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ABSTRACT  

Growing epidemiological evidence points towards an association between fragmented 

24-h rest-activity cycles and cognition in the aged. Alterations in the circadian timing 

system might at least partially account for these observations. Here, we tested whether 

daytime rest is associated with changes in concomitant 24-h rest probability profiles, 

circadian timing and neurobehavioural outcomes in healthy older adults. Sixty-three 

individuals (59 – 82 years) underwent field actigraphy monitoring, in-lab dim light 

melatonin onset (DLMOn) assessment and an extensive cognitive test battery. 

Actimetry recordings were used to measure daytime rest (DTR) frequency, duration 

and timing and to extract 24-h rest probability profiles. As expected, increasing DTR 

frequency was associated with higher rest probabilities during the day, but also with 

lower rest probabilities during the night, suggesting more fragmented night-time rest. 

Higher DTR frequency was also associated with lower episodic memory performance. 

Moreover, later DTR timing went along with an advanced circadian phase as well as 

with an altered phase angle of entrainment between the rest-activity cycle and 

circadian phase. Our results suggest that different daytime rest characteristics, as 

reflective indices of wake fragmentation, are not only underlined by functional 

consequences on cognition, but also by circadian alteration in the aged.  

Keywords: actigraphy, melatonin, circadian rhythm, cognition, ageing, rest 

INTRODUCTION 

The internal circadian clock provides temporal organisation to the sleep-wake cycle 

through adaptive arousal mechanisms.
1–3

 Alignment between the circadian clock and 

the rest-activity cycle is fundamental to many physiological and neurobehavioural 

processes.
4
 Accordingly, misalignment affects state stability

3,5
 and is associated with 
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deterioration in vigilance, cognitive performance and its cerebral correlates, 

particularly when sleep propensity is high.
6–8

  

More fragmented 24-h rest-activity cycles in ageing have been associated with worse 

cognitive performance
9–11

 and with an increased incidence of Alzheimer’s disease.
12–

14
 Concomitantly, recent epidemiological reports promote actimetry-derived daytime 

rest as a health risk factor in the aged,
15,16

 including for cognitive fitness.
17,18

 In the 

same vein, frequent and long-duration actimetry-derived daytime rest has been 

associated with Alzheimer’s disease progression and prognosis.
18

  

Considering its strong implication in sleep timing, differences in circadian physiology 

might at least partially contribute to the increased incidence of DTR and associated 

changes in neurobehavioural outcomes during ageing. The circadian process is 

notably impacted by age through changes in clock gene expression, an advanced 

phase, a reduced amplitude of melatonin secretion
19,20

 and a putative alteration in 

circadian sleep-wake propensity drives.
21,22

 Concomitantly, an overall age-related 

reduction in the maximal capacity for sleep has been reported
23

 and it was suggested 

that ageing affects the ability to maintain sleep and wake states over extended periods 

of time, resulting in more fragmented rest-activity cycles.
24

 Within this perspective, 

the increasing intrusion of consolidated rest bouts into the active wake period in the 

aged might be underlined by altered circadian regulation and associated functional 

consequences on cognition.  

In the current cross-sectional study, we applied a chronobiological approach to 

investigate whether DTR characteristics, such as frequency, duration and timing, 

explain inter-individual variability in 24-h rest-activity organisation, circadian timing 

and cognition in the aged.  
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METHODS 

Participants 

Sixty-three healthy retired older volunteers, screened for medical conditions, were 

recruited. Eighty-one percent of the sample subjectively reported to regularly nap (see 

supplemental information for detailed inclusion criteria). Actigraphy monitoring 

revealed no daytime rest period over the recording for three participants. These 

subjects were excluded from the main analysis due to the unfeasibility to extract DTR 

timing; one of our primary outcomes (but see supplemental material for a 

confirmatory analysis including these participants on a reduced statistical model, not 

including DTR timing). Three subjects were further excluded due to a poor fit quality 

of melatonin data due to contamination during sampling or technical issues during 

extraction. Demographic characteristics of the final sample of 57 participants (24 

females, aged 68.86±5.54 years [mean ± standard deviation (SD)], range 59-82) are 

summarised in Table S1.  

