defined by the optical
power Φe, the chromatic power ωe and the thermal power γe, defined as [59]:

Φe =
k∑

i=1

(Φ′
i)− Φ′

j

γe =
1

Φe

[
k∑

i=1

(ωiΦ
′
i)− ωjΦ

′
j

]

ωe =
1

Φe

[
k∑

i=1

(γiΦ
′
i)− γjΦ

′
j

] (7.38)

We now try to athermalize and achromatize the doublet composed of Le and Lj. System
(7.37) is rewritten using the equivalent doublet Le and Lj: [59] :

Φ′
j + Φe = Φ

ωjΦ
′
j + ωeΦe = 0

γjΦ
′
j + γeΦe = −αHΦ

(7.39)

Solving the first two equations of System (7.39) leads to a unique achromatic solution for
the equivalent doublet: {

Φ′
j = −ωeΦ/(ωj − ωe)

Φ′
e = +ωjΦ/(ωj − ωe)

(7.40)

The third equation of System (7.39) gives the so-called "athermal condition" [60]:

γj =
γe + αH

ωe

ωj − αH (7.41)

This condition geometrically represents a line equation. It corresponds to the line pass-
ing by the two points (ωe,γe) and (0,−αH). It provides a graphical necessary (but not
sufficient) condition to have an achromat athermal system. It results in a graphical tool
named "athermal glass map" and is depicted in Section 7.4.2.

7.4.2 Athermal chart design tool

The "athermal glass map" or "athermal chart" tool is a visual aid to find suitable material
combinations to athermalize a design quickly. A lens is represented by three parameters
(Φ, ω, γ) where Φ is the optical power (linked to the lens material, shape, etc.), ω is
the chromatic power and γ the thermal power. Note that the couple (ω, γ) completely
defines the optical behaviour of any material. (ω, γ) values, although temperature and
wavelength dependent, has been approximated for all IR materials in Section 7.2.2.
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Figure 7.7: Athermal condition on an athermal glass map [59].

The equivalent doublet (Le, Lj), is graphically represented on a 2D chart by the points
(ωe,γe), (ωj,γj) while the housing material corresponds to the point H(0,−αH) [47, 59],
like in Figure 7.7.

In Figure 7.7, the equivalent doublet satisfies the athermal condition considering the
housing material αH since the line passing by Le(ωe,γe) and Lj(ωj,γj) intercepts the point
H(0,−αH). Any couple (Le, Lj) defines a specific housing material αH on the ω = 0 axis.
However, this "fictitious" housing material is unlikely to correspond to existing material.
Nonetheless, the athermal glass map tool is very helpful in quickly identifying a suitable
housing material, i.e. the existing material with the closest TEC compared to the "ficti-
tious" one.

The design is optimised in the next step so that the athermal line intercepts the newly
identified existing housing material. This is called "redistributing the powers" [59] because
the equivalent lens Le, which contains all the lenses except Lj, is brought to a new position
L′
e as depicted in Figure 7.8.

We use an optical optimisation software (such as Code V) to bring Le to L′
e (Figure 7.8),

using the constraints defined in Equations 7.40 and 7.41. Nevertheless, this method is
impractical since it modifies nearly all the lenses at once. It is extremely likely to dras-
tically change the design layout (to a point where no more optimisation is possible) and
degrade its optical quality. Consequently, a "smoother" multi-step method is described
in the following. Its goal is to minimize the impact of the change Le → L′

e.

The only degree of freedom left with the equivalent lens model is lens Lj material. The
latter can be changed with fewer risks of degrading the design’s optical quality. The result
of modifying Lj first and then Le is depicted in Figure 7.9:
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Figure 7.8: Principle of achromatic and athermal design by redistributing the powers [59].

Figure 7.9: (a) Directly redistributing the powers, (b) Changing lens j material before redis-
tributing the powers [59].

Figure 7.9 shows how it is possible to reduce the distance (i.e. the optimisation con-
straints) between Le and L′

e by modifying Lj first. The optical performance are conserved
if ω′

j ≃ ωj.

7.4.3 Selecting the substitute lens Lj

To achieve athermalisation, care must be taken regarding the choice of the substitute lens
Lj. The number of lenses replacement, i.e. the efficiency of the algorithm, depends on
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the choice of Lj. Before applying the equivalent lens model, we define a chromatic and
thermal weight for each lens i [60]:

Chromatic weight Mi = |ωiΦ
′
i|/(

k∑
i=1

|ωiΦ
′
i|) (7.42)

Thermal weight Ni = |γiΦ′
i|/(

k∑
i=1

|γiΦ′
i|) (7.43)

Then we define a global weight Wi that models the influence of each lens on the total
optical dispersion and the total thermal defocus [60]:

Total weight Wi = Mi +Ni (7.44)

We consider the lens with the highest weight to have the most significant influence on
the design. It constitutes the substitute lens Lj while the remaining lenses constitute the
equivalent lens Le.

7.4.4 Athermal optimisation algorithm

The presented achromat athermal algorithm is illustrated in Figure 7.10, adapted from
[60].

Figure 7.10: Design athermalisation algorithm [60].

The athermal algorithm is implemented in a Code V macro, along with an environmental
macro that modifies the design for various temperatures and housing materials and com-
putes the optical quality. We assume that an initial design has achieved sufficient image
quality.
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Step 1: Recover current lens information and material characteristics

This step initializes the algorithm. We create an "IR library" with all the couples (γ,ω)
and each housing materials TEC αH . Using an optical software (Code V), we recover all
the lens parameters (fi, hi, Φi,γi, ωi, Wi, surface number, lens type, etc.). Finally, we
compute Φ′

i and the weight Wi for each lens i.

Step 2: substitute lens Lj and Le

We search for the best substitute lens Lj by comparing the weights Wi of each element.
We then compute the initial equivalent lens Le.

Step 3: Replace Lj by L′
j

This step consists in changing lens Lj material (Lj → L′
j). To do so, we compute the

fictitious αH obtained by changing Lj → L′
j and keeping Le. The material of Lj is replaced

by the material bringing the fictitious housing the closest to the target housing, like in
Figure 7.9. In addition, the selected replacement material should have nearly the same
chromatic power as Lj to degrade the optical quality as little as possible. As possible
replacement solutions, we search all the materials (ωmat,γmat) that minimize:|αH − αtarget| = |

γeωmat − γmatωe

ωe − ωmat

− αtarget|

|ωmat − ωj|
(7.45)

Finally, we replace lens Lj material with the chosen one L′
j, and we auto-focus the design,

using air spaces as variables.

Step 4: Redistribute the powers Le → L′
e

This step consists in "redistributing the powers". The equivalent lens Le is changed to
L′
e to satisfy both the athermal condition (Equation 7.41) and the achromatic equations

7.40. This step is performed using an optimisation software such as Code V:

• Define all the variable parameters (curvatures, conic cte, spaces,...)

• Define the merit function settings

• Create user-defined constraints and functions (ωe,γe,Φe) that implements Equations
(7.40,7.41).

• Define a flexible weight for those constraints to control the optimisation output
(ensure convergence)

• Run Code V optimisation.

Step 5: Environmental check

Code V ENV macro allows simulating a temperature variation and recovering the optical
quality for a given housing material. We use the RMS spot diagram as the figure of merit.
The iterative optimisation process (steps 1 to 5) ends when the RMS spot size is below
the pixel size for the required temperature range.
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7.5 Application to a MWIR optical design

7.5.1 Initial design: application of athermal algorithm

In this section, we apply the athermal algorithm to build a MWIR design using CodeV,
following the requirements established in Chapter 3 (see Table 3.2). We consider a LEO
orbit at 400 km altitude, a 90 mm pupil diameter and an F/1.5 working F-number. The
detector, similar to the one illustrated in Figure 2.2, have squared pixels of 4 µm pitch. It
is composed of a Dewar tube with a cold stop to isolate the FPA at a very low temperature
(∼77 °K). The diffraction Airy spot has a diameter:

DAiry = 2.44λF/♯ ≃ 17 µm (7.46)

The initial optical design contains two refractive lenses and one hybrid (refractive-diffractive)
lens. This design is depicted in Figure 7.11 and the RMS spot diagram is shown in Figure
7.12.

Figure 7.11: Optimised MWIR design with three lenses. The conic and diffractive surfaces are
respectively displayed in purple and blue. The red vertical lines show the dewar and cold stop
entrances.

The initial design spot sizes are ideal, with 100% of the energy collected inside a 6 µm
diameter circle. Note that as long as optical aberrations remain smaller than the 17 µm
Airy blur spot, they do not modify the PSF shape. Since the diffraction PSF is well
sampled by 4.88 pixels (see Section 3.4.1), it can be deconvoluted to retrieve the exact
pixel information. The RMS spot size is small enough to fit inside a 4 µm pixel.

This section aims to analyse the thermal variation of the spot size and apply the athermal
algorithm if needed. Using the environment tool of Code V (ENV ), the RMS spot size is
depicted for various temperatures in Figure 7.13.
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Figure 7.12: RMS spot diameter (mm) for three FoVs considering the initial MWIR design. The
Airy disk is displayed with a circle or an ellipse. The off-axis FoVs has vignetting due to the cold
stop, explaining the deformed Airy pattern.

Figure 7.13: Code V environment simulation of the initial design, with Al housing. The reference
temperature is 27°C (300°K). The purple line represents the Airy blur spot threshold of 17 µm.

In this section, we only consider classical aluminium housings, with a TEC ≃ 23 ×
10−6/°K. The reference temperature is set to 27°C. The constant purple line displays the
selected pixel size. According to Figure 7.13 the image quality remains sufficient inside
the thermal range [20− 35]°C°. This range is small and needs to be extended, especially
for space applications.

The initial design thermal parameters are computed according to steps 1 and 2 (See
Section 7.4.4), and the text output of the Code V macro is displayed in Figure 7.14:

Figure 7.14 shows that the optimal housing material is fictitious and that the refrac-
tive part of the first lens has the highest weight. Figure 7.15 displays an environmental
simulation of the initial design, considering the fictitious housing computed in Figure 7.14:

According to Figure 7.15, if a non-existing housing resulting from the application of the
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Figure 7.14: Code V macro text output: Initial design thermal parameters. The chosen housing
material is Al with a TEC of 23.4×10−6/°K. The equivalent lens model leads to a different
"fictitious" housing with a TEC of -37.78×10−6/°K. The first refractive lens (without the front
diffractive surface) has the highest thermal weight. The equivalent lens model leads to different
parameter outputs depending on the choice of Lj .

Figure 7.15: Code V environment simulation of the initial design, with non-realistic but optimal
housing. The purple line represents the Airy blur spot threshold of 17 µm.

athermal equations is used in CodeV Env macro, the acceptable thermal range can be
widened from 0 °C to 60 °C. This numerical simulation, though unrealistic, shows the
validity of these equations. We now use the athermal algorithm to modify the design and
converge to the desired Al housing.

7.5.2 Practical adjustments to the athermal algorithm

As can be seen in Figure 7.14, the achromatic equation
∑k

i=1 ωiΦ
′
i = 0 is not verified since

we have, after Code V optimisation:

k∑
i=1

ωiΦ
′
i = 0.0073 =∧ ϵ (7.47)
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The residual ϵ comes from the thin lens approximation used in the achromatic equation
that is not as accurate as Code V ray tracing. Considering this residual, the solution of
the athermal achromat system 7.37 becomes:{

Φ′
j = (ϵ− ωeΦ)/(ωj − ωe)

Φ′
e = (ϵ+ ωjΦ)/(ωj − ωe)

(7.48)

γj =
γe + αH

ωe −
ϵ

Φ

ωj −
αHωe + γe

ϵ

Φ

ωe −
ϵ

Φ

≡ γe + αH

ωe −
ϵ

Φ

ωj −B(αH , ωe, γe) (7.49)

The athermal line equation now depends on the ratio ϵ/Φ. When ϵ = 0, Equations 7.48
and 7.49 reduce to the achromat athermal solution (Equations 7.40 and 7.41). Using Code
V, we deduce that ϵ/Φ ≃ 1, meaning that an important mistake arises if the residual ϵ is
neglected. The line Equation 7.49 still pass by the point (Le,Lj). However, the line now
intersects the ω = 0 axis at the point H(0,−B(αH , ωe, γe)). This intersection does not
directly provide the optimised housing TEC αH anymore and depends on the equivalent
lens parameters (ωe, γe).

7.5.3 Athermal optimisation and material replacements

In the following graphical representations (Figures 7.16, 7.17 and 7.18), the resulting ficti-
tious housing TEC αH have been displayed instead of the coordinate origin −B(αH , ωe, γe)
for clarity. Therefore, the αH values are not necessarily ordered in the γ axis.

The initial MWIR design has been described in Figures 7.11 and 7.13. The first iteration
of the athermal algorithm is graphically shown in Figure 7.16.

Since the fictitious TEC resulting from the first iteration is not close enough to Al, a
second iteration is made. Thermal and chromatic weights are computed again with the
newly obtained design, resulting in a potentially new substitute lens Lj and equivalent
lens Le (same process as in Figure 7.14). During the redistribution of powers (i.e. Code V
optimisation), the constraints weights are kept low to ensure that the design performance
is not degraded too much. The second iteration is illustrated in Figure 7.17.

Similarly to Figure 7.16, Figure 7.17 shows how the algorithm converges to fictitious
housings that are closer to Al. The substitute lens Lj has been replaced by IRG26 during
this iteration. Since the redistribution of powers moves Le to L′

e by a large distance on the
map, the Code V constraint weights are kept low. Figure 7.18 describes the last iteration
of the athermal algorithm.

In the last iteration depicted by Figure 7.18, the second IRG22 lens has been selected as
substitute lens Lj and replaced by ZnSe, making a massive step towards the final goal
TEC = 23.4. The final housing TEC value is 26.5, close to the target aluminium TEC.
The constraint weights have been increased by a vast amount from 0.01 to 5, allowing the
final optimisation to reach the targeted value.

From this optimisation example, the step Lj ⇒ L′
j allows quick and efficient convergence

since the last "redistribution of powers" optimisation could recover the required image
quality. The final design layout as well as the environmental simulation are depicted in
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Figure 7.16: First iteration. Initially, Lj (IRG23, black diamond) and Le (black dot) provide
a fictitious material αH , TEC = −37.8 × 10−6/K. Step 1: Lj ← L′

j (IRG25, red and blue
diamond) and the system is auto-focused (red dot Le), providing a second fictitious material αH ,
TEC = −21.8 × 10−6/K. Note that ωj − ω′

j ≃ 0. Step 2: Powers are redistributed Le ← L′
e

(blue dot) leading to the final fictitious material αH , TEC = −18.6× 10−6/K.

Figure 7.17: Second iteration. Initialy, Lj (IRG25, black diamond) and Le (black dot) provide
a fictitious material αH , TEC = −18.6 × 10−6/K. Step 1: Lj ← L′

j (IRG26, red and blue
diamond) and the system is auto-focused (red dot Le), providing a second fictitious material αH ,
TEC = 4.04× 10−6/K. Note that ωj −ω′

j ≃ 0. Step 2: Powers are redistributed Le ← L′
e (blue

dot) leading to the final fictitious material αH , TEC = 8.75× 10−6/K.

Figures 7.19 and 7.20.
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Figure 7.18: Third and last iteration. Initialy, Lj (IRG22, black diamond) and Le (black dot)
provide a fictitious material αH , TEC = 8.75× 10−6/K. Step 1: Lj ← L′

j (ZnSe, red and blue
diamond) and the system is auto-focused (red dot Le), providing a second fictitious material
αH , TEC = 24.5 × 10−6/K. This time, the difference ωj − ω′

j allows to reduce the impact of
redistribution of powers. Step 2: Powers are redistributed Le ← L′

e (blue dot) leading to the
final fictitious material αH , TEC = 26.47× 10−6/K.

Figure 7.19: optimised athermal MWIR design with three lenses. The conic and diffractive
surfaces respectively appear in purple and blue. The red vertical lines show the dewar and cold
stop entrance.

In conclusion, the application of the athermal achromat algorithm enables a diffraction-
limited optical performance within a large temperature range ±50°K. Recall that the
initial design in Figure 7.11 had different lens materials and powers and could only with-
stand ±5°K (Figure 7.13). The optimised MWIR camera follows every requirements
defined in Part I apart from the dual-band capability. The dual-band issue occurs for the
diffractive lens used in the design since it cannot operate efficiently inside a broad wave-
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Figure 7.20: Code V ENV simulation with Al housing TEC. The RMS spot size is the figure of
merit, and the reference temperature is 27°C. The purple line displays the 17 µm Airy blue spot
diameter.

band as explained in Chapter 8. The extension of this camera to the LWIR bandwidth
becomes the major research question of the thesis, and will lead to many innovations in
the modelling of multilyaer diffractive optical elements, introduces in Chapter 9.
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We aim to extend Chapter 7 athermal MWIR design to LWIR by researching effi-
cient dual-band diffractive optical elements solutions. This chapter presents diffrac-
tive optical elements (DOEs) principles and design equations. These extremely thin
imaging elements are composed of parabolic discontinuous zones and produce mul-
tiple foci, called "diffractive orders". Their design originates from the thin element
approximation (TEA) and the requirement of constructive interferences at the focal
plane. We derive the analytic zone profile, phase and diffraction efficiency of DOEs
and study the energy distribution across multiple orders. For a specific order, this
energy can only be maximized for one wavelength, called "design wavelength", and
drops for any other wavelengths. It is, however, possible to consider other orders
to obtain the maximum diffraction efficiency for multiple wavelengths. The study
of DOE chromatic focal shift is a significant point of this chapter, showing that
multi-order DOEs are unsuitable for our dual-band optical design.
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8.1 Introduction to the scalar theory of diffraction (SDT)

Refractive or reflective imaging optical elements such as lenses or mirrors are very ac-
curately studied using ray-tracing (ZEMAX, CODEV or ASAP software). Ray-tracing
is a scalar approximation of Maxwell’s equations when the characteristic interface size
is much larger than the wavelength. Diffractive optical elements (DOEs), in this case
diffractive Fresnel lenses, are quasi-periodic with an aperture divided into discontinuous
zones of period T . The ratio T/λ defines the limit between the refractive and diffractive
regime. This ratio also establishes the validity of the analytical scalar theory of diffraction
(SDT). Following [61], for periods T > 14λ, the SDT is considered accurate and provides
an analytical phase model. The SDT allows retrieving the un-aberrated wavefront, re-
sulting from the phase delay introduced by a DOE. This phase delay is expressed using
the concept of optical path difference (OPD):

U(x, y) = U0 exp [iΦ(x, y)]

Φ(x, y) ≡ 2π

λ
OPD(x, y;λ)

(8.1)

U(x, y) is the scalar complex phasor corresponding to the DOE (see Chapter 4 for more
details). It involves a phase delay Φ, computed using the optical path difference (OPD).
The optical path length (OPL) of a ray travelling inside an optical component composed
of N different refractive indexes ni is defined as:

OPL(λ) =
N∑
i=1

ni(λ)Li (8.2)

Where ni is the refractive index of the medium i and Li is the Cartesian length of the
ray inside the medium i. Note that the N media in Equation 8.2 compose the optical
component and does not account for the ray propagation in free space. The length Li can
be obtained using ray-tracing but is often computed analytically using the thin element
approximation (TEA). The TEA is valid when the optical component is extremely thin
(i.e. ratio thickness/period<< 1, see Section 9.4 for the details). Under the TEA assump-
tion, the length Li can be computed as if the rays were not deviated by the optical media
(no refraction). This approximation is only valid for paraxial rays parallel to the optical
axis. Figure 8.1 displays the OPL calculation in the case of a thin parabolic biconvex
refractive lens:
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Figure 8.1: Optical path length calculation example for a thin refractive lens

Figure 8.1 displays the OPL calculation for a thin lens layout when the TEA is considered.
The lens has a refractive index n while the external media has an index of ne. At a
certain radius x, the blue ray travels a distance dx inside the lens, with no deviation at
the interfaces. The optical path length of the blue ray is defined as:

OPL(x) = ndx + ne(d0 − dx) = dx(n− ne) + ned0 (8.3)

The distance dx depends on the lens’s curvature radius and conic constant. For instance,
in Figure 8.1, we consider a parabolic biconvex lens with radius of curvature R and focal
length f . We have: 

dx = ned0 − 2
x2

2R
= ned0 −

x2

2(n− ne)f

OPL(x) = −x2

2f

(8.4)

Replacing x by a radius r in two dimensions, the phasor or complex transmittance asso-
ciated with this biconvex parabolic lens is:

U(r, λ) = exp

[
i
2π

λ
OPL(r)

]
= exp

[
−ik r2

2f

]
(8.5)

Equation 8.5 describes the converging behaviour of a parabolic lens according to the TEA.

8.2 Diffractive Fresnel lenses

In the case of this thesis, where we focus only on imaging components, the general appel-
lation diffractive optical element (DOE) always refers to diffractive imaging lenses, known
as Fresnel diffractive lenses. The shape patterns of these elements are called Fresnel or
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kinoform zones because they are similar to the annular zones of refractive Fresnel lenses.
Diffractive Fresnel lenses are very thin elements (H ≃ 10 µm). Such a thin imaging
element drastically reduces the weight and the size of optical systems while keeping an
excellent image quality, as shown hereafter.

8.2.1 Kinoform lens imaging properties

Diffractive lenses are to Fresnel lenses what gratings are to prisms. A DOE results from
segmenting the parabolic profile of a refractive lens into parabolic zones, with two neigh-
bouring zones having a 2π phase shift. Hereafter we show why the zone shapes are
parabolic (Equation 8.11). The process is similar to phase wrapping, where a continuous
phase is segmented into modulo 2π zones. The representation of such diffractive lens is
depicted in Figure 8.2.

Figure 8.2: Layout definition of a kinoform diffractive lens [62]. The diffractive zones are annuli
with parabolic profiles. The zone heights (h) and radii (rm) are designed so that constructive
interferences occur at the focal plane between each neighbouring zone (green, yellow, orange and
red "beams") for the "design" wavelength λ0.

Figure 8.2 describes the layout of a diffractive lens, with parabolic Fresnel zones. The
primary design requirement is that constructive interferences occur between neighbouring
zones at the focal plane for a specific wavelength λ0. As expressed in Figure 8.2, the OPD
between each diffractive zone is increased by λ0, which corresponds to a 2π phase shift.
For instance, the OPL associated with the mth zone is OPLm = f0 +mλ0. The specific
wavelength λ0 is called the "design wavelength". Based on Figure 8.2 layout, the zones
radii are calculated using the Pythagorean theorem:

r2m = 2mλ0f0 + (mλ0)
2 ≃ 2mλ0f0 (8.6)

The radii’s design ensures that the diffractive zones interfere constructively at the focal
point, but their profiles and heights remain unknown. Fermat’s principle states: "All the
rays coming together in a determined zone, even though they travel on distinct paths,
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result in having an equal optical path length to a fixed point F, placed on the axis at a
distance f0 from the DOE" [50]. This principle is illustrated in Figure 8.3 and serves as
the basis for the DOE profile determination.

