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What is an inductively coupled plasma (ICP)?

Streamlines

Coil

In
flo
w

Torch Test chamber

The most powerful ICP facility in the world, the Plasmatron, is
located at VKI.

N.B. The governing equations are Maxwell + Navier-Stokes.
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What is ICP purpose?

Demise of space debris Thermal protection

The Plasmatron is involved in ESA projects. Having a reliable
numerical solver for ICP is of great importance.
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The problem with current ICP simulations
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• Usually FV =⇒ hard to capture high spatial frequencies. X
• Usually not 3D =⇒ no 3D effects. X
• Usually not time-accurate =⇒ no unsteadiness. X

Need of a 3D, high-order time-accurate solver for ICP!
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The numerical method: HDG

Classic DG. HDG: traces. HDG: elements as
transmitters.

This method requires solving 2 types of systems:

1. Local systems solved directly & in parallel.
2. A global system smaller than the global DG system. Can also
be run in parallel.
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The numerical method: HDG

Classic DG. HDG: traces. HDG: elements as
transmitters.

The code (Unified Framework) used has been developed by the
group of Prof. May.
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Chemistry: Mutation++

Ideal gas description is not sufficient anymore. Complex
chemistry is at play.

For now, the mixture is at local thermodynamic equilibrium!
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Computational considerations: primitive variables

Observation: Mutation++ at LTE is much faster in finding the
equilibrium for given p, T than with ρ and ρe.

1. implement the change of variables ρ, ρu, ρe→ p, u T.
2. ... such that it is general enough to be reused in the code easily.

General philosophy: keep the conservative form, but evaluate using
the primitive variables only.

Ex: We consider the change of variable from u→ λ.
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Computational considerations: primitive variables

Observation: Mutation++ at LTE is much faster in finding the
equilibrium for given p, T than with ρ and ρe.

1. implement the change of variables ρ, ρu, ρe→ p, u T.
2. ... such that it is general enough to be reused in the code easily.
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Computational considerations: (very) low Mach

In high enthalpy flows, the Mach can be very low.
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Mach can be as low as 10−4 in ICP!
Very low Mach simulations are
ill-conditioned for numerical

simulations...

Numerical flux: AUSM+up-As-cD (vector flux splitting).

F1/2 =
(
ṁ1/2 + wṁp

) 1
2 (ΨL +ΨR)− |ṁ1/2|

1
2 (ΨL +ΨR) + P1/2

Becomes central at very low mach and upwind at mach > 1.
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Computational considerations: thermodynamic look-up table

Mutation++ is fast, but equilibrating a mixture remains
expensive.

In high enthalpy flows, p ≃ p0.

Idea: at p0, compute the equilibria on a T grid, then interpolate the
results.

• • • • • • • •
T1 T2 T3 T4 TN−3 TN−2 TN−1 TN

N.B. this approach is often used in stellar plasmas.
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Time preconditioning

Time preconditioning had to be implemented in the code in
order to ease the convergence.

It is an alteration of the Jacobian matrix for rescaling the eigenvalues
of the problem.

 ∂pρ
′ 0 ∂Tρ

′

u∂pρ′ ρ u∂Tρ′
h0∂pρ′ − (1− ρ∂ph) ρu h0∂Tρ+ ρ∂Th


Result: Find a steady state with a classic Newton/GMRES solver
without further modifications. Could be used for actual ICP.
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Axisymmetric high-enthalpy jet

A hot jet (5250 K) is released in cold air (350 K).

Jet Velocity
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Axisymmetric high-enthalpy jet

A hot jet (5250 K) is released in cold air (350 K).

Jet Velocity
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Low mach, chemistry effects, large temperature gradients, & test of
Navier-Stokes
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Jet results
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Disparity at the centerline between the expected and true
temperature profiles.
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Electromagnetism: the coil immersed in conducting air.

The equations to solve are derived from Maxwell’s equations +
simplifying hypothesis for axisymmetric ICP.
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N.B.: Analytical solution involves elliptic integrals→ python.
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ICP system: a convergence study

Check the convergence of the method on the ICP equations
using a manufactured solution u∗

1. Plug u∗ in

∇ · F(u)− S(u) = 0

2. The residual is the new
source term:

∇·F(u∗)−S(u∗) = S∗(u∗)
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Rem: the manufactured solution is trigonometric.
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Future considerations.

1. Simulations of ICP and verification with COOLFLuiD and
litterature.

2. Multidomain simulations.
3. Time accurate simulations.
4. Code parallelization.
5. 3D modeling of plasma flows.
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Derivation of electric field equation i

Maxwell’s equation:

∇ · E =
nq
ϵ0

,

∇ · B = 0,

∇× E+ ∂B
∂t = 0,

1
µ0

∇× B− ϵ0
∂E
∂t = j+ nqv,

(1)

Scalar and vector potential ϕ, A:

B = ∇× A

E = −∇ϕ− ∂

∂tA
(2)
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Derivation of electric field equation ii

With the Lorentz gage,

ϵ0µ0
∂2

∂t2A = ∇2A+ µ0(j+ nqv)

ϵ0µ0
∂2

∂t2ϕ = ∇2ϕ+
nq
ϵ0

(3)

Split of electric field into electrostatic and induced parts:

EI = − ∂

∂tA

ES = −∂ϕ

∂z ez −−∂ϕ

∂r er
(4)

If no displacement current,

∇2A+ µ0j = 0 (5)
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Derivation of electric field equation iii

Ambipolar assumption (jz = jr = 0) and Ohm’s law for unmagnetized
plamsa jθ = σeEI.

Sinusoidal induction electric field:

EI = EI exp(i2πft)eθ (6)

so that

∂2EI
∂z2 +

1
r
∂EI
∂r

(
r∂EI
∂r

)
− EI
r2 − i2πfµ0σeEI = i2πfµ0IC

nr∑
i=1

δ(r− rj) (7)

Electric field produced by a coil:

∂2EC
∂z2 +

1
r
∂EC
∂r

(
r∂EI
∂r

)
− EC
r2 = i2πfµ0IC

nr∑
i=1

δ(r− rj) (8)
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Derivation of electric field equation iv

If one define EP such that EI = EC + EP, one has

∂2EP
∂z2 +

1
r
∂EP
∂r

(
r∂EP
∂r

)
− EP
r2 − i2πfµ0σe(EC + EP) = 0 (9)

Note on ambipolar assumption: in the case of quasi-neutrality and
no displacement current, the divergence of Maxwell-Ampere
equation is

∇ · j = 0. (10)

The ambipolar assumption is compatible with it, but stronger in the
sense that it forces the j components to be 0.
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Manufactured solution

The manufactured solution is the following one:

T = Tw +∆T cos
( r
2Rπ

)
EP = E0 sin

( r
Rπ

) (11)

Chosen because T is max at center and electric field becomes 0 at
both center and wall.
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Time preconditioning

 ∂pρ
′ 0 ∂Tρ

′

u∂pρ′ 0 u∂Tρ′
h0∂pρ′ − (1− ρ∂ph) ρu h0∂Tρ+ ρ∂Th

 (12)

∂pρ
′ =

1
ϵc2

∂Tρ
′ = ∂Tρ

ϵ =
M2
p

1− M2
p∂Tρ

′αT
ρ2βcp−α2ρT

(13)
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Future considerations: Multi domain approach

Rectangle inner region: full MHD equations.

Rectangle outer region: only electric field equation.
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