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Abstract

Background: Despite being caused by mutations in different genes, diseases in the same phenotypic series are
clinically similar, as reported in Part I of this study. Here, in Part II, we hypothesized that the phenotypic series too
might be clinically similar. Furthermore, on the assumption that gene mutations indirectly cause clinical phenotypes
by directly affecting biological functions, we hypothesized that clinically similar phenotypic series might be
biologically similar as well.

Methods: To test these hypotheses, we generated a clinical similarity network and a set of biological similarity
networks. In both types of network, the nodes represent the phenotypic series, and the edges linking the nodes
indicate the similarity of the linked phenotypic series. The weight of each edge is proportional to a similarity
coefficient, which depends on the clinical phenotypes and the biological features that are shared by the linked
phenotypic series, in the clinical and biological similarity networks, respectively.

Results: After assembling and analyzing the networks, we raised the threshold for the similarity coefficient, to retain
edges of progressively greater weight. This way all the networks were gradually split into fragments, composed of
phenotypic series with increasingly greater degrees of similarity. Finally, by comparing the fragments from the two
types of network, we defined subsets of phenotypic series with varying types and degrees of clinical and biological
correlation.

Conclusions: Like the individual diseases, the phenotypic series too are clinically and biologically similar to each
other. Furthermore, our findings unveil different modalities of correlation between the clinical manifestations and
the biological features of the inherited diseases.

Keywords: Gene mutations, Inherited diseases, Disease phenotypes, Biological processes, Network analysis,
Ontologies
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Background
A ‘multi-level’ study of disease (D), i.e., from the clinical
level (of systems and organs) to the biological level (of
cells and molecules), offers a reasonable chance of better
understanding the underlying mechanisms of D. This type
of study has become more feasible than in the past thanks
to the availability of comprehensive and detailed data-
bases. For instance, Human Phenotype Ontology (HPO)
enlists the disease phenotypes (DP), i.e., the symptoms
and signs of the D [1], while Disease Ontology (DO) clas-
sifies the D in clinical and anatomical categories [2]. On-
line Mendelian Inheritance in Man (OMIM) provides
information on the D and the mutated genes [3], while
Gene Ontology (GO) annotates the biological characteris-
tics of the corresponding gene products [4].
While the multi-level study of individual D is un-

doubtedly interesting, a comprehensive study of all the
molecularly-defined D should facilitate the identification
of recurrent biological mechanisms that may become
dysfunctional in molecularly dissimilar (albeit clinically
similar) D. An attractive hypothesis is that mutations in
different disease gene products (DGP) interfere with the
same biological mechanism and therefore result in clin-
ically similar DP. This is supported by the frequent clin-
ical similarity even among D that are caused by
mutations in biochemically unrelated genes [5]. For this
analysis, we employed a very useful feature of the OMIM
database [3], the ‘Phenotypic Series’ (PS); these are sub-
sets of clinically similar D (see Additional file 1 for an
explanation of the terms). In the first part of the study,1

we analyzed the similarity of D belonging to the same
PS (intra-PS similarity). Then here, in the second part,
we analyze the similarity among the PS themselves (in-
ter-PS similarity).
Among the tools available for this analysis, we used

networks, because they serve to study D at different
levels of complexity, thus conceptually linking the clin-
ical manifestations of the D with its molecular determi-
nants [6–8]. In general, networks, which are composed
of nodes linked by edges, give a comprehensive display
of complex systems, which comprise numerous elements
and their interactions [9]. From a network perspective, a
PS can be thought of as a meta-node representing a
group of similar D. This assumption greatly facilitates
the analysis of the interactions among all the elements
involved (D, DP, biological characteristics, gene products
and genes). We generated two types of network, the
Clinical Similarity Network (CSN) and various Biological
Similarity Networks (BSN). In both types, each node
stands for a PS and each edge (linking a pair of nodes)

represents the degree of PS-PS similarity, as defined by
the HPO-based clinical DP (in the CSN) and the GO-
based biological features (in the BSNs), which the two
PS in the pair share.
The starting point for assembling all these networks

is a bipartite graph, i.e., a network containing two
subsets of nodes. We first assembled a PS-HPO bi-
partite graph (Fig. 1 top panel), by first linking any
PS to nodes representing the clinical DP (as HPO
terms) that annotate the D within that PS. Then, in a
pairwise comparison of all the PS, we retrieved the
HPO annotations that the two PS in each pair share
(either as identical term or as the most informative
common ancestor of two different terms). Finally,
from the bipartite PS-HPO graph, we derived the
CSN, using an edge to link all the PS that share HPO
annotations (for details, see Additional file 2).
Following the same strategy, we assembled three