Figure 8.3: Kinoform lens profile [50] serving as a reference geometrical layout. The OPL at
any radius r inside the mth zone is AF. BF is a particular OPL, defined at the edge of zone m
(r = rm). The shape of the mth zone is obtained by imposing AF = BF for any radius r inside
zone m.

We illuminate the kinoform with a plane wave, all the incoming light rays parallel to the
axis. We consider two of these incoming rays as in Figure 8.3, one of them goes through
the mth zone in A, and the other goes through the zone edge in B. The rays cover the
same optical path up to points A and B. According to Fermat’s principle, the optical
path between points A and F has to be the same as the optical path between B and F.
Equating the two OPLs (AF = BF) leads to the following equation [50]:

ne

√
r2 + (f0− z)2 = ne(f0 +mλ0)− nz (8.7)

where the expression of the OPL BF comes from the constructive interferences require-
ment expressed in Figure 8.2. Note that the profile height z(r) is counted negatively in
Figure 8.3. n and ne are the refractive indices of the lens and exterior medium. We
impose ne = 1 for the sake of clarity.

The calculations of zone profile z(r), phase Φ(r, λ), complex transmittance U(r, λ) and
diffraction efficiency η(j, λ) are entirely based on the work of V. Moreno et al [50]. The
main calculation steps are detailed hereafter to understand the origin of DOE shapes and
figures of merit.

Reordering terms in Equation 8.7 lead to the equation of an hyperboloid of revolution:

[z − z0]
2

a2
− r2

b2
= 1 (8.8)
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The hyperboloid is centred around the point (z0, 0). The parameters z0, a and b are
defined as:



z0 ≡
(n− 1) + nmλ0

n2 − 1

a ≡ (n− 1)−mλ0

n2 − 1

b ≡ f(n− 1)−mλ0√
n2 − 1

(8.9)

Equation 8.8 can be rewritten to obtain z(r), considering an hyperboloid placed at the
left hand side of the origin like in Figure 8.3:

z(r) =
n

n2 − 1

mλ0 + ζ − [ζ −mλ0]

√
1 + r2 +

[
δ

ζ −mλ0

]2
ζ ≡ 1

n
(n− 1)f

δ ≡ 1

n

√
n2 − 1

(8.10)

This expression can be simplified using a Taylor expansion to approximate the square
root, since [δ/(ζ −mλ0)]

2 << 1. The higher terms of this expansion are negligible, and
we make the approximation ζ −mλ0 ≃ ζ without losing accuracy. The final expression
for the zone height z(r) results in:

z(r) = Zmax

(
m− r2

r21

)
Zmax ≡

λ0

n− ne

r21 ≡ 2λ0f0

(8.11)

where Zmax is the maximal zone height, n and ne respectively being the refractive index
of the DOE and the outside media, for the wavelength λ0. The radius r is taken inside
the mth zone: r ∈ [rm, rm+1[. Equation 8.11 is an accurate parabolic approximation of
the rigorous hyperbolic shape (Equation 8.10).

In summary, the interference requirement (for the specific wavelength λ0) combined with
Fermat’s principle allows retrieving the zone radii and profile expressions. The Thin
Element Approximation (TEA) enables calculating optical path differences (OPDs). The
complex phasor U(r, λ) associated with the mth zone of the kinoform diffractive lens
depends on the expression of the phase delay introduced by the DOE:



Φ(r, λ) =
2π

λ
OPD(r, λ) =

2π

λ
z(r)(nλ − neλ)

Um(r, λ) ≡ exp [iΦ(r, λ)] = exp

[
i2πα

(
m− r2

r21

)]
α ≡ λ0(nλ − neλ)

λ(n− ne)

(8.12)

Progress in hybrid diffractive/refractive lens solutions for compact space IR imager 145



8.2. Diffractive Fresnel lenses

where the radius r ∈ [rm, rm+1[, r21 = 2f0λ0. The refractive index nλ and neλ are defined
for any wavelength λ whereas n and ne are defined at the specific "design" wavelength
λ0. The parameter α is the fraction of 2π phase delay introduced for wavelengths other
than the design wavelength λ0.

The phasor Um is a complex exponential function from which an approximate analytical
expression can be retrieved using a Fourier expansion:


Um(r, λ) =

inf∑
j=− inf

Cj exp

[
i
2πj

r21
r2
]

Cj ≡
1

r21

r21∫
0

exp

[
i2πα

(
m− r2

r21

)]
exp

[
i
2πj

r21
r2
]
dr2

(8.13)

The energy content (Cj) and its location depend on the integer j, called "diffractive
order". The resulting field is divided into an infinite number of spatially separated orders.
Rearranging Equation 8.13 and solving the integral lead to:


Um(r, λ) =

inf∑
j=− inf

Cj exp

[
−ikr2

2λ0f0/(jλ)

]
Cj = exp [i2παm]

exp [2π(α + j)]− 1

2π(α + j)

(8.14)

The phasor (or complex transmittance) expression is interesting since it encompasses the
DOE behaviour. Each order j is associated with a focal length fj and with an energy
content ηj, called "diffraction efficiency", expressed as [50]:


η(j, λ) ≡ |Cj|2 = sinc2(α− j)

fj(λ) =
λ0

λ

f0
j

(8.15)

To have positive values of j corresponding to converging orders, we change j to −j in
Equation 8.14 and reverse the order of summation. If we compare the complex transmit-
tance obtained for the DOE and the thin parabolic refractive lens (Equation 8.5) displayed
in Figure 8.1. We observe that the DOE acts like a refractive lens with an infinite number
of foci fj, each associated with a certain amount of energy. The parameter α, called the
"design parameter", defines the energy content for each order. The plot of diffraction
efficiency in the IR band (4.4 - 12 µm) is shown in Figure 8.4
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Figure 8.4: Diffraction efficiency for a ZnS kinoform diffractive lens in the IR band. The design
wavelength is λ0 = 8 µm, for which the diffraction efficiency reaches 100% for the first order
(j=1). The second order is dominant in MWIR.

According to Figure 8.4, a kinoform DOE is unsuitable for a dual-band MWIR-LWIR
design. Its diffraction efficiency can be optimized for a specific wavelength and order but
quickly drops for other wavelengths. In this example, The diffraction efficiency in only
60% at 12 µm and less than 20% between 4 and 5 µm. It has been shown [63] that
the modulation transfer function depends on the diffraction efficiency, meaning that bad
imaging performances are expected when the diffraction efficiency is low. In addition, a
bad efficiency for order 1 also means an increased stray light caused by the other diffractive
orders (especially orders 0 and 2).

8.2.2 Harmonic diffractive optical element

A harmonic diffractive lens (HDOE) introduces a phase shift of 2pπ, p ∈ Z, between adja-
cent zones. The integer p is called the harmonic parameter of the DOE. This generalized
version of the 2π modulo diffractive lens follows the same reasoning as in Section 8.2 with
slightly different results. HDOEs are detailed in [64, 65]. As shown in Figure 8.5, the
main difference is that their profile heights are p times larger than the classical kinoform
lens.
Following the generalization to a 2pπ phase shift, the zone radii (Equation 8.6) becomes:

r2m = 2pmλ0f0 (8.16)

The optical phase introduced by the harmonic element is written:

Φ(r, λ) = 2παp(m− r2

r21
) (8.17)

where α is the "design" parameter defined in the previous section as α =
λ0

λ

(
nλ − neλ
n0 − ne0

)
.

As already said, the maximal height of the HDOE is increased:
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Figure 8.5: Harmonic diffractive lens profile (right) [65]. The HDOE is p times larger than the
diffractive lens (left) because it introduces a 2pπ phase shift between adjacent zones.

Hmax = p
λ0

n0 − ne0
(8.18)

With the same reasoning as in the previous section, the focal length becomes:

fj(λ) = p
λ0

λ

f(λ0)

j
(8.19)

With j the considered diffractive order. Finally, HDOEs diffraction efficiency is:

η(j, λ, p) = sinc2(pα− j) (8.20)

The diffraction efficiency maxima now occur at wavelengths defined by:

λpeak =
pλ0

j
(8.21)

The diffraction efficiency can now be tuned for higher working orders, meaning that the
optical power of the HDOE can be much higher. However, the higher the operating order,
and the thinner the operating waveband, as shown in Figure 8.6.

Figure 8.6 shows that the diffraction efficiency keeps its peak value of 100% for the de-
sign wavelength, even at high orders. However, the operating waveband progressively
reduces with the diffractive order. The denomination "operating waveband" represents a
waveband where the diffraction efficiency keeps a relatively high value.

Interestingly, for a single harmonic parameter, multiple wavelengths can reach 100% effi-
ciency (Equation 8.21) when the considered order varies, as illustrated in Figure 8.7.
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Figure 8.6: Diffraction efficiency of a ZnS harmonic kinoform diffractive lens (HDOE) working
in the IR waveband. The design wavelength is λ0 = 8 µm, for which the diffraction efficiency
can reach 100% for various orders (j = p). p is the harmonic parameter.

Figure 8.7: Diffraction efficiency for a ZnS harmonic kinoform diffractive lens (HDOE) working
in the IR waveband. The design wavelength is λ0 = 8 µm and the harmonic parameter p = 10.
The diffraction efficiency can reach 100% for various other wavelengths when the order changes
due to Equation 8.21.

This result is more interesting than the previous one in our case because the number of
efficient wavelengths increases. However, in between those wavelengths, the diffraction
efficiency drops drastically because the harmonic parameter and the orders are high. Yet,
let’s recall that in our case, the atmospheric gap between 5 µm and 8 µm is opaque;
thus, this waveband does not require high diffraction efficiency. In addition, if the order
and harmonic parameter are kept sufficiently small, the diffraction efficiency drop softens.
Figure 8.8 describes a setup providing an efficient dual-band imaging solution:
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Figure 8.8: Diffraction efficiency for a ZnS harmonic kinoform diffractive lens (HDOE) working
in the IR waveband. The dashed lines represent the opaque atmospheric window. The diffraction
efficiency keeps a high value in both interesting bands (LWIR and MWIR). λ0 = 9.4 µm and
p = 1.

Figure 8.8 setup allows to obtain the maximal diffraction efficiency and the same focal
point for two distinct wavelengths: The first order is designed with λ1 = 9.4 µm, therefore
the second order keeps the same maximal diffraction efficiency and focal point at λ2 =
9.4/2 = 4.7 µm (Equation 8.21). Section 8.3 further studies this interesting "multi-order"
design in the frame of hybrid refractive-diffractive doublets. Multi-order diffractive optical
elements are called MODOEs in the following.

8.3 MODOE designs

In this section, we will study the imaging capabilities of multi-order diffractive optical
elements (MODOEs). We have previously described the theoretical model of MODOEs
and showed in Figure 8.8 that their diffraction efficiency remained high in both MWIR
(4.4-5 µm) and LWIR (8-12 µm). Achieving high dual-band diffraction efficiency is pos-
sible using a particular setup: The first order is selected in LWIR, while the second is
selected in MWIR since MWIR wavelengths are half the LWIR wavelength. We recall the
focal law of such lens (Equation 8.19):

fj(λ) = p
λ0

λ

f(λ0)

j

For the following we choose λM = 4.7 µm and λL = 9.4 µm. To have a closer look at the
behaviour of the MODOE along the optical axis, a Fourier optics simulation (see Chapter
4) is performed with an F/10 Ge MODOE with an aperture diameter D = 10 mm (focal
length of 100 mm at λ = 8 µm). Figure 8.9 displays the irradiance along the optical axis
for multiple wavelengths:
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Figure 8.9: Irradiance along the optical axis for various wavelengths. The focal length is f = 100
mm for λ = 8 µm meaning that MWIR wavelengths (λ < 8 µm) have no visible focus in this
Figure, for the order j = 1. Therefore, the curves for these wavelengths start with the order
j = 2.

Figure 8.9 depicts the evolution of the irradiance along the optical axis using Fourier
optics. The MWIR wavelengths appear only for orders j > 1 since the graph does not go
beyond the focal length f = 100mm, defined for the LWIR wavelength λ = 8 µm. For
instance, the blue curve on the right (λ = 4 µm, j = 2) shares the focus of the purple
curve (λ = 8 µm, j = 1). The second blue curve from the right (λ = 4 µm, j = 3),
is located at z = 66.6 mm, at the same position than the first order of the λ = 12 µm
wavelength.

The other point of interest for this design lies in the "focalization efficiency". This measure
is similar to the diffraction efficiency and uses the Strehl ratio for various wavelengths.
Since each wavelength has a distinct focal plane, the "best" focal plane is considered for
each wavelength when computing the Strehl ratio. The result is shown in Figure 8.10.

As expected, Figure 8.10 illustrates the drastic image quality drop inside the opaque
atmospheric window waveband. On the contrary, the Strehl ratio ( also called "focalization
efficiency") keeps a high value (above 85% and even 90%) in both MWIR and LWIR
wavebands. It means that foci corresponding to unwanted diffractive orders receive little
energy. However, for a HDOE, the focal length variation is very strong due to the 1/λ
"focal law" (Equation 8.19). Figure 8.11 studies the MODOE chromatic focal shift, also
called the longitudinal chromatic aberration (LCA).

Figure 8.11 shows that the LCA is discontinuous, with a sharp shift at λ = 6 µm. We
could anticipate this result since diffractive orders are discrete integers. This discontinuity
is a huge drawback for this design since it will result in hybrid refractive-diffractive combi-
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Figure 8.10: Strehl ratio at the best focus for various wavelengths. The second diffractive order is
considered for λ < 6 µm. The grey dashed zone corresponds to the atmospheric opaque window,
where no imaging is needed. The best focus is computed for each wavelength, so the chromatic
aberration is not depicted in this figure.

nations with chromatic and thermal defocuses that cannot be compensated (see Chapter
7).
In conclusion, the research for a compact dual-band infrared component has led to in-
vestigating diffractive optical elements. Their intrinsic diffractive nature combines excep-
tionally well with refractive lenses, providing efficient achromat doublets (i.e. a high F/♯
DOE can compensate for the LCA of a refractive element). However, diffractive lenses
classically operate in a relatively short waveband. We have therefore leaned towards MO-
DOEs, which, in the case of a dual MWIR-LWIR waveband, operate efficiently thanks
to their multiple orders. In exchange, their discontinuous LCA might be tough to couple
with other optics, limiting their use. In the following chapter, we further investigate the
multilayer diffractive optical element, which is a diffractive dual-band solution, extending
the desired behaviour of diffractive lenses to multiple wavebands.
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Figure 8.11: Longitudinal chromatic aberration (LCA) obtained with a MODOE lens. The sharp
discontinuity is due to the diffraction order discontinuity (j = 2 for λ < 6 µm and j = 1 for
λ ≥ 6 µm). The analytical points are calculated with Equation 8.19.
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Chapter 9
MLDOE design based on the TEA

This chapter follows the DOE designing method described in Chapter 8 and applies it
in the case of multilayer diffractive optical element (MLDOE). Contrary to Chapter
8 designs, an MLDOE is theoretically an ideal dual-band diffractive solution for
hybrid systems, like in Chapter 7. The thin element approximation (TEA) provides
an MLDOE shape and phase expressions. Increasing the number of layers and
materials increases the number of design wavelengths. As a result, the diffraction
efficiency can reach its maximum for two distinct wavebands instead of one for classic
DOEs. This analytical result complies with the multiple performance studies made
using Fourier optics. This formalism allows the evaluation of the irradiance, Strehl
ratio and chromatic focal shift at any plane perpendicular to the optical axis. Finally,
the validity of the thin element approximation is discussed based on bibliographic
references. Considering thick MLDOEs, the TEA applicability is limited to very
high F-numbers and particular materials. The MLDOE design and results of this
chapter have been published in [66]. The TEA validity study has been published in
[67].
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9.1 Introduction

Diffractive lenses have been studied in Chapter 8 under the scalar theory of diffraction
(SDT) based on the Thin Element Approximation (TEA). This theory is analytical and
very accurate for thin lenses. We concluded that diffractive lenses (DOEs) could reach
high diffraction efficiencies but only for small wavebands. However, considering the first
and second diffractive orders, these types of lenses, called multi-order diffractive optical
elements (MODOEs), could achieve high diffraction efficiency for both MWIR and LWIR
wavebands. Nevertheless, using multiple orders also generates a discontinuous chromatic
aberration, which is challenging to correct with refractive elements. Therefore, MOD-
OEs are unsuitable for wide-band hybrid designs, raising the need for another dual-band
diffractive solution.
This chapter focuses on developing a wide-band diffractive solution with high diffraction
efficiency while maintaining a continuous chromatic focal shift, easily corrected by hybrid
doublets. The constructive interferences requirement is imposed for a single "design"
wavelength causing a steep DOE diffraction efficiency drop. The diffraction efficiency (for
the 1st order) can only be maximal for this wavelength. We aim to increase the degree of
freedom by employing a second "design" wavelength. Doing so will undoubtedly reshape
the diffraction efficiency for two distinct wavelengths. As seen in Chapter 8, one diffractive
layer can only operate (constructive interferences) for only one wavelength, so the solution
is to add a diffractive layer to the element. This idea of extending a DOE to a multilayer
diffractive optical element (MLDOE) was proposed by Y. Arieli [68, 69], who put two
binary DOEs side by side and studied the resulting diffraction efficiency. The same idea
is used in this chapter, using two harmonic DOEs instead of binary DOEs. In short, the
MLDOE is an extension of the DOE where multiple "design" wavelengths are considered.

9.2 MLDOE design based on the TEA

The designing steps and equations of this Section are inspired by the work of V. Moreno
et al [50] and have been published in [66].

9.2.1 Diffractive zone profile determination

MLDOEs are DOE extensions, utilizing two "design" wavelengths instead of one. There-
fore, the diffractive zone profile of each layers must be optimised for two wavelengths.
In this Section, we extend the work of V. Moreno et al [50], supposing that constructive
interferences occur for two wavelengths. The diffractive zone shape design relies on three
requirement/principle/approximation:

• Constructive interferences: The diffractive element must provide constructive
interferences at the focal plane for two distinct "design" wavelengths λd = λ1|λ2.

• Fermat’s principle: All the rays coming together in a determined zone, even
though they travel on distinct paths, result in having an equal optical path length
(OPL) to a fixed point F, placed on the axis at the focal plane of the MLDOE.

• Thin element approximation (TEA): The OPLs are computed assuming an
infinitely thin element. The rays travel through the MLDOE with no deviation,
parallel to the optical axis. This approximation’s validity is discussed in Section 9.4.
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Figure 9.1 shows an MLDOE’s geometrical layout, assuming a converging-diverging layer
configuration. The calculations that follow, while done with this particular setup, can be
effortlessly adapted to other configurations (converging-converging, diverging-diverging,
diverging-converging, see Section 9.5).

Figure 9.1: Extended model of DOE to multilayer DOE. The Thin Element Approximation
(TEA) implies a paraxial incident beam. The shape of layer i = 1, 2 along the optical axis z
at a radius r is described by zi(r). Hi is the maximal height of the layer i, with the following
convention for a converging diverging MLDOE: H1 < 0 and H2 > 0. f(λ) is the focal distance
of the MLDOE at the wavelength λ and m is the considered diffractive zone, starting at a radius
rm and finishing at rm+1. Each layer i is made of a distinct material with refractive index ni(λ)
and the gap is filled with a material ng(λ). Interferences between each zone are constructive at
the focal plane.

Both layers must be made of distinct materials to guarantee that two wavelengths can
interfere constructively at the focal plane. The gap between each layer is potentially filled
with air or a third IR material. We are currently unable to discuss which materials should
be combined to make a "good" MLDOE. This selection material topic is treated for the
visible and infrared bands in [70] and will be detailed in Chapter 11.

For obvious geometrical reasons, we only consider the case of both kinoform layers having
the same number of zones. Therefore, the mth diffractive zone has the same period (radial
dimension) regardless of the layer but a profile height that can vary depending on the
considered layer.

In order to have constructive interferences at the focal plane at a design wavelength
λd = λ1|λ2, the optical path difference (OPD) between two consecutive zones must be λd.
This recursive constraint gives the radius of the mth zone, using the Pythagorean theorem
in Figure 9.1:
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r2m = 2mfdλd + (mλd)
2 ≃ 2mfdλd (9.1)

where fd is the focal length of the MLDOE defined at one of the design wavelengths λd.
This expression of the zone radius is the same as for standard DOE (Equation 8.6). In
Figure 9.1, the origin is taken between both layers; therefore, the optical path length
(OPL) is counted negatively inside the first layer and positively inside the second one.
The general OPL associated with a ray incident at a radius r ∈ [rm, rm+1[ (ray (1) in
Figure 9.1) can be expressed as:

OPL(r) = −n1 [H1 − z1(r)] + z1(r)ng + z2(r)ng + n2 [H2 − z2(r)] +
√
f 2
d + r2 (9.2)

zi, Hi, ni are respectively the profile height at radius r, the maximal profile height and
the refractive index of layer i, as shown in Figure 9.1. ng is the refractive index of the gap-
filling material. Using the ray at the start of the mth zone (ray (2)) provides a particular
case of Equation 9.2: 

z1(rm) = 0

z2(rm) = H2

OPL(r = rm) = −n1H1 + ngH2 + fd +mλd

(9.3)

Therefore, the optical path difference (OPD) at any radius r ∈ [rm, rm+1[ is expressed by:

OPL(r)−OPL(r = rm) = (ng−n1)z1+(n2−ng)(H2− z2)+
√
f 2
d + r2−fd−mλd (9.4)

The square root is approximated by its second limited expansion term:

√
f 2
d + r2 = fd

(
1 +

r2

2f 2
d

)
= fd +

r2

2fd
= fd +

r2

r21
λd (9.5)

r1 is the starting radius of the first zone, defined by Equation 9.1: r21 = 2fdλd. Finally,
we have:

OPL(r)−OPL(r = rm) = (n2 − ng)(H2 − z2(r)) + z1(r)(n1 − ng)− λd

(
m− r2

r21

)
(9.6)

A particular case arises when r = rm+1 (ray (3) in Figure 9.1):
z1(rm+1) = H1

z2(rm+1) = 0

OPL(rm+1)−OPL(rm) = (n1 − ng)H1 + (n2 − ng)H2 + λd

(9.7)

The optical path lengths and differences have been geometrically computed (Equations 9.6
and 9.7) as consequences of both the constructive interferences requirement and the TEA
model. Applying Fermat’s principle to the mth zone provides a system of 2 equations:
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{
OPL (r ∈ [rm, rm+1[)−OPL(rm) = 0

OPL(rm+1)−OPL(rm) = 0
(9.8)

System 9.8 has 2 equations and 4 unknowns: z1(r), z2(r), H1 and H2. However, each
OPD equation in System 9.8 can be expressed for the two design wavelengths λd = λ1|λ2

providing 4 equations in total:


OPL(r, λ1) = OPL(rm, λ1)

OPL(r, λ2) = OPL(rm, λ2)

OPL(rm+1, λ1) = OPL(rm, λ1)

OPL(rm+1, λ2) = OPL(rm, λ2)

(9.9)

The design wavelengths λ1 and λ2 are respectively associated with the focal lengths f1 and
f2, and with the refractive indexes n11, ng1, n21 and n12, ng2, n22. nij describes the index
of layer i with respect to wavelength λj (i, j = 1, 2) and ngj is the filling material index
at wavelength λj. For clarity, we define the following auxiliary parameters (i = 1, 2):

{
Ai = ng(λi)− n1(λi)

Bi = n2(λi)− ng(λi)
(9.10)

Solving System 9.9 provide a unique solution for z1(r), z2(r), H1 and H2, for all r ∈
[rm, rm+1]:



H1 =
−λ1B2 + λ2B1

A1B2 − A2B1

H2 =
−λ1A2 + λ2A1

A1B2 − A2B1

Z1 = −H1

(
m− r2

r21

)
Z2 = +H2

(
m+ 1− r2

r21

)
(9.11)

Recall that r1 is defined using relation 9.1: r21 = 2f1λ1 = 2f2λ2. System 9.11 is only appli-
cable when the configuration of the MLDOE follows the layout of Figure 9.1: converging-
diverging (i.e. H1 < 0 and H2 > 0). Depending on the choice of materials, this config-
uration can change. A more general expression of the zone profiles and a configuration
selection process is detailed in Section 9.5. Figure 9.2 depicts a summary of this process:
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Figure 9.2: Summary of the MLDOE shape design process. The initial step consists in designing
a converging-diverging configuration (D1 = 0 and D2 = 1): HCD

1 and HCD
2 , selecting two design

wavelengths λ1 and λ2. If the signs of the converging-diverging zones height HCD
1 and HCD

2 are
wrong, reverse the booleans (D1,2 ← 1−D1,2). The profile z(r) is detailed in System 9.40.