Study procedure 

After study enrolment, participants underwent a night of polysomnography at the 

laboratory, during which the sleep apnea/hypopnea index (AHI) was determined. 

Then, at least 8 days of actigraphy were recorded to extract DTR characteristics and 

24-h rest probability profiles while maintaining daily routines and self-selected sleep 

schedules at home (see Figure 1A for the study timeline and Figure 1B for an example 

of actigraphy recording). In a next step, participants were requested to follow a pre-

defined and individually-adapted sleep-wake schedule centred around an 8-h night-

time sleep opportunity during 7 days. Compliance with the regimen was verified at 

admission. Participants were further instructed to abstain from alcohol and energetic 

drinks during this week to prevent withdrawal effects. After the week of fixed 
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actimetry, participants classically arrived at the laboratory 6 hours after scheduled 

wake-up time and completed a cognitive test battery probing episodic memory, 

attention and executive functions performance (Figure 1A). Thereafter, participants 

underwent a 40-h multiple nap protocol (Figure 1A, supplemental information) under 

controlled constant-routine conditions according to light input (<5 lux, see 

supplemental information for details about light specifications, Table S2), ambient 

temperature (~19 °C), body posture (semi-recumbent during wake periods, except for 

scheduled bathroom visits) and isocaloric food intake, without access to external time 

cues. Salivary melatonin was collected at regular intervals (~1.25 hours) throughout 

the 40-h protocol. The protocol was preceded and followed by an 8-h baseline and 

recovery night, respectively. The study was approved by the local Ethics Committee 

of the University Hospital and of the Faculty of Psychology, Logopedics and 

Educational Sciences at the University of Liège (Belgium) and performed in 

accordance with the Declaration of Helsinki. Participants gave written informed 

consent and received a financial compensation. 

Circadian phase assessment: Melatonin 

Saliva samples were obtained by passive drooling. Salivary melatonin levels were 

analysed via a liquid chromatography coupled to a tandem mass spectrometer (see 

supplemental information). Secretion profiles were determined with a skewed baseline 

cosine function.
25

 Circadian phase was assessed by extracting the timing of the dim 

light melatonin onset (DLMOn) and dim light melatonin offset (DLMOff). The latter 

were defined as the point in time at which melatonin levels reached 25% of the fitted 

peak-to-baseline amplitude of individual data (Figure 1C). To assess phase 

relationships between rest-activity cycles and circadian phase, the interval between 
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DLMOn time and actigraphy-derived activity offset time were further computed 

(phase angle of entrainment
26

). Circadian outcomes are reported in 

Table 1. 

Daytime rest characteristics and 24-h rest probability profiles: Actigraphy 

Participants wore an actigraph (Motionwatch 8, CamNtech, UK) at the non-dominant 

wrist and completed a sleep diary for at least 8 consecutive days, with a maximum 

duration of 15 days (13.58±1.81 days). Locomotor activity data and light levels were 

aggregated into 30-sec epochs and processed by the open-source software 

pyActigraphy (v1.0).
27

 Periods of actigraph removal were visually identified 

according to sleep diaries and excluded from the analysis. The automatic scoring of 

the Munich Actimetry Sleep Detection Algorithm (MASDA)
28

 was used to detect 

consolidated rest periods. The latter was set to classify consecutive epochs of at least 

15 minutes with activity counts below 15% of the 24-h centered moving average as 

rest periods. We assessed the performance of the algorithm against visual scoring of 

an independent sub-sample of the Multi-Ethnic Study of Atherosclerosis (MESA) 

cohort with comparable demographical characteristics (N= 336, age range=59–82 

y.o., Caucasian, retired, 189 women).
29

 Agreement between the MASDA and visual 

scoring is reported in the supplemental information.  

