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Appendix 1: Development of the 

equations for the behaviour model 
The developments presented in this appendix follow the mathematical developments proposed 

by Ahmed1 

1 DISCRETIZATION OF THE EQUATIONS 

The equations of the model are written in their discretized form in the table below, where 

subscripts 𝑘 and 𝑘 + 1 stand for the beginning and the end of the time step, respectively, and Δ 

symbolizes the variation of any variable over the time step. For instance, the variation of the 

stress tensor is written using the Voigt notation as: 

Δ𝜎 = 𝜎𝑘+1 − 𝜎𝑘 

Feature Equation 

Strain partition Δ𝜀 = Δ𝜀𝑡ℎ + Δ𝜀𝑒 + Δ𝜀𝑝 (1) 

Hooke’s law Δ𝜎 = Δ𝐸: 𝜀𝑒 + 𝐸: Δ𝜀𝑒 (2) 

Yield surface 

(von Mises) 
𝑓𝑘+1 = 𝐽(𝜎𝑘+1 − 𝑋𝑘+1) − 𝑅𝑘+1 − 𝜎𝑦,𝑘+1 ≤ 0 (3) 

Viscoplasticity 

Δ𝑝

Δ𝑡
= ⟨
𝑓𝑘+1
𝐾
⟩
𝑛

 

for 𝑓𝑘+1 > 0 

(4) 

Isotropic 

hardening 
𝑅𝑘+1 = 𝑄(1 − 𝑒

−𝑏𝑝𝑘+1) (5) 

Kinematic 

hardening (𝑖 =

1: 𝑛𝐴𝐹) 

• Static 

recovery 

• Thermal 

variation 

• Mean 

stress 

evolution 

Δ𝑋𝑖
Δ𝑡

=
2

3
𝐶𝑖  
Δ𝜀𝑝

Δ𝑡
− 𝛾𝑖(𝑋𝑖,𝑘+1 − 𝑌𝑖,𝑘+1 )

Δ𝑝

Δ𝑡

− 𝑏𝑖𝐽(𝑋𝑖,𝑘+1)
𝑟𝑖−1

𝑋𝑖,𝑘+1 +
1

𝐶𝑖
 
𝑑𝐶𝑖
𝑑𝑇

Δ𝑇

Δ𝑡
 𝑋𝑖,𝑘+1 

(6) 

With:  

Δ𝑌𝑖
Δ𝑡
= −𝛼𝑏,𝑖 (

3

2
𝑌𝑠𝑡,𝑖

𝑋𝑖,𝑘+1

𝐽(𝑋𝑖,𝑘+1)
+ 𝑌𝑖,𝑘+1) 𝐽(𝑋𝑖,𝑘+1)

𝑟𝑖
 

(7) 

𝐽(𝑋) denotes the equivalent von Mises stress, defined as: 

 
1 R. Ahmed, “Constitutive Modeling for Very High Temperature Thermo- Mechanical Fatigue Responses,” PhD 

thesis, North Carolina State University, 2013. 



Appendix 1: Development of the equations for the behavior model 2 

 

𝐽(𝑋) = √
3

2
𝑋̂: 𝑋̂ 

Isotropic hardening is computed using the closed form expression of 𝑅(𝑝) given by Eq. (2.13) 

in Section 1.1.3 of Chapter 2. 

Parameters 𝛾𝑖 and 𝐷𝛾𝑖 for cyclic hardening can evolve if the option is activated in the input file. 

In this case, these parameters are calculated using the beginning of step values of the plastic 

multiplier 𝑝 and the plastic strain memory surface radius 𝑞. 

𝛾𝑖 = 𝛾𝑖
𝑓
− (𝛾𝑖

𝑓
− 𝛾𝑖)𝑒

−𝐷𝛾𝑖𝑝𝑘 

With:  

𝛾𝑖
𝑓
= 𝑎𝛾𝑖 + 𝑏𝛾𝑖𝑒

−𝑐𝛾𝑖𝑞𝑘  

If parameters 𝐷𝛾𝑖 and 𝐸 are made dependent on the maximum temperature in the loading 

history 𝑇𝑚𝑎𝑥, they are also computed explicitly: 

𝐷𝛾𝑖(𝑇𝑘+1, 𝑡𝑘+1) = 𝐷𝛾𝑖(𝑇𝑚𝑎𝑥, 0) − (𝐷𝛾𝑖(𝑇𝑚𝑎𝑥 , 0) − 𝐷𝛾𝑖(𝑇𝑘+1, 0)) 𝑒
−𝑏𝐷𝛾𝑝𝑘  

𝐸(𝑇𝑘+1, 𝑡𝑘+1) = 𝑓𝐸𝐸(𝑇𝑘+1, 0) + (1 − 𝑓𝐸)𝐸(𝑇𝑚𝑎𝑥, 0) 

With: 𝑓𝐸 = 𝑓𝐸
𝑆 − (𝑓𝐸

𝑆 − 1)𝑒−𝑏𝐸𝑝𝑘  

Equations (1) to (6) are rearranged to limit the total number of equations to solve. 

Firstly, Eq. (1) and Eq. (2) can be combined into Eq. (8a), or Eq. (8b) in which the unknown 

Δ𝜀𝑝 is put in a distinct term (all the variables in the two first terms of (8b) are known): 

Δ𝜎 = Δ𝐸: (𝜀𝑘+1 − 𝜀𝑘+1
𝑝 − 𝜀𝑘+1

𝑡ℎ ) + 𝐸: (Δ𝜀 − Δ𝜀𝑝 − Δ𝜀𝑡ℎ) (8a) 

Δ𝜎 = Δ𝐸: (𝜀𝑘+1 − 𝜀𝑘
𝑝 − 𝜀𝑘+1

𝑡ℎ ) + 𝐸: (Δ𝜀 − Δ𝜀𝑡ℎ) − (𝐸 + Δ𝐸) : Δ𝜀𝑝 (8b) 

Using the hypothesis of plastic strain incompressibility (𝑡𝑟(𝜀𝑝) = 0), the third term of Eq. 

(8b) can be rewritten as 2(𝐺 + Δ𝐺)Δ𝜀𝑝, where 𝐺 is the shear modulus. 

2 ELASTIC PREDICTOR 

As explained in Chapter 2, the equations are solved using the radial return mapping algorithm, 

which consists in computing a first elastic step where Δ𝑝 = 0 and correcting this step with a 

plastic corrector if the values found in the elastic predictor do not verify the von Mises criterion. 
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In the elastic step, the increment of plastic strain is considered equal to zero. A trial stress 𝜎𝑘+1
𝑡𝑟  

is computed using this hypothesis. Using Eq. (8b), the expression for 𝜎𝑘+1
𝑡𝑟  is: 

𝜎𝑘+1
𝑡𝑟 = 𝜎𝑘 + Δ𝐸: (𝜀𝑘+1 − 𝜀𝑘

𝑝 − 𝜀𝑘+1
𝑡ℎ ) + 𝐸: (Δ𝜀 − Δ𝜀𝑡ℎ) (9) 

𝜎𝑘+1
𝑡𝑟  can be computed directly since the total strain, thermal strain, and previous plastic strain 

are known.  