PS-GO bipartite graphs (Fig. 1 middle panel), in
which each PS is linked to nodes representing func-
tional annotations (as GO terms), as defined in one
of the three sub-ontologies of GO, i.e., Biological
Process (BP), Cellular Component (CC) and Molecu-
lar Function (MF). Then, from the PS-GOBP, PS-
GOCC and PS-GOMF bipartite graphs, we derived the
BSN-BP, BSN-CC and BSN-MF networks, respectively,
by linking all the PS that share annotations in the re-
lated sub-ontology of GO with an edge. Finally, to
display the strongest evidence from the three sub-
ontology networks together, we assembled the general
BSN, which assigns to each edge only the greatest
weight among the three networks.
All the similarity networks are very dense structures,

with numerous edges linking each node to all the others.
However, the edges have different strengths that corres-
pond to different degrees of similarity. The concept of
edge strength reflects the hierarchical structure of the
ontology trees. In particular, in both HPO and GO (like
in any other ontology), the terms are organized hierarch-
ically as descendants of less specific ancestor terms,
down to the least specific common ancestor, the ‘root’ of
the tree, which contains all the terms in the ontology.
Thus, even two highly dissimilar PS will share at least
one term – the root – and possibly some other ancestors
of low specificity as well. Consequently, each PS is con-
nected (in the CSN or in the various BSN) to all the
other PS, even though many links only represent shared
ancestors of rather low specificity. Thus, to focus only
on the strongest links, we assigned a weight to each
edge, proportional to a calculated similarity coefficient (a
measure of how similar two PS are). Then, to remove
the weaker links, we progressively raised the thresholds
for the coefficients of (clinical or biological) similarity.
This way, we defined groups of PS with increasingly

1Gamba A, Salmona M, Bazzoni G. The Similarity of Inherited
Diseases (I): Clinical Similarity within the Phenotypic Series. 2019.
(Under review)
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greater degrees of (clinical or biological) similarity. Fi-
nally, after examining the clinical and biological similar-
ity independently of each other, we directly compared
the two types of similarity for each PS pair (Fig. 1 bottom
panel). This enabled us to define different modes of cor-
relation (or lack thereof) between the clinical and bio-
logical levels of similarity of the D.

Methods
Data and databases
We retrieved the data from the following databases. (i)
OMIM [3] for the PS, the PS-associated D and the D-
associated DGP; (ii) HPO [1] for the clinical DP of the
D; (iii) GO and its three sub-ontologies [10] for the bio-
logical features of the DGP; (iv) DO [2] for the clinical

Fig. 1 Assembly of the CSN and BSN. The experimental procedure leading to the assembly of the CSN and one of the three BSN (here the BSN-
BP) is depicted schematically, in the top and middle panels, respectively. The PS (black circles), labeled A, B and C, are annotated with the HPO
terms (blue squares) and the GO-BP terms (red hexagons) labeled 0, 1, 2, 3 and 4. As shown in the schematic ontology trees, 4 is the common
ancestor of terms 2 and 3, and 0 is the root term. Then the algorithm retrieves all the possible PS-PS pairs and the annotations that the two PS
share (dotted squares and hexagons). The shared annotations can be either an identical term (e.g., A and B sharing 1) or the most informative
common ancestor of two different terms (e.g., A and C sharing 4 as a common ancestor of 2 and 3); highly dissimilar PS (e.g., B and C) share the
root 0. For simplicity’s sake, each pair of PS is assumed here to share only one annotation. At the end of the search, a non-weighted bipartite
graph is assembled. Then, from the PS-HPO and PS-GO bipartite graphs, the CSN and the various BSN are derived, by linking all the PS that share
the annotations. The thickness of the edge in the CSN and BSN is proportional to the similarity coefficients of the linked PS pair. The bottom panel
shows schematically different types of correlation between HPO- and GO-based similarities. For instance, in the AB, AC and BC pairs of PS, both
the clinical and the biological similarities are directly correlated in a high, intermediate or low manner, respectively. In contrast, two additional PS
pairs exemplify instances of high clinical (but low biological) similarity (AX) and, conversely, high biological (but low clinical) similarity (AY)
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categories of the D. In addition, from HPO, GO and DO
we retrieved not only the term annotations but also the
ontologies, i.e., the hierarchical relations that link each
term to its parent and ancestor terms, as well as to its
child and descendant terms.

