Appendix 1: Development of the
equations for the behaviour model

The developments presented in this appendix follow the mathematical developments proposed
by Ahmed*

1 DISCRETIZATION OF THE EQUATIONS

The equations of the model are written in their discretized form in the table below, where
subscripts k and k + 1 stand for the beginning and the end of the time step, respectively, and A
symbolizes the variation of any variable over the time step. For instance, the variation of the
stress tensor is written using the Voigt notation as:

Ag = 041 — Ok

Feature Equation
Strain partition Ae = At + Ae® + AeP (1)
Hooke’s law Ag = AE:e° + E: Ae® )
Yield surface
(von Mises) fee1 =J(Oks1 — Xis1) = Riy1 — Oy s1 <0 3)
A_p _ <fk+1>n
Viscoplasticity At~ \ K 4)
for fry1 >0
Isotropic
_ Ris1 = Q(1 — e™bPie1 5
hardening ki1 = Q ) ®)
Kinematic AX; 2 AgP Ap
—=—-C, — —v:( X —Y: -
hardening (i — At 3 i At yl(_l,k+1 2ik+1 ) At (6)
- 1 dC; AT
L:nar) - bif()_(i,kﬂ)rl 1)_(i,k+1 = Xt
e Static Ci dT At
recovery
e Thermal With:
variation AY, 3 X ra1 - @)
e Mean A__tl = —Qp, (E Yor (}l—Jr) + Zi,k+1>/(&,k+1)
stress =hit+l
evolution

J(X) denotes the equivalent von Mises stress, defined as:

R Ahmed, “Constitutive Modeling for Very High Temperature Thermo- Mechanical Fatigue Responses,” PhD
thesis, North Carolina State University, 2013.
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3. 5
JX) = |3%:X

Isotropic hardening is computed using the closed form expression of R(p) given by Eq. (2.13)
in Section 1.1.3 of Chapter 2.

Parameters y; and D, for cyclic hardening can evolve if the option is activated in the input file.

In this case, these parameters are calculated using the beginning of step values of the plastic
multiplier p and the plastic strain memory surface radius q.

_Dyipk

Vi= Vif - (Vif —vi)e

With:
Vif =ay, + b)/ie_cyiqk

If parameters D, and E are made dependent on the maximum temperature in the loading

history T, ., they are also computed explicitly:
Dy (Tes1, tiers) = Dy (Trmaxs 0) = (Dy(Tnax, 0) — Dy, (Ticy1, 0) ) €7 7PrP*
E(Tiy1, tisr) = fEE(Tis1,0) + (1 = f£)E(Trnax, 0)
With: fz = ff = (ff — De Ve
Equations (1) to (6) are rearranged to limit the total number of equations to solve.

Firstly, Eq. (1) and Eq. (2) can be combined into Eq. (8a), or Eq. (8b) in which the unknown
AgP is put in a distinct term (all the variables in the two first terms of (8b) are known):

Ag = AE: (g4 — &b — ) + E: (Ae — AgP — Aeth) (8a)
Ag = AE: (ger — f — &) + E: (Ae — Ae'™) — (E + AE) : Ag? (8b)

Using the hypothesis of plastic strain incompressibility (tr (gp) = 0), the third term of Eq.
(8b) can be rewritten as 2(G + AG)A&gP, where G is the shear modulus.

2 ELASTIC PREDICTOR

As explained in Chapter 2, the equations are solved using the radial return mapping algorithm,
which consists in computing a first elastic step where Ap = 0 and correcting this step with a
plastic corrector if the values found in the elastic predictor do not verify the von Mises criterion.
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In the elastic step, the increment of plastic strain is considered equal to zero. A trial stress o,
is computed using this hypothesis. Using Eq. (8b), the expression for g, ; is:

01 = G + AE: (g1 — £ — &i4a) + E: (Be — 2e™) 9)

at' 1 can be computed directly since the total strain, thermal strain, and previous plastic strain
are known.

