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Abstract 

Background:  Mutations of different genes often result in clinically similar diseases. Among the datasets of similar 
diseases, we analyzed the ‘phenotypic series’ from Online Mendelian Inheritance in Man and examined the similarity 
of the diseases that belong to the same phenotypic series, because we hypothesize that clinical similarity may unveil 
shared pathogenic mechanisms.

Methods:  Specifically, for each pair of diseases, we quantified their similarity, based on both number and informa-
tion content of the shared clinical phenotypes. Then, we assembled the disease similarity network, in which nodes 
represent diseases and edges represent clinical similarities.

Results:  On average, diseases have high similarity with other diseases of their own phenotypic series, even though 
about one third of diseases have their maximal similarity with a disease of another series. Consequently, the network 
is assortative (i.e., diseases belonging to the same series link preferentially to each other), but the series differ in the 
way they distribute within the network. Specifically, heterophobic series, which minimize links to other series, form 
islands at the periphery of the network, whereas heterophilic series, which are highly inter-connected with other 
series, occupy the center of the network.

Conclusions:  The finding that the phenotypic series display not only internal similarity (assortativity) but also varying 
degrees of external similarity (ranging from heterophobicity to heterophilicity) calls for investigation of biological 
mechanisms that might be shared among different series. The correlation between the clinical and biological similari-
ties of the phenotypic series is analyzed in Part II of this study1.

Keywords:  Gene mutations, Inherited diseases, Disease phenotypes, Differential diagnosis, Network analysis, Graph 
theory
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Background
After the early reports of gene mutations as causes of 
inherited diseases (D), the ‘one gene-one disease’ para-
digm became widely accepted. According to the para-
digm, a mutation in one gene results in the production of 
a dysfunctional disease gene product (DGP), in general a 
protein, which in turn (in a direct or indirect way) causes 
the disease phenotypes (DP) that characterize the D [1]. 

Yet, with time, it has become clear that the paradigm has 
exceptions. For instance, in locus heterogeneity, muta-
tions in different (and often seemingly unrelated) genes 
cause similar (if not identical) D [2]. These exceptions 
raise important questions. In particular, how can we 
explain (in mechanistic terms) the occurrence of geneti-
cally different—but clinically—similar D? One possibility 
is that the different molecular activities, which are usu-
ally carried out by normal proteins (i.e., the non-mutated 
counterparts of the DGP), converge towards a shared bio-
logical response [3], often as members of the same pro-
tein complex [4]. Thus, the mutations of different genes, 
which cause clinically similar D, could be thought of as 
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alternative biochemical means of altering the same bio-
logical function (and/or protein complex) and eventually 
producing the same clinical phenotype. However, before 
analyzing all the individual types of clinically similar D, 
we need an objective and measurable means of defining 
the general concept of clinical similarity.

Nowadays, with ever-growing lists of D, we need at 
least two major tools to study D similarity. First, we need 
broad databases, which report all the known D, as well 
as detailed databases, which report all the clinical mani-
festations (the DP) of each D. Second, we need efficient 
algorithms to quantify the degree of similarity among 
D. In general, the identification of clinically similar D is 
difficult, because of the way D are defined as ‘similar’. In 
particular, classifications of similar D that rely on clini-
cal judgment are subjective by definition, no matter how 
authoritative the source of judgment is. Nonetheless, 
defining similarity has become somehow easier, thanks to 
the recent availability of databases of D and DP. In addi-
tion, efficient similarity-computing algorithms have been 
implemented and validated [5]. One of the catalogues 
of clinically similar (but molecularly different) D are the 
Phenotypic Series (PS) of Online Mendelian Inherit-
ance in Man (OMIM). With its coverage of more than 
3,000 D (grouped into about 400 PS), the OMIM list of 
PS is likely one of the most complete, authoritative and 
reliable sources of similar D [6]. In addition, another 
database, namely Human Phenotype Ontology (HPO), 
annotates each OMIM-derived D with a detailed list of 

DP, according to a controlled and hierarchical vocabulary 
[7]. Thus, we asked whether it would be possible to use 
the available databases and algorithms to quantify the 
degree of clinical similarity among presumptively simi-
lar D, based on the objective criteria of which DP these 
D share. We found that the vast majority of D has indeed 
high similarity with the other D in their own PS. How-
ever, we also found that numerous D (in spite of a high 
intra-PS similarity) are highly similar to D of different PS 
as well, thus unveiling an unexpectedly complex picture 
of D similarity.

Furthermore, the high number of D and DP requires 
appropriate analytical methods, if one desires to scale up 
the study of similarity from a local level (few pairs of D at 
a time) to a more global level (the whole ensemble of all 
the known D). One of these methods is network analysis. 
Networks are used in several disciplines, including medi-
cine and biology [8]. We surmised that the vast complex-
ity of all the D similarities could be suitably analyzed by 
means of a bipartite D-DP graph, which displays the links 
between D and DP. Then, from the D-DP bipartite graph, 
one can derive a network of clinical similarity (Fig. 1). In 
general, in a similarity network, any two nodes are linked 
by a weighted edge, which indicates that they are similar 
(the weight being proportional to the degree of similar-
ity). Thus, if the D that belong to the same PS are clini-
cally similar to each other, we expected them to be linked 
in a network of clinical similarity as well. The statement is 
not a tautology, because the assembly of such a similarity 