Generation of a network
To generate the CSN, we proceeded as described below
(see also Additional file 2) and as detailed in [11].2 First,
we compared all the HPO terms, which annotate all the
D in a given PS, in order to retrieve, for M original
terms, M representative terms annotating the PS. An
intra-PS shared term is either an identical term or a
common ancestor of different terms (here, the closest
ancestor in the HPO hierarchy). The final representative
term is the middle term in a list of common ancestors
(arranged in ascending order of specificity). Second, for
all the possible PS-PS pairs, we compared the represen-
tative HPO terms that annotate each PS in the pair, in
order to retrieve the terms shared by both PS. An inter-
PS shared term is either an identical term or a common
ancestor of two different terms (here, the most inform-
ative common ancestor) annotating both PS in the pair.
To define the most informative ancestor, an Information
Content (IC) score according to Resnik had already been
calculated [12] and assigned to each HPO term. Third,
as each PS is annotated with multiple HPO terms, a
similarity matrix containing all pairwise IC was assem-
bled and a similarity coefficient was calculated according
to the ‘best-match average’ strategy, meaning the average
of all maximum similarities on each row and column of
the matrix [13]. Finally, the CSN was assembled by join-
ing the PS to each other and assigning, as weight w for
each edge, the value of the similarity coefficient [14].
The same procedure was followed to assemble three

additional networks of biological similarity (BSN-BP,
BSN-CC and BSN-MF), except that we used the GO an-
notations of the genes, whose mutations cause the D in
the PS under study. Besides generating one network for
each of the three GO sub-ontologies, a general network
of biological similarity (designated BSN) was generated,
in which the weight w for each edge is the highest simi-
larity coefficient among the three sub-ontology-related
BSN. Specifically, the BSN-BP, BSN-CC and BSN-MF
contributed respectively to 60.3, 30.2 and 9.5% of the
edges in the general BSN. Cytoscape [15] and Network
Analyzer [16] were used to display and analyze all the
networks. To select the strongest PS-PS associations

only, a threshold for the edge weights w was set, as de-
scribed [17].

Disease classification
Each node in the networks represents a PS and is color-
coded according to the DO term that annotates the ma-
jority of D in that PS [2]. The DO terms used are the
child terms of the root Disease (Syndrome, Genetic dis-
ease, Physical disorder, Disease by infectious agent, Dis-
ease of metabolism, Disease of mental health, Disease of
cellular proliferation and Disease of anatomical entity).
We also used the child terms of Disease of anatomical
entity, which designate disorders of the cardiovascular,
endocrine, gastrointestinal, hematopoietic, immune, in-
tegumentary, musculoskeletal, nervous, reproductive, re-
spiratory, thoracic and urinary systems.

Cluster analysis
For cluster analysis, the binary similarity coefficients be-
tween any PSi and PSj pair (from a set of m PS) were as-
sembled in a symmetrical matrix M. The matrix is
composed of m rows and m columns (each row and
each column corresponding to one PS), so that Mij de-
notes the (either HPO- or GO-based) similarity between
the ith and the jth PS. Then, hierarchical cluster analysis
was done using Multiple Experiment Viewer, with Pear-
son correlation uncentered (as distance metrics) and
average-linked (as linkage method).

Results
The clinical similarity network (CSN)
To assemble the CSN, we first retrieved all the molecu-
larly defined D that belong to the OMIM-encoded PS.
Then, for each D, we retrieved all the HPO-encoded DP
and identified all the shared DP for each PS pair. Finally,
we assembled the CSN, by displaying each PS as a node
and linking each pair of nodes with an edge. Each edge
represents the clinical similarity of the two PS in the pair
and has a weight w, proportional to their similarity coef-
ficient (Additional files 1 and 2).
The CSN contains 293 nodes linked by 42,778 edges.