To compute the von Mises yield surface, the value of the back-stresses must be updated. With 

the hypothesis of Δ𝑝 = 0, Eq. (6) can be rewritten as Eq. (10): 

Δ𝑋𝑖
Δ𝑡

= −𝑏𝑖𝐽(𝑋𝑖,𝑘+1)
𝑟𝑖−1

𝑋𝑖,𝑘+1 +
1

𝐶𝑖
 
𝑑𝐶𝑖
𝑑𝑇

Δ𝑇

Δ𝑡
 𝑋𝑖,𝑘+1 (10) 

From Eq. (10), the updated back-stresses can be expressed as: 

𝑋𝑖,𝑘+1 = 𝜔𝑖𝑋𝑖,𝑘 (11a) 

𝜔𝑖 =
1

1 + 𝑏𝑖Δ𝑡𝐽(𝑋𝑖,𝑘+1)
𝑟𝑖−1

−
1
𝐶𝑖
 
𝑑𝐶𝑖
𝑑𝑇

Δ𝑇
 (11b) 

Eq. (11a) can be put into scalar form by using the equivalent von Mises stress: 

𝑔𝑖 = 𝐽(𝑋𝑖,𝑘+1) − 𝜔𝑖𝐽(𝑋𝑖,𝑘) = 0 (12) 

This nonlinear equation is solved using the Newton-Raphson method, by computing the 

consecutive iterations 𝐽(𝑋𝑖,𝑘+1)
𝑚

 given by Eq. (13), where superscript 𝑚 denotes the Newton 

iteration number, until convergence.  

𝐽(𝑋𝑖,𝑘+1)
𝑚+1

= 𝐽(𝑋𝑖,𝑘+1)
𝑚
−

𝑔𝑖
𝑚

(
𝜕𝑔𝑖

𝜕𝐽(𝑋𝑖,𝑘+1)
)

𝑚 
(13a) 

𝜕𝑔𝑖

𝜕𝐽(𝑋𝑖,𝑘+1)
= 1 −

𝜕𝜔𝑖

𝜕𝐽(𝑋𝑖,𝑘+1)
𝑋
𝑖,𝑘

 (13b) 

𝜕𝜔𝑖

𝜕𝐽 (𝑋
𝑖,𝑘+1

)
= −𝜔𝑖

2𝑏𝑖Δ𝑡(𝑟𝑖 − 1)𝐽 (𝑋𝑖,𝑘+1)
𝑟𝑖−2

 (13c) 

Once 𝐽(𝑋𝑖,𝑘+1) is obtained, the value of the back-stresses can be updated using Eq. (11a). 

The yield criterion is then checked using the value of 𝜎𝑘+1
𝑡𝑟  and the updated back-stresses. If the 

value of 𝑓𝑘+1
𝑡𝑟 = 𝐽(𝜎𝑘+1

𝑡𝑟 − 𝑋𝑘+1) − 𝑅𝑘+1 − 𝜎𝑦,𝑘+1 is less than 0, then the tensors 𝑌𝑖 must be 

updated before going to the next time step. 
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Eq. (7) can be rewritten to give a closed-form expression of tensor 𝑌𝑖,𝑘+1: 

𝑌𝑖,𝑘+1 = 𝜑𝑖(𝑌𝑖,𝑘 − 𝜌𝑖𝑋𝑖,𝑘) (14a) 

𝜑𝑖 =
1

1 + Δ𝑡𝛼𝑏𝑖𝐽(𝑋𝑖,𝑘+1)
𝑟𝑖

 (14b) 

𝜌𝑖 =
3

2
Δ𝑡𝛼𝑏𝑖𝑌𝑠𝑡,𝑖𝐽(𝑋𝑖,𝑘+1)

𝑟𝑖−1
 

(14c) 

3 PLASTIC CORRECTOR 

3.1 REDUCTION OF THE SYSTEM OF EQUATIONS 

If 𝑓𝑡𝑟 > 0, the hypothesis of Δ𝑝 = 0 is invalid and the plastic strain increment Δ𝜀𝑝 must be 

computed using Eq. (1) to (7). To avoid solving all these equations at once as a large system of 

equations, some combinations are done to obtain: 

• 𝑛𝐴𝐹 nonlinear scalar equations for each 𝐽(𝑋𝑖,𝑘+1) 

• 1 nonlinear scalar equation for Δ𝑝 

The plastic strain increment Δ𝜀𝑝 can be written as a function of the plastic multiplier increment 

Δ𝑝 and the normal to the yield surface 𝑛: 

Δ𝜀𝑝 = Δ𝑝𝑛 (15a) 

𝑛 =
3

2

𝜎̂ − 𝑋̂

𝐽(𝜎 − 𝑋)
 (15b) 

Similarly to what was done for the elastic predictor, Eq. (6) is rewritten to obtain a new 

expression of 𝑋𝑖,𝑘+1: 

𝑋𝑖,𝑘+1 = 𝜔𝑖 (𝑋𝑖,𝑘 +
2

3
𝐶𝑖Δ𝑝𝑛 + 𝛾𝑖𝜑𝑖Δ𝑝𝑌𝑖,𝑘) (16a) 

𝜔𝑖 =
1

1 + 𝛾𝑖(1 + 𝜑𝑖𝜌𝑖)Δ𝑝 + 𝑏𝑖Δ𝑡𝐽(𝑋𝑖,𝑘+1)
𝑟𝑖−1

−
1
𝐶𝑖
 
𝑑𝐶𝑖
𝑑𝑇

Δ𝑇
 (16b) 

Where 𝜑𝑖 and 𝜌𝑖 are defined by Eq. (14b) and (14c), respectively. 

The effect of hydrostatic pressure is neglected in metal plasticity, therefore, the deviatoric stress 

𝜎̂ is used instead of the total stress. Using the deviatoric trial stress 𝜎̂𝑘+1
𝑡𝑟 and Eq. (15a), Eq. (8b) 

can be rewritten as: 

𝜎̂k+1 = 𝜎̂𝑘+1
𝑡𝑟 − 2(𝐺 + Δ𝐺)Δ𝑝𝑛 (17) 
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Combining this equation together with Eq. (16a) and with some mathematical developments, 

the following equations can be obtained (note: the back-stress is deviatoric by nature, therefore, 

𝑋𝑘+1 is equivalent to 𝑋̂𝑘+1): 

𝜎̂k+1 − 𝑋𝑘+1 = 𝜎̂𝑘+1
𝑡𝑟 − 2(𝐺 + Δ𝐺)Δ𝑝𝑛

−∑𝜔𝑖 (𝑋𝑖,𝑘 +
2

3
𝐶𝑖Δ𝑝𝑛 + 𝛾𝑖𝜑𝑖Δ𝑝𝑌𝑖,𝑘)

𝑛𝐴𝐹

𝑖=1

= 𝑍/Ω 
(18a) 