For the generation of 24-h rest probability profiles, classification scores from 

MASDA were first averaged over 24-h apart time points for each time of day, then 

resampled by averaging the probabilities over each 10 minutes period and smoothed 

by a Gaussian-filter rolling average (Gaussian window: size=120 min and standard 

deviation=20 min). Profiles were normalized for the total rest probability over 24 

hours to emphasize their temporal distribution (Figure 1C). For statistical 

comparisons, rest profiles were further aligned to the individual’s DLMOn (Figure 2). 
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Daytime rest periods were determined with a duration comprised between 15 minutes 

and 4 hours during the biological day (see Figure 1B for illustration of consolidated 

rest bout detection). The biological day was defined as the time window between the 

group averaged DLMOff +2h (DLMOff: 7.95±1.13 h) and DLMOn -2h (DLMOn: 

21.44±1.23 h), respectively. This time window was chosen to exclude potential 

confounding effects of transition periods during the early morning and late evening 

hours. 

Three characteristics were extracted from actigraphy-derived rest bouts: (1) daily 

frequency, calculated as the mean number of DTR bouts per day, (2) duration, defined 

as the overall mean duration of DTR bouts and (3) timing, defined as the median 

delay between DTR bouts start time and DLMOn. Furthermore, correlation analyses 

between automatically-detected rest periods by the MASDA and subjectively-reported 

nap characteristics were performed.  

Activity onset- and offset times were automatically detected in each daily profile as 

the times at which the ratio between activities over the previous 15 minutes and the 

following 15 minutes are the highest and the lowest, respectively. The latter were 

visually verified by indications provided in sleep diaries (see supplemental 

information). Actigraphy-derived daily activity levels were estimated from the mean 

activity count over 24-h periods not classified as rest while night-time rest was 

expressed as the mean duration of automatically detected rest periods during the night, 

i.e. between activity offset and onset times. Finally, night-time rest fragmentation was 

estimated using transition probabilities from rest to activity (kRA index).
30

 

Actigraphy-derived variables are summarised in Table 1. 

Finally light levels were measured at the non-dominant wrist and two parameters
31

 

were extracted: (1) mean light timing above the threshold of 500 lux (MLiT
500

), 
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representing average timing of light exposure being greater than 500 lux and (2) time 

above threshold (TAT), defined as the number of epochs above a threshold of 100 lux 

(TAT
100

) multiplied by the epoch length.  

Neuropsychological assessment 

A test battery, composed of a series of validated cognitive tasks (see supplemental 

information), was administered to assess episodic memory, executive functions and 

attention performance. A composite Z-score was computed by cognitive domain. 

Cognitive scores are summarised in 

Table 1.  

Statistical analyses 

The associative value of DTR characteristics (frequency, duration, timing; 

independent variables), was investigated for 24-hour rest probability profiles, 

circadian markers and cognitive performance (dependent variables), respectively. 

For 24-h rest probability profiles, linear regressions were computed using one-

dimensional statistical non-parametric mapping (S(n)PM),
32

 as implemented in the 

SPM1D Python package.
33

 The latter applies random field theory to make statistical 

inferences about regional effects for continuous measurements, such as the rest 

probability over 24-h. For each DTR characteristic, a statistical map, SPM{t}, is 

created by calculating t-statistics for each 10-min interval of the 24-hour rest 

probability profile. The association between a DTR characteristic and the rest 

probability at a given time was deemed significant if the SPM{t} crosses the critical 

threshold (t*). This threshold is determined by permutations tests (iterations=10000), 

as the 95th percentile of the total of maximal t values, obtained for each permuted 

statistical map. Permutation tests were also used to determine the cluster-level p-
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values (pcluster) associated with the detected suprathreshold clusters. Significance was 

based on a p-value< 0.05.  

To assess the association between DTR characteristics and circadian rhythm outcomes 

(circadian phase and phase angle as dependent variables), univariate linear multiple 

regression models were applied. Average daily activity level, night-time rest duration, 

lights parameters (MLiT
500

 and TAT
100

) and AHI were added as covariates. A 

Bonferroni correction was applied to correct for multiple comparisons (pcorr< 0.025). 