This means the CSN is a fully connected network, in
which each node is linked to all the other nodes (self-
loops excluded), because each PS has some similarity to
all the other PS. However, most edges only represent
weak similarities, as any pair of HPO annotations (no
matter how dissimilar) shares at least one ancestor of
low specificity in the ontology (see Background). Never-
theless, by gradually raising the threshold for w, one can
remove the weaker similarities, retaining only the stron-
ger ones – the edges that link highly similar PS. Clearly,
the removal of the edges also results in a loss of nodes.
However, the threshold can be set appropriately, so that

2For a complete description of the procedure, see Gamba A.
Approaches to the molecular basis of genetic diseases (PhD thesis).
Preprint at https://air.unimi.it/retrieve/handle/2434/545159/947802/
phd_unimi_R11022.pdf
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the maximal removal of edges is obtained with only min-
imal loss of nodes (Fig. S1 panel A; Additional file 3).
Next, to analyze the topological properties of the CSN, we

set a threshold of 1.0. Here, the majority (87%) of the less
specific edges was removed, with just minimal loss (2%) of
the nodes and no fragmentation of the network (Table 1).
The CSN retained 287 nodes and 5660 edges and was still
composed of one giant connected component (GCC). The
first parameter we assessed was the connectivity ki, i.e., the
number of direct neighbors of a given node i, which indicates
how many other nodes node i is linked to (and thus how
many PS are clinically similar to PSi). An average connectiv-
ity <k> of 39.4 indicates that, on average, each PS in the CSN
is connected to 39 other PS with a similarity coefficient > 1.0.
Interestingly, PS in different DO classes differ in their <
k> (not shown), with the PS of the DO class Syndrome hav-
ing the highest <k> (66 ± 33); this probably reflects the wide
variety of DP that characterizes syndromic PS (and thus their
larger chance of being similar to other PS).
Table 1 reports two additional parameters. The clus-

tering coefficient Ci of node i is the ratio of the actual to
the theoretically maximal number of edges that link mu-
tually the neighbors of i. A <C> (i.e., the average C of all
the nodes in the CSN) of 0.635 indicates that 63.5% of
the PS, which are clinically similar to a given PS, are
similar to each other as well. Finally, the shortest path li,j
of a given pair of nodes i and j is the number of edges
that one must travel to go from i to j. An average l (or <
l>) of 2.29 (≈ 2) indicates that, even for those pairs of PS
that are not similar to each other (and thus have l ≠ 1,
because they are not linked directly in the CSN), there is
at least a third PS that is similar to the two unconnected
PS. Taken together, the high <k>, the high <C> and the
low <l> indicate that, already at a threshold of 1.0, most
PS have, on average, a significant degree of clinical
similarity.

Islands and clusters of high clinical similarity within the
CSN
In all the networks, to focus on groups of highly similar
PS, we raised the threshold until 20% of the initial num-
ber of PS were retained. In the CSN, when the threshold
was increased to 2.46, we retained 58 nodes (20% of the
PS) and just 63 edges (0.2% of the PS-PS similarities).
The CSN was fragmented into 13 islands, each com-
posed of PS that were highly similar with respect to the
clinical DP and, accordingly, to the clinical DO class as
well (Fig. 2; node colors). The highest similarity links Sei-
zures, familial febrile (PS121210) with Epilepsy, general-
ized, with febrile seizures, plus (PS604233). It exemplifies
how the similarity coefficient reflects the sharing of
highly informative DP, including both identical terms
annotating the two PS (e.g., Febrile seizures) and com-
mon ancestors of different terms (e.g., Dialeptic seizures,
which is the ancestor of both Absence seizures and Focal
seizures with impairment of consciousness or awareness,
in PS121210 and PS604233, respectively).
CSN fragmentation, however, does not necessarily

imply that disconnected PS are dissimilar, but simply
that the similarity coefficient falls below the chosen
threshold. It remains possible that even disconnected PS
share substantial similarity to each other (and dissimilar-
ity from the other PS). To analyze this, we examined the
inter-PS similarity by another approach, hierarchical
cluster analysis. Within the CSN (still at the threshold of
2.46), we identified eight clusters, many of which were
mostly composed of clinically similar PS islands (dotted
lines in Fig. 2), like the convulsive PS of cluster 1. In
addition, clustering allowed grouping similar PS that, at
this threshold, are disconnected. For instance, seven PS
scattered in three small islands could be grouped within
cluster 8, which is characterized by ocular involvement
(though affecting different components of the eye, such
as iris, retina and cornea).
Finally, the similarity among the PS may extend be-