𝑍 = 𝜎̂𝑘+1
𝑡𝑟 −∑𝜔𝑖𝑋𝑖,𝑘

𝑛𝐴𝐹

𝑖=1

− Δ𝑝∑𝜔𝑖𝛾𝑖𝜑𝑖𝑌𝑖,𝑘

𝑛𝐴𝐹

𝑖=1

 
(18b) 

Ω = 1 +
Δ𝑝

𝐽(𝜎̂k+1 − 𝑋𝑘+1)
(3(𝐺 + Δ𝐺) +∑𝜔𝑖𝐶𝑖

𝑛𝐴𝐹

𝑖=1

) (18c) 

Combining equations (3), (4), and (5) gives an expression of 𝐽(𝜎̂k+1 − 𝑋𝑘+1): 

𝐽(𝜎̂k+1 − 𝑋𝑘+1) = 𝐾 (
Δ𝑝

Δ𝑡
)

1
𝑛
+ 𝑄(1 − 𝑒−𝑏𝑝𝑘+1) + 𝜎𝑦 (19) 

Combining Eq. (18a), (18c), and Eq. (19) gives: 

Ω𝐽(𝜎̂k+1 − 𝑋𝑘+1) − 𝐽(𝑍) = 0 (20a) 

(𝐾 (
Δ𝑝

Δ𝑡
)

1
𝑛
+ 𝑄(1 − 𝑒−𝑏𝑝𝑘+1) + 𝜎𝑦)+ Δ𝑝(3(𝐺 + Δ𝐺) +∑𝜔𝑖𝐶𝑖

𝑛𝐴𝐹

𝑖=1

)− 𝐽(𝑍) = 0 (20b) 

Eq. (20b) is the equation for unknown Δ𝑝. The 𝑛𝐴𝐹 equations for the back-stresses can be 

obtained by combining Eq. (16a) with the definition of 𝐽(𝑋): 

𝐽(𝑋𝑖,𝑘+1)

= √
3

2
𝜔𝑖
2 (𝑋𝑖,𝑘 +

2

3
𝐶𝑖Δ𝑝𝑛 + 𝛾𝑖𝜑𝑖Δ𝑝𝑌𝑖,𝑘) : (𝑋𝑖,𝑘 +

2

3
𝐶𝑖Δ𝑝𝑛 + 𝛾𝑖𝜑𝑖Δ𝑝𝑌𝑖,𝑘) 

(21a) 

𝐽(𝑋𝑖,𝑘+1) = 𝜔𝑖√

3

2
𝑋𝑖,𝑘: 𝑋𝑖,𝑘 +

2

3
𝐶𝑖
2Δ𝑝2𝑛: 𝑛 +

3

2
𝛾𝑖
2𝜑𝑖

2Δ𝑝2𝑌𝑖,𝑘: 𝑌𝑖,𝑘 +

2𝐶𝑖Δ𝑝𝑋𝑖,𝑘: 𝑛 + 3𝛾𝑖𝜑𝑖Δ𝑝𝑋𝑖,𝑘: 𝑌𝑖,𝑘 + 2𝐶𝑖𝛾𝑖𝜑𝑖Δ𝑝2𝑛: 𝑌𝑖,𝑘

 
(21b) 

From Eq. (15b), we get 𝑛: 𝑛 =
3

2
. Similarly, the dot product of 𝑋𝑖,𝑘 and 𝑋𝑖,𝑘 can be rewritten as: 

3

2
𝑋𝑖,𝑘: 𝑋𝑖,𝑘 = 𝐽(𝑋𝑖,𝑘)

2
. The 𝑛𝐴𝐹 equations for the back-stresses can be written as: 
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𝑔𝑖 = 𝐽(𝑋𝑖,𝑘+1) − 𝜔𝑖𝑀𝑖 = 0 (22a) 

𝑀𝑖 = 𝜔𝑖√
𝐽(𝑋𝑖,𝑘)

2
+ 𝐶𝑖

2Δ𝑝2 + 𝛾𝑖
2𝜑𝑖

2Δ𝑝2𝐽(𝑌𝑖,𝑘)
2
+

2𝐶𝑖Δ𝑝𝑋𝑖,𝑘: 𝑛 + 3𝛾𝑖𝜑𝑖Δ𝑝𝑋𝑖,𝑘: 𝑌𝑖,𝑘 + 2𝐶𝑖𝛾𝑖𝜑𝑖Δ𝑝2𝑛: 𝑌𝑖,𝑘
 

(22b) 

3.2 SOLUTION USING THE NEWTON METHOD 

Equations (20b) and (22) are the 𝑛𝐴𝐹 + 1 nonlinear equations to solve for the plastic corrector 

step. They are solved iteratively using the Newton method:  

• Step 1: Eq. (20b) is solved assuming 𝑋𝑖,𝑘+1 = 𝑋𝑖,𝑘. If the solution given by the Newton 

algorithm is negative (i.e., Δ𝑝 < 0), the new value of Δ𝑝 is set to Δ𝑝0/10, where Δ𝑝0 

is the initial guess for the Newton method. 

• Step 2: Eq. (22) are solved together for 𝑖 = 1: 𝑛𝐴𝐹  using the previously found value of 

Δ𝑝. 

If the Newton algorithm does not converge in Step 2, Steps 1 and 2 are repeated using updated 

values of 𝑋𝑖,𝑘+1 found at Step 2. 

3.2.1 Solution of the 𝚫𝒑 equation 

Let 𝐿 be the left-hand side of Eq. (20b). The Newton method consists in computing the 

consecutive values Δ𝑝𝑚 using the following equation (superscript 𝑚 denotes the Newton 

iteration number): 

Δ𝑝𝑚+1 = Δ𝑝𝑚 −
𝐿𝑚

(
𝜕𝐿
𝜕Δ𝑝

)
𝑚 

(23) 

𝜕𝐿

𝜕Δ𝑝
 can be derived from Eq. (20b): 

𝜕𝐿

𝜕Δ𝑝
=
𝐾

𝑛Δ𝑡
(
Δ𝑝

Δt
)

1
𝑛
−1

+𝑄𝑏𝑒−𝑏(𝑝𝑘+Δ𝑝) + 3(𝐺 + Δ𝐺) +∑𝜔𝑖𝐶𝑖

𝑛𝐴𝐹

𝑖=1

+ Δ𝑝∑
𝜕𝜔𝑖
𝜕Δ𝑝

𝐶𝑖

𝑛𝐴𝐹

𝑖=1

−
3

2𝐽(𝑍)
(𝑍:

𝜕𝑍

𝜕Δ𝑝
) 

(24) 

With: 

𝜕𝜔𝑖
𝜕Δ𝑝

= −𝜔𝑖
2𝛾𝑖(1 + 𝜑𝑖𝜌𝑖) (25a) 
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𝜕𝑍

𝜕Δ𝑝
= −∑(

𝜕𝜔𝑖
𝜕Δ𝑝

𝑋𝑖,𝑘)

𝑛𝐴𝐹

𝑖=1

− Δ𝑝 ∑ (
𝜕𝜔𝑖
𝜕Δ𝑝

𝛾𝑖𝜑𝑖𝑌𝑖,𝑘)