Finally, a multivariate multiple regression model (Type III) was performed to explore 

whether DTR characteristics are associated with cognitive performance. Univariate 

multiple regressions were also computed to assess the relationship between DTR and 

specific cognitive domains. Regressions were controlled for age, gender, educational 

level, body mass index, daily activity level, night-time rest duration, AHI, circadian 

phase and phase angle. Statistical significance for multiple comparisons were 

corrected by applying a Bonferroni correction (pcorr< 0.016).  

Except for the S(n)PM analysis, all statistics were performed in R3.6.3
34

 using 

packages including stats
34

 and QuantPsyc.
35

 Multivariate analysis required the 

packages tidyverse,
36

 Mvoutlier
37

 and Mvnormtest.
38

 Distribution normality was 

assessed by the Shapiro-Wilk test. Multicollinearity of each univariate model was 

assessed by calculating variance inflation factors and applying a maximum threshold 

of 5. 

RESULTS 

Daytime rest characteristics: automatic detection vs. subjective nap reports 

Automatically-detected rest bouts by the MASDA were significantly associated with 

naps reported in the sleep diary with respect to frequency (Kendall’s rank correlation: 

τ=0.29, p< 0.01), duration (Kendall’s rank correlation: τ=0.32, p< 0.01) and timing 
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(Pearson’s correlation: R=0.83, p< 0.0001). As depicted in Bland-Altman plots 

(Figure S1), the MASDA algorithm detected 0.24 times more rest periods than 

subjectively-reported naps (Figure S1A). The mean duration for detected rest bouts 

was on average 3.43 minutes longer than naps reported in the sleep diary (Figure 

S1B). Timing of detected rest bouts was on average 15.12 minutes later compared to 

reported naps (Figure S1C). 

Daytime rest characteristics and 24-h rest probability profiles  

As depicted in Figure 2, DTR duration, frequency and timing predicted rest 

probabilities at specific time windows over the 24-h profile.  

Higher DTR duration was associated with increased rest probabilities during a very 

circumscribed daytime period (6.50–6.33 hours before DLMOn, pcluster< 0.05, green 

line,  

Figure 2).  

Higher DTR frequency was significantly related to increased rest probabilities during 

daytime (between 4.50–6.50 hours (pcluster< 0.001) and 8.00–9.17 hours (pcluster< 0.01) 

before DLMOn, red line, Figure 2). Interestingly, increasing DTR frequency was 

further associated with reduced rest probabilities during the second part of the night-

time period (between 5.17–7.83 hours after DLMOn; pcluster< 0.001). Similarly, DTR 

frequency was positively associated with rest-to-activity transition probabilities (kRA 

index) during night-time (Kendall’s rank correlation; τ=0.20, p< 0.05, see Figure S2).  

Later DTR was significantly related to decreased rest probabilities in the late evening 

hours, close to DLMOn (1.00 hour before DLMOn to 2.17 hours after DLMOn, 

pcluster< 0.001) as well as increased rest probabilities during a time window in the early 

morning hours, encompassing DLMOff (8.00–11.33 hours after DLMOn, pcluster< 

0.01, blue line, Figure 2).  
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Daytime rest characteristics and circadian timing 

Daytime rest frequency and duration were not significantly associated with circadian 

outcomes (Table S3). However, taking into account average daily activity level, night-

time rest duration, light parameters and AHI, DTR timing was related to circadian 

phase, such that later DTR was linked to an earlier DLMOn (β=-0.69, t=-6.67, p< 

0.001, Figure 3) and a longer phase angle of circadian entrainment (interval between 

DLMOn and actigraphy-derived activity offset times, β=0.63, t=5.83, p< 0.001, 

Figure 3; see Table S3 and Figure S3 for similar results using DLMOff). 

In addition, lower night-time rest duration, introduced as a covariate into the statistical 

model, was associated with a longer phase angle of entrainment (β=-0.31, t=-2.72, p< 

0.01 for interval between DLMOn and activity offset times, Table S3).  

Daytime rest characteristics and cognition 

A multivariate multiple regression model including attentional, executive and episodic 

memory performance revealed that DTR frequency tended to predict cognitive 

performance (F3,42=2.72, p=0.06, Table S4). Univariate analyses by cognitive domain 

showed that episodic memory performance was negatively associated with DTR 

frequency (β=-0.40, t=-2.64, pcorr< 0.016, Figure 4, Table S4), while no significant 

associations were observed for executive functions and attention performance (pcorr> 

0.016; see Table S4).  