yond the boundaries of the clusters. For instance, In-
flammatory Bowel Disease (PS266600; cluster 5) and
Colorectal cancer, hereditary non-polyposis (PS120435;
cluster 7) have a similarity coefficient of 2.17, which is
4.2 times the average similarity in the whole CSN
(0.52 ± 0.72), but lower than the threshold of 2.46. Their
clinical similarity is mostly due to the shared DP Abnor-
mality of the large intestine, which is the common an-
cestor of Rectal abscess (PS266600) and Colon cancer
(PS120435).

The biological similarity networks (BSN)
To assemble the BSN we retrieved the following data
and then proceeded similarly to the assembly of the
CSN. First, for each PS-associated D we retrieved the
corresponding DGP from OMIM. Second, for each DGP

Table 1 Network analysis

Network

Threshold Parameter CSN BSN-BP BSN-CC BSN-MF BSN

0.0 Nodes 293 316 314 305 319

Edges 42,778 49,770 49,141 46,360 50,721

1.0 Nodes 287 298 258 209 311

Edges 5660 11,223 2821 1633 13,282

<k> 39.440 75.320 21.870 15.630 85.420

<C> 0.635 0.708 0.653 0.691 0.654

<l> 2.294 1.950 2.486 2.829 1.799

Density 0.138 0.254 0.085 0.075 0.276

The topological properties of the five networks. Network analysis was
conducted after setting a threshold of 1.0 for all the networks. At this
threshold, all the networks are still composed of a single GCC, despite the loss
of all the edges with weight w ≤ 1.0
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we retrieved the corresponding biological annotations
from the BP, CC and MF sub-ontologies of GO. Third,
we paired all the PS and identified which GO annota-
tions were shared by each pair of PS. Finally, we assem-
bled three networks (see Additional file 3), i.e., the BSN-
BP (Fig. S2), BSN-CC (Fig. S3) and BSN-MF (Fig. S4), by
linking each pair of PS with a weighted edge, which rep-
resents their degree of biological similarity within the
relevant sub-ontology. We also assembled a more gen-
eral network (the BSN), in which an edge (linking a
given pair of PS) is the one with the highest w among
the three edges that link the same PS pair in the three
sub-ontology BSN (Fig. 3). Like the CSN, the BSN-BP,
BSN-CC, BSN-MF and BSN are also densely connected
networks, even though most edges represent weak simi-
larities. Thus, to focus on the PS with the highest degree

of similarity, we gradually raised the threshold for w
(Fig. S1 panels B-E).
As for the CSN, network analysis was done at a

threshold of 1.0, where all four biological networks are
still composed of one GCC, in spite of having lost many
edges. However, the networks differ in the fractions of
nodes and edges retained (compared to the initial no-
threshold condition; Table 1). More edges are retained
in the BSN-BP than in the BSN-CC or – even more –
the BSN-MF, indicating that BP generates more inform-
ative edges than either CC or MF. In addition, compared
to the BSN-CC and BSN-MF, the BSN-BP is a denser
network, whose nodes have more connections and lie
closer to each other. All these parameters are even more
marked in the general BSN, which is not surprising, as
each edge, which links two PS in the general BSN, is the

Fig. 2 The CSN. The CSN, at a threshold of 2.46, contains 58 nodes linked by 63 edges and is fragmented into 13 islands and 8 clusters. Node
color indicates the DO class (inset), while node size is proportional to the connectivity k of the PS. Edges represent biological similarity and edge
thickness is proportional to the weight w (i.e., the maximal GO-based similarity among the three GO sub-ontologies)
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most informative edge linking the same two PS in the
three sub-ontology-related BSN.

Islands and clusters of high biological similarity within
the BSN
The threshold was further raised until about 20% of the
PS were retained (Fig. S1 panels B-E) and the networks
were fragmented into islands of biologically similar PS.