A

B

C

1

2

1

3

D annotated
with the DP

A 1 B1

A 2 C3

B 1 C3

1

4

0

Shared DP

A

B C

Clinical Similarity Network

A

B C

1 4

0

Bipar�te D-DP graph

D (OMIM) DP (HPO) DP shared

1 2 3

4

0

HPO hierarchical
DP tree

Fig. 1  Assembly of a clinical similarity network. The D from OMIM (hexagons) are annotated with the DP from HPO (squares). As shown in the 
simplified hierarchical tree, the DP term 4 is the common ancestor of terms 2 and 3, whereas 0 is the root. Then, a typical similarity-searching 
algorithm retrieves all the possible Di − Dj pairs and the DP annotations that the two D share (dotted squares). The shared annotations can be either 
the identical DP that annotates both D or another term (often, the most informative common ancestor of two different DP). For instance, 1 is 
shared (by A and B) as identical term, while 4 is shared (by A and C) as common ancestor of 2 and 3. With these criteria, even two dissimilar D (e.g., 
B and C) will eventually share at least some (poorly informative) term (in this example, the root 0). At the end of the search, a non-weighted D-DP 
bipartite graph is assembled. Then, from the bipartite graph, a clinical similarity network is derived, by linking all the D that share DP annotations 
(the thickness of the edge being proportional to the similarity coefficients of the two linked D). Note that, for simplicity’s sake, the figure does not 
indicate the PS and that each pair of D is shown to share only one DP annotation
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network does not rely on the clinical judgment that was 
used to assemble the PS, but rather relies on the objective 
sharing of DP among D, as derived from an external and 
independent source (e.g., HPO). Indeed, we found that 
the D that belong to the same PS are heavily inter-con-
nected in the Disease-Disease Similarity Network-Clin-
ical (DDSN-C), which has been assembled with minor 
modifications of the general strategy outlined in Fig. 1 (as 
detailed in the Methods).

If the nodes of a network (here, the D), which possess 
a given property (here, the PS to which the D belong), 
tend to link to each other, then the network is assorta-
tive with respect to that property. In other words, we 
found that the DDSN-C is assortative with respect to the 
PS, thus further supporting the general conclusion that 
the PS are homogeneous clusters of clinically similar D. 
Nevertheless, we also found that such PS-based linkages 
influence in different ways the structure of the network. 
Specifically, we observed that the individual PS (besides 
being assortative) vary in their relations with the other 
PS, ranging from heterophobic PS—whose D have low 
similarity (and thus few links) with D of other PS—to het-
erophilic PS whose D have high similarity (and thus sev-
eral links) with D of other PS. Thus, this study provides 
strong quantitative evidence that the PS (in parallel to 
their intra-PS homogeneity) also display variable degrees 
of inter-PS similarity.

Methods
The D and PS from OMIM
The morbid map was downloaded from the OMIM web-
site and the full list of the PS was kindly provided by the 
OMIM team [6]. Only D with known molecular basis 
were retained for analysis. In contrast, we did not exam-
ine D with unknown gene defect, D with unknown muta-
tion and D caused by multiple genes. We also excluded 
the D defined as susceptibility to multi-factorial disor-
ders, non-D and unconfirmed D.

The DP from HPO
The DP associated with the OMIM-encoded D were 
retrieved from the HPO website [7]. The HPO terms 
are arranged hierarchically, starting from the common 
ancestor HP:0000001 (All) and its five ‘children’ terms, 
i.e., HP:0000118 (Phenotypic abnormality), HP:0000005 
(Mode of inheritance), HP:0012823 (Clinical modi-
fier), HP:0040006 (Mortality/Aging) and HP:0040279 
(Frequency). In this study, only the 13,427 descendants 
of HP:0000118 (and not the descendants of the other 
four children of All) have been used, because they more 
selectively identify the DP. Finally, an IC (normalized in 
the 0–1 range), which is inversely proportional to the 

number of D that the DP annotates in HPO, was attrib-
uted to each DP.

Clinical annotations of the D from DO
The OMIM-encoded D were classified according to the 
following major subdivisions of the Disease Ontology 
(DO) hierarchical tree [9]. (i) The eight direct descend-
ants of the common ancestor DO:0000004 (Disease), i.e., 
Syndrome, Genetic disease, Physical disorder, Disease by 
infectious agent, Disease of metabolism, Disease of men-
tal health, Disease of cellular proliferation and Disease 
of anatomical entity. (ii) The twelve direct descendants 
of DO:0000007 (Disease of anatomical entity), i.e., Dis-
eases of the Cardiovascular, Endocrine, Gastrointestinal, 
Hematopoietic, Immune, Integumentary, Musculoskel-
etal, Nervous, Reproductive, Respiratory, Thoracic and 
Urinary System.

The similarity score
After assembling all the possible Di − Dj pairs, the M 
DP that annotate Di and the N DP that annotate Dj were 
retrieved. Then, for each Di − Dj pair, each of the result-
ing M  *  N DP pair (i.e., the mth DP annotating Di and 
the nth DP annotating Dj) were compared to identify the 
shared DP, which is either the highest specificity ances-
tor of the two DP (if different) or the DP itself (if identi-
cal). Finally, for each Di − Dj pair, the IC of all the shared 
DP were averaged, to output a score of clinical similarity 
between Di and Dj.

The D‑DP bipartite graph
The bipartite D-DP graph is composed of D and DP 
nodes, as well as D-DP edges. To assemble the D-DP 
graph, each D could be simply linked with all its DP 
annotations in the HPO dataset. However, the following 
should be kept into account. First, the D-DP graph is pre-
requisite for assembling the DDSN-C (because any two 
D become linked mutually in the latter, if they are linked 
to the same DP in the former). Second, the DP annota-
tions of the D can be at different distances from the root 
(in the hierarchical tree of HPO). Thus, to assemble the 
D-DP, in addition to the HPO-provided DP annotations, 
we also included DP (still from the HPO dictionary) 
that might identify occurrences of high clinical similar-
ity between two D that are not annotated with an identi-
cal DP. Specifically, for any Di − Dj pair, we identified—as 
shared DP(i,j)—not only an identical DP (i.e., a DP that 
annotates—according to HPO—both Di and Dj) but also 
a highly similar DP, according to two additional criteria. 
First, DP(i,j) is a first-degree ancestor of the two different 
DP, which annotate Di and Dj in HPO. Second, DP(i,j) is 
the DP that annotates Di according to HPO and is also 
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the first-degree ancestor of the DP that in HPO annotates 
Dj (or the other way around).