𝑛𝐴𝐹𝑌

𝑖=1

− ∑ (𝜔𝑖𝛾𝑖𝜑𝑖𝑌𝑖,𝑘)

𝑛𝐴𝐹𝑌

𝑖=1

 (25b) 

3.2.2 Solution of the 𝑱(𝑿𝒊) equations 

The Newton method consists in finding the consecutive values of 𝐽(𝑋𝑖,𝑘+1)
𝑚

 using the 

following equations: 

𝐽(𝑋𝑖,𝑘+1)
𝑚+1

= 𝐽(𝑋𝑖,𝑘+1)
𝑚
−

𝑔𝑖
𝑚

(
𝜕𝑔𝑖

𝜕𝐽(𝑋𝑖,𝑘+1)
)

𝑚 
(26a) 

𝜕𝑔𝑖

𝜕𝐽(𝑋𝑖,𝑘+1)
= 1 − 𝜔𝑖

𝜕𝑀𝑖

𝜕𝐽(𝑋𝑖,𝑘+1)
−

𝜕𝜔𝑖

𝜕𝐽(𝑋𝑖,𝑘+1)
𝑀𝑖 (26b) 

The expression of 
𝜕𝜔𝑖

𝜕𝐽(𝑋
𝑖,𝑘+1

)
 is given by: 

𝜕𝜔𝑖

𝜕𝐽 (𝑋
𝑖,𝑘+1

)
= −𝜔𝑖

2 [Δ𝑝𝛾𝑖(𝜑𝑖
𝜕𝜌

𝑖

𝜕𝐽 (𝑋
𝑖,𝑘+1

)
+

𝜕𝜑𝑖

𝜕𝐽 (𝑋
𝑖,𝑘+1

)
𝜌
𝑖
)

+ 𝑏𝑖Δ𝑡(𝑟𝑖 − 1)𝐽 (𝑋𝑖,𝑘+1)
𝑟𝑖−2

] 

(27a) 

𝜕𝜌𝑖

𝜕𝐽(𝑋𝑖,𝑘+1)
=
3

2
Δ𝑡𝛼𝑏,𝑖𝑌𝑠𝑡,𝑖(𝑟𝑖 − 1)𝐽(𝑋𝑖,𝑘+1)

𝑟𝑖−2
 (27b) 

𝜕𝜑𝑖

𝜕𝐽(𝑋𝑖,𝑘+1)
= −𝜑

𝑖
2𝛥𝑡𝛼𝑏,𝑖𝑟𝑖𝐽(𝑋𝑖,𝑘+1)

𝑟𝑖−1
 (27c) 

The expression of 
𝜕𝑀𝑖

𝜕𝐽(𝑋
𝑖,𝑘+1

)
 is given by: 

𝜕𝑀𝑖

𝜕𝐽 (𝑋
𝑖,𝑘+1

)
=
Δ𝑝

𝑀𝑖
[𝐶𝑖(𝑋𝑖,𝑘:

𝜕𝑛

𝜕𝐽 (𝑋
𝑖,𝑘+1

)
)+

3

2
𝛾𝑖

𝜕𝜑𝑖

𝜕𝐽 (𝑋
𝑖,𝑘+1

)
(𝑋

𝑖,𝑘
: 𝑌
𝑖,𝑘
)

+ Δ𝑝𝐶𝑖𝛾𝑖 {
𝜕𝜑𝑖

𝜕𝐽 (𝑋
𝑖,𝑘+1

)
(𝑛: 𝑌

𝑖,𝑘
)+𝜑𝑖(

𝜕𝑛

𝜕𝐽 (𝑋
𝑖,𝑘+1

)
: 𝑌
𝑖,𝑘
)}

+
3

2
Δ𝑝𝛾𝑖

2𝜑𝑖
𝜕𝜑𝑖

𝜕𝐽 (𝑋
𝑖,𝑘+1

)
(𝑌

𝑖,𝑘
: 𝑌
𝑖,𝑘
)] 

(28a) 

𝜕𝑛

𝜕𝐽 (𝑋
𝑖,𝑘+1

)
=

3

2𝐽(𝑍)
2 (𝐽(𝑍)

𝜕𝑍

𝜕𝐽 (𝑋
𝑖,𝑘+1

)
−

𝜕𝐽(𝑍)

𝜕𝐽 (𝑋
𝑖,𝑘+1

)
𝑍) (28b) 

𝜕𝑍

𝜕𝐽 (𝑋
𝑖,𝑘+1

)
= −

𝜕𝜔𝑖

𝜕𝐽 (𝑋
𝑖,𝑘+1

)
(𝑋

𝑖,𝑘
+ Δ𝑝𝛾𝑖𝜑𝑖𝑌𝑖,𝑘)− Δ𝑝𝜔𝑖𝛾𝑖

𝜕𝜑𝑖

𝜕𝐽 (𝑋
𝑖,𝑘+1

)
𝑌
𝑖,𝑘
  (28c) 
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𝜕𝐽(𝑍)

𝜕𝐽 (𝑋
𝑖,𝑘+1

)
=

3

2𝐽(𝑍)
(𝑍:

𝜕𝑍

𝜕𝐽 (𝑋
𝑖,𝑘+1

)
)  (28d) 

3.2.3 Updating the variables 

Once the equations for Δ𝑝 and the 𝑛𝐴𝐹 𝐽(𝑋𝑖,𝑘+1) have been solved, the rest of the state variables 

must be updated. 

The plastic strain is updated using Eq. (15a), the stress is updated using Eq. (8a), the back-

stresses can be computed using Eq. (16a).  

4 CONSISTENT TANGENT MATRIX  

The consistent tangent matrix is necessary for the finite-element model, as it is used for the 

solution of the global equilibrium equations. 

The consistent tangent matrix 𝐶 is defined as: 

𝐶 =
𝑑𝜎

𝑑𝜀
 (29) 

Using Eq. (17), the expression of 𝐶 becomes Eq. (30), where ⊗ is the tensorial product: 

𝐶 =
𝑑𝜎𝑡𝑟

𝑑𝜀
− 2(𝐺 + ΔG) [(𝑛 ⊗

𝑑Δ𝑝

𝑑𝜀
) + Δ𝑝

𝑑𝑛

𝑑𝜀
] (30) 

 

From Eq. (9), 
𝑑𝜎𝑡𝑟

𝑑𝜀
 can be computed directly: 

𝑑𝜎𝑡𝑟

𝑑𝜀
= Δ𝐸 + 𝐸 (31) 

4.1 COMPUTATION OF 
𝒅𝚫𝒑

𝒅𝜺
 

The derivative 
𝑑Δ𝑝

𝑑𝜀
 cannot be computed directly. To compute this derivative, Eq. (20b) and Eq. 