To compute the von Mises yield surface, the value of the back-stresses must be updated. With
the hypothesis of Ap = 0, Eq. (6) can be rewritten as Eq. (10):

o b Kern) K + = A Ky (19)
At C dT At
From Eqg. (10), the updated back-stresses can be expressed as:
Xik+1 = 0iXip (11a)
w; = 1r__1 T dc (11b)
1+ bAt](Xigs1) W — . ar AT
Eqg. (11a) can be put into scalar form by using the equivalent von Mises stress:
9i =) Kijer1) — 0 (Xii) = 0 12)

This nonlinear equation is solved using the Newton-Raphson method, by computing the

consecutive iterations J (&,kﬂ)m given by Eq. (13), where superscript m denotes the Newton
iteration number, until convergence.

X, m+1 = J(x, m g{” _
)™ =) (i) - .
0] (Xijer1)
_ 09 _ ., _ 9w (13b)
a]()_(i,k+1) a](&,kﬂ) ik
awi 2 ri—2
= —w?hae(r - 1) (X, 1
a] ()_(i’k-l_l) ( k+1) ( 3C)

Once J ()_(l-,kﬂ) is obtained, the value of the back-stresses can be updated using Eg. (11a).

The yield criterion is then checked using the value of ", ; and the updated back-stresses. If the
value of £, =J(of 1 — Xk1) — Rks1 — gy k+1 1S less than 0, then the tensors Y; must be
updated before going to the next time step.
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Eq. (7) can be rewritten to give a closed-form expression of tensor Y; ., 1:
Yikrr = @Yk — PiXig) (14a)

0; = ! (14b)
l Tri
1+ AtapJ (X je1)

(14c¢)

3 ri—1
pi = EAtabiYst,i]()_(i,k+1)

3 PLASTIC CORRECTOR

3.1 REDUCTION OF THE SYSTEM OF EQUATIONS

If £t > 0, the hypothesis of Ap = 0 is invalid and the plastic strain increment As? must be
computed using Eg. (1) to (7). To avoid solving all these equations at once as a large system of
equations, some combinations are done to obtain:

e 7y, nonlinear scalar equations for each J(X; x+1)

e 1 nonlinear scalar equation for Ap

The plastic strain increment AsP can be written as a function of the plastic multiplier increment
Ap and the normal to the yield surface n:

AeP = Apn (15a)
3 6-X
P (15b)
2](a-X)

Similarly to what was done for the elastic predictor, Eq. (6) is rewritten to obtain a new
expression of X; . 44:

2
Xiks1 = W; (&,k + 3 C;Apn + ViQUiAPZi,k) (16a)

1

(16b)

Wi = -1 1 dC;
L+y(1+ @ip)dp + At (Xipe1) T — c ar AT

Where ¢; and p; are defined by Eq. (14b) and (14c), respectively.

The effect of hydrostatic pressure is neglected in metal plasticity, therefore, the deviatoric stress
& is used instead of the total stress. Using the deviatoric trial stress 65 ;and Eq. (15a), Eq. (8b)
can be rewritten as:

i1 = Gier — 2(G + AG)Apn (17)
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Combining this equation together with Eq. (16a) and with some mathematical developments,
the following equations can be obtained (note: the back-stress is deviatoric by nature, therefore,
X,.41 IS equivalent to X, 1):

Gir1 — X1 = Gih1 — 2(G + AG)Apn

NAr

2 (18a)
- z w; (&,k + §CiAPﬂ + Vi‘PiAPXi,k) =27/Q
i=1
nAr nAF 8b
~ 1
Z = _1511 )_(l Ap z a)lyl(pl_l k ( )
i=1 i=1
A nAr
Q=1+—"" 3(G+AG)+2wiCi (18¢)
](Qk+1 - Kk+1) c
Combining equations (3), (4), and (5) gives an expression of J (Gyx41 — Xk+1):
A 1
~ p\" -
J(Gr1 = Xir1) = K (E) +Q(1 —e™PPk+1) + g, (19)
Combining Eqg. (18a), (18c), and Eq. (19) gives:
Q](Qkﬂ - Kk+1) _](Z) =0 (20a)