The DDSN‑C
Thus, the DDSN-C was derived from the bipartite D-DP 
graph by linking, with an edge, a given pair of D nodes, 
anytime the two D share one DP(i,j) as defined above. 
Because of this initial step, any two D, which share more 
than one DP, are linked by more than one edge. Thus, to 
obtain a more compact version of the DDSN-C, the mul-
tiple edges (connecting a given pair of D) were merged 
into just one edge. Finally, each resulting edge was 
assigned a weight w, which is the average IC of all the DP 
that link the two D.

Assortativity analysis of the DDSN‑C
On the assumption that each node in the DDSN-C is 
characterized by the PS of the corresponding D, the cor-
relation of such node characteristics with the structure 
of the DDSN-C was quantified by calculating the dyadic-
ity D and heterophilicity H of each PS, as described [10]. 
Briefly, each PS was regarded as a binary characteristic, 
i.e., a property that a given node in the network either 
does or does not possess. Then, all the dyads were exam-
ined (each dyad being composed of an edge plus its two 
end nodes). Specifically, with respect to each property 
(i.e., a given PSx), the observed number of homogeneous 
(PSx/PSx) and heterogeneous (PSx/PSnon-x) dyads was cal-
culated. In parallel, the number of dyads was calculated, 
which could be expected, if the property were distributed 
randomly in the DDSN-C. The observed-to-expected 
ratios of homogeneous and heterogeneous dyads are 
the values of D and H for that PS, respectively. If D > 1, 
the property is dyadic (or antidyadic, if D < 1) and thus 
homogeneous nodes connect mutually more frequently 
(less frequently, if antidyadic) than expected for a ran-
dom distribution. Furthermore, if H > 1, the property is 
heterophilic (heterophobic, if H < 1) and thus heteroge-
neous nodes connect to each other more frequently (less 
frequently, if heterophobic) than expected for a random 
distribution.

Results
General aim, methodological approach and expected 
findings
We undertook this study to evaluate whether inherited D, 
which have been defined similar based on subjective and 
qualitative judgment (and thus included in the same PS), 
can be defined similar based on objective and quantita-
tive criteria as well. To this purpose, we first calculated 
a score of binary similarity for each pair of D, based on 
both number and IC of the shared DP. Then, we assem-
bled a bipartite D-DP graph and derived a network of 

clinically similar D (the DDSN-C). Finally, we evaluated 
the distribution of the PS within the DDSN-C by assorta-
tivity and dyad analysis.

We expected that pairs of D, which belong to the same 
PS, have high similarity scores (compared with randomly 
paired D) and are linked in the DDSN-C, such that the PS 
emerge as dyadic properties (dyadicity referring to pairs 
of nodes that are linked and have the same property). 
Conversely, we expected that pairs of D, which belong to 
different PS, have low similarity scores and are not linked 
in the DDSN-C. As the D pairs (linked and non-linked 
alike) that belong to different PS comprise the majority of 
all the theoretically possible node pairs in the DDSN-C, 
we also expected that the PS emerge not only as dyadic 
but also as heterophobic properties (heterophobicity 
referring to pairs of nodes that avoid links and do not 
have the same property).

The OMIM database identifies molecularly characterized D
We first searched all the human D with known molecular 
basis. To this purpose, we retrieved the morbid map of 
OMIM, which reports both D and DGP. We focused on 
a subset of 4,193 molecularly characterized D and 3,211 
DGP. The discrepancy between D and DGP count is 
mostly due to allele and locus heterogeneity. In allele het-
erogeneity, the same DGP causes more D. For instance, 
the DGP encoded by the COL2A1 gene (a collagen sub-
unit) causes 14 collagenopathies, including the Stickler 
syndrome. Conversely, in locus heterogeneity, more DGP 
cause the same D. For example, 21 DGP cause Colorectal 
cancer, somatic. Thus, with thousands of D, the morbid 
map provided a sufficiently wide dataset to start a global 
analysis of D similarity. In the subsequent sections, how-
ever, we considered neither type of heterogeneity. Rather, 
we focus on the PS, in which different DGP cause similar 
(not necessarily identical) D.

The OMIM database identifies the PS as groups of clinically 
similar D
Thus, to identify groups of clinically similar D, we 
retrieved the PS from OMIM. Each PS comprises 
D, which have been defined similar, in spite of being 
caused by mutations in different genes. From the full 
OMIM list of the PS, we focused on a subset of 386 
PS and 2,332 D, because these are the D with a known 
molecular basis. In this subset, the average number of D 
per PS is 6.2 ± 8.8 (mean ± SD). While 160 PS comprise 
just 1 or 2 D, the PS Retinitis pigmentosa comprises 60 
D. Between these extremes, 196 PS comprise from 3 to 
15 D, while 29 PS comprise from 16 to 57 D. As a fur-
ther characterization, we labeled each PS according to 
the clinical classification of its D according to the DO 
database. We found that 324 PS contain at least one D 
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annotated with DO terms. Like other ontologies, the 
DO terms are organized in a hierarchy of increasing 
coverage and decreasing specificity. Thus, to subdivide 
the PS into clinical families of reasonably broad cover-
age (but sufficiently useful specificity), we classified the 
PS according to the major branches of the DO hier-
archy (Fig.  2, top). In addition, 186 PS that contain D 

labeled as Disease of anatomical entity could be further 
subdivided into more specific DO terms that designate 
specific anatomical systems. The nervous, musculoskel-
etal and cardiovascular systems were the most repre-
sented (bottom). Thus, these input data enabled us to 
focus on thousands of inherited D with known DGP 
(from the morbid map) and to make correlations with 
other sources of information, such as their presumptive 
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the class Disease of anatomical entity (bottom). Note that 62 PS contain D, which have no DO annotations, while 21 PS have more than one DO 
annotation
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clinical similarity (PS membership) and clinical classifi-
cation (DO annotations).