DISCUSSION  

Our data provide first evidence that DTR in the aged is linked to an overall altered 24-

h rest-activity organisation. In addition, later DTR went along with an altered 

circadian phase and phase angle of entrainment and overall night-time rest duration. 

Finally, our results support earlier findings on the detrimental effects of DTR 

frequency on neurobehavioural performance in older individuals.
18
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The temporal distribution of rest-activity alternation changes over lifespan and 

appears to be disrupted with increasing age.
10,30

 The intrusion of consolidated rest 

bouts during daytime may reflect a relative inability to maintain continuous activity 

levels during the active wake period, underlined by altered circadian regulation. 

Under entrained conditions, the circadian wakefulness drive is maximum 2–3 hours 

before habitual bedtime.
39

 This time window of maximal circadian wake promotion 

has been characterized as the wake-maintenance zone (WMZ).
40

 The use of a 

circadian phase marker, such as DLMOn, has been suggested as a requirement for the 

identification of the circadian WMZ.
41

 By adjusting our data to DLMOn, we observed 

that later DTR is associated with decreased rest probabilities during a time window 

that encompasses the WMZ. Resting at strategic time windows might thus, in some 

contexts, be employed to reboost or maintain period of sustained activity at the end of 

the “ordinary” waking day. Similarly, later DTR was associated with increased 

probabilities to rest in the early morning hours. Within this perspective, the 

contribution of DTR to polysomnography-derived night-time sleep structure in the 

context of age-related changes in sleep-wake regulation should be further assessed. It 

is important to mention here, that concomitantly to changes in rest probabilities at 

circadian-strategic time windows, later DTR was further associated with advanced 

circadian phase assessed by DLMOn, and a longer phase angle of circadian 

entrainment, thereby indicating misalignment. These data may point to strategic rest 

placement to refrain from early awakenings and/or sleep times induced by advanced 

circadian phase; thereby being the cause or the consequence of an altered phase angle 

of entrainment. Furthermore, entrainment is a necessary and important adjustment of 

circadian phase to the environment, including light exposure.
42

 Delayed sleep timing 

with respect to circadian phase has been shown less recuperative
43,44

 and associated 
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with shorter night-time rest duration,

45
 as observed in the present study through a 

significant negative association between the phase angle of entrainment and the night-

time rest duration in older adults.  

Our results also revealed that frequent daytime rests are not only associated with 

increased probability to rest in the afternoon hours, but also with increased night-time 

rest fragmentation in the second part of the night, which might be the most vulnerable 

time window to keep a consolidated state of sleep in the context of altered sleep 

promotion.
19

 These results are a call for intervention studies to determine a potential 

cause-and-effect relationship between daytime rest chronicity and night-time sleep 

fragmentation; with direct clinical implications for insomnia treatment in the elderly. 

Previous studies observed that rest-activity fragmentation can affect cognitive 

performance during ageing.
9,11,12

 Using actimetry-derived DTR characteristics, we 

observed that increased DTR frequency was associated with worse episodic memory 

performance, which is particularly prone to be affected by the ageing process.
46

 While 

this is the first report assessing the association between actimetry-derived DTR 

frequency and episodic memory performance in the aged, a previous report revealed a 

negative association between questionnaire-derived nap frequency and self-rated 

memory, even after adjusting for daytime sleepiness in the aged.
47

 Moreover, an 

experimental study showed that a 90-min afternoon nap benefits episodic memory 

retention in young adults but not in older adults.
48

 Finally, fractal regulation in 

temporal activity fluctuation has been shown to be altered with ageing
49

 and its 

degradation has been associated with cognitive impairment
50

, dementia
49,51

 and a 

higher prevalence of Alzheimer’s disease.
52

 Considering the involvement of the 

suprachiasmatic nucleus, central circadian pacemaker, in the generation of fractal 

patterns of locomotor activity,
53

 further studies should determine whether the 
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disorganisation of the global 24-h rest-activity cycle observed with DTR 

characteristics is associated with fractal regulation, considered as a temporal rhythm 

integration index. 