Compared to standard HDOEs, we can see that the zone shapes are still parabolic and
that only the maximal height expression changes. We recall that for a standard HDOE,
the maximal zone height (Equation 8.18) is:

Zmax =
pλd

n(λd)− ne(λd)
(9.12)

p is the harmonic parameter. For comparison, we consider a ZnS HDOE and a ZnS-air-
Ge MLDOE, with λ1 = 10.4 µm in LWIR and λ2 = 4.7 µm in MWIR. The ZnS HDOE
has a height of 8.7 µm (p = 1), while the ZnS-air-Ge MLDOE has a total height of 173
µm. It means that the harmonic parameter p of the ZnS HDOE should be around 20 to
match the height of the ZnS-air-Ge MLDOE. This simple example shows that one main
characteristic of MLDOEs is their"high thickness.

9.2.2 MLDOE analytical phase and diffraction efficiency

For any wavelength λ, the optical path difference inside an MLDOE at any radius r ∈
[rm, rm+1[ is expressed using Equations 9.6 and 9.11:

OPD(r, λ) = (ng − n1)z1 + (n2 − ng)(H2 − z2)

= [A(λ)H1 −B(λ)H2]

(
m− r2

r21

)
(9.13)

Recall that A(λ) = ng(λ)− n1(λ) and B(λ) = n2(λ)− ng(λ). The phase delay generated
by an MLDOE is therefore expressed as:
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Φ(r, λ) =
2π

λ
OPD(r, λ)

=
2π

λ
(H1A(λ)−H2B(λ))

(
m− r2

r21

) (9.14)

As for any DOE, an MLDOE phase can be separated into a spatial component and a
spectral component Φ0(λ):

Φ(r, λ) = Φ0(λ)

(
m− r2

r21

)
(9.15)

where Φ0(λ) depends only on the wavelength and is defined by:

Φ0(λ) ≡
2π

λ
(H1A(λ)−H2B(λ)) (9.16)

This equation is the extension of the spectral behaviour of DOEs (see Equation 8.12). The
operating wavelengths are included in the expression of the profile height in both MLDOE
and DOE cases. The MLDOE complex transmission function is therefore expressed as:

TMLDOE(r, λ) = exp [iΦ(r, λ)] = exp

[
iΦ0(λ)

(
m− r2

r21

)]
(9.17)

This expression is similar to the complex transmittance of DOEs, demonstrated in Chapter
8 (Equation 8.12). The Fourier expansion of the complex transmittance function gives,
for a period r21 = 2f1λ1 = 2f2λ2:

TMLDOE(r, λ) =
inf∑

j=− inf

Cj exp

[
i2πj

r2

r21

]
(9.18)

We retrieve the same "focal length law" than for standard DOEs: f(λ, j)λj = f0(λ0)λ0.
This result will be demonstrated more rigorously in the next Section. The Fourier coeffi-
cient Cj is defined as:

Cj =
1

r21

r21∫
0

exp

[
iΦ0

(
m− r2

r21

)]
exp

[
−i2πj r

2

r21

]
dr2

= exp[iΦ0m]
1

r21

r21∫
0

exp

[
−i (Φ0 + 2πj)

r2

r21

]
dr2

= exp[iΦ0m]
exp[−i(Φ0 + 2πj)]− 1

−i(Φ0 + 2πj)

(9.19)

Each jth term in the Fourier expansion defines a diffraction order j and is associated
with some energy content. The measure of this energy is, by definition, the diffraction
efficiency ηj for the order j and is defined by:
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ηj(λ, j) = CjC
∗
j = |Cj|2

= 1 ∗ | exp[−i(Φ0 + 2πj)]− 1|2

(Φ0 + 2πj)2

=
2− 2 cos (Φ0 + 2πj)

(Φ0 + 2πj)2

=
4 sin2[(Φ0 + 2πj)/2]

4[(Φ0 + 2πj)/2]2

= sinc2
(
Φ0(λ)

2π
+ j

)
(9.20)

Where sinc(x) = sin πx/πx. The MLDOE was introduced as an extension of the DOE,
which appears clearly in the expression of the phase. Whereas the DOE produces con-
structive interferences at the focal point for a single wavelength, the MLDOE does so for
two distinct wavelengths. Based on the expression of H1, H2 defined in Equation 9.11,
the spectral term Φ0 can be developed for a given wavelength λ:

Φ0(λ) =
2π

λ
(H1A(λ)−H2B(λ))

=
2π

λ

(−λ1B2 + λ2B1)A(λ)− (−λ1A2 + λ2A1)B(λ)

A1B2 − A2B1

=
2π

λ

(
λ1
−A(λ)B2 + A2B(λ)

A1B2 − A2B1

+ λ2
−A1B(λ) + A(λ)B1

A1B2 − A2B1

) (9.21)

The MLDOE diffraction efficiency is expressed for λ = λ1, λ2, for the jth diffractive order:


ηj(λ1, j) = sinc2

(
1

λ1

[
λ1
−A1B2 + A2B1

A1B2 − A2B1

+ λ2
−A1B1 + A1B1

A1B2 − A2B1

]
+ j

)
= sinc2(−1 + j)

ηj(λ2, j) = sinc2
(

1

λ2

[
λ1
−A2B2 + A2B2

A1B2 − A2B1

+ λ2
−A1B2 + A2B1

A1B2 − A2B1

]
+ j

)
= sinc2(−1 + j)

(9.22)

Therefore, the theoretical diffraction efficiency reaches 100% at the design wavelengths
(order j = 1). So far, in the thin element approximation (TEA) frame, we have demon-
strated a method to design an MLDOE with optimal efficiency given two distinct materials
and two design wavelengths. The full plot of the diffraction efficiency for different orders
and wavelengths is shown in Figure 9.3 based on Equation 9.20.
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Figure 9.3: Diffraction efficiency for a ZnS-air-Ge MLDOE designed in MWIR and LWIR. The
design wavelengths are at 4.7 µm and 10.4 µm. The orders refer to the global MLDOE diffractive
order. The diffraction efficiency is maximal for both design wavelengths and stays above 95%
in the considered infrared band (MWIR and LWIR), including the opaque atmospheric window
(between 5 and 8 µm.

The MLDOE presented in Figure 9.3 is arbitrarily made of zinc selenide (ZnS) for the
first medium and germanium (Ge) for the second. An air gap separates both materials.
The optimal design wavelengths are 4.7 µm and 10.4 µm in MWIR and LWIR bands,
respectively. The selection of these design wavelengths results from an optimisation: the
integral of diffraction efficiency over all wavelengths (PIDE) is maximal for these two
wavelengths. This optimization process is explained later in Section 9.2.3 and described
in [71].

Figure 9.3 represents the evolution of the diffraction efficiency with the wavelengths. Only
the first order operates, a strong requirement for an optical imaging component (mono-
focal property). Hence it is demonstrated that the MLDOE is a diffractive imaging
element that could theoretically reach above 95% efficiency in the whole thermal infrared
bandwidth for the first order.

9.2.3 Optimising the design wavelengths using the PIDE

It has been shown in the previous Section that an MLDOE design involves two (or three)
distinct materials and two distinct design wavelengths, for which the diffraction efficiency
is maximal. Nevertheless, MLDOEs aim to increase the diffraction efficiency for the whole
MWIR/LWIR wavebands, not only for two wavelengths. Therefore, the design wavelength
selection must follow an optimisation process that ensures that the diffraction efficiency
for the first order is the highest possible, between 4.4 - 5 µm and 8 - 12 µm. No infrared
imaging can be performed between 5-8 µm due to the opaque atmosphere. Inside this
window, we do not require high diffraction efficiency. The most appropriate metric is
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the integral of the diffraction efficiency over the waveband, called PIDE (polychromatic
integral diffraction efficiency).
The expression of the PIDE (η) is obtained as follows [72]:

ηj(λmax, λmin) =
1

λmax − λmin

λmax∫
λmin

sinc2
(
Φ0(λ)

2π
+ j

)
dλ (9.23)

According to Equation 9.23, one PIDE is computed in MWIR and one in LWIR. Both
values are then weighted (50% - 50%) and added to obtain the final PIDE value. By doing
so, the opaque atmospheric window is not accounted for in the optimisation process,
leading to much higher diffraction efficiencies in the considered dual wavebands. For
a given MLDOE material combination, the PIDE only depends on the chosen design
wavelengths, and the goal is to maximise it.
We consider design wavelengths ranging from 4.4 - 5 µm and from 8 - 12 µm. For each
couple of wavelengths, the PIDE is computed for the previously arbitrary selected ZnS-
air-Ge MLDOE in Figure 9.4:

Figure 9.4: Variation of the Polychromatic integral diffraction efficiency (PIDE) with the design
wavelengths for a ZnS-air-Ge MLDOE. The best design wavelengths are λ1 = 4.7 µm and λ2 =
10.4 µm.

The optimal design wavelengths are 4.7 µm and 10.4 µm. However, note that any design
wavelengths close to the optimal ones give very close PIDE results. Therefore, this opti-
misation process does not need to be repeated for each MLDOE combination; the selected
wavelengths can be kept regardless of the MLDOE and will remain 4.7 and 10.4 µm for
the rest of the thesis.

9.2.4 Chromatic focal shift

In Section 9.2.2, the MLDOE broadband imaging capabilities have been demonstrated:
the diffraction efficiency is above 95 % for the first order in both MWIR and LWIR
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bands. However, using different wavelengths generates a variation of the focal length called
"chromatic focal shift", evaluated using the longitudinal chromatic aberration (LCA).
The chromatic compensation of refractive optical elements remains the primary use of
diffractive optical elements, including MLDOEs. Standard DOE focal length follows a
1/λ "focal law". Counter-intuitively, in the case of MLDOE, this relationship holds the
same dependency with the wavelength. This result has been published in [66] and is
demonstrated in the following. This section aims to express the MLDOE focal length
f(λ) for any given wavelength λ.
Recall that an MLDOE is composed of two harmonic diffractive optical elements (HDOEs)
[64, 65], associated with the harmonic parameters p1 and p2, respectively. They are related
to the MLDOE layers heights H1 and H2 [65] by:

p1(λd) =
H1

λd

[n1(λd)− ng(λd)] = −
H1

λd

A(λd)

p2(λd) =
H2

λd

[n2(λd)− ng(λd)] =
H2

λd

B(λd)

(9.24)

The zone heights H1 and H2 have been defined in System 9.11. Recall that λd is a design
wavelength, n1, n2 and ng are the refractive indexes of the first, second and gap layers,
respectively. p1 and p2 have a simple relation, using the same calculations as in Equations
9.21 and 9.22:

p1(λd) + p2(λd) = 1 (9.25)

This equation confirms that the total operating MLDOE diffractive order is 1, similarly
to converging DOE. We define F i

j (λ) the focal length of the harmonic layer i = 1, 2 for
the diffractive order j at the wavelength λ. According to [65], F i

j (λ) follows the following
relation: 

F 1
j (λ) =

p1λdF
1
p1
(λd)

jλ
=

λd

jλ

R2

2Np1λd

F 2
j (λ) =

p2λdF
2
p2
(λd)

jλ
=

λd

jλ

R2

2Np2λd

(9.26)

The focal length F i
pi
(λd) represents the operating focal length of layer i, when the diffrac-

tive order j = pi [65]. This focal length is related to the aperture radius R and the total
number of zones N . Both layers can be considered thin lenses in contact. Therefore the
total MLDOE optical power (1/fj) is the sum of the optical powers of its harmonic layers.
Combining Equations 9.25 and 9.26 leads to:

1

fj(λ)
=

1

F 1
j (λ)

+
1

F 2
j (λ)

=
2Njλ

R2
(9.27)

Finally, using Equation 9.1, the MLDOE focal length for any order j is expressed as:

fj(λ) =
fdλd

jλ
(9.28)

In conclusion, an MLDOE shares the same focal law and operating order as a standard
DOE, with an increased diffraction efficiency in larger wavebands. This law benefits
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optical designs since shorter wavelengths are focused after longer wavelengths, contrary
to refractive elements. Diffractive optics are mainly used in combination with refractive
optics to correct the chromatic aberration [73]. For this reason, MLDOEs are extremely
valuable for wide-band applications.

9.3 MLDOE Fourier Optics simulations

The author has published the simulation results of this section in [66]. Canon [74] has
already realised a hybrid MLDOE zoom camera for the visible band. Designs involving
MLDOEs have been realized [73, 75, 76] using ray tracing software such as CodeV or
ZEMAX. However, these software do not accurately model the diffraction efficiency of
complex diffractive elements. This section proposes a diffraction-based analysis of ML-
DOEs using the Fourier optics angular spectrum method, described in Chapter 4.

The Fourier Optics treatment of a monochromatic scalar field has already been presented
in Figure 4.1. We recall that the angular spectrum method allows deriving the exact scalar
field U(x, y; z), based on a known initial field U(x, y; 0), assuming that the propagating
medium is "free space" (See Chapter 4). In this section, we use our Matlab Fourier optics
propagator implementing the angular spectrum of plane waves, validated in Chapter 4. It
allows us to accurately establish the field amplitude and phase at any position in space,
based on the analytical phase shift given in Equation 9.14.

We finally use the same simulation parameters as in [66]: The simulation has M = 1024
uniformly distributed samples in each direction. The pupil diameter and the sampling
window size are D = 14 mm and S = 21 mm, respectively. Having D < S ensures that
the edges of the computation window will not create and propagate numerical artefacts.
The considered wavebands are: MWIR (4.4-5 µm) and LWIR (8-12 µm).

To ensure the validity of the thin element approximation (TEA), given the above param-
eters, the number of zones must be capped at five diffractive zones (F/43.8) [66]. Section
9.4 details the validity of this approximation. In short, this zone requirement ensures
that the worst-case aspect ratio (H/periodmin) is higher than 1/6, provided as the TEA
validity limit in [77].

A ZnS-air-Ge MLDOE is designed at λ1 = 4.7 µm and λ2 = 10.4 µm. The total energy
content of the field in the initial plane is normalised:

∫∫
aperture

|U(x, y; 0)|2 dxdy = 1 (9.29)

The aperture function W (x, y) is a circular pupil of diameter D, leaving a constant uniform
field amplitude distribution:

|U(x, y; 0)| = 1√
π(D/2)2

(9.30)

The angular spectrum method is conservative, the total energy of the field at any propa-
gation plane remaining the same. The phase (modulo-2π) of the field in the initial plane
z = 0 mm is shown in Figure 9.5:
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Figure 9.5: Phase modulo-2π of the input field in the initial plane z = 0 mm, λ = 8 µm. The
phase represents the total phase shift caused by the MLDOE on a paraxial incident plane wave.
The phase is calculated based on Equation 9.14 using the TEA.

The phase delay applied by the MLDOE follows the parabolic kinoform profile (Equation
9.14) inside the pupil and is null outside.

9.3.1 Image at the target plane

Using previously selected simulation parameters, the focal length of the selected ZnS-air-
Ge MLDOE at λ = 8 µm is f = 620 mm: the input field is propagated to a target plane
z = 620 mm. The irradiance and modulation transfer function (MTF) of the output field
is shown in Figure 9.6.
The MLDOE approaches the diffraction limit, the spot displaying a Bessel pattern caused
by the diffraction effect of the circular aperture. The focalization efficiency is measured
by the Strehl ratio in Figure 9.7. It hides the diffraction effect of the pupil and leaves
only the intrinsic MLDOE efficiency.
The MLDOE Strehl ratio remains above 0.96 for the whole waveband, with maximal
values located at the design wavelengths. The MLDOE geometric construction could force
constructive interferences at these wavelengths, resulting in higher focalisation efficiency
(closer to the diffraction-limited case). In conclusion, the selected ZnS-air-Ge MLDOE
has a focalisation efficiency of over 96% in the TIR bandwidth and is a diffraction-limited
component, as long as the TEA remains valid. Additional optical aberrations may arise
and degrade the Strehl ratio but cannot be accounted for considering the TEA and Fourier
optics.

9.3.2 Results along the optical axis

Fourier optics is used in this section to analyse the light beam shape along the optical axis.
In particular, the study concentrates on the energy contained in the unwanted diffractive
orders. The same input field at λ = 8 µm is propagated from plane to plane along the
optical axis with a propagation step dz, between the input plane z = 0 mm and the image
plane z = 620 mm (focal distance). The propagation step dz = 1 mm is small enough to
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(a) Irradiance |U(x, y; z)|2 at z = 620 mm (b) MTF at z = 620 mm

Figure 9.6: Output field in the target plane z = 620 mm. a) The irradiance map is displayed
with a logarithmic scale. b) Both simulated and diffraction-limited MTFs are displayed for
comparison.

Figure 9.7: The ZnS-air-Ge MLDOE has a focalisation efficiency over 0.96 in the TIR bandwidth
and nearly reaches 1 for its design wavelengths (4.7 µm and 10.4 µm).

obtain a "continuous" representation of the field along the optical axis. For each plane
idz, i ∈ [1, 620], the 2D irradiance |U |2 is recorded in a central slice y = M/2 + 1. Figure
9.8 shows the irradiance logarithm along the optical axis:
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Figure 9.8: Simulation of the irradiance logarithm along the optical axis z. The input field
resulting from the MLDOE phase shift is situated in the plane z = 0 mm, and the output field
is located in the plane z = 620 mm. The propagation step is dz = 1 mm. The x-axis represents
the aperture radius of the MLDOE. Diffractive orders appear along the optical axis.

At each propagation plane idz, the 2D Strehl ratio is recorded and gives information about
the energy content in this plane. Figure 9.9 shows the Strehl ratio variation along the
optical axis:

Figure 9.9: Strehl ratio variation along the optical axis. The logarithmic scale enables distin-
guishing other diffractive orders.

The peaks corresponding to the diffractive orders j = +1,+2,+3 are respectively located
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at z = f , f/2, f/3 in Figure 9.9. The unwanted orders j = +2 and j = +3 carry nearly no
energy. Consequently, MLDOEs have a unique focus located in the first diffractive order.
This property illustrates the imaging potential of MLDOEs for wide-band applications.
However, further analysis should be conducted for lower f -number MLDOEs (i.e. higher
number of zones), for which the TEA-based Fourier optics method is no longer accurate.

9.3.3 Chromatic aberration (LCA)

This section evaluates the Strehl ratio along the optical axis (similarly to Figure 9.9)
for multiple wavelengths. For each wavelength, we aim to find the "best focus" plane
to derive a focal law fsimu(λ). The simulation domain is confined between the planes
z = f(λ) − 10 mm and z = f(λ) + 10 mm, where f(λ) is defined using Equation 9.28.
We still consider 620 propagation steps. The "best focus" plane is determined with an
accuracy dz/(620−1) = 32 µm. Figure 9.10 shows the comparison between the simulated
focal length and the analytical one (Equation 9.28):

Figure 9.10: Chromatic focal shift comparison between the analytical focal plane and the deter-
mined "best focus" plane. Each point of the simulation curve represents the plane with highest
Strehl ratio among 620 planes between f(λ)− 10 and f(λ) + 10 for a given wavelength λ. The
dotted curve shows the expected analytical behaviour of the MLDOE (Equation 9.28).

Figure 9.10 depicts an excellent agreement between the analytical focal law and the de-
termined best focus. This study shows that, like other DOEs, MLDOEs’ LCA has a
strong negative variation. Therefore, they combine very well with refractive components
(positive LCA).

9.3.4 Conclusion: MLDOE performance under the TEA

This chapter has used a geometric model based on the thin element approximation (TEA)
to deduce the phase function of multilayer diffractive optical elements (MLDOEs). This
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phase function influences a paraxial input field travelling through the MLDOE. The an-
gular spectrum method allows us to propagate this field to any target plane using the
angular spectrum method. The Strehl ratio, computed in the focal plane, showed a focal-
isation efficiency above 96% between 4.4 and 12 µm for the operating order +1. The other
unwanted orders have negligible energy, so MLDOEs are considered mono-focal. Inside
the validity domain of the TEA, an MLDOE is a wide-band diffraction-limited imaging
device. The second study has shown that MLDOEs have a chromatic focal shift that
matches the analytical expression. Achromat MLDOE hybrid doublets efficiently correct
multiple aberrations and are easily designed using standard achromatisation equations.
MLDOEs have a high potential for broadband optical design as an extension of the single-
band DOE. This conclusion only holds inside the validity domain of the TEA.

9.4 Validity of the thin element approximation (TEA)

The TEA validity domain is derived based on the study of MLDOE aspect ratios. The
author has published the results presented in this section in [67].
The presented TEA-based model is valid when meeting three restrictions [78]:

• The microstructure periods are much larger than the wavelength (more than 14
times [61])

• The field is paraxial

• The microstructures are thin: their periods must be at least 6 times larger than
their heights ([77])

We study the first restriction through a worst-case MLDOE design. The mth zone period
involves Equation 9.1 (similar for DOEs and MLDOEs) and only depends on the zone
number (N) and the aperture diameter. We consider a F/10 MLDOE (at λ = 8 µm) with
a high number of diffractive zones N = 30. The resulting aperture diameter D is:

N =
D

8λF/♯
⇔ D = 19.2 mm (9.31)

The resulting focal distance f is therefore f = 192 mm. The extreme and lowest zone
period TN is:

TN = RN −RN−1 = D/2−
√
2fλ(N − 1) = 161µm (9.32)

According to the first restrictions, the maximal wavelength that ensures the validity of
the TEA is λ = 161/14 = 11.5 µm. This study shows that a worst-case MLDOE with a
very high diameter and number of zones still fulfils the first TEA restriction considering
its lowest zone period. The second restriction is fulfilled as long as the incident radiation
is parallel to the optical axis and the diameter remains "small".
The aspect ratio (Rm) of the mth zone is introduced:

Rm = max(H1, H2)/Tm (9.33)

where Tm is the mth zone period (i.e. ring width). According to [77], the thin element
approximation remains accurate when R < 1/6. Tm only depends on optical parameters:
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F/♯ and diameter D, whereas the zone heights are influenced by the material combination
and the choice of design wavelengths (Section 9.2.1). Hence, the aspect ratio R must be
analysed through a parametric study.