The HPO database annotates the OMIM‑derived D 
with clinical features (the DP)
As stated above, our major aim was to implement an 
algorithm that quantifies the within-PS similarity inde-
pendently on subjective judgment. To this aim, for each 
pair of D (from either the same or different PS), we quan-
tified their similarity based on the shared DP. To avoid 
any subjective bias, we retrieved the DP from an inde-
pendent source, i.e., HPO, which annotates each D with 
a set of DP. Being an ontology, also HPO arranges its DP 
terms hierarchically, starting from the root All. For sim-
plicity’s sake, however, we regarded as root the more spe-
cific term Phenotypic abnormality (HP:0000118).

We first retrieved 5,815 DP that annotate the 4,193 D 
from the morbid map of OMIM. Then, to each DP we 
attributed a normalized IC, which is inversely propor-
tional to the number of D that the DP annotates in the 
HPO dataset. For instance, the rather generic (and very 
frequent) DP Abnormality of the nervous system has IC 
0.068, whereas the more specific (and less frequent) 
DP Hyporeflexia of upper limbs has IC 1.000. Next, we 
combined into 4-tuples all the four inputs, i.e., the D of 
interest, the PS that the D belongs to, the DP that the 
D is annotated with and the IC of the DP. We assem-
bled 26,359 4-tuples, which encompass 2,118 D, 371 
PS and 3,700 DP. On average, each D is annotated with 
12.4 ± 11.5 DP, even though there is wide variability, 
ranging from several D, which are annotated with only 1 
DP, to few D, which are annotated with several DP (not 
shown). Interestingly, 91 PS, which contain the string 
syndrome in their label, are annotated with 21.8 ± 15.3 
DP per D, whereas the remaining 280 (non-syndromic) 
PS have 11.1 ± 8.4 DP per D. Thus, by combining these 
data into the D-PS-DP-IC 4-tuples, we assembled the 
inputs required for quantifying clinical similarity.

The similarity score quantifies intra‑PS similarity based 
on number and specificity of the shared DP
Thus, we next applied an algorithm that outputs a score 
of D similarity based on the number and IC of the shared 
DP. Briefly, for each possible pair of D (Di − Dj), the algo-
rithm assembles all the pairs of DP that annotate Di and 
Dj, in order to identify the shared DP. There are two possi-
ble outcomes for each DP pairing, depending on whether 
the two DP are either identical or different. If identical, 
the shared DP is the DP itself. If different, the shared DP 
is the highest specificity ancestor of both DP. Given the 
hierarchical structure of HPO, even two highly dissimilar 
DP share, as common ancestor, some low-specificity DP 

(e.g., the root). Finally, for each Di − Dj pair, the algorithm 
averages the IC of all the shared DP and outputs the simi-
larity score of the two D.

We found that the Di − Dj pairs that belong to the 
same PS have a 4.2-fold higher similarity score than ran-
domly paired D. Thus, an average Di, which belongs to a 
PS composed of n D, has an intra-PS similarity score of 
0.399 ± 0.107, which is the mean of the pairwise similari-
ties of Di with the remaining n-1 D in its own PS. In com-
parison, Di has a random similarity score of 0.094 ± 0.042, 
which is the mean of the pairwise similarities of Di with 
n − 1 randomly chosen D. Notably, only in 8 (out of 2118) 
D, the intra-PS similarity score is lower than the random 
similarity score (not shown). Analysis of the similar-
ity scores by DO class is reported in Fig. S1 (Additional 
file  1). Thus, by quantifying the intra-PS similarity, we 
could confirm that the D, which had been placed in the 
same PS by a subjective judgment of similarity, are simi-
lar by objective criteria as well.

The similarity score identifies the widespread occurrence 
of inter‑PS similarity
The finding that a D is similar to the other D in its own PS 
does not exclude the possibility that it can be similar to 
D in other PS as well. Addressing this issue may answer 
key questions about the global distribution of clinical 
similarity. Specifically, does the measurement of similar-
ity favor a model of the PS as isolated clinical entities, 
whose member D are not only similar among themselves 
but also dissimilar from the D of other PS? Alternatively, 
does the measurement support a more interconnected 
model, with numerous similarities among D, even across 
the borders of the individual PS?

To this aim, we examined all the possible Di − Dj pairs 
(both intra- and inter-PS) and then, for each Di, we iden-
tified the Dj that has the highest similarity score with Di. 
For ease of analysis, we excluded both the D that belong 
to more than one PS and the PS that contain only one 
D. As expected, the majority of D (1281, out of 2029, Di; 
63.1%) have the highest similarity score with a Dj in their 
own PS. Yet, a significant fraction (748 Di; 36.9%) have 
the highest similarity score with a Dj in a different PS. For 
instance, Adenomas, multiple colorectal (in PS 175100) 
has its highest score with Colorectal cancer, hereditary 
nonpolyposis, type 2 (in PS 120435). As the example sug-
gests, high inter-PS similarity may occur when two PS, 
albeit different, share key pathogenic and anatomical 
features (in this example, altered cell proliferation in the 
lower intestinal tract).

To investigate the issue further, we examined the path-
ogenic/anatomical annotations of DO. After excluding 
the D that either lack or have multiple DO annotations, 
we confirmed that the majority of D (1076, out of 1493, 
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Di; 72.1%; Fig.  3a red) have their highest similarity with 
a Dj in their own PS and that a substantial fraction (417 
Di; 27.9%; blue) have their highest similarity with a Dj in a 
different PS. In addition, 248 Di (out of the 417) belong to 
the same DO class as the Dj (purple), the most frequent 
DO class being the nervous system (Fig.  3b). Notably, 
higher-specificity DO sub-classes were identified within 
the nervous system class, including 14 retinal D, which 
belong to different PS (Leber congenital amaurosis, Reti-
nitis pigmentosa and Night blindness, congenital station-
ary) and share high specificity DP, such as Nyctalopia. 