1 nar
(1{ (i—f)" +Q(1 — e7bPrer) 4 ay> +Ap (3(6 +AG) + Z wiCi> —J(Z)=0  (20b)

i=1

Eq. (20b) is the equation for unknown Ap. The n,r equations for the back-stresses can be
obtained by combining Eq. (16a) with the definition of J (X):

J(Xijer1)
3 2 2 (21a)
= |07 (Xui+ 5 Cbpn + vipibp¥is ) (Ko + 5 Citon + viopidpi )
3 2 3 5
J(Kpnr) = wp | 2506 K ¥ 3CAP R+ 5y QT AP Yy Vi + (21b)
=1, i

2CApX;in + 3VL§0iAp&,k-Xl,k + 2CiyipiAp?n: Yy

From Eq. (15b), we get n: n = % Similarly, the dot product of X; , and X; , can be rewritten as:

%&k: Xix =] (&,k)z. The n,y equations for the back-stresses can be written as:
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9i =J(Xigs1) —wiM; =0 (22a)
2 2
M= J(Xipe)" + C2Ap? + v dp? (Yie)” + (22b)
l L
2CApX; j:n + 3y, ApX; 2 Vi + 2Cyi0:Ap2n: Y i

3.2 SOLUTION USING THE NEWTON METHOD

Equations (20b) and (22) are the n4r + 1 nonlinear equations to solve for the plastic corrector
step. They are solved iteratively using the Newton method:

e Step 1: Eq. (20b) is solved assuming X; x+1 = X; k. If the solution given by the Newton
algorithm is negative (i.e., Ap < 0), the new value of Ap is set to Ap®/10, where Ap°
is the initial guess for the Newton method.

e Step 2: Eq. (22) are solved together for i = 1: nyr using the previously found value of
Ap.

If the Newton algorithm does not converge in Step 2, Steps 1 and 2 are repeated using updated
values of X; .., found at Step 2.

3.2.1 Solution of the Ap equation

Let L be the left-hand side of Eg. (20b). The Newton method consists in computing the
consecutive values Ap™ using the following equation (superscript m denotes the Newton
iteration number):

m+1 _ m __
Ap =Ap (E)_L)m (23)

oL . _
350 can be derived from Eq. (20b):

oL K (Apynt S ¥
— P\" ~b(pi+AP) Z @i
- == A C. + A —C.
3hp nAt(At) + Qbe +3(G+AG) + ) wC;+ Ap aApC‘
i=1 i=1 (24)
3 0z
__2 (Z: _—)
2J(z) \T ahp
With:
awi 2
=—wiy,(1+ep) (25a)

JdAp
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NAF NAFY NAFY

0Z dw; dw;
anp —z <m&,k> —Ap ; (myi(pizi,k) - ; (wiv,9Yix) (25b)

i=1
3.2.2 Solution of the J(X;) equations

The Newton method consists in finding the consecutive values of ](Xi,kﬂ)m using the
following equations:

+1 m g{"
J(X; )m :](X',k ) —
( i,k+1 ,k+1 < agi >m (268.)
] (Xik+1)
PYTT - i
] (Xik+1) 0] (Xiks1) 0] (Kijes1)
The expression of (GL‘) IS given by:
=ik+1
a(,l)i apl a(pl
———— =~ |Apy, <<pi + pl)
Y (Xiy) o (Kiers) U (Kiper) o7
rl——2
+bit(r; = 1] (X,,,,)
apl 3 Ti—z
a](&,k-fl) 2 ab,z St,l(rl )](_l,k+1) (27b)
a(pi 2 ri—1
— = —@Ata, ] (X; 27
a]()_(i’k-pl) q)z ab, rL](_l,k+1) ( C)
; oM; . . )
The expression of (—) IS given by:
=ik+1

0 (X)) M

29, . on
{ﬁ” (af@i,m)'fﬁk)} .