(22) for the 𝑛𝐴𝐹 back-stresses are used to form a system of equations of size 𝑛𝐴𝐹 + 1 with a 

matrix of unknowns 𝑥𝑑𝑒𝑟 that contains the derivative 
𝑑Δ𝑝

𝑑𝜀
: 



Appendix 1: Development of the equations for the behavior model 9 

 

[
 
 
 
 
 
 
 
𝜕𝐿

𝜕Δ𝑝

𝜕𝐿

𝜕𝐽(𝑋1,𝑘+1)
…

𝜕𝐿

𝜕𝐽(𝑋𝑛𝐴𝐹,𝑘+1)

𝜕𝑔1
𝜕Δ𝑝

𝜕𝑔1

𝜕𝐽(𝑋1,𝑘+1)
…

𝜕𝑔1

𝜕𝐽(𝑋𝑛𝐴𝐹,𝑘+1)

⋮ ⋮ ⋱ ⋮
𝜕𝑔𝑛𝐴𝐹
𝜕Δ𝑝

𝜕𝑔𝑛𝐴𝐹
𝜕𝐽(𝑋1,𝑘+1)

…
𝜕𝑔𝑛𝐴𝐹

𝜕𝐽(𝑋𝑛𝐴𝐹,𝑘+1)]
 
 
 
 
 
 
 

⏟                          
𝐴𝑑𝑒𝑟[(𝑛𝐴𝐹+1)×(𝑛𝐴𝐹+1)]

[
 
 
 
 
 
 
 

𝑑Δ𝑝

𝑑𝜀

𝑑𝐽(𝑋1,𝑘+1)

𝑑𝜀

⋮
𝑑𝐽(𝑋𝑛𝐴𝐹,𝑘+1)

𝑑𝜀 ]
 
 
 
 
 
 
 

⏟        
𝑥𝑑𝑒𝑟[(𝑛𝐴𝐹+1)×6]

=

[
 
 
 
 
 
 
 −

𝜕𝐿

𝜕𝜎̂𝑡𝑟
𝑑𝜎̂𝑡𝑟

𝑑𝜀

−
𝜕𝑔1
𝜕𝜎̂𝑡𝑟

𝑑𝜎̂𝑡𝑟

𝑑𝜀

⋮

−
𝜕𝑔𝑛𝐴𝐹
𝜕𝜎̂𝑡𝑟

𝑑𝜎̂𝑡𝑟

𝑑𝜀 ]
 
 
 
 
 
 
 

⏟          
𝑏𝑑𝑒𝑟[(𝑛𝐴𝐹+1)×6]

 
(32) 

The terms on the diagonal of 𝐴𝑑𝑒𝑟 are computed according to equations (24) and (26b). The 

rest of the terms are given hereafter.  

From Eq. (20b), the terms 
𝜕𝐿

𝜕𝐽(𝑋𝑖,𝑘+1)
 are derived as: 

𝜕𝐿

𝜕𝐽(𝑋𝑖,𝑘+1)
= Δ𝑝

𝜕𝜔𝑖

𝜕𝐽(𝑋𝑖,𝑘+1)
𝐶𝑖 −

𝜕𝐽(𝑍)

𝜕𝐽(𝑋𝑖,𝑘+1)
 (33) 

𝜕𝜔𝑖

𝜕𝐽(𝑋𝑖,𝑘+1)
 and 

𝜕𝐽(𝑍)

𝜕𝐽(𝑋𝑖,𝑘+1)
 are given by Eq. (27a) and (28d), respectively.  

The terms 
𝜕𝑔𝑖

𝜕𝐽(𝑋𝑗,𝑘+1)
 (for 𝑖 ≠ 𝑗) are derived from Eq. (22a) and (22b): 

𝜕𝑔𝑖

𝜕𝐽(𝑋𝑗,𝑘+1)
= −𝜔𝑖

𝜕𝑀𝑖

𝜕𝐽(𝑋𝑗,𝑘+1)
 (34a) 

𝜕𝑀𝑖

𝜕𝐽 (𝑋
𝑗,𝑘+1

)
=
Δ𝑝

𝑀𝑖
[𝐶𝑖(𝑋𝑖,𝑘:

𝜕𝑛

𝜕𝐽 (𝑋
𝑗,𝑘+1

)
)+ Δ𝑝𝐶𝑖𝛾𝑖𝜑𝑖(

𝜕𝑛

𝜕𝐽 (𝑋
𝑗,𝑘+1

)
: 𝑌
𝑖,𝑘
)] (34b) 

𝜕𝑛

𝜕𝐽(𝑋𝑗,𝑘+1)
 can be calculated using equations (28b) to (28d). 

Similarly, 
𝜕𝑔𝑖

𝜕Δ𝑝
 can be derived: 

𝜕𝑔𝑖
𝜕Δ𝑝

= −𝜔𝑖
𝜕𝑀𝑖
𝜕Δ𝑝

−
𝜕𝜔𝑖
𝜕Δ𝑝

𝑀𝑖 (35a) 

𝜕𝑀𝑖
𝜕Δ𝑝

=
1

𝑀𝑖
[𝐶𝑖Δ𝑝(𝑋𝑖,𝑘:

𝜕𝑛

𝜕Δ𝑝
)+ 𝐶𝑖 (𝑋𝑖,𝑘: 𝑛)+

3

2
𝛾𝑖𝜑𝑖 (𝑋𝑖,𝑘: 𝑌𝑖,𝑘)+ 𝐶𝑖

2Δ𝑝

+ 2Δ𝑝𝐶𝑖𝛾𝑖𝜑𝑖 (𝑛:𝑌𝑖,𝑘)+ Δ𝑝
2𝐶𝑖𝛾𝑖𝜑𝑖 (

𝜕𝑛

𝜕Δ𝑝
:𝑌
𝑖,𝑘
)

+
3

2
Δ𝑝𝛾𝑖

2𝜑𝑖
2 (𝑌

𝑖,𝑘
: 𝑌
𝑖,𝑘
)] 

(35b) 
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𝜕𝑛

𝜕Δ𝑝
=
3

2
[
1

𝐽(𝑍)

𝜕𝑍

𝜕Δ𝑝
−

3

2𝐽(𝑍)
2 (𝑍:

𝜕𝑍

𝜕Δ𝑝
)𝑍] (35c) 

The components of 𝑏𝑑𝑒𝑟 are detailed hereafter.  