Remarkably, however, out of the 417 Di, the remaining 
169 Di belong not only to a different PS than Dj but also 
to a different DO class (Fig. 3a green). Interestingly, some 
heterologous DO combinations were detected frequently 
(Fig. 3c), the most common involving nervous and meta-
bolic D, possibly reflecting the susceptibility of the devel-
oping nervous system to early metabolic defects (Fig. S2; 
Additional file 1). Thus, by showing that more than one 
third of D have their highest similarity with a D in a PS 
other than their own, these data favor a model, in which 
the PS (in addition to having high intra-PS similarity) 
also emerge as inter-linked (rather than isolated) clusters 
of clinical similarity.

Choosing a network‑based representation of the D‑DP 
annotations and D‑D similarities
The sheer number of data poses a major challenge to 
the large-scale display and analysis of the clinical simi-
larities, thereby necessitating a global approach, like the 
use of networks. As mentioned above, our general pro-
cedure consists of assembling the D-DP bipartite graph 
and then deriving from it the DDSN-C. Nonetheless, 
the D-DP graph can be assembled by means of differ-
ent strategies. On one side, one could simply link each D 
with all the DP that directly annotate the D in HPO. This 
is, however, a low-sensitivity approach, because it fails to 
identify as similar those D pairs, whose DP are just sub-
tly different (because the DP occupy contiguous levels in 
the HPO hierarchy). As a result, the two D will be discon-
nected in the DDSN-C. On the other side, one could link 
each D not only with the DP that directly annotate it in 
HPO, but also with all the ancestors of each annotating 
DP (down to the root of HPO). This is, however, a low-
specificity approach, because it may identify as similar 
even markedly different D, which share just some poorly 
informative DP. As a result, the DDSN-C will be a fully 
inter-connected network of rather limited usefulness.

Thus, we decided to implement an intermediate strat-
egy, which is able to identify occurrences of high clini-
cal similarity within D pairs, even when the two D are 
not annotated with an identical DP. Specifically, (for any 
Di − Dj pair) we identified—as shared DP(i,j)—not only an 
identical DP that annotates both Di and Dj in HPO (rule 
1) but also a highly similar DP. By ‘highly similar DP’, we 
refer to two unambiguous criteria. First, DP(i,j) is a first-
degree ancestor of the two different DP that annotate Di 
and Dj (rule 2). Second, DP(i,j) is the DP that annotates 
directly Di and is also the first-degree ancestor of the 
DP that annotates Dj, or the other way around (rule 3). 
With these three criteria, we identified 1,853,106 distinct 
7-tuples (i.e., Di, which belongs to PSi and is annotated 
with DPi, shares DP(i,j) with Dj, which belongs to PSj and 
is annotated with DPj). There are 624,610 Di − Dj pairs, 
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in which 2116 unique D share 3107 unique DP(i,j) (38.1, 
42.3 and 19.6% according to rule 1, 2 and 3, respectively). 
Interestingly, both number and IC of the shared DP(i,j) 
per D pair are higher, on average, among the pairs, in 
which Di and Dj belong to the same PS, than among the 
pairs in which Di and Dj belong to different PS (Table 1). 
This way, we assembled the bipartite D-DP graph, with 
an acceptable compromise of sensitivity and specificity.

The D‑DP bipartite graph identifies topologically 
important D and DP
Besides being prerequisite to the assembly of the DDSN-
C, the bipartite D-DP graph provides the opportunity to 
identify topologically important nodes. Being bipartite, 
the D-DP graph has two subsets of nodes (D and DP) and 
one type of edges (D-DP). Thus, the number of nodes 
(5223) is the sum of the D (2116) and DP (3107) nodes, 
whereas the number of edges (51,657) is the number of 
D-DP links. The average connectivity <kD> of the D (i.e., 
the average number of DP per D) is 24.4 ± 22.5. However, 
while 138 D are linked to just 1 or 2 DP, a handful of D are 
linked to hundreds of DP. Examples of highly annotated 
D include (among others) Rubinstein-Taybi syndrome 1 
(219 DP) and Cornelia de Lange syndrome 1 (167 DP).

The average connectivity <kDP> of the DP (i.e., the aver-
age number of D per DP) is 16.6 ± 34.2. Here, there is 
high variability as well, because many DP annotate just 
few D (for instance, 1490 DP annotate less than 6 D), 
while few DP ‘hubs’ annotate hundreds of D. The DP hubs 
are rather generic HPO terms like Neuro-developmental 
delay (496 D) and Intellectual disability (450 D). A list 
of the hubs, grouped by the major branches of the HPO 
tree, is reported in Table  S1 (Additional file  2). Nota-
bly, the distribution of connectivity P(k) approximates a 
power-law, for both kD and kDP (Fig. S3; Additional file 1). 
Having characterized the D-DP graph, we assembled the 
DDSN-C.

Deriving the DDSN‑C from the bipartite D‑DP graph
Deriving the DDSN-C from the D-DP graph requires 
linking (with an edge) a given pair of D (Di and Dj), if the 

two D share one DP. It follows that, if the two D share 
more than one DP, they will be linked by more than 
one edge. Actually, the 2116 D of the D-DP graph form 
624,610 Di − Dj pairs that are linked by 1,626,172 edges 
in the DDSN-C, with an average of 2.6 ± 2.4 edges per 
pair. The multiplicity of edges calls for a more compact 
version of the DDSN-C, to facilitate its visualization and 
analysis. To this aim, multiple edges linking a pair of 
nodes were merged into one edge. Furthermore, to pre-
serve the quantitative information on the Di − Dj simi-
larity, a weight w was assigned to each resulting edge (w 
being the average IC of all the DP that link the two D). 
The ‘compact’ DDSN-C has still 2116 D nodes but just 
624,610 D-D edges (the number of linked Di − Dj pairs).