As for the CSN, hierarchical cluster analysis identified
clusters of PS in the BSN-BP (Fig. S2), BSN-CC (Fig.
S3), BSN-MF (Fig. S4) and in the general BSN (Fig. 3).
Most clusters had a clear biological meaning, which can
be expressed by the most significant GO terms that an-
notate the DGP in each cluster. We indicate these
enriched GO terms as the labels of the clusters. Thus,
most PS clusters in the BSN-CC can be interpreted as

Fig. 3 The BSN. The BSN, at a threshold of 2.70, contains 68 nodes linked by 138 edges and is fragmented into 18 islands and 8 clusters. Node
color indicates the DO class (see Fig. 2, inset) and node size is proportional to the connectivity k of the PS. Edges represent clinical similarity and
edge thickness is proportional to the weight w (i.e., the HPO-based clinical similarity)
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organelle D (e.g., ciliopathies), which are due to defects
in a distinct sub-cellular structure (the cilium; Fig. S3,
cluster 7).
In the largest cluster of the BSN (Fig. 3, cluster 5), the

majority of PS are cardiac D (orange nodes), particularly,
ion-channel disorders [18], which are characterized clin-
ically by arrhythmias. The highest similarity coefficient
links Brugada syndrome with Short QT syndrome, be-
cause these PS share numerous highly informative pro-
cesses, including the BP-annotated Potassium ion export
from cell. Surprisingly, however, other PS in the cluster
are not cardiac but convulsive D (e.g., Seizures, benign
familial infantile; green), as well as respiratory (Bronchi-
ectasis; light blue), renal (Bartter syndrome; blue) and
syndromic (Familial episodic pain syndrome; red) disor-
ders. The same PS cluster together in the BSN-BP (Fig.
S2, cluster 8, Ion transmembrane transport), BSN-CC
(Fig. S3, cluster 8, Ion channel complexes) and the BSN-
MF (Fig. S4, cluster 5, Transmembrane transporter activ-
ities). Thus, the BSN identifies clusters of biologically re-
lated (albeit clinically unrelated) PS.

Correlating the clinical and the biological similarities
Up to now, we have considered the clinical and bio-
logical similarity as separate entities. Next, to correlate
the two, we assembled a scatter plot of the similarity co-
efficients from the CSN and the general BSN (Fig. 4a).
The plot represents the 42,782 pairs of PS, for which
both clinical and biological coefficients are available, and
can be divided into four quadrants. First, quadrant I
comprises the majority of PS pairs, which have low clin-
ical and low biological similarity. Second, many PS pairs
(quadrant II) have high clinical and high biological simi-
larity (both coefficients being ≥ 2 in 57 PS pairs). For ex-
ample, many of the ion transport-related PS involving
cardiac arrhythmias have close similarity in both clinical
and biological terms (Fig. 4b, red diamonds). Likewise, a
subset of the ion transport-related PS with a convulsive
DP have medium-high levels of similarity, both clinical
and biological (Fig. 4b, green diamonds).
Third, many pairs (quadrant III) have high biological

but low clinical similarity, the similarity coefficients be-
ing ≥ 2 (biological) and < 2 (clinical) in 500 pairs. Exam-
ples include many of the clinically heterogeneous pairs
of ion transport-related PS discussed above, which are
composed of one cardiac arrhythmia PS and one
convulsion-related PS (Fig. 4b, yellow diamonds and or-
ange/green nodes in Fig. 3, cluster 5).
Fourth, many PS pairs (quadrant IV) have high clinical

and low biological similarity, with similarity coefficients
≥ 2 (clinical) and < 2 (biological) in 178 PS pairs. The
renal D in the CSN (Fig. 4b, purple diamonds and blue
nodes in Fig. 2, cluster 4) reflect, on the clinical side, the
sharing of highly informative clinical DP (e.g., Proximal

tubule nephrolithiasis or Bone pain and fractures). On
the biological side, however, they involve alterations in
biological functions as dissimilar as Endocytosis (Dent’s
disease) [19], Glyoxylate metabolism (Primary hyperoxa-
luria) [20] and Absorption of phosphate (Nephrolithiasis
hypophosphatemic) [21]. Taken together, these observa-
tions reveal widely different types of correlation between
the clinical phenotypes of the D and the biological func-
tions of the corresponding DGP.