All these components require the value of  
𝑑𝜎̂𝑡𝑟

𝑑𝜀
, which is given by Eq. (36): 

𝑑𝜎̂𝑡𝑟

𝑑𝜀
= (𝐸 + Δ𝐸)

𝑑𝑒𝑣

= (𝐺 + Δ𝐺)

[
 
 
 
 
 
 
 
 
4

3
−
2

3
−
2

3
0 0 0

−
2

3

4

3
−
2

3
0 0 0

−
2

3
−
2

3

4

3
0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 
 
 
 
 

 (36) 

The first component is given by Eq. (38) and requires the calculation of 
𝜕𝐿

𝜕𝜎̂𝑡𝑟
 given by Eq. (37): 

𝜕𝐿

𝜕𝜎̂𝑡𝑟
= −

3

2𝐽(𝑍)
(𝑍:

𝜕𝑍

𝜕𝜎̂𝑘+1
𝑡𝑟 ) (37a) 

𝜕𝑍

𝜕𝜎̂
𝑘+1
𝑡𝑟 = 𝐼 (37b) 

𝜕𝐿

𝜕𝜎̂𝑡𝑟
= −

3𝑍

2𝐽(𝑍)
 (37c) 

𝜕𝐿

𝜕𝜎̂𝑡𝑟
𝑑𝜎̂𝑡𝑟

𝑑𝜀
= 3(𝐺 + Δ𝐺)

𝑍

𝐽(𝑍)
 (38) 

The other components of 𝑏𝑑𝑒𝑟 are given by Eq. (39a) to (39d) 

𝜕𝑔𝑖
𝜕𝜎̂𝑡𝑟

= −
Δ𝑝𝜔𝑖𝐶𝑖
𝑀𝑖

[(𝑋𝑖,𝑘:
𝜕𝑛

𝜕𝜎̂𝑡𝑟
) + Δ𝑝𝛾𝑖𝜑𝑖 (

𝜕𝑛

𝜕𝜎̂𝑡𝑟
: 𝑌𝑖,𝑘)] (39a) 

𝜕𝑛

𝜕𝜎̂𝑡𝑟
=
3

2

1

𝐽(𝑍)
2 (𝐽(𝑍)

𝜕𝑍

𝜕𝜎̂
𝑘+1
𝑡𝑟 −

𝜕𝐽(𝑍)

𝜕𝜎̂
𝑘+1
𝑡𝑟 ⨂𝑍) (39b) 

𝜕𝐽(𝑍)

𝜕𝜎̂
𝑘+1
𝑡𝑟 =

3

2𝐽(𝑍)
𝑍:

𝜕𝑍

𝜕𝜎̂
𝑘+1
𝑡𝑟 =

3𝑍

2𝐽(𝑍)
 (39c) 

𝜕𝑛

𝜕𝜎̂𝑡𝑟
=
3

2

1

𝐽(𝑍)
(𝐼 −

3

2𝐽(𝑍)
2 𝑍⨂𝑍) (39d) 
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4.2 COMPUTATION OF 
𝒅𝒏

𝒅𝜺
 

The derivative of 
𝑑𝑛

𝑑𝜀
 must be calculated to compute Eq. (30): 

𝑑𝑛

𝑑𝜀
=
3

2

1

𝐽(𝑍)
2 (𝐽(𝑍)

𝑑𝑍

𝑑𝜀
− 𝑍⨂

𝑑𝐽(𝑍)

𝑑𝜀
) (40) 

Equations (41a) to (41c) give the expression of 
𝑑𝑍

𝑑𝜀
: 

𝑑𝑍

𝑑𝜀
=
𝑑𝜎̂𝑡𝑟

𝑑𝜀
−∑(𝑋

𝑖,𝑘
⨂
𝑑𝜔𝑖
𝑑𝜀
)

𝑛𝐴𝐹

𝑖=1

− Δ𝑝∑𝛾𝑖𝜑𝑖 (𝑌𝑖,𝑘⨂
𝑑𝜔𝑖
𝑑𝜀
)

𝑛𝐴𝐹𝑌

𝑖=1

− Δ𝑝∑𝛾𝑖𝜔𝑖 (𝑌𝑖,𝑘⨂
𝑑𝜑

𝑖

𝑑𝜀
)

𝑛𝐴𝐹𝑌

𝑖=1

− (∑ 𝜔𝑖𝛾𝑖𝜑𝑖𝑌𝑖,𝑘

𝑛𝐴𝐹𝑌

𝑖=1

)⨂
𝑑Δ𝑝

𝑑𝜀
 

(41a) 

𝑑𝜔𝑖
𝑑𝜀

=
𝜕𝜔𝑖
𝜕Δ𝑝

𝑑Δ𝑝

𝑑𝜀
+

𝜕𝜔𝑖

𝜕𝐽 (𝑋
𝑖,𝑘+1

)

𝑑𝐽 (𝑋
𝑖,𝑘+1

)

𝑑𝜀
 (41b) 

𝑑𝜑𝑖
𝑑𝜀

=
𝜕𝜔𝑖

𝜕𝐽 (𝑋
𝑖,𝑘+1

)

𝑑𝐽 (𝑋
𝑖,𝑘+1

)

𝑑𝜀
 (41c) 

Equations (42a) to (42c) give the expression of 
𝑑𝐽(𝑍)

𝑑𝜀
: 

𝑑𝐽(𝑍)

𝑑𝜀
=
𝜕𝐽(𝑍)

𝜕Δ𝑝

𝑑Δ𝑝

𝑑𝜀
+∑(

𝜕𝐽(𝑍)

𝜕𝐽(𝑋𝑖,𝑘+1)

𝑑𝐽(𝑋𝑖,𝑘+1)

𝑑𝜀
)

𝑛𝐴𝐹

𝑖=1

 (42a) 

𝜕𝐽(𝑍)

𝜕Δ𝑝
=
𝐾

𝑛Δ𝑡
(
Δ𝑝

Δt
)

1
𝑛
−1

+ 𝑄𝑏𝑒−𝑏(𝑝+Δ𝑝) + 3(𝐺 + Δ𝐺) +∑(𝜔𝑖𝐶𝑖)

𝑛𝐴𝐹

𝑖=1

− Δ𝑝∑(𝜔𝑖
2𝛾
𝑖
𝐶𝑖(1 + 𝜑𝑖𝜌𝑖))

𝑛𝐴𝐹

𝑖=1

 

(42b) 

𝜕𝐽(𝑍)

𝜕𝐽 (𝑋
𝑖,𝑘+1

)
= −Δ𝑝𝜔𝑖

2𝐶𝑖 [Δ𝑝𝛾𝑖 (𝜑𝑖
𝜕𝜌𝑖

𝜕𝐽 (𝑋
𝑖,𝑘+1

)
+

𝜕𝜑𝑖

𝜕𝐽 (𝑋
𝑖,𝑘+1

)
𝜌𝑖)

+ 𝑏𝑖Δ𝑡(𝑟𝑖 − 1)𝐽 (𝑋𝑖,𝑘+1)
𝑟𝑖−2

] 

(42c) 
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Appendix 2: Equations for the damage 

model 

1 DAMAGE MODEL 

Damage is modelled by two equations: Eq. (43) for fatigue damage and Eq. (44) for creep 

damage. To simplify the notation, variables at the end of the time step are written with no index 

(e.g., 𝑝 = 𝑝𝑘+1). 

𝐹𝑓 = 𝐷𝑓 − 𝐷𝑓,𝑘 − (
𝑌(𝜎, 𝐷)

𝑆𝑓
)

𝑠𝑓

(𝑝 − 𝑝𝑘) = 0 (43) 

𝐹𝑐 = 𝐷𝑐 − 𝐷𝑐,𝑘 − (
𝑌(𝜎, 𝐷)

𝑆𝑐
)

𝑠𝑐
1

(1 − 𝐷)𝑘𝑐
= 0 (44) 

The expression of 𝑌(𝜎, 𝐷) depends on the value on the parameter ℎ. If ℎ = 1, the effect of 

microdefects closure is not taken into account, and 𝑌 is computed according to Eq. (45). If, 

however, ℎ < 1, 𝑌 is computed using Eq. (46) . 