An additional advantage of the compact DDSN-C is 
the possibility of removing similarities of lower specific-
ity by raising the threshold w* for w. Although raising w* 
reduces both edges and nodes, it is possible to search a 
w*, at which the maximum number of edges is lost at the 
expense of a minimal loss of nodes. For instance, apply-
ing a w* > 0.45 eliminates 93.2% of the edges but only 
6.1% of the nodes (Fig. S4; Additional file  1). Setting a 
high w* (for instance, w* > 0.80) has also practical useful-
ness, because it allows to display subgraphs of the DDSN-
C (Fig. S5; Additional file 1)—and of the D-DP (Fig. S6; 
Additional file 1) as well—which (with numerous nodes 
and edges) would be otherwise difficult to visualize in 
their entirety. Thus, in conclusion, the complexity of all 
the Di − Dj similarities can be suitably displayed by the 
compact and weighted version of the DDSN-C.

Assortative analysis of the DDSN‑C
As many D that belong to the same PS have a high 
degree of similarity, the corresponding nodes in the 
DDSN-C remain linked to each other even at high w*. 
Thus, if we regard the PS annotation of each D as a 
property that the corresponding node either possesses 
or does not possess, then the DDSN-C is assortative 
with respect to that property (the PS). Hereafter, we 
analyzed how PS assortativity is related to the over-
all structure of the DDSN-C. The analysis requires 

Table 1  Number and specificity of the DP shared by pairs of HPO-annotated D

The table reports the count and the IC of the DP (as HPO terms), which are shared among the D pairs that are used to assemble the DDSN-C, in the indicated 
conditions, i.e., when Di and Dj are in the same PS (PSi = PSj), in different PS (PSi ≠ PSj) or both (All)

Condition DiDj pairs DP(i,j) count per DiDj pair IC per DiDj pair

Mean (SD) Median (range) Mean (SD) Median (range)

PSi = PSj 15,372 4.8 (4.1) 4 (1–65) 0.38 (0.12) 0.37 (0.08–1)

PSi ≠ PSj 609,238 2.5 (2.3) 2 (1–45) 0.28 (0.11) 0.26 (0.07–1)

All 624,610 2.6 (2.4) 2 (1–65) 0.28 (0.11) 0.26 (0.07–1)
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first counting all the observed dyads, i.e., the pairs of 
nodes in the DDSN-C in which both D link mutually 
and belong to the same PS. Conversely, the anti-dyads 
are the pairs of nodes, which link mutually but belong 
to different PS. Next, one quantifies the number of 
expected dyads and anti-dyads that one should expect, 
if the property were distributed randomly. Finally, for 
each PS, the observed-to-expected ratios of dyads and 
anti-dyads is calculated to define the dyadicity D and 
the heterophilicity H of that PS, respectively. Briefly, if 
D > 1, the PS is dyadic, and thus similar D link to each 
other more frequently than expected. Conversely, if 
D < 1, the PS is anti-dyadic. Furthermore, if H > 1, the 
PS is heterophilic, and thus dissimilar D link to each 
other more frequently than expected. Conversely, if 
H < 1, the PS is heterophobic.

Focusing on the 316 PS that contain at least two D, we 
found that almost all the PS are dyadic (with comparable 
levels of dyadicity), while only 7 PS (e.g., Familial episodic 
pain syndrome) are anti-dyadic. Remarkably, however, 
the dyadic PS vary widely in their degree of heterophi-
licity. On one extreme, we observed highly heterophobic 
PS, most of which are restricted to a defined anatomi-
cal structure (for instance, the tooth, as in Amelogenesis 
imperfecta). On the other extreme, we found highly het-
erophilic PS, including numerous syndromic PS. Finally, 
we evaluated whether different DO classes contribute 
differently to heterophilicity and found that the most het-
erophilic PS belong to classes that are not well-defined 

in anatomical terms, including syndromic, mental health 
and metabolic disorders (Fig.  4). Thus, the assortative 
analysis indicates that the PS, in addition to being inter-
nally similar, also display varying degrees of external 
similarity, ranging from heterophobic to heterophilic 
configurations.

Comparison of the DDSN‑C with other networks of D 
similarity
Finally, we compared the DDSN-C with two other 
networks of D similarity, the HSDN and the SGPDN 
[11]. As different vocabularies were used to label the D 
nodes—OMIM (in DDSN-C) and MeSH (in HSDN and 
SGPDN)—the OMIM identifiers had first to be con-
verted (whenever possible) into the corresponding MeSH 
terms. Then, we assembled the DDSN-C*, a ‘deciphering’ 
subgraph of the DDSN-C whose nodes can be expressed 
as both OMIM and MeSH terms. The DDSN-C* contains 
a substantial fraction of the D nodes (86.6%) and DiDj 
edges (69.7%) of the original DDSN-C (Table 2). Finally, 
we counted how many D pairs, which are linked—
because similar—in the DDSN-C, are also linked in the 
HSDN and in the SGPDN.

First, we calculated the intersection of the DDSN-
C* with the HSDN. The DDSN-C* contains 1,092 D 
nodes (as OMIM terms) that have corresponding MeSH 
term(s) in the HSDN. We found that 86.1% of all the 
OMIMi − OMIMj edges in the DDSN-C* (105,340 out 
of 122,410) have a corresponding MeSHi − MeSHj edge 
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in the HSDN. Almost all (105,324) of these edges (where 
MeSHi ≠ MeSHj) are inter-PS links. In addition, 8893 
OMIMi − OMIMj pairs—though lacking a correspond-
ing MeSHi − MeSHj pair in the HSDN—have the high-
est possible degree of similarity, because the two D in the 
pair are designated by an identical MeSH term. Notably, 
almost all (8861) of these edges (where MeSHi = MeSHj) 
are intra-PS links.