Study limitations & perspectives 

The primary outcome of the current study was actimetry-derived daytime rest with the 

underlying assumption that the intrusion of consolidated resting behavior into the 

active daytime period reflects circadian alteration and is associated with functional 

consequences on cognition in older adults. Actimetry-derived daytime rest detection 

does not reflect absolute daytime sleep
54 

as such. While in our sample, mainly 

composed of self-reported nappers, actimetry-derived DTR characteristics correlated 

with napping as derived from sleep diaries, actimetry does not necessarily reflect a 

measure of an individual’s sleep state as such. This might be particularly true when 

assessing rest during the active daytime period, characterized by varying levels of 

activity, including sedentary wakefulness. Hence, an exciting research avenue would 

consist in assessing the content of these daytime rest periods in terms of wakefulness 

and sleep, as the latter could be the mediator of the observations made in our study. In 

the same vein, the association between DTR characteristics and night-time sleep 

architecture would be interesting to be assessed using polysomnography. Within this 

context, it appears important to monitor sleep pathological events, such as sleep 

apnea, the incidence of which increases with increasing age.
55

 Indeed, even if we 

excluded participants with major sleep disorders, varying degrees of sleep apnea had 

an impact daytime rest frequency. We therefore included participants’ sleep apnea 

index in statistical models assessing the association between DTR characteristics, 

circadian outcomes and episodic memory. 
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Finally, our experiment was conducted from August 2018 to December 2020, thus 

including seasonal transitions. Seasonal components and associated modulation in 

light exposure throughout the year have been observed to affect the sleep-wake cycle 

and circadian rhythmicity.
56

 To take into account differences in light exposure 

between participants, two light parameters were added in models assessing the 

association between DTR characteristics and circadian outcomes and the association 

between DTR timing and cirdian phase and phase angle remained significant. 

However, light levels measured at the wrist reflects only approximate measure of 

retinal light exposure and does generally not allow to discriminate between artificial 

light and natural light.
57

 

Conclusion 

Altogether, our findings suggest that the intrusion of consolidated rest-bouts into the 

active wake period goes along with both altered organisation of the 24-h rest-activity 

cycle and its phase relationship with circadian phase, but also with altered episodic 

memory performance. 

As such, DTR might be a useful and biologically underlined marker of early cognitive 

impairment in the elderly.
17

 Interestingly, it was recently observed that older adults 

tended to rest longer and more frequently and that increased rest frequency and 

duration was predictive for worse cognition a year later. Also a bi-directional link 

between actimetry-derived daytime rest and Alzheimer’s disease progression and 

prognosis has been reported.
18

  

Better understanding the mechanisms associated with the increased intrusion of rest or 

sleep into the active wake period is of relevance, particularly when considering that 

the latter are increasingly used as a potential health indicators in the aged population. 

Studies objectively assessing daytime rest remain scarce, and even more those 
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distinguishing between duration, frequency and timing.

58
 Interventional and 

longitudinal designs might bring evidence into the causal link between increased wake 

fragmentation, circadian integrity and cognitive ageing. For example, reducing nap 

frequency and thereby consolidating night-time sleep might be beneficial for 

neurobehavioural outcomes and circadian alignment. Likewise, recommendations 

about nap timing and duration may help to keep consolidated sleep-wake cycles, 

despite alterations in underlying regulation processes. Finally, our findings highlight 

the usefulness of digital, but also circadian markers, in understanding the association 

between age-related changes in the 24-h rest-activity organisation and 

neurobehavioural outcomes.  
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Figure 1. (A) Schematic illustration of the study timeline including daytime rest 

characterisation and rest-activity cycle estimation in the field as well as cognitive and 

circadian phase assessment. Circadian phase was extracted through a 40-h constant 

routine. The latter comprised 10 short sleep-wake cycles, each compassing 160 

minutes of wakefulness (grey) alternating with 80 minutes of sleep opportunities 

(black). The protocol was preceded and followed by 8-h of sleep (black). Light levels 