ℎ = 1 ⇒ 𝑌 =
1 + 𝜈

2𝐸

𝜎: 𝜎

(1 − 𝐷)2
−
𝜈

2𝐸
(
𝑡𝑟(𝜎)

1 − 𝐷
)

2

 (45) 

ℎ < 1 ⇒ 𝑌 =
1 + 𝜈

2𝐸
[
〈𝜎〉𝑖𝑗

+ 〈𝜎〉𝑖𝑗
+

(1 − 𝐷)2
+ ℎ

〈𝜎〉𝑖𝑗
− 〈𝜎〉𝑖𝑗

−

(1 − ℎ𝐷)2
] −

𝜈

2𝐸
[
〈𝜎𝑘𝑘〉

2

(1 − 𝐷)2
+ ℎ

〈−𝜎𝑘𝑘〉
2

(1 − ℎ𝐷)2
] (46) 

2 SOLUTION TO THE DAMAGE MODEL 

The solution of Eq. (43) and (44) with the Newton-Raphson method requires computing the 

derivative of 𝐹𝑓 with respect to 𝐷𝑓 and of 𝐹𝑐 with respect to 𝐷𝑐: 

𝜕𝐹𝑓

𝜕𝐷𝑓
= 1 −

𝑠𝑓

𝑆𝑓
(
𝑌

𝑆𝑓
)

𝑠𝑓−1 𝜕𝑌

𝜕𝐷𝑓
(𝑝 − 𝑝𝑘) (47) 

𝜕𝐹𝑐
𝜕𝐷𝑐

= 1 −
𝑠𝑐
𝑆𝑐
(
𝑌

𝑆𝑐
)
𝑠𝑐−1 𝜕𝑌

𝜕𝐷𝑐

1

(1 − 𝐷)𝑘𝑐
−

𝑘𝑐
(1 − 𝐷)𝑘𝑐+1

(
𝑌

𝑆𝑐
)
𝑠𝑐

 (48) 

Considering 𝑌 is a function of the total damage 𝐷 and 𝐷 = 𝐷𝑓 + 𝐷𝑐, the derivative of 𝑌 with 

respect to 𝐷𝑓 or 𝐷𝑐 is the same as 
𝜕𝑌

𝜕𝐷
, given by Eq. (49) in the case with no microdefects closure 

and by Eq. (50) for the case with microdefects closure. 
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𝜕𝑌

𝜕𝐷
=
1 + 𝜈

𝐸

𝜎: 𝜎

(1 − 𝐷)3
−
𝜈

𝐸

(𝑡𝑟(𝜎))
2

(1 − 𝐷)3
  (49) 

𝜕𝑌

𝜕𝐷
=
1 + 𝜈

𝐸
[
〈𝜎〉𝑖𝑗

+ 〈𝜎〉𝑖𝑗
+

(1 − 𝐷)3
+ ℎ2

〈𝜎〉𝑖𝑗
− 〈𝜎〉𝑖𝑗

−

(1 − ℎ𝐷)3
] −

𝜈

𝐸
[
〈𝜎𝑘𝑘〉

2

(1 − 𝐷)3
+ ℎ2

〈−𝜎𝑘𝑘〉
2

(1 − ℎ𝐷)3
] (50) 
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Appendix 3: Jacobian matrix for the 

coupled model 
 

The coupled model consists of the following system of equations: 

{
  
 

  
 

ℛ𝜀𝑒 = 𝜀̇ − 𝜀̇
𝑡ℎ − 𝜀̇𝑒 − 𝑟̇𝑛 = 0

ℛ𝑟 = 𝐽 (
𝜎

1 − 𝐷
− 𝑋) − 𝑅 − 𝜎𝑦 − 𝜎𝑣 = 0

ℛ𝑋𝑖 = 𝑋̇𝑖 −
2

3
𝐶𝑖(1 − 𝐷)𝜀̇

𝑝 + 𝛾𝑖(𝑋𝑖 − 𝑌𝑖)𝑟̇ + 𝑏𝑖𝐽(𝑋𝑖)
𝑟𝑖−1

𝑋𝑖 −
1

𝐶𝑖

𝑑𝐶𝑖
𝑑𝑇

𝑇̇𝑋𝑖 = 0 (𝑖 = 1: 𝑛𝐴𝐹)

ℛ𝜎 = 𝜀 𝑒 − 𝐸−1: 𝜎̃ = 0

 

The Jacobian matrix necessarily includes the derivatives of each of the local residual with 

respect to the variables Δ𝜀𝑒, Δ𝑟, Δ𝑋𝑖, and Δ𝜎: 

𝒥 =

[
 
 
 
 
 
 
 
 
 
𝜕ℛ𝜀𝑒

𝜕Δ𝜀𝑒
𝜕ℛ𝜀𝑒

𝜕Δ𝑟

𝜕ℛ𝜀𝑒

𝜕Δ𝑋𝑖

𝜕ℛ𝜀𝑒

𝜕Δ𝜎

𝜕ℛ𝑟
𝜕Δ𝜀𝑒

𝜕ℛ𝑟
𝜕Δ𝑟

𝜕ℛ𝑟
𝜕Δ𝑋𝑖

𝜕ℛ𝑟
𝜕Δ𝜎

𝜕ℛ𝑋𝑖
𝜕Δ𝜀𝑒

𝜕ℛ𝑋𝑖
𝜕Δ𝑟

𝜕ℛ𝑋𝑖
𝜕Δ𝑋𝑖

𝜕ℛ𝑋𝑖
𝜕Δ𝜎

𝜕ℛ𝜎

𝜕Δ𝜀𝑒
𝜕ℛ𝜎

𝜕Δ𝑟

𝜕ℛ𝜎

𝜕Δ𝑋𝑖

𝜕ℛ𝜎

𝜕Δ𝜎 ]
 
 
 
 
 
 
 
 
 

 

First, some useful variables are defined: 

𝑠 =
𝜎̂

1 − 𝐷
 

Where 𝜎̂ is the deviatoric stress. 