Discussion
The main findings of this study are that, first, a series of
weighted networks allowed displaying the clinical and
biological similarity of the PS that are composed of
molecularly-characterized D. Second, raising the similar-
ity threshold allowed identifying subsets of PS with pro-
gressively higher degrees of clinical and/or biological
similarity. Third, there were several examples of PS
pairs, whose clinical and biological similarities are corre-
lated either directly or inversely.
The use of networks in medicine [7, 9] and pharma-

cology [22, 23] for diverse purposes is not unprece-
dented, including the investigation of similarity among
D [5, 6, 8]. The novelty of our study, however, consists
of basing the analysis not on individual D but on the PS
[3], which can be regarded as meta-nodes of the net-
works. The use of PS is justified by the wide numbers of
locus heterogeneity-like conditions in human genetics,
where mutations in different genes cause similar D that
are hardly – if at all – distinguishable clinically. Thus, by
merging similar D into the same PS (or, in graphical
terms, by absorbing thousands of D nodes into hundreds
of PS meta-nodes), the PS greatly simplified our analysis
of similarity. An alternative approach (focused on the D)
would have required comparing millions of D-associated
DP and then identifying clusters of similar D. Thus, the
use of the PS is advantageous, because it relies on au-
thoritative clinical judgment (and not on the arbitrary
choice of a similarity threshold) to define the boundaries
of clinically similar D clusters.
In addition to the OMIM-defined PS, the study also

benefited from the availability of metrics that quantify
the similarity of both the clinical (HPO-defined) annota-
tions [5] and the biological (GO-defined) ones [13],
which are shared by each pair of PS. Both HPO and GO
are ontologies, in which each term is a specific instance
of a more general parent term. Thus, when comparing
two annotations, the similarity-searching methods iden-
tify which terms are shared within the hierarchical struc-
ture of the ontology. Consequently, many shared terms
are common ancestors that have various levels of IC. At
the lowest extreme, even the most dissimilar annotations
share, as common ancestor, the root, which is the least
specific term of the ontology (and thus, the term with
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the lowest IC). The downside of defining similarity based
on common ancestry is that, at the end of the procedure,
each PS has some similarity with all the other PS. In
addition, the resulting network has limited usefulness,

because each of its n nodes is connected to all the other
(n-1) nodes by means of all the possible n*(n-1)/2 edges.
Nevertheless, assigning a similarity coefficient to each PS
pair allows converting the fully-connected network into

Fig. 4 Comparing biological and clinical similarities. a The scatter plot displays the correlation between clinical and biological similarity (as
defined in the CSN and the BSN, respectively). b Details of the subset of PS-PS discussed in the Results
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a weighted graph [14, 24], in which the weight of each
edge is directly proportional to the strength of the simi-
larity. Then, by raising the threshold for the weight, it
becomes feasible to retain only the strongest links, mak-
ing the network more usable for analytical purposes.
Even though the loss of edges comes inevitably at the
expense of a progressive fragmentation of the network,
the resulting fragments are indeed the subsets of highly
similar PS that were the initial goal of the study.
Far from considering the clinical and biological simi-

larities as separate entities, this study also set out to cor-
relate them. One of the basic questions at the inception
of the study was to test whether the altered biological
functions, due to gene mutations (at the level of cells
and tissues), might account for the clinical phenotypes
in the patient (at the level of organs and systems). We
had hypothesized that the clinical and biological similar-
ities should be directly correlated, so that clinically simi-
lar PS should be biologically similar as well. We did
identify PS that were similar not only clinically (in the
CSN) but also biologically (in the BSN). For example,
similar clusters of cardiac arrhythmia PS were detectable
in both CSN and BSN. However, as the scatter plot indi-
cates, correlations of the two types of similarity are more
complex than expected. Clearly, in many instances miss-
ing clinical-biological correlations are merely due to
non-specific annotations of the DP (in HPO) and/or the
DGP (in GO). In particular, in a binary PS-PS compari-
son, even a low specificity annotation of just one of the
two PS (and in just one of the two ontologies) means a
poorly informative common ancestor is retrieved. This,
in turn, lowers the overall similarity coefficient of the
two PS (with regard to that ontology), ultimately affect-
ing the correlation of the clinical and biological similar-
ity. Nevertheless, we propose that several instances of
missing correlation reflect not simply defective annota-
tions but conditions of potential pathogenic interest. For
ease of analysis, we identified two major conditions
where the biological and clinical similarities are not dir-
ectly correlated.
The first condition consists of PS pairs with high bio-