(< 5 lux during wakefulness and 0 lux during sleep), temperature (~19°C), caloric 

intake (standardised meals every 4 h) and body posture (semi-recumbent position 

during scheduled wakefulness and recumbent during naps) were controlled to 

minimize potential masking effects on the circadian timing system. Salivary 

melatonin (black short lines) was collected through the 40 hours, with an average 

sampling rate of 80 minutes starting 50 minutes after wake up. (B) 24-h actogram for 

10 days from a representative participant displaying in grey rest periods detected by 

the Munich Actimetry Sleep Detection Algorithm (MASDA). (C) Melatonin time 

course (upper panel) during the circadian phase assessment and rest probability profile 
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(lower panel) extracted from actigraphy recordings (N = 57). Dotted lines represent 

dim light melatonin onset and offset times. Continuous lines correspond to activity 

offset and onset times. First and third quartiles of rest probability are modelled by the 

grey area.  
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Figure 2. Rest probability profile and its associations with daytime rest 

characteristics. The upper panel displays the 24-h rest probability profile aligned on 

the individual’s dim light melatonin onset (N = 57; DLMOn: 21.44 ± 1.27 h). First 

and third quartiles of rest probability are modelled by the grey area. Corresponding 

time of day is plotted in the upper X-axis. Vertical dotted black lines correspond to 

dim light melatonin onset and offset times. Vertical continuous black lines represent 

activity offset and onset times. Linear regressions were performed to assess whether 

each daytime rest characteristic was associated with rest probability at specific time 

windows over the 24-h profile. Curves in green, red and blue correspond to these 

statistical values, named SPM{t}, respectively for daytime rest duration, daytime rest 

frequency and daytime rest timing. A cluster is significant if SPM{t} crossed a critical 

threshold t* and represented by horizontal dotted lines in the lower panel. 
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Figure 3. Scatter plots of the associations between daytime rest timing and dim light 

melatonin onset (DLMOn) as circadian phase marker (upper panel), and phase angle 

of entrainment (distance between dim light melatonin onset and actigraphy-derived 
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activity offset times; lower panel) (N = 57). Regressions were used for visual display 

only, and not as a substitute for the linear regression model (see Table S3).  

 

 

Figure 4. Scatter plot of the association between episodic memory performance and 

daytime rest frequency (N = 57). Regression was used for visual display only, and not 

as a substitute for the linear regression model (see Table S4).  
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Table 1. Descriptive statistics of circadian parameters, actigraphy-derived 

daytime rest characteristics and others variables, and cognitive performance 

(N = 57).  

 

 
Mean SD

a
 Min Max 

Circadian outcomes 

 DLMO onset (DLMOn), hours 21.44 1.27 17.83 23.81 

 DLMO offset (DLMOff), hours 7.95 1.13 5.63 11.72 

 Distance between DLMOn and activity offset, 

minutes 

118.23 90.93 -104.28 339.60 

 Distance between DLMOff and activity onset, 

minutes 

-57.84 59.89 -241.50 64.18 

Daytime rest and others actigraphy-derived variables 

 Duration, minutes 45.59 19.50 16.83 130.00 

 Frequency 0.56 0.35 0.07 1.67 

 Timing, minutes -410.95 106.17 -688.30 -132.62 

 Daily activity level 252.85 91.11 137.56 624.68 

 Night-time rest duration, hours 7.51 0.99 5.17 10.10 

 Activity onset time, hours 6.98 0.86 5.08 8.58 

 Activity offset time, hours 23.40 0.93 21.50 25.25 

 Rest-activity transition probability  0.05 0.02 0.02 0.12 

Cognitive characteristics 
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 Attentional performance

b
, z-score 0.01 0.62 -1.60 1.16 

 Executive functions
c
, z-score 0.00 0.56 -1.02 1.42 

 Episodic memory performance
d
, z-score 0.01 0.70 -1.88 1.66 

Note: a SD: Standard Deviation; b Missing value: 1; c Missing value: 3; d 

Missing value: 2. 

 