𝑛𝑋 = (1 − 𝐷)𝑛 =
3

2

𝑠 − 𝑋

𝐽(𝑠 − 𝑋)
 

The derivatives of 𝑛𝑋 with respect to 𝑠 and 𝑋 are used in the analytical expression of the 

Jacobian matrix: 

𝜕𝑛𝑋

𝜕𝑠
= −

𝜕𝑛𝑋

𝜕𝑋
=

1

𝐽(𝑠 − 𝑋)
[
3

2
𝐼 −

1

2
1⨂1 − 𝑛𝑋⨂𝑛𝑋] 

Where 𝐼 is the 6-by-6 identity matrix, 1 is the identity tensor in the Voigt notation, and 

⨂ is the tensorial product:  
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𝐼 =

[
 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 
 

 1 =

{
 
 

 
 
1
1
1
0
0
0}
 
 

 
 

 

{
 
 

 
 
𝑎1
𝑎2
𝑎3
𝑎4
𝑎5
𝑎6}
 
 

 
 

⨂

{
 
 

 
 
𝑏1
𝑏2
𝑏3
𝑏4
𝑏5
𝑏6}
 
 

 
 

=

[
 
 
 
 
 
𝑎1𝑏1 𝑎1𝑏2 𝑎1𝑏3 𝑎1𝑏4 𝑎1𝑏5 𝑎1𝑏6
𝑎2𝑏1 𝑎2𝑏2 𝑎2𝑏3 𝑎2𝑏4 𝑎2𝑏5 𝑎2𝑏6
𝑎3𝑏1 𝑎3𝑏2 𝑎3𝑏3 𝑎3𝑏4 𝑎3𝑏5 𝑎3𝑏6
𝑎4𝑏1 𝑎4𝑏2 𝑎4𝑏3 𝑎4𝑏4 𝑎4𝑏5 𝑎4𝑏6
𝑎5𝑏1 𝑎5𝑏2 𝑎5𝑏3 𝑎5𝑏4 𝑎5𝑏5 𝑎5𝑏6
𝑎6𝑏1 𝑎6𝑏2 𝑎6𝑏3 𝑎6𝑏4 𝑎6𝑏5 𝑎6𝑏6]

 
 
 
 
 

 

Derivatives of 𝓡𝜺𝒆 

𝜕ℛ𝜀𝑒

𝜕Δ𝜀𝑒
= 𝐼 

𝜕ℛ𝜀𝑒

𝜕Δ𝑟
= 𝑛 

𝜕ℛ𝜀𝑒

𝜕Δ𝑋𝑖
= Δ𝑟

𝜕𝑛

𝜕𝑋𝑖
=

Δ𝑟

1 − 𝐷

𝜕𝑛𝑋

𝜕𝑋
 

𝜕ℛ𝜀𝑒

𝜕Δ𝜎
=

Δ𝑟

1 − 𝐷

𝜕𝑛𝑋

𝜕𝜎
=

Δ𝑟

(1 − 𝐷)2
𝜕𝑛𝑋

𝜕𝑠
 

Derivatives of 𝓡𝒓 

Plastic case: ℛ𝑟 = 𝑓 = 𝐽(𝑠 − 𝑋) − 𝑅(𝑟) − 𝜎𝑦  

𝜕ℛ𝑟
𝜕Δ𝜀𝑒

= {0 0 0 0 0 0} 

𝜕ℛ𝑟
𝜕Δ𝑟

= −
𝜕𝑅(𝑟)

𝜕𝑟
= −𝑏𝑄𝑒−𝑏𝑟 

𝜕ℛ𝑟
𝜕Δ𝑋𝑖

=
𝜕𝐽(𝑠 − 𝑋)

𝜕Δ𝑋𝑖
= −𝑛𝑋 

𝜕ℛ𝑟
𝜕Δ𝜎

=
𝜕𝐽(𝑠 − 𝑋)

𝜕s
:
𝜕s

𝜕𝜎
=

1

1 − 𝐷
𝑛𝑋 = 𝑛 
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Viscoplastic case: ℛ𝑟
𝑣 = Δ𝑟 − (1 − 𝐷)Δ𝑡 ⟨

𝑓

𝐾
⟩
𝑛

 

𝜕ℛ𝑟
𝑣

𝜕Δ𝜀𝑒
= {0 0 0 0 0 0} 

𝜕ℛ𝑟
𝑣

𝜕Δ𝑟
= 1 +

(1 − 𝐷)Δ𝑡𝑛〈𝑓〉𝑛−1

𝐾𝑛
𝜕ℛ𝑟
𝜕Δ𝑟

 

𝜕ℛ𝑟
𝑣

𝜕Δ𝑋𝑖
=
(1 − D)Δ𝑡𝑛〈𝑓〉𝑛−1

𝐾𝑛
𝑛𝑋 

𝜕ℛ𝑟
𝑣

𝜕Δ𝜎
= −

Δ𝑡𝑛〈𝑓〉𝑛−1

𝐾𝑛
𝑛𝑋 

Derivatives of 𝓡𝑿𝒊 

𝜕ℛ𝑋𝑖
𝜕Δ𝜀𝑒

= 0 

𝜕ℛ𝑋𝑖
𝜕Δ𝑟

= −
2

3
𝐶𝑖𝑛

𝑋 + 𝛾𝑖(𝑋𝑖 − 𝑌𝑖) 

𝜕ℛ𝑋𝑖
𝜕Δ𝑋𝑖

= [1 −
𝐶𝑖Δ𝑟

𝐽(𝑠 − 𝑋)
+ 𝛾𝑖Δ𝑟 + 𝑏𝑖Δ𝑡𝐽(𝑋𝑖)

𝑟𝑖−1
−
1

𝐶𝑖

𝜕𝐶𝑖
𝜕𝑇

Δ𝑇] 𝐼 +
2

3

𝐶𝑖Δ𝑟

𝐽(𝑠 − 𝑋)
𝑛𝑋⨂𝑛𝑋

− 𝛾𝑖Δ𝑟
𝜕𝑌𝑖
𝜕𝑋𝑖

+
3

2
𝑏𝑖Δ𝑡(𝑟𝑖 − 1)𝐽(𝑋𝑖)

𝑟𝑖−3
𝑋𝑖⨂𝑋𝑖 

𝜕ℛ𝑋𝑖
𝜕Δ𝜎

= −
2

3

𝐶𝑖Δ𝑟

1 − 𝐷

𝜕𝑛𝑋

𝜕𝑠
 

Derivatives of 𝓡𝝈 

Case without microdefects closure: 

𝜕ℛ𝜎

𝜕Δ𝜀𝑒
= 𝐼 

𝜕ℛ𝜎

𝜕Δ𝑟
= 0 

𝜕ℛ𝜎

𝜕Δ𝑋𝑖
= 0 

𝜕ℛ𝜎

𝜕Δ𝜎
=
−𝐸−1

1 − 𝐷
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Case with microdefects closure: 

𝜕ℛ𝜎

𝜕Δ𝜀𝑒
, 
𝜕ℛ𝜎

𝜕Δ𝑟
, and 

𝜕ℛ𝜎

𝜕Δ𝑋𝑖
 are the same as for the case without microdefects closure. Due to the 

partition of the stress in its negative and positive parts, there is no exact analytical 

expression of 
𝜕ℛ𝜎

𝜕Δ𝜎
. The following expression is therefore an approximation: 

𝜕ℛ𝜎

𝜕Δ𝜎
= −

1 + 𝜈

𝐸
[
ℋ𝜎
+

1 − 𝐷
+

ℋ𝜎
−

1 − ℎ𝐷
] +

𝜈

𝐸
[
ℋ(𝑡𝑟𝜎)

1 − 𝐷
+
ℋ(−𝑡𝑟𝜎)

1 − ℎ𝐷
] 1⨂1 

Where ℋ(𝑥) is the Heaviside step function.


	Appendix2
	Appendix3
	Appendix3
	Appendix3
	Appendix3