dp
+54pyie, l Y oY
2 J(&-,k+1)( ta)
on 3 0z 9J(2)
_ iz - z (280)
a] (&,kﬂ) 2] (Z)2< ( )6] (Ki,k+1) 9] (Ki,kﬂ) )

aZ a(lJi

2.
T X Apy, @Y., ) — Apwy,—F———Y.
a] (Ki,k+1) a] ()—(i,k+1) (—z,k + pyl(pz—z,k) bw;Y; a] (Kuﬁ_l) L (28C)
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a](Z) _ 3 . 0z
d] (Xi,kﬂ) ZJ(Z) <Z. aJ ()—(i,k+1)> (280)

3.2.3 Updating the variables
Once the equations for Ap and the n,r J (X; x+1) have been solved, the rest of the state variables
must be updated.

The plastic strain is updated using Eq. (15a), the stress is updated using Eq. (8a), the back-
stresses can be computed using Eq. (16a).

4 CONSISTENT TANGENT MATRIX

The consistent tangent matrix is necessary for the finite-element model, as it is used for the
solution of the global equilibrium equations.

The consistent tangent matrix C is defined as:

lip}
Il

Q..| Q

1™ 19

(29)

Using Eq. (17), the expression of C becomes Eq. (30), where & is the tensorial product:

c=2" 26180 |(no%P) 4 apdR 30
From Eqg. (9), %fr can be computed directly:
do.tr
g = AE +E (31)

A
4.1 COMPUTATION OF d—:’

The derivative % cannot be computed directly. To compute this derivative, Eg. (20b) and Eq.

(22) for the n,p back-stresses are used to form a system of equations of size n,r + 1 with a

. . . . dA
matrix of unknowns x,,, that contains the derivative d—::
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r dL oL JaL dAp oL d'\tr R
08p ] (Xips1)  OJ(Xnppken) de 88Y de
091 091 091 d]()_(l,k+1) _ 091 d@”
0Ap 9] (X1jes1) 0J (X ppk+1) de =| 0&" de (32)
a'gnAF a'gnAF angAF d](KnAF,lHl) angAF do 5t
| 00p 0] (X1 +1) a]()_(nAp,k+1)- i de 96" de |
Ader[(nap+1)x(nar+1)] Xder[(nap+1)x6]  baer[(nar+1)x6]

The terms on the diagonal of 4,4, are computed according to equations (24) and (26b). The
rest of the terms are given hereafter.

From Eq. (20b), the terms — ( )are derived as:
ik+1

oL _, 9o . 02 33)
K)o Kirrn) " 0 (Kiern)

dw; a](2) . )
1)) and T ired) are given by Eq. (27a) and (28d), respectively.

The terms

(for i # j) are derived from Eq. (22a) and (22b):
aJ(x 1k+1)

d29i aM;
) K ) (342)
_om_Api. (g. :a—ﬂ>+ApCiyi<pi<L: Y. )] (34b)
01 (X,00) M|\ (X,00) 0 (X;0r)

L can be calculated using equations (28b) to (28d).
(X 41)

Slmllarly,
aé]i 0ﬂ4i a(Ui
=—wo— — 7 —M; 35

ohp ~  “aap anp (35)
oM; on . 3 . ,
ahp M Xk dAp + G (Xi,k'ﬂ) T30, (Xi,k-Zi,k) + CiAp

2 on
+ ZApCiyi(pi (ﬂ: Zi, ) + Ap“Cyy; Y, aAp sz (35b)

+ 0wt (1,01,
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on 3|1 0Z 3 (Z ag>z (350)
= — _ : C
The components of b, are detailed hereafter.
=tr
All these components require the value of dd%, which is given by Eq. (36):
r 4 2 2 0 0 0
3 3 3
2 4 2 0 0 0
détr dev 3 3 3
e (E + AE) =(G+A6)| 2 2 4 (36)
de = = -~ —— = 000
h 3 3 3
0 0 0O 1 0 O
0 0 0 0 1 0
0 0 0O o0 o0 1