logical, but low clinical, similarity. The category is exem-
plified by the PS, whose normal – non-mutated – gene
products participate in the channel-mediated transport
of cations during the repolarization of excitable cells.
However, in spite of this high degree of biological simi-
larity, the PS comprise clinical conditions as diverse as
cardiac arrhythmia- and seizure-related disorders. A
likely explanation for the divergent clinical manifesta-
tions of a similar biological dysfunction is the tissue-
restricted expression of many DGP. For instance, several
ion channel subunits are specifically expressed in excit-
able cells of either the heart or the brain [25]. In
addition, our analysis shows that these PS, in turn, are

part of a wider family of D, the ‘channellopathies’, whose
normal gene products participate in transporting ions
across the membranes, at the level of voltage-gated (car-
diac, convulsive and episodic pain-related disorders) and
ligand-gated (bronchiectasis and Bartter syndrome) ion
channels. Because in the GO database a given MF (such
as transporter activity) takes place in a defined CC (an
ion channel) to ensure a specific BP (in this case, ion
transport), the three sub-ontology-related BSN converge
in identifying communities of clinically diverse, but bio-
logically related, disorders.
The second condition consists of PS pairs with high

clinical, but low biological, similarity. We propose that
this category illustrates how different biological mecha-
nisms converge in a composite response, resulting in
clinically similar DP. An interesting example is the clus-
ter of proximal tubule nephrolithiasis, discussed in the
Results section (Fig. 2, cluster 4). Another example is a
cluster of three PS in the CSN (van Maldergem, Robi-
now and Carpenter syndromes), which all cause severe
skeletal dysplasia with craniofacial anomalies (Fig. 2,
cluster 3). On the one hand, the corresponding DGP an-
notate apparently unrelated BP, accounting for their low
biological similarity. On the other, however, most of the
DGP (WNT5A, DVL1, DVL3 and ROR2 in Robinow
syndrome, FAT4 and DCHS1 in van Maldergem syn-
drome and RAB23 in Carpenter syndrome) participate
in the non-canonical Wnt signaling pathway and in the
process of planar cell polarity, which are key regulators
of embryonic development [26].

Conclusions
In conclusion, our findings indicate that, even with the
intrinsic limitations of the available databases and
current biological understanding, it is already possible to
rely on semi-automated procedures to identify altered
biological responses as likely mechanisms for many
inherited D with a known molecular basis.
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Supplementary information accompanies this paper at https://doi.org/10.
1186/s12920-020-00793-y.

Additional file 1. Definitions of the terms used in the study

Additional file 2. Explanation of the algorithm used to generate the
similarity networks

Additional file 3: Fig. S1. Network fragmentation. Increasing the
similarity threshold in the CSN (A), BSN-BP (B), BSN-CC (C), BSN-MF (D)
and the general BSN (E) progressively reduces the fraction of nodes (open
diamonds) and edges (closed diamonds), with a consequent fragmenta-
tion of the initial network. Results are shown as fractions of the total
numbers of nodes and edges in the whole networks (i.e., at a similarity
threshold of zero). Also shown is the threshold of 1.0 (vertical dotted lines)
used for network analysis and the thresholds (vertical dashed lines) used
to retain 20% of the initial nodes (horizontal dotted lines) and to display
the networks in Figs. 2 (CSN), S2 (BSN-BP), S3 (BSN-CC), S4 (BSN-MF) and
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3 (general BSN). Fig. S2. The BSN-BP. The BSN-BP, shown at a threshold
of 2.5, contains 67 nodes linked by 135 edges and is fragmented into 14
islands and 9 clusters. In Figs. S2, S3 and S4, node color indicates the DO
class (see inset of Fig. 2), while edge thickness is proportional to the
weight w (i.e., the degree of HPO-based clinical similarity between PS).
Fig. S3. The BSN-CC. The BSN-CC, shown at a threshold of 1.9, contains
63 nodes linked by 93 edges and is fragmented into 9 islands and 8 clus-
ters. Fig. S4. The BSN-MF. The BSN-MF, shown at a threshold of 2.2, con-
tains 58 nodes linked by 154 edges and is fragmented into 11 islands
and 9 clusters.
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