Keeping manufacturability concerns in mind, we fix the number of zones N = 10 and the
aperture diameter D = 10 mm. We check the validity of the TEA (Figure 9.11) in the
worst-case scenario by considering the lowest zone period and the thickest layer. This
study is done for various F/♯ and considers all possible MLDOE material combinations.
Each layer (as well as the gap) may consist of 12 potential infrared materials: Ge, ZnS,
ZnSe, GaAs, AgCl, CdTe, and six chalcogenide materials, from IRG22 to IRG27. We
therefore define an "MLDOE combination" as a triplet of material (m1,mg,m2). The
denominations "two-layer DOE" and "three-layer DOE" are employed when the gap ma-
terial mg is filled by air or another IR material.

Figure 9.11 displays the aspect ratios obtained for each MLDOE combination and F/♯.
Because changing any material in a combination may lead to very different aspect ratios,
the latter are sorted by thickness in Figure 9.11, where the cumulative percentage of
MLDOE combinations is considered. This is the number of MLDOE combinations (in %)
that display at most a specific aspect ratio for a given F/♯.

(a) Air gap only combinations, 29 in total (b) Filled gap only combinations, 224 in total

Figure 9.11: MLDOE aspect ratios R (Eq. 9.33) in function of the cumulative percentage of
MLDOE combinations, for various F/♯. The combinations have been sorted from the thinnest
(R < 1/6) to the thickest (R > 2) for all F/♯ between 5 and 40. a) Two-layer DOE (air gap).
b) Three-layer DOE (filled gap). The aperture diameter is fixed to D = 10 mm and the design
wavelengths are λ1 = 4.7 µm and λ2 = 10.4 µm. The worst case implies the thickest layer and
the lowest zone period. Only material combinations with a total height < 1 mm are kept and
displayed to keep a relatively thin element. The orange region shows the validity of the TEA
model [77].

An air gap is imposed in Figure 9.11a). Figure 9.11 only provides combinations with a
total height lower than 1 mm, resulting in 253 combinations. In Figure 9.11a), the TEA
validity requirement is fulfilled at most by 15% of the two-layer DOEs, with a minimal
F-number of 37. Only 5% of the three-layer DOEs fulfil the third TEA requirement in
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Figure 9.11 b).

As a result, the TEA model thickness requirement is never satisfied, except for extremely
high F/♯. Thereby, the period size of MLDOEs and monolayer DOEs is the same (Eq.
9.1), but MLDOEs are 10 to 100 times thicker than DOEs. For instance, considering
a monolayer DOE, we analyse the TEA model’s validity in the worst possible case: the
lowest refractive index material, AgCl (n ≃ 2), and an F-number of 5 at λ = 8 µm:

RDOE =
H

Tmin

=
λ

(n− 1)Tmin

≃ 1/10 < 1/6 (9.34)

This numerical application proves that the TEA model, while always accurate in the case
of monolayer DOEs, is not suited for the study of MLDOEs.

In conclusion, we have demonstrated the need for an alternative MLDOE modelling
method. MLDOEs have high potential in solving the critical issue of dual-band hybrid
systems, bringing aberration correction and compactness. However, the current phase
model is inacurate for thick MLDOEs and must be replaced to correclty assess there real
performance. This is done in the following chapters using the innovative "ray model",
combining ray-tracing (Chapter 5) and Fourier optics (Chapter 4). The ray model is ded-
icated to estimating the phase delay introduced by an MLDOE, and is deeply examined
in Chapter 10.

9.5 Annex: design and selection of the right layer configuration

This Section does not add to the theoretical material given in Section 9.2 but exhaus-
tively explains the calculation results when the MLDOE is not in the converging-diverging
configuration (Figure 9.1). Depending on the chosen materials, the layer configuration
that effectively acts like an imaging MLDOE (globally converging) is not straightforward.
Figure 9.12 displays a representation of the four possible configurations to study:
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(a) Converging-
diverging MLDOE

(b) diverging-
converging MLDOE

(c) Converging-
converging MLDOE

(d) diverging-diverging
MLDOE

Figure 9.12: MLDOE possible configurations. They depend on the material choice for each layer
and gap. For each material combination, only one configuration effectively corresponds to a
converging MLDOE.

For each configuration, the calculation of phase and OPL follows the same steps and a
similar geometry as in Figure 9.1. In fact, the optical path length for any radius r, given
by Equation 9.2, is valid regardless of the configurations. Only the OPL associated with
the extreme radii of each zone, namely OPL(rm+1) and OPL(rm) for the mth zone, change
depending on the configuration. Thereby, Equations 9.2, 9.3 and 9.7 become:



OPL(r) = −n1 [H1 − z1(r)] + z1(r)ng + z2(r)ng + n2 [H2 − z2(r)] + fd + λd
r2

r21

OPL(rm) = −
[
D1 (1−D1)

] [ng

n1

]
H1 +

[
D2 (1−D2)

] [ng

n2

]
H2 + fd +mλd

OPL(rm+1) = −
[
D1 (1−D1)

] [n1

ng

]
H1 +

[
D2 (1−D2)

] [n2

ng

]
H2 + fd + (m+ 1)λd

(9.35)
where Di, i = 1, 2, is a Boolean parameter coding for the configuration: Di = 1 means
that layer i is diverging whereas Di = 0 codes for a converging layer. Using the auxiliary
parameters A and B defined in Equation 9.10: A(λ) = ng(λ)−n1(λ) and B(λ) = n2(λ)−
ng(λ), the OPD expression (Equations 9.6 and 9.7), for any radius r becomes:

OPL(r)−OPL(rm) = A [D1H1 − z1(r)] +B [D2H2 − z2(r)]− λd

(
m− r2

r21

)
OPL(rm+1)−OPL(rm) = A(2D1 − 1)H1 +B(2D2 − 1)H2 + λd

(9.36)

For instance, in the converging-diverging configuration depicted in Figure 9.1, System
9.36 reduces to Equations 9.6 and 9.7, using D1 = 0 and D2 = 1. The Fermat’s principle
(System 9.9) can be applied to System 9.36 for the two design wavelengths λ1 and λ2 and
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will lead to an analytical expression for z1, z2, H1 and H2, similarly to System 9.11. First,
we solve the height equation OPL(rm+1)−OPL(rm) = 0 for λ = λd, d = 1, 2:

H1 =
+λ1B2 − λ2B1

A′
1B2 − A′

2B1

H2 =
−λ1A2 + λ2A1

A1B′
2 − A2B′

1

A′
i = (2D1 − 1)Ai ; i = 1, 2

B′
i = (2D2 − 1)Bi ; i = 1, 2

(9.37)

System 9.11 is retrieved when D1 = 0 → A′ = −A and D2 = 1 → B′ = B. Note that
the height of layer 1 only depends on the configuration of layer 1 (D1) and vice versa.
This means that z1 and z2 also only depends on D1 and D2, respectively. Comparing
Systems 9.37 and 9.11, it simply appears that the sign of H1 is reversed when layer 1 is
diverging instead of converging, and the same applies to H2 with layer 2. Consequently,
the expressions of H1 and H2 in any configuration can be very simply related to the
heights expressed in System 9.11 for the converging-diverging situation, rewritten here as
HCD

1 and HCD
2 : {

H1 = (1− 2D1)H
CD
1

H2 = (2D2 − 1)HCD
2

(9.38)

Noticing that D2
1,2 = D1,2, we have:{

D1H1 = −D1H
CD
1

D2H1 = +D2H
CD
2

(9.39)

Introducing Equations 9.39 into System 9.36 and solving for λ = λd, d = 1, 2 leads to the
general expression of z1(r) and z2(r) for any configuration:

z1 = −HCD
1 (m+D1 −

r2

r21
)

z2 = +HCD
2 (m+D2 −

r2

r21
)

(9.40)

Note that when D1 = 0 and D2 = 1, System 9.40 is equivalent to System 9.11. Therefore,
changing the configuration from diverging to converging and vice versa is equivalent to
computing the profile of the m+1th parabolic zone, using r ∈ [rm; rm+1[. One issue arises
with System 9.40: assuming a material combination defined by the refractive indices n1,
n2 and ng, it is simple to compute HCD

1 and HCD
2 . However, the value of D1 and D2 is

still unknown and not a priori directly related to the material combination.
It has been explained in Section 9.2.1 that the converging-diverging MLDOE design equa-
tions (System 9.11) can only be used when H1 < 0 and H2 > 0. If the signs of H1 or H2 are
reversed, the configuration must be changed and System 9.40 must be used. Consequently,
the booleans D1 and D2 are defined by:{

D1 = HCD
1 (n1, n2, ng) > 0

D2 = HCD
2 (n1, n2, ng) < 0

(9.41)
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The MLDOE design process for any configuration is depicted in Figure 9.2 in Section
9.2.1.
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Chapter 10
Alternative phase model: Ray model

Chapter 9 has proven the inapplicability of the thin element approximation (TEA)
for thick MLDOEs. An other modelling method must be used to assess the ac-
tual dual-band potential of MLDOEs for hybrid systems. We propose and describe
the innovative "ray model", combining ray-tracing (Chapter 5) and Fourier optics
(Chapter 4). Instead of the TEA, the ray model uses ray-tracing to compute the
optical path differences inside an MLDOE, eading to a scalar phase estimation in
the near-field. We generate optical figures of merit (point spread function, Strehl
ratio, and chromatic focal shift) using the angular spectrum method. In parallel,
we use the rigorous finite difference time domain (FDTD) method as a numerical
reference, to analyse the ray model accuracy. This is done by quantifying the de-
viation between our ray model predictions and the exact FDTD calculations. It
results from this study that the ray model is much more accurate than the TEA,
but cannot precisely compute the Strehl ratio compared to FDTD. The analysed
MLDOE designs’ performance are much poorer than predicted by the TEA, raising
the question of their optimisation.
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10.1 Introduction

The scalar theory of diffraction involves the thin-element approximation (TEA), which be-
comes progressively inaccurate with increasing diffractive microstructure height [61, 77].
In the case of MLDOEs, the typical groove heights are a hundred times higher than
for conventional monolayer DOEs. Accordingly, rigorous electromagnetic numerical ap-
proaches such as the coupled-wave analysis have been modelling the effect of microstruc-
ture depth and incident angle on the diffraction efficiency of saw-tooth MLDOEs [79, 80].
However, rigorous methods are computationally intensive, especially in the case of three-
dimensional simulations. Recently, attractive techniques have involved geometric optics
approximations. These approaches sit between the analytical TEA and exact electromag-
netic methods. For instance, the effective area method has performed accurate diffraction
efficiency computations in the case of MLDOEs with fixed period widths [81, 82]. Field
Tracing [83] also involves geometric optics approximations to describe an optical compo-
nent’s phase delay in conjunction with Fourier optics or rigorous methods. It results in
efficient and reliable field propagations even through complex optical systems.

This chapter is exclusively based on a paper published by the Author [67]. We use a scalar,
ray-based method called the "ray model" instead of the TEA to compute an MLDOE
phase delay. This approach previously appeared in [39] under the name "zone decompo-
sition", applied to the design of hybrid optical systems. It is further implemented in [40]
and coupled with diffraction calculation to estimate the modulation transfer function of
relief-type DOEs.

We aim to demonstrate that the ray model gives more accurate and reliable results than
the TEA. An MLDOE is designed with parabolic diffractive zones to provide constructive
interferences at the focal plane [66] (Chapter 9). Compared to the TEA, which predicts
a near-perfect imaging performance, the ray model heavily depends on refractive index
variations and aspect ratios due to Snell’s law of refraction. Accordingly, we show that the
ray model is considerably less optimistic than the TEA. To prove that, FDTD phase cal-
culations are conducted, providing a reference to estimate the accuracy of the ray model
predictions. Each of the three presented approaches (TEA, ray and FDTD) generates a
two-dimensional phase function in the MLDOE near field. A Fourier optics propagator
based on the angular spectrum method is used to produce optical fields and evaluation
metrics at the detector plane. We investigate various F-numbers in both MWIR and
LWIR wavebands.

10.2 Fourier-based simulation process

This section describes how we combine FDTD simulations, the ray model and Fourier
optics. This process uses the angular spectrum representation (similarly to Figure 4.1),
recalled hereafter for clarity.

The angular spectrum of plane waves provides a straightforward method for evaluating,
at any point in space, the properties (phase and amplitude) of a monochromatic electro-
magnetic wave propagating in a free-space medium (linear, homogeneous, non-magnetic,
free of electric charges and currents). The complex field phasor U(x, y; z) can be retrieved
at any point in space using:
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U(x, y; z) = F−1{F{U(x, y; 0)}Hz(fx, fy)}

Hz(fx, fy) = F{hz(x, y)} = exp [ikz
√
1− (λfx)2 − (λfy)2]

(10.1)

where (fx, fy) are the spatial frequencies of the field, Hz is the transfer function of the
wave propagation phenomenon, and hz is the system’s impulse response. Since free-space
assumptions constrain the angular spectrum method, it cannot be employed to compute
the optical field inside an MLDOE. Therefore, Fourier optics is bounded to propagate
a complex field, originating after the MLDOE, onto a target plane. The band-limited
angular spectrum method developed in [36] (Chapter 4) is used in the following (i.e.
there is no aliasing due to high-frequency components).

Figure 10.1 shows the simulation process serving as a comparison tool to adjudicate
between the TEA and the ray model:

Figure 10.1: Diagram showing the numerical processes involved in this chapter to compare the
TEA and the ray model, using FDTD as a reference.

As indicated in Figure 10.1, an MLDOE optical effect is mathematically represented by a
scalar complex phasor U(x, y; 0) = A(x, y) exp [iΦ(x, y)] in both the TEA and ray models,
considering an on-axis collimated monochromatic source. In contrast, FDTD provides an
exact electromagnetic vectorial description of the MLDOE near-field E = (Ex, Ey). The
resulting wavefront is propagated to the focal plane using the angular spectrum method,
where we assess the MLDOE image quality (Strehl ratio and LCA). These evaluation
metrics are computed for various F-numbers (F/♯) in MWIR and LWIR. Recall that the
"best" focal plane, a priori unknown, has been defined in Chapter 9 as the plane z > 0 that
provides the highest Strehl ratio. Consequently, it may differ from the expected analytic
focal plane, whose expression is the same for standard DOEs and MLDOEs (Equation
9.28):

fj(λ) = D
F/♯

jλ
(10.2)

The diffractive order j = 1 is considered.
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10.3 Alternative phase models: Ray model and FDTD

This section describes two alternatives to the TEA model. Our ray model, inspired by
[39, 83], is a scalar model relying on ray-tracing to calculate optical path lengths (OPLs).
The FDTD method simulates vectorial fields using an exact electromagnetic calculation
and provides us with a reference.

10.3.1 Ray model

Chapter 9 has shown the inadequacy of the TEA to describe MLDOEs, except for very
high F/♯ and specific material combinations. The examined ray model still belongs to
the SDT but introduces a deviation of the rays at each interface according to Snell’s law
of refraction. We eliminate the TEA assumption of rays travelling parallel to the optical
axis. Therefore, OPLs are longer in the ray model, and their lengths strongly depend on
the diffractive zone shape, aspect ratio and on the transition from one material to another.
The ray model accounts for undesirable optical effects such as total internal reflection,
appearing for high aspect ratios or high index variations.
The MLDOE effect on a plane wave is obtained in the near-field through the calculation
of a phase mask:

Φray =
2π

λ
OPL =

2π

λ

3∑
i=1

ni;i+1OPLi;i+1 (10.3)

where i is an MLDOE optical interface, numbered between 1 and 3 (layer 1 grooves, layer
2 grooves and layer 2 back, see Figure 11.3). ni;i+1 and OPLi;i+1 are respectively the
refractive index and the OPL between interface i and i+ 1. The latter is obtained using
a ray-tracing engine: the professional ray-tracing software ASAP NextGen [84] or the
analytical ray-tracing engine described in Chapter 5.
Fundamentally, the ray model and the TEA only differ by the OPL calculation method.
The complex scalar field phasor associated with the ray model is expressed in the MLDOE
near-field by [40]

U(x, y, λ) = Aray(x, y) exp [iΦray(x, y, λ)] (10.4)

Recall that the TEA model can analytically optimise the zone heights to obtain a maximal
performance at the focal plane for any selected material combination (see Section 10.4). In
contrast, the more complex ray model includes refraction at the interfaces. Consequently,
its performance predictions depend heavily on the material choice and groove aspect ratio.

10.3.2 FDTD phase simulation

Since the TEA and the ray model are scalar approximations, this chapter uses the vectorial
FDTD method as a comparison reference. FDTD wave simulation is performed using the
OptiFDTD software [43]. It propagates the electric field through the MLDOE, solving
the discretized Maxwell’s equations numerically (See Chapter 6). The Ez component is
negligible along the propagation direction. The MLDOE circular symmetry reduces the
sampling effort needed, leading to the adequate sampling study detailed in Section 6.3.
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This numerical sampling investigation has resulted in the following worst-case sampling:
Nx = 20000, Nt = 5000 and ∆z, ∆t are set to auto setting (CFL conditions in Equations
6.4 and 6.5).

The vectorial field obtained in the MLDOE near field is E(x, y) = [Ex(x, y);Ey(x, y)].
The Ex and Ey components are obtained respectively through separate transverse mag-
netic (TM) and transverse electric (TE) polarisation simulations. Ex and Ey are not
coupled; they can be propagated independently using the angular spectrum method and
incoherently summed to obtain the point spread function (PSF), modulation transfer
function (MTF), and Strehl ratio at the target plane. Thereby, the simulation considers
unpolarised light.

Finally, the two-dimensional FDTD layout of the selected ZnS-air-Ge MLDOE is shown
in Figure 10.2.

Figure 10.2: Two-dimensional FDTD layout of a ZnS-air-Ge F/15 MLDOE. The source and the
detector respectively lies in the planes z = 0 µm and z = 300 µm. The blue and red layouts
represent the two HDOE layers separated by an air gap.

The MLDOE layout of Figure 10.2 was obtained by superposing parabola pieces made of
the specified materials, as explained in Chapter 6.

10.4 Results

Two arbitrarily selected MLDOE combinations will be considered for comparing the ray
and the TEA models: a ZnS-air-Ge MLDOE (used for the sampling study) and a ZnS-
air-IRG25 MLDOE. The former combination has the lowest thickness among "air-gap
combinations" and has already been studied in [66]. IRG25 replaces the expensive and
hard Ge layer in the second configuration. IRG25, a "soft" chalcogenide material, increases
the manufacturability potential.

This section computes optical figures of merit (PSF, Strehl ratio, and LCA) according to
the simulation process described in Figure 10.1. The aperture diameter is fixed at D = 9.6
mm, corresponding to exactly N = 10 diffractive zones (Equation 9.31).
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10.4.1 Results along the optical axis: PSF comparison

We compare the irradiance along the optical axis, predicted by each of the three models
(TEA, ray, and FDTD). From an input field at plane z = 0, the angular spectrum
method allows us to accurately predict the resulting field at any parallel plane z > 0
in the context of free-space propagation. The first step for each MLDOE design and
propagation wavelength is to retrieve the "best" focal plane. We propagate the near-
fields (obtained via the ray model, the TEA model or FDTD) to multiple planes z along
the optical axis, and for each plane, we compute the PSF for all three models. In the case
of FDTD, vectorial field irradiances are incoherently summed to provide a total irradiance
output in each propagation plane. Since we compare the prediction accuracy of the two
scalar models, we use a single setup: λ = 8 µm and F/♯ = 15, giving an analytic focal
length f = F/♯D = 144 mm. The resulting irradiance patterns and "best" focal planes
are described in Figures 10.3 and 10.4:

(a) TEA model. (b) Ray model. (c) FDTD.

Figure 10.3: PSF along the optical axis for a ZnS-air-Ge F/15 MLDOE considering: a) the TEA
model, b) our ray model, and c) FDTD. The initial plane is in z = 0 mm, just after the MLDOE
component. The maximum irradiance value, obtained at the focal plane, is displayed in the
colour bar. The vertical yellow line shows the simulated "best" focal plane location F and its
associated Strehl ratio S. The predictions of the TEA model are too optimistic, in contrast to
the ray model and FDTD.

Figure 10.3 displays the ZnS-air-Ge MLDOE energy distribution along the optical axis
for the three models. The TEA model predicts diffraction-limited optical performance at
the focal plane (Strehl ratio of 0.98), and the latter coincides with the analytical focal
length value. This result is not in accordance with the prediction of the ray and FDTD
models. Both predict that only a central portion of the MLDOE contributes to the focus
energy. A secondary ring of light, coming from the "intermediate zones", converges to a
further focal point, creating important stray light. Finally, the ray and FDTD models
predict a different "best" focal plane (around z = 111 mm) and different Strehl ratio
values. The ray model is approximate, giving more pessimistic Strehl ratio values than
FDTD (0.11 for the ray model and 0.24 for FDTD) for this design and F-number. Note
that the number of zones contributing to the focus energy is higher for FDTD, explaining
the lower peak irradiance value and, thus, the lower Strehl ratio for the ray model.

A one-dimensional cut of the logarithm of the PSF at the best focal plane (yellow line) is
displayed in Figure 10.7a (Section 10.6). The TEA model provides a diffraction-limited
Airy pattern, while the other models predict a very different PSF shape. The secondary
light ring visible in Figure 10.3b and 10.3c clearly appears in Figure 10.7a, with an
irradiance level of 10−1.5 [W m−2]. The ray model accurately predicts the existence of
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this secondary ring but, as mentioned above, underestimates the peak irradiance value
compared to FDTD.

(a) TEA model. (b) Ray model. (c) FDTD.

Figure 10.4: PSF along the optical axis for a ZnS-air-IRG25 F/15 MLDOE considering: a) the
TEA model, b) our ray model, and c) FDTD. The initial plane is in z = 0 mm, just after the
MLDOE component. The maximum irradiance value, obtained at the focal plane, is displayed
in the colour bar. The vertical yellow line shows the simulated "best" focal plane location F
and its associated Strehl ratio S. The predictions of the TEA model are too optimistic, again.
In addition, these predictions are not impacted by the Ge layer change to an IRG25 layer. In
contrast, this change has modified the predicted PSF, Strehl ratio, focal length and beam shape
in the case of the ray model and FDTD.