The first component is given by Eq. (38) and requires the calculation of 2 glven by Eq. (37):

’\tr

oL 3 0Z -
5"~ g)\%aa, (37a)
0Z
P =1 (37b)
91
oL 3Z
a6t 21(2) (37¢)
OL 457 _ 36+ a6)-2 38
agtr de ( )/(Z) (38)
The other components of b,,, are given by Eq. (39a) to (39d)
agi Apw;C; on an
aé—‘tl‘r' = — M.l l [(&k a /\tr> + Ap)/l(pl (a ~tr " ZI,k)l (393.)
= l
on 0Z  9J(Z
=5 J(2) 5 Agr iy (39b)
g /(Z) 00,4 05 Git1

J(z) 3 ;. 0z  3Z
og,,, 2/(2)" 08, 2(2)

(39¢)

on 3 1 (1 3 Z®Z> (390)
8" 2J@\* 2@z’
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d
4.2 COMPUTATION OF d—f

The derivative of Z—f must be calculated to compute Eq. (30):

dn 3 1 iz 4@
de  2)(z) (J( de )

Equations (41a) to (41c) give the expression of Z—f:

nar

dg_détr Z ¥ d(l)i A rf v d(l)i
de  de X.® de p L vigi | Y, ® dz

NArY

NAFY
dAp
_APZYL Y, ® Z wYiPiY, ®d_

i=1 -

do; _ i dbp _ dw, 4 (X, 1)
@ )

doi __ Ow dj (Ki,k+1)
€ 0)(X,,,) %
d]( )

Equations (42a) to (42c) give the expression of —=

4)(2) _ 0J(2) dbp < 2)(2) df()_a-,k+1)>
de — 0dp de 0 (Xigs1)  de

nAF

Y@ _ K <Ap =

1
- be P@+AP) 1 3(G + AG Z C:
9hp  nAt At) +Qbe T3 +86)+ ) (@)

i=1
NAF
- Apz (w?ViCi(l + wipi))
i=1

d/(Z) 2 dp; 09;
———— = —Apw;C;|Apyi | ¢ pi
0] (X 1) [ ( () (K )

+ biAt(r; — 1)]( zk+1)ri_2‘

(40)

(41a)

(41b)

(41c)

(42a)

(42b)

(42c)
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Appendix 2: Equations for the damage
model

1 DAMAGE MODEL

Damage is modelled by two equations: Eq. (43) for fatigue damage and Eq. (44) for creep
damage. To simplify the notation, variables at the end of the time step are written with no index

(6.9., D = Pr+1)

Y(o,D)\”’
Fy = Dy = Dr e — < (%f )> (P—p)=0 (43)
Fo= D~ Doy~ (Y%’D)) =0 (44)

The expression of Y (g, D) depends on the value on the parameter h. If h = 1, the effect of

microdefects closure is not taken into account, and Y is computed according to Eq. (45). If,
however, h < 1, Y is computed using Eq. (46) .

— _1+v gio v (tr(o))’
ST (1—D)z_ﬁ<1_D) (45)
h<l=Y-= 1+v <0>;}(0>‘?} (G>i_f(a>i_j v (Okr)? +h (—0xr)? (46)

2E |(1=D)2 " "(1—=hD)?2| 2E|(1=D)2 " (1-hD)?

2 SOLUTION TO THE DAMAGE MODEL

The solution of Eq. (43) and (44) with the Newton-Raphson method requires computing the
derivative of F with respect to Dy and of F. with respect to D,:

oF, se (Y\7 7! oy
#= 1_S_f<5_> ﬁ(P—Pk) (47)
f f \°f f
Sc—1 Sc
JF, 1 S_c(£> ay 1 B k. (X) (48)
D, S.\S.) 8D, (1-D)k¢ (1— D)ke*1\§,

Considering Y is a function of the total damage D and D = Dy + D,, the derivative of Y with

respect to Dy or D, is the same as Z—;, given by Eqg. (49) in the case with no microdefects closure

and by Eq. (50) for the case with microdefects closure.