Next, we calculated the intersection of the DDSN-
C* with the SGPDN, which is smaller than the HSDN, 
because it is limited to the D pairs (of the HSDN) that 
share genes or interacting proteins. The DDSN-C* con-
tains 1060 OMIM nodes that have corresponding MeSH 
term(s) in the SGPDN. These nodes form 117,521 
OMIMi − OMIMj edges of DiDj similarity. We found that 
33.5% of all the OMIMi − OMIMj edges in the DDSN-C* 
(39,348 out of 117,521, mostly inter-PS) have a corre-
sponding MeSHi − MeSHj edge in the SPGDN. As above, 
numerous OMIMi − OMIMj pairs (8790; mostly intra-
PS), which lack a corresponding MeSHi − MeSHj pair in 
the SGDPN, are designated by an identical MeSH term. 
Thus, in spite of significant differences in scope and 
method, the DDSN-C has a substantial degree of overlap 
with these two other networks of D similarity.

Discussion
This study was undertaken to evaluate whether the avail-
able datasets and algorithms enable an objective and 
quantifiable appraisal of clinical similarity and, if so, to 
assess the global distribution of similarity among inher-
ited disorders. The major findings are the following. First, 
pairs of D that belong to the same PS are more similar 
to each other compared with randomly paired D, so that 

the corresponding nodes in the DDSN-C link preferen-
tially to each other and almost all the PS achieve high 
levels of dyadicity. Second, in spite of the high intra-PS 
similarity, about one third of the D have their highest 
similarity score with a D that belongs to a different PS, 
which accounts for the numerous inter-PS links in the 
DDSN-C. Third, the PS display different types of mutual 
relations that influence the global structure of the DDSN-
C, ranging from almost isolated heterophobic PS (at the 
periphery of the network) to highly inter-connected het-
erophilic PS (in the center of the network). We believe 
that these findings provide reasonable answers to the 
starting questions. First, they show how applying the 
similarity-computing algorithms to the available datasets 
enables an objective measure of clinical similarity among 
thousands of inherited disorders. Second, the results cast 
light on the global distribution of the PS-based similari-
ties, with the intriguing observation of strong intra-PS 
similarity co-existing with varying degrees of inter-PS 
similarity.

Our approach has three limitations. The first limitation 
is quantitative, because the databases we rely on are far 
from being exhaustive. Nonetheless, the sheer amount of 
data that are available to date (thousands of D annotated 
with both PS and DP) is a reassurance that the dataset we 
have assembled (albeit incomplete) is representative of 
the whole set of inherited D in humans. The second limi-
tation is qualitative, because the wide variability (in num-
ber and specificity) of the DP annotations can influence 
the precision of the computed similarity. For instance, 
one could overestimate the similarity of two D that share 
numerous (albeit poorly specific) DP. However, the risk 
of insufficient precision is limited, because the similarity 
score, which averages the IC of the shared DP, at the same 
time takes into account both number and specificity of 
the DP. Furthermore, considering the steady improve-
ments in coverage and specificity of OMIM and HPO, the 
forthcoming releases of these databases will lessen these 
two types of limitations. Finally, a third limitation is that 
we studied monogenic disorders only, while neglecting 
polygenic D, as well as pathogenic mutations that result 
in multi-factorial disorders or in increased susceptibility 
to infections. In addition, even with the monogenic D, 
we did not take into account the effect of different muta-
tions that affect the same locus. Apart from the desire of 
restricting the analysis to a convenient set of D, our deci-
sion to focus on monogenic D derives from the general 
plan of comparing the clinical similarity of the D (this 
manuscript) with their biological similarity (accompany-
ing manuscript). In this plan, the similarities cannot be 
but gene-centered, because the biological similarity is 
based on the functional annotations of the normal gene 
products, whereas the clinical similarity is based on the 

Table 2  Comparison of  the  DDSN-C with  other networks 
of D similarity

HSDN, Human Symptoms Disease Network; SGPDN, Shared Symptoms and 
Genes/PPI Disease Network; MeSH, Medical Subject Headings; E, edges; N, 
nodes; ∩ , intersection

Networks Shared Terms Nodes Edges

Original

HSDN – MeSH 4216 7,389,705

SGPDN – MeSH 1594 132,802

DDSN-C – OMIM 2116 624,610

Deciphering

DDSN-C* – OMIM 1832 435,539

MeSH 1306 322,235

Intersections

DDSN-C* ∩  HSDN N OMIM 1092 122,410

N and E OMIM 1081 105,340

DDSN-C* ∩ SGPDN N OMIM 1060 117,521

N  and E OMIM 957 39,348
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phenotypic consequences of the mutated counterparts 
(the DGP) of the same gene products.

The present study, however, has also many strengths. 
First, as already mentioned, our relational queries of 
independent databases have defined similarity in a way 
that is independent on subjective judgment. Second, the 
assembly of all the binary similarities into the DDSN-C 
provides a global view of clinical similarity. Third, dyad 
analysis links the local level (of the binary D-D similarity) 
with the global level (of the DDSN-C). Finally, our work 
complements, in an original manner, previous studies 
that have been performed to support the process of dif-
ferential diagnosis, whereby the physician faces the task 
of choosing the candidate D that best accounts for the set 
of DP presented by the patient. Clearly, sound judgment 
remains prerequisite to reaching a definitive diagnosis 
and suggesting correct therapy. Yet, differential diagnosis 
in medical genetics remains challenging, because of the 
vast amount of genetic D and the even greater amount 
of DP that characterize each D. In addition, many D lack 
pathognomonic DP and display nonspecific DP, as well as 
variable expression and penetrance [12].