Figure 10.4 displays the same optical metric as Figure 10.3, considering the selected ZnS-
air-IRG25 MLDOE. The TEA model still generates a diffraction-limited performance and
predicts a f = 144 mm focal length. In contrast, the ray model and FDTD generate a
very different beam shape (Figures 10.4b and c), with a thinner outer light ring. FDTD
and the ray model both predict the location of the best focal plane at z = 86 mm. Once
again, the ray model is pessimistic with a Strehl ratio value of 0.11 against 0.18 for FDTD.
Figure 10.7b in Section 10.6 details the PSF pattern difference at the "best" focal plane
between the TEA and the other two models.

This section highlights the accuracy of the ray model over the TEA model for the presented
MLDOE designs. Even if less precise than FDTD, the ray model can retrieve the shape
of the irradiance pattern at the focal point and along the optical axis. It provides precise
irradiance peak value, Strehl ratio, and focal length estimates. It is worth noting that
changing the material of one or more layers strongly impacts the optical performance,
beam shape, and focal length.

10.4.2 Results at the detector plane: Strehl ratio and LCA

This section compares the TEA and ray model using the Strehl ratio and the chromatic
focal shift as optical performance metrics. Multiple wavelengths in the MWIR and LWIR
bandwidths and multiple F/♯ are studied for both ZnS-air-Ge and ZnS-air-IRG25 MLDOE
combinations.
We define the infrared Strehl ratio StrehlI as:

StrehlI(F/♯) = meanλ[Strehl(λ, F/♯)] (10.5)

where the wavelength λ is in the range 4.4–12 µm. Figure 10.5 shows the evolution of the
infrared Strehl ratio with the F/♯:
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(a) ZnS-air-IRG25 MLDOE. (b) ZnS-air-Ge MLDOE.

Figure 10.5: Infrared Strehl ratio at the best focus for multiple F/♯. The TEA model, ray model
and FDTD are respectively displayed in black, red and blue. Each point depicts the wavelength
averaged Strehl ratio in the 4.4–12 µm bandwidth. a) ZnS-air-IRG25 MLDOE. b) ZnS-air-Ge
MLDOE.

Looking at the horizontal black curve, the TEA model predicts a near-perfect infrared
Strehl ratio regardless of the materials and F/♯. Observing the ray model (red curve)
and FDTD (blue curve) results, we can infer the behaviour of both MLDOE designs:
Increasing the F/♯ lowers the aspect ratio; thus, more light passes through the MLDOE.
Likewise, less stray light will be generated by the MLDOE, increasing the Strehl ratio. As
seen in Figure 9.11, decreasing the aspect ratio makes the TEA progressively more valid,
providing an asymptotic behaviour as displayed in Figure 10.5.

As previously noted in Figures 10.3 and 10.4, for both MLDOE designs, the ray model
gives more pessimistic results than FDTD, which, as discussed in Section 10.5, is an
acceptable result. Nevertheless, Figure 10.5 displays a constant divergence between the
ray model and FDTD, quantitatively analysed in Section 10.4.3.

We recall that the chromatic focal shift (also known as LCA) is a significant figure of
merit for diffractive optics. Thereby, diffractive lenses provide efficient achromatic hybrid
solutions when combined with refractive lenses, so the accurate knowledge of their LCA
is of prime importance. The LCA is therefore associated with the design performance,
while the Strehl ratio gives a direct optical performance metric.

Figure 10.6 shows the evolution of the LCA with the wavelength for the ZnS-air-Ge
MLDOE and various F/♯. The LCA is defined as LCA(λ) = f(λ) − f(λ = 12 µm). A
similar graph can be found in Section 10.6 for the ZnS-air-IRG25 MLDOE.
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Figure 10.6: ZnS-air-Ge MLDOE LCA for various F/♯: a) F/10, b) F/15, c) F/20 and d) F/30.
The "best" focal plane is defined as the plane z > 0 with the highest Strehl ratio. The TEA
model, ray model and FDTD are respectively displayed in black, red and blue. The analytical
LCA is shown with black diamonds (Eq. 9.28). FDTD is the reference curve.

Figure 10.6 confirms that the TEA model (black curve) is perfectly in agreement with the
diffractive lens focal law (Eq. 9.28, black diamond curve) for all F/♯. Both FDTD and
the ray model (blue and red curve) are in good agreement for all F/♯, wavelengths, and
material combinations (see Figure 10.8 in Section 10.6). However, they disagree with the
TEA model.

10.4.3 Accuracy of the ray model

This section computes the ray model accuracy (i.e. its divergence from FDTD) using the
root mean squared error (RMSE), presented in Table 10.1.

Table 10.1: Table displaying the RMSE values between the ray model and FDTD (reference) for
the two studied MLDOE designs. The numerical values are based on the 10 subfigures displayed
in Figures 10.5, 10.6 and 10.8.

The RMSE metric describes the standard deviation of the residuals (the averaged distance
between FDTD predictions and the ray model predictions). We interpret the LCA RMSE
value (given in millimetres) by comparing it to the LCA maximum extent (for the FDTD
model). The infrared Strehl ratio RMSE is ≃ 15% for both designs, meaning that the
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ray model cannot give accurate image quality values. Nonetheless, it provides a useful
infrared Strehl ratio tendency, especially compared to the TEA model.

The ray model accurately predicts the LCA with an RMSE between 4 and 8 mm. The
highest LCA extent (40 mm) occurs in Figure 10.8a. and is associated with a 6 mm
RMSE in Table 10.1. It leads to a worst-case relative RMSE of 15%. This value decreases
to less than 10% for higher F-numbers, regardless of the design.

10.5 Conclusion

We have shown that our ray model was more accurate than the TEA model for F-numbers
between 10 and 30, at least for the two presented MLDOE designs. The ray model is not
suited for accurately determining optical metrics and must be complemented by rigor-
ous calculations, such as FDTD. In the meantime, the ray model accurately models the
evolution of the Strehl ratio and LCA, which is not the case for the TEA model. The lat-
ter matches the asymptotic behaviour of the ray model for very high F-numbers (Figure
10.5). The latter allows us to extend the scalar theory to low F-numbers and high aspect
ratios. Because of its scalar nature, the ray model is fast to compute and can even be used
for off-axis MLDOE simulations. It is valuable since FDTD simulations take consider-
able processing time and require complex MLDOE layouts. When multiple wavelengths,
materials, and F-numbers are studied (e.g., chromatic aberration estimation), the FDTD
time requirements become challenging to handle. Therefore, if FDTD is necessary for
verification purposes, the ray model should be used as an optimisation and estimation
tool.

In addition, in the two studied cases, the ray model provides pessimistic results compared
with FDTD, which is a significant advantage in predicting MLDOE performance with
an approximate model. Thereby, the ray model offers a form of image quality insurance,
being a worst-case scenario, at least in the two presented cases. We interpret it as a higher
number of "operating" zones for FDTD than for the ray model, leading to increased
peak intensity at the focal point. Physically, interferences inside the MLDOE lead to
a converging wavefront even inside zones of high aspect ratio, for which no geometrical
rays can pass (total internal reflection). Therefore, the ray model provides pessimistic
estimations because it neglects the wave nature of light propagating inside the MLDOE.

In contrast to the TEA model, the ray model can compute an average transmission and
considers total internal reflection. These quantities can be used as additional metrics to
evaluate the performance of MLDOE design without requiring Fourier optics wave propa-
gation (see Chapter 11). The ray model examined here is a powerful designing tool when
studying numerous materials, F-numbers, and wavelengths. Further optimisation studies,
carried out in Chapters 11 and 12, will try to increase the overall MLDOE performance.

10.6 Annex

A one-dimensional cut of the irradiance at the best focal plane for both MLDOE designs
(corresponding to the yellow lines in Figures 10.3 and 10.4) is displayed in Figure 10.7. The
irradiance pattern predicted by the ray model and FDTD differ from the TEA approach,
for the two MLDOE designs.

The LCA for the ZnS-air-IRG25 MLDOE is presented in Figure 10.8, for various F-
numbers: Similarly to Figure 10.6, Figure 10.8 demonstrates that the LCA does not
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(a) ZnS-air-Ge MLDOE. (b) ZnS-air-IRG25 MLDOE.

Figure 10.7: One-dimensional cut of the logarithm of the PSF, at the best focus, for the two
F/15 MLDOE designs: a) ZnS-air-Ge, b) ZnS-air-IRG25. The TEA model, ray model and FDTD
are respectively displayed in black, red and blue. Figures a) and b) show that the TEA model
provides a diffraction-limited PSF. In contrast, the ray model and FDTD predict a very different
PSF shape, with a secondary ring of light and a weaker central lobe. Contrary to the TEA model
prediction, the PSF shape strongly depends on the MLDOE design.
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follow the analytical curve as expected by the TEA model.

Figure 10.8: ZnS-air-IRG25 MLDOE LCA for various F/♯: a) F/10, b) F/15, c) F/20 and d)
F/30. The "best" focal plane is defined as the plane z > 0 with the highest Strehl ratio. The TEA
model, ray model and FDTD are respectively displayed in black, red and blue. The analytical
LCA is shown with black diamonds (Eq. 9.28). FDTD is the reference curve.
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Chapter 11
MLDOE material selection methods

This chapter proposes a method to select appropriate MLDOE material combina-
tions. The polychromatic integral diffraction efficiency (PIDE) metric is generally
used to select the most suitable materials for multilayer diffractive optical elements
(MLDOEs). However, this method is based on the thin element approximation
(TEA), which yields inaccurate results for thick diffractive elements such as ML-
DOEs. We propose a new material selection approach based on three metrics: the
transmission, the total internal reflection and the optical component’s total thick-
ness. This approach, called "geometric optics material selection methods" (GO-
MSM), is tested in mid-wave and long-wave infrared bands. Finite-difference time-
domain (FDTD) is used to study the optical performance (Strehl ratio) of the "op-
timal" MLDOE combinations obtained with the PIDE metric and the GO-MSM.
Only the proposed method can provide MLDOE designs that are performing, but
not to a sufficient extent. This finding leads to Chapter 12 MLDOE shape optimi-
sation study. We also demonstrated that an MLDOE gap filled with a low-index
material (air) strongly degrades the image quality.
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11.1 Introduction

This chapter is dedicated to the study of MLDOE material combinations. A widely
used material selection method [85] is based on the following observation: an "optimal"
MLDOE design should undergo the smallest diffraction efficiency drop for the highest
incidence angle. As described in Section 11.2, this method uses the PIDE, derived for
off-axis incidence under the TEA. Although this method is fast and gives interesting re-
sults, its applicability is limited by the validity domain of the TEA. The latter becomes
progressively inaccurate when the heights of the diffractive microstructures increase, as
shown in Chapter 9.

This chapter proposes a new material selection method based on three evaluation metrics:
the transmission, the total internal reflection (TIR) and the total MLDOE thickness. Ac-
cording to this alternative approach, an "optimal" MLDOE design has high transmission,
low TIR and is as thin as possible. In the following, we refer to this material selection pro-
cedure as the "geometric optics material selection method" (GO-MSM) since it is based
on ray-tracing and Fresnel equations to assess the TIR and the MLDOE transmission.
The GO-MSM provides MLDOE designs but does not directly evaluate their image qual-
ity. To validate this approach and compare its result with the existing PIDE material
selection method (PIDE-MSM), we use rigorous Finite-Difference Time-Domain (FDTD)
electromagnetic calculations. Similarly to previous chapters, the optical performance of
an MLDOE design is determined by the Strehl ratio, computed at the "best" focal plane.
The Strehl ratio is retrieved based on FDTD near-field calculation and Fourier optics, as
detailed in [67] (see Chapters 9 and 10). The results presented in this chapter have been
published in [86]

11.2 PIDE material selection method (PIDE-MSM)

11.2.1 MLDOE off-axis modelling and PIDE definition

Each MLDOE zone can be approximated by the N-step structure of Figure 11.1:
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Figure 11.1: Modeling of ray propagation inside an MLDOE for off-axis incidence [85]. The
continuous surface of each zone is modelled with an N-step profile instead.

Figure 11.1 is used to compute the optical path differences (OPDs) for layers 1 and 2, with
an off-axis incidence. The calculation, detailed in [87], leads to the analytical expression
of the total off-axis MLDOE phase delay:

Φ(λ, θ) = H1[n1(λ) cos θ −
√

n2
g(λ)− n2

1(λ) sin
2θ] +H2[

√
n2
2(λ)− n2

1(λ) sin
2θ] (11.1)

Where n1, n2 and ng are respectively the refractive index of layer 1, 2 and the gap. H1 and
H2 denotes the respective microstructure heights of layers 1 and 2, expressed in Equation
9.11.
The PIDE (polychromatic integral diffraction efficiency) is a well-known evaluation metric
to study diffractive optics [72]. In this chapter, the PIDE is based on the angle-dependant
phase expression of Equation 11.1. For clarity, we recall the PIDE expression, previously
defined in Equation 9.23:

η(θ, j) =
1

λmax − λmin

λmax∫
λmin

sinc2
(
j − Φ(λ, θ)

2π

)
dλ

η(θ, j) =
1

2
ηMWIR(θ, j) +

1

2
ηLWIR(θ, j)

(11.2)

where λmax and λmin represent the boundary wavelengths of the considered waveband.
The total infrared PIDE η(θ, j) is the weighted sum of two PIDEs, one calculated in MWIR
and the other in LWIR. We consider only the first diffractive order j = 1, as it is the
main operating order for MLDOEs. The PIDE depends on the incident angle, the chosen
wavebands and most importantly, the material refractive indices. We define an MLDOE
material combination as a triplet of materials (m1,mg,m2), and the denominations "two-
layer DOE" and "three-layer DOE" are employed when the gap material mg is filled by
air or another IR material.
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11.2.2 Results of the PIDE-MSM

This section focuses on applying the PIDE material selection method (PIDE-MSM) [70]
and analysing its potential limits. The PIDE variation with the incident angle is displayed
in Figure 11.2 for multiple MLDOE combinations:

(a) Two-layer DOEs (air gap). (b) Three-layer DOEs.

Figure 11.2: Angle-dependant PIDE for various MLDOE configurations: a) two-layer DOEs and
b) three-layer DOEs. An air gap is imposed in a) while the gap material is variable in b). Only
the ten configurations with maximal PIDE at 15° incidence are plotted. The PIDE variations
are similar to [70]. H represents the total MLDOE thickness, computed using Equation 9.11.

Figure 11.2a displays the "best" two-layer DOEs combinations, according to [70]: Only
the ten MLDOEs with the highest PIDE at maximal incidence (15°) are shown. The air
gap is imposed for manufacturing reasons since linking two HDOEs with an IR material
can be difficult. Figure 11.2a shows an important diffraction efficiency drops when the
incidence increases. All ten combinations start with > 95% PIDE for on-axis incidence
and end with PIDE values between 65% − 85% at 15° incidence, except for the IRG24-
air-IRG25 combination (97% PIDE).

Similarly to Figure 11.2a, Figure 11.2b displays the ten "best" three-layer DOEs combi-
nations. Any IR gap material is considered, regardless of the manufacturability of the
resulting MLDOEs. All the solutions depicted in Figure 11.2b have negligible efficiency
decrease (the worst PIDE being 99.4% at 15°). Since no thickness metric is accounted
for in the PIDE method [70], we define the IRG22-IRG25-CdTe as an optimal three-layer
DOE for the PIDE-MSM.

This analysis shows that the on-axis PIDE is nearly independent of the material com-
bination since it is above 95% for all combinations depicted in Figures 11.2a and 11.2b.
This behaviour results from Equation 11.1 and the choice of design wavelengths: For any
material combination, an MLDOE will always provide 100% diffraction efficiency at the
design wavelengths λ1,2, assuming the TEA validity.
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11.2.3 Limits of the PIDE method

We have shown in Chapter 9 [67] that the TEA was only valid for very few MLDOE com-
binations, with F-numbers higher than 40. This section provides a numerical application
to test the PIDE method validity in the case of thick IR MLDOEs.

First, the off-axis MLDOE geometrical model depicted in Figure 11.1 is incompatible with
the "paraxial" TEA requirement [78]. Even when on-axis PIDE is considered, according
to [77], the aspect ratio of each layer and zone should remain smaller than 1/6. Recall
that the mth zone aspect ratio R, assuming layer i, is defined as:

R(i,m) =
Hi

Tm

(11.3)

We take Figure 11.2a most optimal configuration as an example: The IRG24-air-IR25
MLDOE. For standard values N = 10 diffractive zones and F/♯ = 15, the 1st zone period
is T1 ∼3 mm (Equation 9.32). Following Equation 9.11, each layer is ∼1 mm thick. The
resulting aspect ratio is R = 0.33 > 1/6, meaning that the TEA is not applicable for this
F-number.

Imposing a 1/6 aspect ratio for the 1st zone only leads to an F/30 design of D = 19 mm
aperture diameter, keeping ten diffractive zones. This example shows that only a very
constraining MLDOE design can ensure the validity of the TEA, and only for the largest
zone. If extreme zones (i.e., lowest period) are considered, the TEA cannot fulfill the
"thin" restriction mentioned in [78].

Furthermore, applying geometric optics laws to the IRG24-air-IRG25 MLDOE shows that
it has a huge transmission drop due to total internal reflection (TIR). TIR occurs at the
IRG24-air interface (refractive index ratio of 0.38) when an on-axis incident ray makes
a 22.5° angle with the grooves interface normal. It happens inside the 1st zone, starting
from the radius r = 0.48 mm. As a result, only 10% of the MLDOE aperture can transmit
light, leading to a nearly opaque MLDOE design. Therefore, the 100% on-axis diffraction
efficiency predicted in Figure 11.2a is very likely overestimated, considering an F/15 ML-
DOE design. This numerical analysis is rigorously verified in Section 11.5 when studying
the optical performance of the IRG24-air-IRG25 and IRG22-IRG25-CdTe solutions using
FDTD.

11.3 Geometric optics material selection method (GO-MSM)

This section presents an alternative MLDOE material selection method based on geomet-
ric optics called the GO-MSM. The GO-MSM relies on three evaluation metrics: the total
internal reflection (TIR), the transmission at each interface and the total MLDOE thick-
ness. These metrics can be calculated rapidly for any MLDOE design and incident angle
using a ray-tracing engine (ASAP [84] or the analytical ray-tracing calculator developed
in Chapter 5). According to the GO-MSM, the most "optimal" MLDOE combination has
the highest transmission and the lowest TIR and thickness. We present only the on-axis
selection process, but we provide the off-axis results in Section 11.7 since they do not
bring any change in the results.
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Figures 11.3 and 11.4 graphically describe how we evaluate these three metrics. Figure
11.3 presents the shape and defines the optical interfaces of an arbitrary selected MLDOE
(IRG23-IRG22-IRG25):

Figure 11.3: Dimensions and shape of an arbitrary selected MLDOE: IRG23-IRG22-IRG25. The
top blue layer is IRG23, the gap (salmon colour) is IRG22, and the orange bottom layer is IRG25.
The red arrows display the incident light’s direction. The optical interfaces are denoted: a) Layer
1 back, b) Layer 1 grooves, c) Layer 2 grooves, and d) Layer 2 back. The MLDOE was designed
according to Chapter 9.

Figure 11.4 displays the transmission map, obtained with geometric optics and Fresnel
reflection equations, for each interface defined in Figure 11.3:

Figure 11.4: Transmission map for each interface of the IRG23-IRG22-IRG25 MLDOE depicted
in Figure 11.3. The blue portion represents TIR (null transmission), whereas the white areas are
outside the circular aperture.
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Figure 11.4 shows the evolution of transmission and TIR inside the arbitrary selected
MLDOE. The TIR percentage metric consists of the area covered by TIR over the circular
aperture area. In this particular example, the working portion of the MLDOE is only
composed of the central zones, thus potentially reducing its performance. The average
measure of TIR is defined as the maximal amount of TIR after all interfaces, in this case,
85%, while the average transmission equals 62%.

The presented evaluation metrics (TIR, transmission and thickness) are used in multiple
selections processes, considering two-layer DOEs in Section 11.4.1 and three-layer DOEs
in Section 11.4.2. The optimisation variables are the layer/gap materials.

11.4 Results of the GO-MSM

In this section, we use the proposed GO-MSM to provide a selection of MLDOE com-
binations for two and three-layer DOEs. The validation of this method is performed in
Section 11.5, using FDTD as a reference.

We fix the same design parameters as in Section 11.2.2: The F/♯ is 15 at λ = 8 µm
and the number of zones N is set to 10, giving an aperture radius D = 10 mm. These
standard parameters provide a relatively small number of zones and aperture diameter,
considering a potential manufacturing process.

In this chapter, we classify IR materials as "hard" (ZnS, Ge, ZnSe, CdTe and GaAs) or
"soft" (IRG22-27 and AgCl). These denotations come from the relative hardness property
of these materials (See Annex 16). Since a softer material is more easily manufactured,
we perform the GO-MSM considering all IR materials or only soft materials. These two
analyses are made for two-layer DOEs and three-layer DOEs, resulting in four different
optimisation results.

11.4.1 two-layer DOE optimal configuration

The GO-MSM presented in Section 11.3 is applied in the case of two-layer DOEs. The
gap is made of air, while the materials of both layers are variable. The results of the
GO-MSM are presented in Figures 11.5a and 11.5b, respectively for all-IR materials and
soft-only materials.
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(a) All-IR materials. (b) Soft materials.

Figure 11.5: On-axis geometric selection method results for the ten "best" material configurations
with an air gap. The design parameters are D = 10 mm, F/15 and N = 10. Three evaluation
metrics are shown: transmission (blue line, left axis), TIR (blue dotted line, left axis) and
thickness (black line, right axis). The "best" MLDOE combinations are underlined in red and
correspond to solutions having a low TIR, thickness, and high transmission.

Interestingly, Figures 11.5a and 11.5b provide very different results. No combination from
the soft-only selection process can be used for an efficient optical design: the average
transmission is only 5% while the TIR averages 90%. The "best" solution is IRG24-air-
IRG27, displaying the lowest thickness in this case.

In Figure 11.5a, while the material of the first layer is a variable, the final solutions are all
made of ZnS-air-X. Nevertheless, while ZnS seems to couple well with an air gap, especially
in the ZnS-air-Ge configuration, the remaining possibilities are rather bad, displaying low
transmission and high TIR. ZnS-air-Ge is the only combination that generates no TIR,
which coincides with its shallow thickness compared to the other solutions.

Contrary to the PIDE results of Figure 11.2a, where at least four air-gap configurations
had high imaging performance, even at 15° incidence, the result of the GO-MSM is much
less optimistic. Note that the "optimal" configurations are different between our GO-
MSM and the reviewed PIDE-MSM.

11.4.2 three-layer DOE optimal configuration

To improve the performance, we consider three-layer DOEs, replacing the air gap with
an IR material. We keep the same distinction between all-IR materials and soft-only
materials. The results are depicted in Figure 11.6.
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(a) All-IR materials. (b) Soft materials.

Figure 11.6: On-axis geometric selection method results for the ten "best" material configurations
with all layer/gap materials variables. The design parameters are D = 10 mm, F/15 and N = 10.
Three evaluation metrics are shown: transmission (blue line, left axis), TIR (blue dotted line,
left axis) and thickness (black line, right axis). The "best" MLDOE combinations are underlined
in red and correspond to solutions having a low TIR and thickness, and a high transmission.

Figure 11.6 leads to much better solutions than Figure 11.5. The optimal solution con-
sidering all-IR materials (Figure 11.6a is ZnSe-ZnS-AgCl. It has the lowest thickness
(195 µm), a relatively high transmission (57%) and null TIR. The best solution, obtained
with soft-only materials (Figure 11.6b, is IRG24-IR27-AgCl. It has the same transmission
value as the ZnSe-ZnS-AgCl solution but a higher thickness (370 µm).

In the following Section (11.5), we derive the optical performance of all the presented
solutions for the PIDE-MSM and the GO-MSM. We analyze if their expected optical
quality matches their FDTD performance. If they do, it means that the selection model
is reliable, regardless of the actual performance level of the configurations.

11.5 Validation of the GO-MSM: polychromatic Strehl ratio

This comparative section draws the image quality of the optimal solutions provided by the
PIDE-MSM and our GO-MSM. We use the Strehl ratio as an evaluation metric computed
at the best focal plane. FDTD rigorous wave simulation is performed using OptiFDTD
software [43]. The FDTD sampling is the same as in Chapter 4. The simulation process
(Similar to Figures 4.1 and 10.1) is described in Figure 11.7 [86]:
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Figure 11.7: Numerical simulation process to evaluate the MLDOE optical performance (PSF,
MTF, Strehl ratio). An input plane wave is delayed by an MLDOE, and the resulting vectorial
near field is retrieved using the rigorous FDTD method. This input field (z = 0) is propagated
to any plane z > 0 along the optical axis using Fourier optics angular spectrum, generating a
vectorial output field. The "best" focal plane is defined as the plane providing the highest Strehl
ratio value, where optical metrics are generated [86].

Figure 11.7 hybrid process is used to study the output performance of MLDOE designs
obtained with the PIDE-MSM and our GO-MSM. The aim is not to compare MLDOE
combinations but to analyze if the GO-MSM or the PIDE-MSM had predicted their
optical performance. Practically, we compute the Strehl ratio at the best focal plane of
each "optimal" solution derived in the previous sections:

• PIDE-MSM: IRG24-air-IRG25 and IRG22-IRG25-CdTe, Figure 11.2

• Two-layer GO-MSM: ZnS-air-Ge and IRG24-air-IRG27, Figure 11.5

• Three-layer GO-MSM: ZnSe-ZnS-AgCl and IRG24-IRG27-AgCl, Figure 11.6

For each of the six combinations, multiple FDTD calculi have been made to obtain the
polychromatic variation of the Strehl ratio. As stated in Section 11.4.1 and 11.4.2, the
input design parameters are the same for all MLDOE combinations: D = 10 mm, F/15
and N = 10.

Figure 11.8 shows the polychromatic evolution of the Strehl ratio for the MLDOE design
solutions mentioned above:
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Figure 11.8: Polychromatic evolution of the Strehl ratio, computed at the "best" focal plane,
following Figure 11.7 procedure. PIDE-MSM (black curves), two-layer GO-MSM (blue curves)
and three-layer GO-MSM (red curves). The polychromatic Strehl ratios of the PIDE-MSM
solutions are worse than predicted in Figure 11.2.

Figure 11.8 displays the six "best" MLDOE material combinations obtained using the
GO-MSM and the PIDE-MSM. The IRG24-air-IRG27 configuration, resulting from Figure
11.5b, has a polychromatic Strehl ratio of less than 5%, which is in agreement with its very
low transmission, very high TIR and thickness. Similarly, the ZnS-air-Ge configuration
also performs poorly, as expected by its transmission value of only 22% in Figure 11.5a.

The two "optimal" three-layer DOEs configurations: ZnSe-ZnS-AgCl and IRG24-IRG27-
AgCl, resulting from Figure 11.6, display a relatively high performance for all wavelengths,
especially ZnSe-ZnS-AgCl. Both have a ∼60% transmission and no TIR, but the ZnSe-
ZnS-AgCl MLDOE has a ∼ 200 µm thickness while the IRG24-IRG27-AgCl MLDOE has
a ∼ 400 µm thickness, explaining its lower polychromatic Strehl ratio.

Finally, looking back at Figures 11.2a and 11.2b, both IRG24-air-IRG25 and IRG22-
IRG25-CdTe combinations provided extremely high PIDE values (∼ 99% on-axis). This
result does not concur with the black curves in Figure 11.8. The TEA, not accounting
for the transmission losses and the TIR (as pointed out in Section 11.2.3), entails consid-
erably optimistic results.

A clear link arises between the GO-MSM metrics (transmission, TIR, thickness) and the
expected performance at the focal plane. An MLDOE combination with high transmis-
sion, null TIR, and low thickness presents a high polychromatic Strehl ratio (ZnSe-ZnS-
AgCl). Inversely, very thick MLDOEs present high TIR and may perform very poorly
(IRG24-air-IRG25). Consequently, this study shows the high potential of the GO-MSM
when designing MLDOEs.
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11.6 Results discussion

This chapter has proved the PIDE’s inadequacy in studying and selecting MLDOE con-
figurations. The analytical PIDE does not consider any refraction effect, thus neglecting
transmission losses at optical interfaces (Fresnel reflection) and TIR. According to the
phase expression in Equation 11.1, the least angle-dependant combinations are obtained
when the refractive indexes of each layer are very close (with no dependency on the gap
material), such as IRG24-air-IRG25. On the other hand, based on Equation 9.11, the
zone height design leads to very thick MLDOE combinations, which are more likely to
encounter TIR. Therefore, the "thickness" metric is of prime importance as it defines the
susceptibility of an MLDOE to generate TIR, which strongly impacts its transmission.

Figure 10.5 clearly shows the performance difference between MLDOE combination with
and without an air gap. Due to sharper refractive index transitions between interfaces,
the air gap (or any low-index gap material) potentially decreases MLDOE imaging perfor-
mance. To solve this issue, an MLDOE might require a filling material with a relatively
high index to avoid TIR and enhance its IR transmission. High-index materials, such as
ZnS or ZnSe, tend to decrease the component thickness and provide valuable combina-
tions. On the other hand, these materials are more difficult and expensive to manufacture
due to their hardness.

Although three-layer DOEs might be challenging to manufacture and two-layer DOEs
seem to perform poorly (Figure 11.5), MLDOEs are still very useful dual-band IR com-
ponents. Thereby, one could use a different groove design model such as the extended
scalar theory [88, 89] or the effective area method [81, 82]. The performance of two-layer
DOEs might increase tremendously since these methods lower the aspect ratio of extreme
zones, limiting TIR.

Our geometric optics material selection method (GO-MSM) is fast, reliable and does not
require time-consuming wave simulations, except for validating the results. Therefore, it
is a beneficial optimisation tool. Rigorous wave propagation has been used to confirm the
GO-MSM results, which has proven to perform much better than the PIDE material se-
lection method for studying thick MLDOEs. This chapter has also highlighted the benefit
of adding a high index gap material to reduce the TIR and enhance optical performance.
Since the performance obtained in this chapter are overall not excellent, we propose in
Chapter 12 to optimise the shape of the studied MLDOEs, increasing their optical quality
in both MWIR and LWIR.

11.7 Annex

In this section, the same optimisations as in Sections 11.4.1 and 11.4.2 are performed with
an incident angle of 15°. The results are displayed in Figure 11.9:
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(a) Two-layer DOEs, all-IR materials. (b) Two-layer DOEs, soft materials.

(c) Three-layer DOEs, all-IR materials. (d) Three-layer DOEs, soft materials.

Figure 11.9: Off-axis geometric selection method results for the ten "best" material configurations
considering: a) Two-layer DOEs, all-IR materials, b) two-layer DOEs, soft materials, c) Three-
layer DOEs, all-IR materials, d) three-layer DOEs, soft materials. The same materials and
x-label configuration have been kept from Figures 11.5 and 11.6 to ease the comparison. The
design parameters are D = 10 mm, F/15 and N = 10. Three evaluation metrics are shown:
transmission (blue line, left axis), TIR (blue dotted line, left axis) and thickness (black line,
right axis). The "best" MLDOE combinations selected in Figures 11.5 and 11.6 are underlined
in red.

As a result of Figure 11.9, an increase in TIR is noticed, especially in a) and d), but they
have no impact on the selected configurations of Sections 11.4.1 and 11.4.2. The thickness
is not depicted here since it does not change when off-axis incidence is considered. In
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Figure 11.9d, the IRG24-IRG27-AgCl is still considered the "best" combination since it
has the lowest thickness, but the IRG24-IRG27-AgCl also appears as a very good solution.
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Chapter 12
Alternative MLDOE design: Extended scalar
theory

In this chapter, we present an algorithm based on the extended scalar theory to im-
prove an MLDOE performance by modifying its zone heights. The extended scalar
theory (EST) is an alternative thickness optimisation method that depends on the
diffractive order and the optimisation wavelength. We research suitable EST input
parameters by combining ray-tracing and Fourier optics to provide a performance
estimate for each EST parameter pair. Considering three different material combi-
nations, we test the performance of our height optimisation algorithm using rigorous
Finite-Difference Time-Domain (FDTD). Although relying on an approximate the-
ory, our algorithm can provide much more performing MLDOE designs than the
TEA in all three cases. Nonetheless, the algorithm does not ensure an optimal
design. Depending on the MLDOE configuration, the performance predictions are
partially accurate. At the end of this chapter we provide a very efficient MLDOE
design, concluding the research of a dual-band diffractive element carried out since
Chapters 7 and 8.
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12.1 Introduction

Alternative scalar theories have been researched to fill the gap between the TEA and rig-
orous numerical methods. The effective-area method applies geometric optics to sawtooth
MLDOEs to model the "shadowing effect" and perform more accurate computations of
diffraction efficiency [81, 82]. The extended scalar theory (EST), introduced by Swanson
[89] and recently applied to MLDOEs [88] combines the grating equation and Snell’s law
to optimise the profile of a DOE (reducing the shadowing effect). We have also shown
how Fourier optics could be combined with ray-tracing to estimate MLDOE’s optical
performance at the focal plane [67] and provide a material selection method [86].

In this chapter, we propose an algorithm to find suitable groove thickness for any MLDOE.
This process is based on the EST (Section 12.2) and combines the ray model (Chapter 10)
with Fourier optics (Chapter 4). According to the EST, the thickness of each MLDOE
layer only depends on the diffractive order p and the optimisation wavelength λopt. The
algorithm performs a parametric study to estimate the pair (p, λopt) providing the "best"
MLDOE design. An MLDOE’s optical performance is computed at its focal plane and
evaluated over the MWIR-LWIR wavebands using the Strehl ratio metric. Similarly to
Chapter 10, the Strehl ratio is retrieved using the ray model and a free-space Fourier
optics propagator (Section 12.3). This algorithm is applied in Section 12.5 for three
MLDOE combinations, ensuing from the MLDOE material selection process introduced
in Chapter 11 [86]. As a result, a suitable EST input pair (p, λopt) allows for generating
an "optimal" MLDOE profile for each combination. In Section 12.6, we test the validity
of the proposed algorithm by comparing the predicted optical performance with accurate
FDTD simulations. The results are finally discussed in Section 12.7.

12.2 MLDOE EST design

This section describes the extended scalar theory (EST), introduced by Swanson [89], and
its application to MLDOEs [88]. The EST uses Snell’s law of refraction to compute the
so-called "shadowing factor" for diffraction blazed grating. In opposition to the TEA, the
EST considers finite DOE thickness, accounting for the negative impact of the shadowing
factor on the diffraction efficiency. Consequently, Swanson has described a method to
optimise any DOE’s thickness based on its period and working order. By combining
Snell’s law of refraction and the grating equation, this method provides a grating thickness
which reduces the shadowing effect.

Following this reasoning, alternative MLDOE layer thickness equations have been pro-
posed [88]. They are based on the layout depicted in Figure 12.1.
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Figure 12.1: Extended scalar theory applied to an MLDOE. The deviation angle θd is obtained
using the local grating equation while θr results from Snell’s law. Initially, the layer heights H1

and H2 are constant, defined by the TEA. EST alternative profile heights are obtained when
θd = θr for both layers. Tm is the mth zone period. The light trajectory is displayed in red.
Adapted from [88].

Following Figure 12.1 layout, we define n1, ng and n2 the refractive indices of layer 1,
the gap and layer 2, respectively. Similarly to a diffractive lens, the mth zone’s aperture
radius rm and period size Tm are defined by:

{
r2m = mr21 = 2mfλd

Tm = rm+1 − rm
(12.1)

where λd represents one of the two design wavelengths, and f is the associated MLDOE
focal length. α1 = H1/Tm and α2 = H2/Tm, with H1 and H2 the microstructure heights
of layer 1 and 2 given in Equation 9.11. The EST height calculation for the first layer is
detailed in the following.

Snell’s law of refraction is applied to the first layer:

n1 sin (θi + α1) = ng sin (θr1 + α1) (12.2)

θi and θr1 are respectively the incident and refracted angles. The grating equation, applied
to the first layer at local period Tm, wavelength λ and diffractive order p1, gives:

ng(λ) sin θd1 − n1(λ) sin θi =
p1λ

Tm

(12.3)

For a particular wavelength λ = λopt and order p1, we can equate the refractive and
diffractive deviation angles (θd1 = θr1) in Equation 12.3. It results in a single layer height
value, HEST

1 (Tm), for each zone m of layer 1:

HEST
1 (Tm) =

p1λopt

n1 cos θi −

√
n2
g −

(
p1λopt

Tm

+ n1 sin θi

)2
(12.4)
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The MLDOE layer height depends on the chosen "optimisation" wavelength λopt and
order p1. Refractive indices in Equation 12.4 are defined at λopt. The second layer EST
height HEST

2 (Tm) follows a similar calculation, detailed in [88]:

HEST
2 (Tm) =

p2λopt√
n2
2 −

(
(p1 + p2)λopt

Tm

+ n1 sin θi

)2

−

√
n2
g −

(
p1λopt

Tm

+ n1 sin θi

)2

(12.5)

where p2 corresponds to the operating diffractive order of layer 2. Since this chapter
focuses on the on-axis MLDOE design and performance, we assume θi = 0° in the follow-
ing. A major difference with the TEA arises since the optimal heights are now period-
dependent. Consequently, each MLDOE diffractive zone m will have a unique thickness
HEST (Tm). Equation 12.5 supposes that p1+p2 = 1, which is imposed in this whole thesis
to ensure that the studied MLDOE designs are converging (see Chapter 9).

The diffractive orders p1 and p2 have been expressed in Chapter 9 and in [88], based on
the harmonic diffractive optical elements (HDOEs) theory [64, 65]:


p1 =

H1

λopt

[n1(λopt)− ng(λopt)]

p2 =
H2

λopt

[n2(λopt)− ng(λopt)]

⇒ p1 + p2 = 1

(12.6)

The relation p1 + p2 = 1 is ensured using the TEA heights definition of Equation 9.11.
Since Equation 12.6 is based on HDOE’s design equations, and therefore relies on the
TEA, it might provide unreliable order values (see Section 12.6).

12.3 Monochromatic Strehl ratio simulation

In this section, we detail a procedure to retrieve the Strehl ratio and the focal length of
any MLDOE design. This simulation process has been introduced in Chapter 10 [67] (see
Figure 10.1) and is depicted in Figure 12.2:
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Figure 12.2: Diagram showing the hybrid procedure to retrieve the Strehl ratio and the focal
length of any MLDOE design. This procedure is divided into two steps: 1) modelling the MLDOE
near-field and 2) using Fourier optics (angular spectrum method) in free space to retrieve the
two outputs mentioned above. Step 1 involves two approaches: one is scalar (top black), based
on ray-tracing and called "ray model" [67], while the other is vectorial (bottom red), based on
the Finite Differences Time Domain method (FDTD).

The Strehl ratio retrieval procedure depicted in Figure 12.2 combines near-field modelling
(step 1) and free-space optical propagation (step 2). The former involves the scalar ray
model (Chapter, 10 [67]) as well as the rigorous FDTD approach (Chapter 6). The FDTD
sampling corresponds to Figure 6.10.
The optical free-space propagation is simulated using the angular spectrum of plane waves
described in Equation 4.22. The procedure depicted in Figure 12.2 takes an MLDOE
design as input (i.e. the periods Tm and thicknesses HEST

Tm
for any zone m) and is purely

monochromatic. The loop, displayed in grey, allows determining precisely the "best" focal
plane f(λ). The input wavelength λ is called "simulation wavelength" and is unrelated
to the previously defined optimisation wavelength λopt. It clearly appears from Figure
12.2 loop that the "best" focal plane is found iteratively and might not correspond to the
analytical expression (Equation 9.28), as already shown in Chapter 10.
Finally, we refer to Figure 12.2 as "monochromatic ray simulation" when the ray model
is used or as "monochromatic FDTD simulation" when FDTD is used instead.

12.4 MLDOE profile optimisation algorithm

In this section, we develop an algorithm to determine suitable layer thicknesses for any
MLDOE. This algorithm researches the EST input pair (order p1 and optimisation wave-
length λopt) leading to the most performing MLDOE design. As shown in Equations 12.4
and 12.5, selecting the pair (p1, λopt) greatly impacts the resulting MLDOE layer heights.
Recall that the diffractive orders of both layers are linked (p1+p2 = 1) and that Equation
12.6 relates p1 to λopt. Since this relation is based on the HDOE theory [64, 65], which
involves the TEA, we perform two parametric studies. On one hand we consider λopt as
the only design variable (p1 is defined according to Equation 12.6) while, on the other
hand, we vary p1 and λopt independently.
Some global design parameters are arbitrarily fixed for the remaining of the chapter. The
studied MLDOE designs have a D = 10 mm aperture diameter for a total of N = 10
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diffractive zones. The F-number (F/#) is set to 15 (at λ = 8 µm) and the design
wavelengths are selected in the middle of both MWIR and LWIR wavebands: λ1 = 4.7
µm and λ2 = 10µm. The period Tm of each zone m is defined in Equation 9.1. Figure
12.3 describes the proposed thickness optimisation algorithm:

Figure 12.3: Diagram describing the proposed MLDOE thickness optimisation algorithm. It
is divided into two loops and searches the "best" EST input doublet (p1, λopt). A set of layer
materials and a pair (p1, λopt) defines an "MLDOE design". The green loop involves the ray
model and Figure 12.2 diagram. It is performed over the MWIR-LWIR wavebands. At the end
of the loop, the polychromatic Strehl ratio (PSR) is obtained for a pair (p1, λopt). This process
is repeated in the main loop (gray) for each value of (p1, λopt), resulting in either a PSR curve
(if Equation 12.6 is applied) or a PSR two-dimensional map. Given the above-mentioned global
parameters, this output map (or curve) is specific for each MLDOE material combination.

The procedure depicted in Figure 12.3 provides a polychromatic Strehl ratio (PSR) map-
ping. According to Equations 12.4 and 12.5, each pair (p1, λopt) provides a specific ML-
DOE design (thicknesses HEST

2 and HEST
1 ), that can be evaluated using the PSR. We

define the PSR over a waveband ∆λ = λmax − λmin as:

PSR∆λ
(p1, λopt) =

1

λmax − λmin

λmax∫
λmin

Strehl(λ; p1, λopt) dλ (12.7)
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The total infrared PSR (denoted by "PSR" in Figure 12.3 for conciseness) is the weighted
sum of two PSRs, one calculated in MWIR and the other in LWIR:

PSR(p1, λopt) =
1

2
PSRMWIR(p1, λopt) +

1

2
PSRLWIR(p1, λopt) (12.8)

For each pair (p1, λopt), the PSR is retrieved using the monochromatic ray simulation
(Figure 12.2, ray model) for multiple MWIR-LWIR wavelengths (green loop).

12.5 Results of the optimisation algorithm

In this section, we detail the results of the proposed algorithm (Figure 12.3). We apply this
EST input selection process to three MLDOE combinations, ensuing from the MLDOE
material selection process introduced in Chapter 11 [86]. We have selected the IRG24-
air-IRG27, ZnS-air-Ge and IRG24-IRG27-AgCl combinations, regardless of their potential
manufacturing issues. The IRG24 and IRG27 materials belong to SCHOTT’s chalcogenide
family [53]. They are "softer" than ZnS and Ge, with lower refractive indices and can
potentially be moulded (see Chapter 13). Since two-layer DOEs (i.e. air-gap MLDOEs)
are more easily manufactured, we have selected an "all chalcogenide" solution (IRG27-
air-IRG27), a more "classical" solution (ZnS-air-Ge) and finally, a three-layer solution
(IRG24-IRG27-AgCl) made of "soft" materials. It has been shown in Chapter 11 [86] that
these MLDOE combinations performed relatively poorly (see Section 12.6), especially for
IRG24-air-IRG27 and ZnS-air-Ge.

The result of the proposed optimisation algorithm is displayed in Figure 12.4, assuming
that p1 and λopt vary independently:

(a) IRG24-air-IRG27 (b) IRG24-IRG27-AgCl (c) ZnS-air-Ge

Figure 12.4: PSR maps for the three selected MLDOE combinations: a) IRG24-air-IRG27, b)
IRG24-IRG27-AgCl, and c) ZnS-air-Ge. These maps result from the application of Figure 12.3
algorithm, with order p1 and wavelength λopt both variable and independent. A white cross
displays the maximal PSR value. λopt varies within the MWIR-LWIR wavebands while |p1| is
kept relatively small to obtain "thinner" layers.

The PSR maps depicted in Figure 12.4 provide "optimal" pairs (p1, λopt) for all three
selected MLDOEs. The results are shown in Table 12.1:
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Table 12.1: Algorithm design results assuming both (p1, λopt) are variable and independent. Their
selected values correspond to the maximum PSR for all three MLDOE combinations in Figure
12.4. HEST

1,2 (T1) and HEST
1,2 (T10) are the resulting layer heights, respectively corresponding to

the central zone (period T1) and extreme zone (period T10). For comparison, TEA-based heights
are computed for both layers using Equation 9.11.

The next study relies on Equation 12.6 to define the diffractive order p1 [88]. Only λopt

varies freely, leading to the one-dimensional curve outputs of Figure 12.5:

(a) IRG24-air-IRG27 (b) IRG24-IRG27-AgCl (c) ZnS-air-Ge

Figure 12.5: PSR and diffractive order p1 curves for various optimisation wavelengths λopt, for
the three selected MLDOE combinations: a) IRG24-air-IRG27, b) IRG24-IRG27-AgCl and c)
ZnS-air-Ge. The PSR curves (blue, left axis) result from the application of Figure 12.3 algorithm,
assuming that the order p1 (black curves, right axis) is defined by Equation 12.6. λopt varies
within the MWIR-LWIR wavebands.