Furthermore, our findings are strengthened by the 
substantial intersection (86.1% of shared edges) of the 
DDSN-C* with the HSDN [11], in spite of clear dif-
ferences in the type of input (expert knowledge for 
the DDSN-C versus literature mining for the HSDN). 
Remarkably, the DDSN-C* also displayed a relatively high 
intersection (33.5%) with the SGDPN [11], even though 
the SGDPN only contains a rather limited subset of clini-
cal similarities, i.e., those due to presumptively similar 
biological mechanisms (as inferred from shared genes 
or protein interactions). The observation that about one 
third of the DDSN-C* intersects with the SGDPN sug-
gests that several instances of clinical similarity in the 
DDSN-C are also instances of biological similarity, a con-
clusion that we have reported in the accompanying man-
uscript [13].

Among the previous studies that our work comple-
ments, we cannot fail to mention the extremely use-
ful databases we have used here. OMIM, in particular, 
provides a list of more than four thousands inherited 
D together with their symptoms and signs [6]. Thus, 
computer-based searches of semantic similarity among 
the OMIM-encoded D can facilitate differential diagno-
sis, by comparing a query (the list of DP presented by 
the patient) with a reference (the list of DP known to be 
associated with a given D). However, simple text match-
ing is insufficient, because the terms used to design the 
DP have varying degrees of specificity. Thus, comparison 
of the query and reference DP should take into account 
not only their textual identity but also their likeness of 
meaning, i.e., their semantic content [14]. Achieving this 

goal requires a representation of all the DP terms as a 
directed acyclic graph, which describes the DP and their 
semantic relationships (mostly in a ‘is a’ format). In this 
respect, a further important development [15] has been 
the assembly of the HPO database [7]. Also essential has 
been the implementation of algorithms that identify (as 
best matching DP for any pair of DP) their most informa-
tive common ancestor [16] and calculate (for any pair of 
D) a similarity score as the average of all the best match-
ing DP [5, 17]. With text-mining algorithms, other stud-
ies have extracted numerous D-DP associations [18, 19], 
which have been used to assemble D-DP networks, in 
which clinically similar D formed homogeneous clusters 
[11, 20, 21]. However, all these studies move from the DP 
to the D to identify either candidate D genes (the differ-
ential diagnosis algorithms) or clusters of similar D (the 
networks). In contrast, our work can be seen as a reverse 
engineering of these processes, because it moves from 
already defined clusters of presumptively similar D (the 
PS) to quantify their mutual (DP-based) degree of clinical 
similarity.

Conclusions
In conclusion, the work presented here has the potential 
usefulness to improve the clinical process of differential 
diagnosis. In addition, it sets the stage for the analysis of 
the biological similarity between D, as well as the corre-
lation between clinical and biological similarities, which 
are the objects of the accompanying manuscript [13].

Notes

1.	 Gamba A, Salmona M, Cantù L, Bazzoni G. The sim-
ilarity of inherited diseases (II): clinical and biological 
similarity between the phenotypic series. BMC Med 
Genomics. 2020 Sep 24;13(1):139.
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Additional file 1: Fig. S1 Intra-PS similarity. The figure reports the distribu-
tion of the number of PS among the high-level DO classes (grey bars) 
as well as the average coefficient of intra-PS similarity (as mean ± SD; 
black squares). Interestingly, the PS belonging to DO classes that are 
well characterized in anatomical terms (e.g., disorders of the respiratory, 
reproductive and cardiovascular system) have intra-PS similarity scores 
above the mean similarity value of all the cumulative DO classes (dotted 
line). In contrast, the PS that are not anatomically defined (for instance, 
metabolic, infectious, hematologic, psychiatric and endocrine diseases) 
have intra-PS score lower than the average score. Fig. S2 Inter-PS similar-
ity. The figure reports a selection of D that belong to the DO-classes 
DO:0014667 (Disease of metabolism; left side) and DO:0000863 (Nervous 
system disease; right side) and that are more similar to a D in another 
PS (in these examples, a metabolic D has the highest similarity with the 
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indicated neurological D). The figure is derived from the DDSN-C. Fig. 
S3 Distribution of the P(k) in the bipartite D-DP graph. The distribution of 
connectivity P(k) approximates a power-law for the nodes indicating both 
the D (kD; top) and the DP (kDP; bottom). Fig. S4 Raising the thresholds and 
network fragmentation. Raising the threshold (w*) in the DDSN-C (A) and in 
the DP (B) progressively reduces the fraction of D nodes (white diamonds), 
DP nodes (gray diamonds), D−D edges (black squares) and D-DP edges 
(gray squares). Results are shown as percentage of the total number of 
nodes and edges in the whole networks (i.e., at a threshold of zero). The 
vertical dashed line indicates the threshold of 0.45 discussed in the text. 
The vertical dotted lines indicate the threshold of 0.80 applied to display 
the sub-networks of the DDSN-C (Fig. S5) and of the D-DP (Fig. S6). Fig. S5 
A subnetwork of the DDSN-C. In the DDSN-C, applying a threshold for the 
average IC of the shared DP (w* > 0.80) causes loss of nodes and edges (as 
reported in Fig. S4 panel A), as well as fragmentation of the DDSN-C. The 
figure shows the remaining giant connected component, which contains 
178 D nodes and 2379 D-D edges. The graph can be best visualized on 
a computer screen at high magnification. Fig. S6 A sub-network of the 
D-DP bipartite graph. In the D-DP bipartite graph, applying a threshold for 
the IC of the DP (w* > 0.80) causes loss of nodes and edges (as reported 
in Fig. S4 panel B), as well as fragmentation of the D-DP graph. The figure 
shows the remaining giant connected component, which contains 655 
nodes (218 D and 437 DP) and 744 D-DP edges. White circles and gray 
rectangles are D and DP, respectively.

Additional file 2: Table S1 The DP hubs in the D-DP bipartite graph.
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