The PSR curves shown in Figure 12.5 provide different (p1, λopt) pairs than in Figure 12.5.
The diffractive order values obtained by Equation 12.6 are rather different, especially
for the IRG24-air-IRG27 and the ZnS-air-Ge combinations. For these two designs, the
maximal PSR output values, according to the ray model, are also much lower than in
Figure 12.4, particularly for IRG24-air-IRG27. The "optimal" results of the proposed
algorithm, in this case, are displayed in Table 12.2:
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Table 12.2: Algorithm design results assuming a variable λopt and an order p1 following Equation
12.6. The selected (p1, λopt) values correspond to the maximum PSR for each of the three
MLDOE combinations. HEST

1,2 (T1) and HEST
1,2 (T10) are the resulting layer heights, respectively

corresponding to the central zone (period T1) and extreme zone (period T10). TEA-based heights
are computed for both layers using Equation 9.11, for comparison.

When p1 and λopt are variable, the proposed algorithm can find profile heights leading to
high MLDOE PSRs for each of the three studied MLDOEs. It is not the case anymore
for the IRG24-air-IRG27 and ZnS-air-Ge combinations when Equation 12.6 is applied.
Their PSR values drop drastically, meaning that the design Equation 12.6 is not reliable,
at least according to the ray model. Since the latter is a scalar approximation, we use the
rigorous electromagnetic FDTD method to validate the presented results.

12.6 FDTD results validation

In this Section, we use the "optimal" EST input pairs (p1, λopt) obtained in Section 12.5.
The denomination "map optimisation" refers to Figure 12.4, whereas the "curve optimi-
sation" refers to Figure 12.6, where Equation 12.6 is applied.

Each MLDOE design’s performance is retrieved over various wavelengths in the MWIR-
LWIR wavebands, using the monochromatic FDTD simulation procedure described in
Figure 12.2. This process is accurate since both FDTD and the angular spectrum method
provide exact fields (as long as the sampling is fine enough, see Figure 6.10).

In Figure 12.6, "Ray TEA" and "FDTD TEA" refer to Strehl ratio curves respectively
obtained using the ray model and FDTD, assuming the standard TEA groove profile
(Equation 9.11). Similarly, we refer to "Ray EST map", "FDTD EST map", "Ray EST
curve", and "FDTD EST curve" as the Strehl ratio curves retrieved with the ray model
or FDTD, considering the map or curve optimisation.

The results shown in Figure 12.6 are very variable, depending on the MLDOE combina-
tion. For example, in Figure 12.6a, the proposed algorithm is able to increase significantly
the Strehl ratio. Inversely, the design Equation 12.6 is not reliable since it provides a very
low Strehl ratio.

The IRG24-IRG27-AgCl combination studied in Figure 12.6b already has a relatively
high TEA Strehl ratio. The proposed algorithm still finds a better design, though the
ray model is overly optimistic, especially in MWIR. If Equation 12.6 is used to define the
order (Figure 12.5b), the Strehl ratio increases to 90% (red dashed curve).

Finally, Figure 12.6c shows that the ZnS-air-Ge MLDOE can reach 90% Strehl ratio in
LWIR (blue dashed curve), but the ray model does not predict the high MWIR Strehl
ratio decrease. Applying Equation 12.6 provides an "average" design, with a higher Strehl
ratio than in the TEA case (although still very low in MWIR) but lower than using the
map (Figure 12.4c).
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(a) IRG24-air-IRG27 (b) IRG24-IRG27-AgCl (c) ZnS-air-Ge

Figure 12.6: Strehl ratio for various wavelengths in the MWIR-LWIR wavebands, considering
the three studied MLDOE configurations: a) IRG24-air-IRG27, b) IRG24-IRG27-AgCl, and c)
ZnS-air-Ge. For each combination, six curves are depicted: The continuous curves are made with
the ray model, whereas the dashed curves are obtained with FDTD and serve as a reference.
The map optimisation, curve optimisation and TEA profile (i.e. no optimisation) results are
displayed in blue, red and black. The black curves are exactly the same as in Figure 11.8 [86].

We now study the MWIR divergence between the ray model and FDTD for the ZnS-air-
Ge combination. We consider the blue curve in Figure 12.6c, for a wavelength of 4.4 µm.
Using the monochromatic MLDOE simulation process, we record the irradiance at many
propagation planes z > 0. as depicted in Figure 12.7:

(a) ZnS-air-Ge: Ray model (b) ZnS-air-Ge: FDTD

Figure 12.7: Irradiance along the optical axis for the ZnS-air-Ge combination, using the setup
given in Table 12.1 at a simulation wavelength of 4.4 µm. This simulation is made with the
monochromatic MLDOE simulation process considering: a) the ray model and b) FDTD (ref-
erence). The focal length (F ) and Strehl ratio (S) are displayed in yellow and correspond to
the values obtained in Figure 12.6 at this wavelength (blue curves). Only FDTD can model the
second diffractive order, generating a much lower Strehl ratio than the approximate ray model.

In Figure 12.7, the ray model cannot predict the second diffractive order, degrading the
"best" focal plane performance. As a result, the ray model overestimates the Strehl ratio
for this wavelength, which impacts the EST parameter selection and leads to a sub-optimal
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design choice.

Finally, the longitudinal chromatic aberration (LCA) over the MWIR-LWIR wavebands
provides a design-oriented evaluation. In addition to the Strehl ratio, the monochromatic
MLDOE simulation retrieves the "best" focal length f(λ). The theoretical LCA is de-
duced from Equation 9.28. The LCA is displayed in Figure 12.8 for all three MLDOE
combinations and both map and curve optimisations.

(a) IRG24-air-IRG27 (b) IRG24-IRG27-AgCl (c) ZnS-air-Ge

Figure 12.8: LCA over the MWIR-LWIR wavebands, considering the three studied MLDOE
configurations: a) IRG24-air-IRG27, b) IRG24-IRG27-AgCl, and c) ZnS-air-Ge. For each com-
bination, five curves are depicted: The continuous curves are made with the ray model, whereas
the dashed curves are obtained with FDTD and serve as a reference. The map optimisation,
curve optimisation and theoretical LCA are displayed in blue, red and black diamonds.

Considering the map optimisation in Figure 12.8, all three MLDOEs have slowly varying
LCA with different slopes than the theoretical one. The ray model and FDTD provide
near-identical LCA curves. In the case of the curve optimisation, except for the IRG24-
IRG27-AgCl design, the resulting LCA curves are much steeper, with high variations.
FDTD and ray model curves still have similar variations but display higher divergences.

12.7 Conclusion

It has been shown in Figures 12.6 and 12.8 that the curve optimisation was not reliable.
Since Equation 12.6 is based on the HDOE’s theory (i.e. the TEA), it cannot provide suit-
able MLDOE profile heights for every MLDOE combination. Depending on the considered
materials, it can generate highly performing designs (Figures 12.6b and 12.8b) as well as
poorly performing profiles (Figures 12.6a and 12.8a). Therefore, the proposed algorithm
must primarily use independent diffractive orders and optimisation wavelengths.
Based on the approximate ray model, our algorithm has enhanced the optical performance
of all three MLDOE designs compared to their initial Strehl ratios (black curves in Figure
12.6). The resulting LCA curves are accurate compared to FDTD and as close as possible
to the analytical variation. Consequently, the studied MLDOEs can be combined with
refractive systems to correct the chromatic focal shift, assuming that the focal lengths are
well selected.
However, as shown in Figures 12.6a, b, and c, the accuracy of the ray model in determining
the Strehl ratio is variable. By extension, our proposed algorithm also provides mitigated
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results. For instance, the ray model is relatively accurate in Figure 12.6a, but highly
overestimates the MWIR Strehl ratio of the ZnS-air-Ge configuration in Figure 12.6c. As
shown in Figure 12.7, a second unpredicted diffractive order largely impacts the beam
shape and degrades the Strehl ratio of the first diffractive order.
In addition, the map optimisation does not ensure that the EST parameter choice is
optimal since it provides a lower performance in Figure 12.6b than the curve optimisation.
In conclusion, at least for the presented MLDOE configurations, our algorithm can provide
an MLDOE thickness design that enhances the TEA performance. The latter does not
necessarily provide the "best" solution and is less accurate than FDTD, which must
always be used for validation. The "best" focal plane position determination is precise in
all studied cases. Finally, we have derived a very performing IRG24-IRG2-AgCl dual-band
MLDOE design (Table 12.2).
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Chapter 13
MLDOE tolerances and manufacturing

Previous chapters have detailed various MLDOE shape and material optimisations,
based on the ray model and verified by FDTD. Chapter 12 has demonstrated a per-
forming MLDOE configuration (IRG24-IRG27-AgCl) excellently fitting in a dual-
band camera (as in Chapter 7). To conclude the thesis and this particular MLDOE
study, this chapter presents a tolerance and manufacturing analysis, based on a lit-
erature review and FDTD simulations. The IRG24-IRG27-AgCl MLDOE optical
quality is tested regarding assembly and fabrication errors, through the study of
various tilt, decenters, passive facets width and groove thickness manufacturing er-
rors. This chapter finally reviews major fabrication method for micro-optics and
chalcogenide moulding.
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Chapter 13. MLDOE tolerances and manufacturing

13.1 MLDOE tolerancing

This section uses the best MLDOE design obtained in Chapter 12: The IRG24-IRG27-
AgCl MLDOE, designed using the EST. Recall that Table 12.2 describes its working
orders and layer heights. The considered wavelength is 8 µm throughout this chapter.
The following FDTD analysis use the same sampling as in Figure 6.10. After adding
various errors (decenters, gap width, facets) to the IRG24-IRG27-AgCl FDTD layout, the
near-fields Ex and Ey are simulated, leading to the Strehl ratio VS manufacturing error
evolution, according to the process depicted in Figure 12.2.

13.1.1 Layer decenter and gap shift

We study two types of decenter tolerances. This first one is a layer decenter depicted in
Figure 13.1:

Figure 13.1: Schematic representation of a layer decenter: layer 2 is shifted by an amount ∆
compared to layer 2.

A geometrical decenter tolerance model is used in [90, 91, 92], considering oblique inci-
dence. According to this model, a decenter adds an extra optical path length (OPL∆) to
the ideal OPL. Based on Snell’s laws, its expression is derived in [92]:

OPL∆ = ∆
sin β2

A

[
A
√
n2
2 −B2 +B2 − 1

]
(13.1)

where B = n1 sin θ, A =
√
1−B2 and sin β2 = H2/

√
T 2 +H2

2 . Recall that n1 and n2

represents the refractive indexes of the first and second layer, associated with the layer
heights H1 and H2. T denotes the zone period width, and θ is the incident angle.

Figure 13.2 shows the PIDE evolution with the decenter ∆ for multiple incident angles
[92] and period widths:
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Figure 13.2: PIDE VS decenter error (µm) for various incident angles and period widths. Original
source [91].

According to Figure 13.2, the diffraction efficiency drops below 80% for a 10 µm decenter
and T = 500 µm period width. Doubling the period doubles the decenter (keeping an
80% PIDE). The effect of off-axis incidence is minimal.

This analysis shows the impact of the period size but does not provide conclusions for a
whole MLDOE with varying zone periods. Furthermore, the extra decenter OPL is added
to the ideal OPL to form a total phase delay. However, the latter is computed using the
thin element approximation [91, 92] which is often not valid for thick MLDOEs (Figure
9.11).

In this section, we propose an alternative analysis using the MLDOE design described
previously. Previous Figure 13.1 depicts the decentered layout designed and simulated in
OptiFDTD for on-axis incidence. The resulting Strehl ratio for various decenters is shown
in Figure 13.3
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Figure 13.3: Strehl ratio for various decenter errors (µm). On-axis incidence is considered for
the FDTD simulations. The "best" focal plane is constant, defined for ∆ = 0 µm.

In Figure 13.3, the on-axis Strehl ratio for the total MLDOE design (with varying zone
periods) remains above 80% for a 15 µm decenter. This prediction is slightly more opti-
mistic than in Figure 13.2. Following the same procedure, we simulate the impact of a
gap decenter as depicted in Figures 13.4 and 13.5:

Figure 13.4: Layout showing a gap decenter ∆, increasing the distance between the two layers.
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Figure 13.5: Strehl ratio for various gap decenters (µm). On-axis incidence is considered for the
FDTD simulations. The "best" focal plane is constant, defined for ∆ = 0 µm.

Increasing the gap width has a negligible impact on the Strehl ratio and even improves
it. Therefore, we conclude that an MLDOE is insensitive to gap width errors.

13.1.2 Passive facet

Cutting sharp vertical edges when manufacturing an MLDOE can be challenging. This
section studies the impact of non-vertical groove edges under normal incidence. Each
MLDOE diffractive zone now has a passive facet as depicted in Figure 13.6

Figure 13.6: Layout displaying passive facets caused by processing errors. In this model, passive
facets of constant width ∆ are added to each diffractive zone in place of the ideal vertical edge.

A geometrical model has been proposed in [93] to model the influence of passive facets
using the PIDE metric. The passive facet does not contribute to the diffraction efficiency
and degrades it. This model is similar to the effective area method (EAM) described
in [81, 82]. Practically, due to passive facets of width t1 (layer 1) and t2 (layer 2), the
"effective MLDOE height" is reduced, following [93]:
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
h1 = H1

T − t1 − t2.s1
T − t1

h2 = H2
T − t2 − t1.s2

T − t2

(13.2)

where H1 and H2 respectively are layer 1 and layer 2 heights, T the considered zone period.
The parameters s1 and s2 are detailed in [93] and account for reflection, re-reflection, and
refraction on the passive surface. The diffraction efficiency is expressed in [93] as:

η = sinc2
(
1− Φ

2π

)(
1− t2

T

)2(
1− t1

T

)2

(13.3)

In the last two-term model, the shadowing factor introduced by the passive facet decreases
the diffraction efficiency. The result of the study proposed in [93] is shown in Figure 13.7
for the visible waveband:

Figure 13.7: Visible PIDE predicted by the shielding model when the parameters s1 = 1 and
s2 = H2/H1. Original source [93]

.

As shown in Figure 13.7, when t1 = t2, the PIDE stays at very high levels regardless of
the value of t1, t2. The PIDE strongly decreases when the values diverge. Similar results
are shown in [93] for multiple materials in the visible and for various period widths T .

A similar shadowing model, based on the layout displayed in Figure 13.8, is used to
compute the effect of period width errors (with no passive facet) [94], displayed in Figure
13.9:
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Figure 13.8: Period width error layout. Original source [94]
.

Figure 13.9: PIDE analysis based on FDTD for various period width errors. ϵ1 and ϵ2 represents
the relative period error (∆T/T ) of layer 1 and 2. Original source [94]. The visible waveband is
considered.

.

Figure 13.9 provides a result similar to Figure 13.7. The PIDE keeps a high values even
at high period width errors if ϵ1 = ϵ2.

For an IR MLDOE with varying period widths, we have studied the evolution of the
Strehl ratio with the passive facet width. This study, displayed in Figure 13.10, uses the
FDTD layout depicted in Figure 13.6:

Progress in hybrid diffractive/refractive lens solutions for compact space IR imager 220



Chapter 13. MLDOE tolerances and manufacturing

Figure 13.10: Cutting error leading to passive facets. The Strehl ratio is computed for multiple
passive facet widths using FDTD. The "best" focal plane is constant, defined for ∆ = 0 µm.

In Figure 13.10 we consider the same passive facet widths ∆ for all zones and both
layers. It appears that passive facets do not degrade the Strehl ratio until ∆ = 20
µm, corresponding to a rather important manufacturing error. Therefore, passive facets
manufacturing errors can be set on a low tolerance level.

13.1.3 Groove thickness variation

In this section, we study the impact of groove thickness errors on the IRG24-IRG27-AgCl
MLDOE performance. These errors are called depth-scaling errors in [95]. Their impact
is geometrically computed using the PIDE, assuming the analytical phase model derived
in Equation 9.14:

η = sinc2

{
m−

N∑
i=1

(di,0 +∆di)

λ

[√
n2
i,j − (n1,j sin θ1,j)2 −

√
n2
i,t − (n1,j sin θ1,j)2

]}
(13.4)

N MLDOE layers are assumed in [95]. ni,j and ni,t denote the refractive indices of the
incident and emerging medium of the ith layer. ∆di is layer i average depth error, based on
the depth error of each diffractive zone of this layer. di,0 represents layer i ideal thickness.
The oblique incidence PIDE with depth scaling error is deduced from Equation 13.4. The
provided example considers an air-spaced double layer DOE made of PMMA (polymethyl
methacrylate) and PC (polycarbonate). Figure 13.11 displays the result of this analytical
study, assuming ∆d1/d1,0 = ∆d2/d2,0:
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Figure 13.11: PIDE versus incident angle with various depth-scaling errors. Original source [95].
An air-spaced PMMA-PC MLDOE is considered in the visible waveband.

According to Figure 13.11 the selected PMMA-PC MLDOE performs near-perfectly until
15° incidence, even for a depth error to ideal thickness ratio of 10%. The PMMA mi-
crostructure ideal thickness is 16.46 µm, meaning that this MLDOE can withstand an
average depth error ∆d = 1.6 µm.

Since analytical equations rely on the TEA model, which is rarely valid for infrared
MLDOEs, we provide a depth error study based on the ray model. We propose a Monte
Carlo analysis computing the Strehl ratio for various MLDOE depth (or thickness) errors.
A tolerance ∆ defines the standard deviation of a normal distribution 3σ = ∆. This
distribution is used to generate a random thickness variation for each zone, resulting in
an altered MLDOE design as illustrated in Figure 13.12:

Figure 13.12: MLDOE layout with varying zone thicknesses. ∆H is different for each zone, based
on a normal distribution and a defined tolerance.

.

This process is repeated 1000 times for each tolerance value ∆. Figure 13.13 displays the
complete Monte Carlo analysis:
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Figure 13.13: Monte Carlo analysis using the the Strehl ratio as an optical evaluation metric.
Multiple tolerance levels are studied. The dotted black curve shows the ideal design’s Strehl
ratio.

Figure 13.13 describes the design performance evolution with the tolerance level. The
higher the level and the more "spread out" the performance. For instance, with the
lowest tolerance level, 3σ = 2 µm, nearly all 1000 random designs have a Strehl ratio of
80%. Increasing the tolerance level decreases the overall performance and the number of
high or low-performance designs. For 3σ = 20 µm, the average performance is 20% Strehl
ratio, with 10% of the designs having > 30% Strehl ratio and 10% having < 15% Strehl
ratio.

This analysis shows the tight thickness tolerance required for this MLDOE design since
a 5 µm thickness tolerance already decreases the Strehl ratio by 20% on average. Note
that the IRG24 layer has a 255 µm maximal thickness while the AgCl layer has a 115
µm maximal thickness. Consequently, the 5 µm tolerance represents 2% and 4% of the
first and second layer thicknesses. Compared to the visible case, where a 10% tolerance
ratio was acceptable until 15° incidence, IR MLDOEs seem much more challenging to
manufacture.

13.1.4 Tilt error

This section analyses the impact of a tilt error when assembling an MLDOE. It is based
on the analytical geometrical model described in [90, 92]. Since the visible waveband and
the TEA have been considered, the result provided in this section are indicative, but a
rigorous study must be performed in the infrared bandwidth. The modelling layout and
the PIDE variation for multiple tilt errors are displayed in Figure 13.14:
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(a) Tilt error (α) modeling layout. (b) Comprehensive PIDE for various tilt errors.

Figure 13.14: a) Tilt error (α) modelling layout. y1, y2 and y3, y4 are the OPL variations when
the incident rays pass through the first and second MLDOE surface. b) Comprehensive PIDE
analytical analysis. The comprehensive PIDE metric integrates incidence angles between 0° and
20°. The visible waveband is considered. Original source [92].

The analytical OPL variation due to the tilt error α is detailed in [92], using Snell’s law
of refraction. Figure 13.14 shows that the PIDE keeps a high value (> 90%) for a 6°
tilt, which is a very loose tolerance. This result includes off-axis incidences integrated by
the comprehensive PIDE metric between 0° and 20°. However, remind that this study is
only valid for thin MLDOEs in the visible waveband and should be adapted to the IR
waveband.

13.2 Manufacturing processes

To the Author’s knowledge, the manufacturing of MLDOEs in the infrared waveband
has never been discussed or studied. However, single-point diamond turning (SPDT),
micro-lithography and material moulding are the most promising MLDOE manufacturing
techniques.

13.2.1 Single point diamond turning (SPDT)

The optimal diamond turning tool shape in the visible waveband is studied in [96]. Based
on a shadowing model (effective area method, see Section 13.1.2), they concluded that
a half-round SPDT tool was necessary to generate accurate vertical edges. The optimal
tool curvature radius and feed rate are described in Equation 13.5:

{
Roptim ≈ 0.4T.f

fmin = T/200
(13.5)

where T is the considered zone period. The optimal tool radius Roptim is expressed in
µm while the minimal feed rate fmin is expressed in µm/r (µm/rotation). the feed rate
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characterizes the displacement speed of the cutting tool when the machined object spins.
A representation of the SPDT process is illustrated in Figure 13.15:

Figure 13.15: A schematic of the ultra-precision SPDT cutting process. The tool angles and
radius values are arbitrary, taken from [97].

The variation of the PIDE with the cutting tool radius and feed rate is shown in Figure
13.16:

Figure 13.16: The relation between cutting tool radius and PIDE with different feed rates. (a)
T = 100 µm, (b) T = 200 µm, (c) T = 300 µm, and (d) T = 400 µm.
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13.2.2 Lithography and microfluid

A very recent example of MLDOE fabrication in the visible, called microfluidic diffractive
optical element (MFDOE), is described in [98]. Though not currently extended in the
infrared due to a lack of materials, this process has provided high diffraction efficiency
in the visible. In [98], both MFDOE layers have been manufactured using a digital
micromirror device (DMD) through maskless lithography (DMDML). The writing process
involves a femtosecond laser direct writing (FsLDW). Finally, the gap material is casted
inside the MFDOE using a microfluid (ethylene glycol or methanol). The lithographic
setup is displayed in Figure 13.17:

Figure 13.17: (a) Schematic diagram of the three-dimensional structure of MFDOE. (b) Fabri-
cation steps for the MFDOE. (c) The sealing step of MFDOE. Original source [98].

Three-dimensional printing is widely used in micro-optics. The FsLDW allows fabricating
both MFDOE layers as shown in Figure 13.17a. An understructure is added to both
layers to maintain their integrity. To achieve the alignment of the two processes depicted in
Figure 13.17b, a circular mark on the glass substrate is prepared in advance. The MFDOE
is processed by FsLDW based on the centre of the circular mark. The microchannel is
only used to avoid the volatilisation or flow of liquid after sealing (Figure 13.17c), so high
processing precision is not required. The detailed processing is explained in depth in [98].

13.3 Chalcogenide moulding

To the Author’s knowledge, no study has been made yet concerning the feasibility of
infrared moulded MLDOEs. Nonetheless, Chaclcogenides have been widely used for high
accuracy microlens fabrication due to their moulding characteristics [99]. The moulding
process is depicted in Figure 13.18:
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Figure 13.18: Four stages of a PGM (precision glass moulding) cycle: (a) heating, (b) pressing,
(c) annealing, and (d) cooling. Original source [99]

SPDT is often used for engraving the microstructure pattern on the mould. A recent
example of diffractive optics moulding using chalcogenide glass is shown in the following,
based on [100]. They follow a moulding process similar to Figure 13.18 detailed in [100].
The result is depicted in Figure 13.19:

(a) Microphoto of the moulded
DOE.

(b) Comparison between moulded parts and the designed DOE.

Figure 13.19: a) Micro-photo of the moulded DOE and b) Comparison between moulded parts
and the designed DOE. Original source [100].

As shown in Figure 13.19 and according to [100], the local filling of the microstructure
is accurate. The annealing rate significantly influences the surface profile, followed by
the annealing and temperature and then by the holding pressure. Flat diffraction moulds
processed with diamond tools can achieve even better filling of microstructures.

Progress in hybrid diffractive/refractive lens solutions for compact space IR imager 227





Chapter 14
Conclusion and perspectives

14.1 Overall conclusion on the MLDOEs conception

This thesis has treated MLDOE conception in the context of Earth infrared remote sens-
ing. We have described multiple infrared applications in chapter 1, explaining their spatial,
temporal, thermal and spectral requirements. Three prominent applications have been
detailed, with a common dual-band infrared bandwidth requirement. The remote sensing
of a field’s canopy temperature, combined with the soil temperature knowledge, allows for
estimating a crop’s water stress. Controlled water stress irrigation is an innovative and
sustainable water management strategy that requires precise plant water stress control
and irrigation schedules. Infrared remote sensing greatly serves fire detection in distin-
guishing actual fires from false alarms. The study of fire radiative energy and burned
areas provide insight into fire spreading mechanisms and improve fire prevention. A sim-
ilar idea applies to volcano monitoring, where infrared images significantly add value in
determining lava flow and eruption characteristics. A dual-band 10 m resolution camera
enables water management and has sufficient resolution for "hot events" monitoring in
case of fire or eruption occurring in its field of view. A spacecraft constellation ideally
achieves daily coverage.

The targeted applications provide high-level requirements such as spectral and spatial
resolution. Nonetheless, they are not sufficient to entirely constrain an optical design. In
Chapter 2, we have reviewed some state-of-the-art infrared detection technologies. We
have discussed the prominent detector noises and figures of merit, providing additional
constraints to the optical design. The high-level requirements and detection constraints
have been integrated into the signal-to-noise ratio study in Chapter 3. Starting from
the source physical radiance model, we have detailed a comprehensive parametric study,
expressing the NEDT and SNR as a function of fundamental optical design parameters
(pixel size, F-number, and aperture diameter). Assuming some detector characteristics
and the crop water management application in LEO orbit, we have selected a suitable
optical F-number and pixel size. The resulting MWIR and LWIR SNRs for this low-
temperature application are 1 and 25, associated with a 12 m GSD in MWIR and a 24
m GSD in LWIR. When high temperatures applications are considered, the MWIR SNR
increases to 30.

Chapters 4, 5, and 6 are aside chapters since they each introduced a different modelling
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tool to study complex diffractive optics. In Chapter 4, we developed a free-space opti-
cal wave propagator in Matlab, following the work of Goodman and Matsushima on the
angular spectrum method. This method has proven exceptionally useful in later chap-
ters, generating optical metrics at the focal plane. Since Fourier optics already provided
free-space field propagation, Chapters 5 and 6 focused on modelling the field behaviour
inside an MLDOE. Chapter 5 described an analytical optical path length calculator (ray-
tracing) specifically designed for studying MLDOEs and implemented in Matlab. Much
faster than professional ray tracing software, the Matlab analytical optical path length
calculator is perfectly accurate and fully parameterisable. Finally, Chapter 6 details an ex-
act electromagnetic field calculation method known as FDTD. This chapter has explained
the MLDOE layout creation in FDTD and how to adequately define spatial and temporal
sampling, ensuring trustful simulations. This study allowed for considering FDTD simu-
lations as references in the following chapters.

Chapter 7 has proposed to optimise a MWIR-only design using a standard diffractive lens
and a powerful athermalisation algorithm. The latter has been detailed, based on various
literature references, and applied step-by-step to the design of a MWIR optical system. It
has been implemented on the professional ray-tracing software CodeV. We have been able
to extend the MWIR design thermal range from ±5°K to ±50°K. This chapter constitutes
a starting point that needs to be extended in LWIR, justifying the research of a dual-band
diffractive component in the following chapters.

Chapter 8 has introduced the concept of diffractive optics and explained their advantages
in compact, achromat optical systems. The constructive interference requirement between
each diffractive zone, associated with Fermat’s principle, is the cornerstone of designing
diffractive elements. The thin element approximation has been presented as an analytical
solution to compute the phase delay induced by a DOE. This chapter has shown multi-
ple DOE designs, varying the operating order and the harmonic parameter. It resulted
in standard DOEs having a high diffraction efficiency only at their design wavelength,
making them incompatible with dual-band designs. Multi-order DOEs could go around
this issue but suffer from a discontinuous chromatic focal shift, hardly suitable for hybrid
refractive-diffractive designs.

Multilayer diffractive optical elements (MLDOEs) have been introduced in Chapter 9 as
dual-band extensions of standard DOEs. The designing principles remain the same as
for DOEs, except that a second design wavelength is considered. This is permitted by
increasing the number of diffractive layers (and materials). By design, an MLDOE ideally
provides maximal diffraction efficiency at each design wavelength (one in MWIR, one in
LWIR), making it perfectly suitable for dual-band applications. Its chromatic focal shift
has the standard negative variation, making the coupling with refractive lenses very ben-
eficial for achromatisation. This ideal MLDOE behaviour relies on the validity of the thin
element approximation. While it is always verified for standard DOEs, we have shown,
using some literature references, that it was no more the case for MLDOEs. Another
modelling technique must be applied to accurately assess MLDOE performance.

The ray model has been proposed as an alternative MLDOE modelling strategy in Chap-
ter 10. It uses ray-tracing to compute optical path lengths inside an MLDOE instead of
relying on the TEA. Our Matlab OPL calculator has been specifically used to derive an
MLDOE phase approximation. Fourier optics remains a powerful free-space propagation
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method and has constituted the ideal tool to retrieve the "best" focal plane, the PSF, and
the Strehl ratio. This chapter has compared the performance results of the ray model and
the TEA. The former provides pessimistic results, while the second, by design, always
predicts ideal performance. FDTD simulations have been conducted to adjudicate the
issue, demonstrating a clear-cut validity of the ray model over the TEA model. Nonethe-
less, the ray model Strehl ratio predictions have not proven as accurate as FDTD ones.

The following chapters have presented two optimisation methods. The geometric optics
material selection method presented in Chapter 11 has allowed for selecting the most suit-
able MLDOE material combinations. This method uses the total internal reflection, the
transmission and the total thickness as evaluation metrics to determine if a material com-
bination has imaging potential. As a result, three-layer DOEs have displayed the highest
performance upon the studied configurations, but in many cases, they could not outclass
standard DOEs. Chapter 12 has proposed to optimise the diffractive zone height using
the ray model. To this end, the extended scalar theory has provided extremely valuable
zone design equations. A parametric study involving the ray model has been conducted
to determine the best EST parametrisation for various MLDOE configurations. As a re-
sult, our optimisation algorithm has improved the imaging capabilities of each MLDOE
design, but not to the expected extent (when compared to FDTD). Still, the optimised
IRG24-IRG27-AgCl MLDOE design has proven to be especially performing in the MWIR
and LWIR wavebands.

The IRG24-IRG27-AgCl MLDOE has the highest polychromatic Strehl ratio of all the
tested configurations. Nonetheless, this predicted performance, supported by exact FDTD
simulations, assumes an ideal MLDOE. Even the finest optical fabrication process brings
manufacturing errors, and the optical assembly is never perfect. Chapter 13 has proposed
understanding the effect of such defaults on the IRG24-IR27-AgCl MLDOE performance.
The impact of a layer decenter, an addition of passive facets, and a variation of thickness
has been evaluated using FDTD, simulating a non-ideal MLDOE. The IRG24-IRG27-
AgCl MLDOE is very sensitive to thickness errors. Nevertheless, loose tolerances can be
applied to decenters or period width errors. A literature review has highlighted possible
modelling strategies for decenters, tilt, and period width errors in the visible waveband.
Finally, prominent micro-optics manufacturing processes (diamond turning, lithography
and moulding) have been evocated for completeness.

14.2 Suggested improvements and perspectives

So far, this thesis has focused on accurately retrieving an MLDOE’s optical performance
and determining promising designs. We have described at least one very performing dual-
band MLDOE and started studying the impact of various manufacturing/assembly errors.
To the Author’s knowledge, the ray model and Fourier optics have been pushed to their
limits for the modelling of MLDOEs, with mitigated success. The hybrid combinations of
these two methods have improved the polychromatic Strehl ratio of most of the studied
MLDOEs, but often to an insufficient extent. Furthermore, the approximate ray model
does not ensure finding the most optimal design and only provides a design starting
point. Only rigorous approaches such as the FDTD method are accurate enough to
deliver trustful results in the frame of thick diffractive optical elements. We suggest the
creation of a specific MLDOE design software implementing the following procedure:
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• Eliminate un-manufacturable or too expensive material combinations.

• For each remaining material combination, use the ray model to optimise the layer
shape. It will serve as a starting point for the subsequent FDTD analysis.

• Use the geometric material selection method to eliminate "improper" designs (i.e.
designs having low transmission or high thickness/TIR). We assume that these im-
proper solutions barely have any chances to be improved after an FDTD optimisa-
tion.

• Conceive a core FDTD calculator to optimise further the MLDOE shape. A genetic
algorithm can be employed to find an optimal solution as efficiently as possible.

• For the most performing designs, further FDTD tolerancing studies must be carried
out to determine fine manufacturing requirements.

• A monte-Carlo analysis using the FDTD core is mandatory for precise cross-tolerance
evaluation. It provides a manufacturability metric and a price estimation.

This procedure allows for designing MLDOE comprehensively and reliably. It necessi-
tates a fine MLDOE manufacturing knowledge that may not currently exist. An FDTD
calculation core is required for automation and fast parametrisation, as it constitutes the
cornerstone of the optimisation process.

A further step would be to include MLDOEs and refractive lenses in a unique design
software to estimate their combined performance and correct their aberrations. This step
would consists in extending Chapter 7 camera to LWIR using MLDOEs. Since ray tracing
cannot be sufficient to model MLDOE, at least to the Author’s knowledge, this designing
software should apply some Field-Tracing paradigms. It must propagate an input field
through various optical components, selecting adequate modellings: Fourier optics in free
space, FDTD inside an MLDOE, and ray-tracing for lenses.
In this thesis, we only applied the athermalization algorithm to a hybrid MWIR design
without MLDOEs. Similarly to tolerances, an MLDOE’s thermal behaviour is discussed
in the literature but should be deepened using an environmental tool similar to CodeV’s
ENV macro. Dual-band athermalization is discussed in some papers and is a keystone of
hybrid MLDOE design for dual-band imaging.

Future perspectives

Infrared remote sensing offers a vast range of applications, mostly addressing make-or-
break issues of our century. Most applications, from wildfire detection to crop irrigation
management, tremendously profit from multispectral (or even dual-band) imaging. In the
meantime, infrared applications require increasing temporal and spatial resolution, coin-
ciding with the current image processing capabilities, physical phenomena knowledge, and
monitoring strategies. Recent detection technologies have enabled small pixels, increas-
ing the achievable infrared spatial resolution. Applications that necessitate daily revisit
traditionally rely on geostationary satellites but can now be fulfiled by high-resolution
nanoSat constellations, enabling high temporal resolution.
In this context, having compact, passive dual-band optical designs is a crucial technologic
milestone. NanoSat or even SmallSat constellations cannot board bulky multispectral
imagers. The latter are often constituted by light-splitting devices and multiple optical
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arms (each for a specific waveband). Furthermore, they require space and cannot be
manufactured at high cadency. In contrast, MLDOEs achieve both compactness and dual-
band capabilities, displaying considerable potential for infrared imaging. In addition, the
rising interest in MLDOEs might trigger further development in dual-band detectors or
innovative manufacturing processes.
Moulding processes may enable the production of performing dual-band cameras in large
quantities, considerably reducing their cost. In parallel, it is worth mentioning the devel-
opment of dual-band detection technologies that will gain a huge added value if dual-band
components such as MLDOEs and their manufacturing processes become standardised.
This statement leads to the conclusion that a virtuous cycle may arise from the minia-
turisation of multispectral infrared systems.
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Chapter 16
Appendix A: IR materials

16.1 Germanium Ge

Figure 16.1: IR transmission of uncoated Ge.

Ge refractive index model comes from [101]. It is valid from 2.5 µm to 14 µm and from
50°K to 300°K.



n2(λ, T ) = A+
Bλ2

λ2 − C
+

Dλ2

λ2 − E

A = −6.040 ∗ 10−3T + 11.05128

B = 9.285 ∗ 10−3T + 4.00536

C = −5.392 ∗ 10−4T + 0.599034

D = 4.151 ∗ 10−4T + 0.09145

E = 1.51408T + 3426.5

(16.1)

Ge thermal and chromatic powers are displayed in Figure 16.2 for both MWIR and LWIR
bands:
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Figure 16.2: Ge thermal and chromatic powers in MWIR and LWIR wavebands.

16.2 Zinc Selenide ZnSe

Figure 16.3: IR transmission of uncoated ZnSe.

ZnSe refractive index model comes from [102]. We define t = T − 293(°K):



n2(λ, T ) = E(t) +
A(t)

λ2 − λ2
u

+
B(t)

λ2/λ2
I − 1

λu = 0.29934 + 1.004 ∗ 10−4t

λI = 48.38 + 6.29 ∗ 10−3t

E(t) = 9.01536 + 1.44190 ∗ 10−3t+ 3.32973 ∗ 10−7t2 − 1.08159 ∗ 10−9 ∗ t3 − 3.88394 ∗ 10−12t4

A(t) = 0.24482 + 2.77806 ∗ 10−5t+ 1.01703 ∗ 10−8t2 − 4.51746 ∗ 10−11t3 + 4.18509 ∗ 10−13t4

B(t) = 3.08889 + 1.13495 ∗ 10−3t+ 2.89063 ∗ 10−7t2 − 9.55657 ∗ 10−10t3 − 4.76123 ∗ 10−12t4

(16.2)
ZnSe thermal and chromatic powers are displayed in Figure 16.4 for both MWIR and
LWIR bands:
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Figure 16.4: ZnSe thermal and chromatic powers in MWIR and LWIR wavebands.

16.3 Zinc Sulfide ZnS

Figure 16.5: IR transmission of uncoated ZnS.

ZnS refractive index model comes from [102]. We define t = T − 293(°K):



n2(λ, T ) = E(t) +
A(t)

λ2 − λ2
u

+
B(t)

λ2/λ2
I − 1

λu = 0.23979 + 4.841 ∗ 10−5t

λI = 36.525 + 4.75 ∗ 10−3t

E(t) = 8.34096 + 1.29107 ∗ 10−3t+ 4.68388 ∗ 10−7t2 − 1.31683 ∗ 10−9t3 − 6.64356 ∗ 10−12t4

A(t) = 0.1454 + 1.13319 ∗ 10−5t+ 1.05932 ∗ 10−8t2 + 1.06004 ∗ 10−10t3 − 2.27671 ∗ 10−13t4

B(t) = 3.23924 + 1.096 ∗ 10−3t+ 4.20092 ∗ 10−7t2 − 1.1135 ∗ 10−9t3 − 7.2992 ∗ 10−12t4

(16.3)
ZnS thermal and chromatic powers are displayed in Figure 16.6 for both MWIR and LWIR
bands:
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Figure 16.6: ZnS thermal and chromatic powers in MWIR and LWIR wavebands.

16.4 Gallium Arsenide GaAs

Figure 16.7: IR transmission of uncoated GaAs.

GaAs refractive index model comes from [103]. We define t = T − 293(°K):



n2(λ, T ) = G0 +
G1

λ−2
1 − λ.−2

+
G2

λ−2
2 − λ.−2

+
G3

λ−2
3 − λ.−2

λ1 = 0.4431307 + 0.000050564 ∗ t
λ2 = 1746453 + 0.0001913 ∗ t− 4.882e− 07 ∗ t2

λ3 = 36.9166− 0.011622 ∗ t
G0 = 5.372514

G1 = 27.83972

G2 = 0.031764 + 4.350e− 05 ∗ t+ 4.664e− 07 ∗ t2

G3 = 0.00143636

(16.4)
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GaAs thermal and chromatic powers are displayed in Figure 16.8 for both MWIR and
LWIR bands:

Figure 16.8: GaAs thermal and chromatic powers in MWIR and LWIR wavebands.

16.5 Cadmium Telluride CdTe

Figure 16.9: IR transmission of uncoated CdTe.

CdTe refractive index model comes from [104]:

n2(λ, T ) = A+
Bλ2

λ2 − C
+

Dλ2

λ2 − E
A = −2.973e− 04 ∗ T + 3.8466

B = 8.057e− 04 ∗ T + 3.2215

C = −1.10e− 04 ∗ T + 0.1866

D = −2.160e− 02 ∗ T + 12.718

E = −31.60 ∗ T + 18753

(16.5)

CdTe thermal and chromatic powers are displayed in Figure 16.10 for both MWIR and
LWIR bands:
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Figure 16.10: CdTe thermal and chromatic powers in MWIR and LWIR wavebands.

16.6 Silver Chloride AgCl

AgCl is not a very hard material, so it is easy to polish. However, it can be deformed
under heat and pressure. AgCl transmission is 80% in both wavebands. It darkens when
exposed to sunlight, but it doesn’t affect its IR transmission.

Figure 16.11: IR transmission of uncoated AgCl.

AgCl refractive index model comes from [105] for the chromatic dispersion. We obtain
AgCl thermal dispersion (constant) using [106].
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

dn

dT
= −61

n2(λ, 296.9) = A+
B

λ2 − C
−Dλ2 − Eλ4

⇒ n(λ, T ) =
dn

dT
(T − (296.9)) +

√
n2(λ, 296.9)

A = 4.00804

B = 0.079086

C = 0.04584

D = 0.00085111

E = 0.00000019762

(16.6)

AgCl thermal and chromatic powers are displayed in Figure 16.12 for both MWIR and
LWIR bands:

Figure 16.12: AgCl thermal and chromatic powers in MWIR and LWIR wavebands.

16.7 Chalcogenide glasses (IRG family)

The refractive index of all chalcogenide materials follows the same model, coming from
SCHOTT datasheets [53]. It is valid for any temperature between 1 µm and 12 µm.


n(λ, 295K) =

√
1 +

B1λ
2

λ2 − C1

+
B2λ

2

λ2 − C2

+
B3λ

2

λ2 − C3

dn

dT
(λ, T ) =

n2(λ, 295)− 1

2n(λ, 295)
[D0 +

E0

λ2 − λ2
TK

]

(16.7)

By simple integration we get: n(λ, T ) = n(λ, 295)+
dn

dT
(T −295). Table 16.1 displays the

above mentioned parameters for each chalcogenide material [53]:
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Table 16.1: Refractive index parameters (Equation 16.7) for each chalcogenide material [53].

Chalcogenide materials thermal and chromatic power are displayed in Figures 16.13, 16.14,
16.15, 16.16, 16.17, 16.18 for both MWIR and LWIR wavebands:

Figure 16.13: IRG22 thermal and chromatic powers in MWIR and LWIR wavebands.
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Figure 16.14: IRG23 thermal and chromatic powers in MWIR and LWIR wavebands.

Figure 16.15: IRG24 thermal and chromatic powers in MWIR and LWIR wavebands.

Figure 16.16: IRG25 thermal and chromatic powers in MWIR and LWIR wavebands.
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Figure 16.17: IRG26 thermal and chromatic powers in MWIR and LWIR wavebands.

Figure 16.18: IRG27 thermal and chromatic powers in MWIR and LWIR wavebands.
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Chapter 17
Appendix B: Resolution of MLDOE
intersection

System 5.4 is solved for two types of profiles:

• Parabola: zm = −Hm

(
m− r2

r21

)
+ Sm

• Edge: r = rm (or rm±1 depending on layer configuration and ray direction)

17.1 Parabola intersection

The solution of System 5.4 is rewritten:



x =
ai
bi
(y − y0) + x0

z =
ci
bi
(y − y0) + z0

z = −Hm

(
m− r2

r21

)
+ Sm

r2 = x2 + y2

(17.1)

Sm is the profile shift along the optical axis z and allows defining the profile z position.
Once more, depending on the value of the direction vector parameter b: two cases arise:

17.2 Case: bi ̸= 0

In this case, for most rays, the expressions of r2 and z2 are rather "bulky" y2 and y
polynomials. The second-degree equation to solve is given by:
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

x =
ai
bi
(y − y0) + x0

z =
ci
bi
(y − y0) + z0

Ay2 +By + C = 0

⇒ A = 1 +
a2i
b2i

⇒ B = 2x0
ai
bi
− 2y0

a2i
b2i
− r21ci

Hmbi

⇒ C = y20
a2i
b2i
− 2x0y0

ai
bi

+ x2
0 − r21m+

r21
Hm

[
−(z0 − Sm) +

ci
bi
y0

]
(17.2)

17.3 Case: bi = 0

In this case, using Systems 5.4 and 17.1, we have a second degree equation in z to solve:



y = y0

x =
ai
ci
(z − z0) + x0

A(z − z0)
2 +B(z − z0) + C = 0

⇒ A =
a2i
c2i

⇒ B = 2x0
ai
ci
− r21

⇒ C = −mHmr
2
1 + y20 + x2

0 − r21z0 + Smr
2
1

(17.3)

Finally, the interface partial derivatives defining the director coefficient of the normal
N are expressed. The MLDOE interface profile f(x, y, z) = 0 is first multiplied by the
curvature radius R = r21/(2Hm) to simplify the normal director vector N:



df

dx
= x

df

dy
= y

df

dz
= − r21

2Hm

(17.4)

17.4 Edge intersection

An MLDOE edge is defined as a cylinder with axis Z, centered on x = y = 0, with
constant radius rm (or rm±1 depending on layer configuration and ray direction). The
solution of System 5.4 is rewritten:
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Chapter 17. Appendix B: Resolution of MLDOE intersection


y =

bi
ai
(x− x0) + y0

z =
ci
ai
(x− x0) + z0

r2m =
√

y2 + x2

(17.5)

System 17.5 is a second degree equation in x:

y =
bi
ai
(x− x0) + y0

z =
ci
ai
(x− x0) + z0

Ax2 +Bx+ C = 0

⇒ A = 1 +
b2i
a2i

⇒ B = 2y0
bi
ai
− 2x0

b2i
a2i

⇒ C = x2
0

b2i
a2i
− 2

bi
ai
x0y0 + y20 − r2m

(17.6)

In the case where ai = 0, the solution trivially becomes x = x0, y =
√

r2m − x2 and
z =

ci
bi
(y − y0) + z0.

Finally, the cylinder interface partial derivatives defining the director coefficient of the
normal are trivially expressed: 

df

dx
= 1

df

dy
= 1

df

dz
= 0

(17.7)
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