Appendix 2: Equations for the damage model 13
ay _ 1+v ga v (tr(a))2 (49)
aD E (1-D)* E(1-D)3

Y 1+v (0){i{o)F; , (0)ij{o);; v (Ori)? 2 (—0wp)? (50)
oD E |[(1-D)3 (1-hD)3| E|(1-D)3 (1 - hD)3
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Appendix 3: Jacobian matrix for the
coupled model

The coupled model consists of the following system of equations:

( Ree = £ —éth — ¢ —#n =0
a
erj(m—g)—R—ay—o,,zo
) .2 - 1dc; .
Ry, = X =5 CGi(L = DIE” +yi(X; = )i +bJ (X)X = = 1%, = 0. = Limyp)
i
\ ggzie_ﬁ_l:gzo

The Jacobian matrix necessarily includes the derivatives of each of the local residual with
respect to the variables As®, Ar, AX;, and Ag:

[0Ree ORge ORge ORge
0Ae¢  0Ar 0AX; OAc
0R, OR, O0R, OR,
0Ae¢  O0Ar 0AX; OAc
ORy, ORy, Ry, Ry,
0Ag¢  O0Ar 0AX; OAc
0R;, OR, O0R, IR,
[0Ae¢ O0Ar O0AX; OAg |

<
I

First, some useful variables are defined:

o
S = ——
- 1-D
Where & is the deviatoric stress.
X—(1-pp=o2"2
n=[0-Dn=-——=—
- - 2(s-X)

The derivatives of n* with respect to s and X are used in the analytical expression of the
Jacobian matrix:

onX onX

95~ X G

1 13 1
_] — — Y. ¢ X
_K)[Zg ;101 n®n]

Where [ is the 6-by-6 identity matrix, 1 is the identity tensor in the Voigt notation, and

® is the tensorial product:
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1 0 0 0 0 O
0 1.0 0 0 O
;o0 100 0 -
= |0 001 0 O -
0 0 001 O
0 0 0 0 0 1
a, (b1 ra,by a;b, a;b; ab, aibs
a, b, a,b; ayb, a,b; a,b, a,bs
a3 ®< b3 } _ a3b1 a3b2 a3b3 a3b4 a3b5
a4 b4 - a4b1 a4b2 a4b3 a4b4 a4b5
as b5 a5b1 a5b2 a5b3 a5b4 a5b5
g kb6J _a6b1 a6b2 a6b3 a6b4 a6b5
Derivatives of Re
ORee
0Ag® =
aﬂge
d0Ar - I
ORe A on  Ar on*
96X, ~ 9x, 1-D oX
OR e Ar on* on*

ddcd 1-D dg (1-D)2 ds

Derivatives of R,

Plastic case: R, = f = J(s —X) — R(r) — g,

ORr _ (000000}
dAee
0R, OR(r) br
aar - oy bee
R, _0J(s=X)
0AX,  0AX; 0~
ORy _9J(s—X) 0s 1
dAc  0s 'ag_l—Dﬂ

=n

—
S OO R R
—_—

a, b
a,bg
azbg
asbg
asbg
agbg
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n
Viscoplastic case: RY = Ar — (1 — D)At <£>

ORY
FINE

={000000}

oRy _ ., (- D)Atn{f)*"1 R,

oAr K"

0Ar

0Ry _ (1= D)Am(f)"

0AX; Kn

Oy _ _Atn(fy?

dAc Kn =
Derivatives of Ry,
0R
=X -0
OAee =
ORy, 2
A —§Ciﬂx +viXi —Y)
OEX CiAT ri— aC
o -y yar+ Ay (X)) - = =EAT L+
90X, T(s —x) T VBTt D J(%) C, T
aY 3 ri—3
—ylAraX + = bAt(r DJ(X;) "' X,®X

0Ry, 2 CAr on¥
dAc 31 65

Derivatives of R,

Case without microdefects closure:

2 CAr
3/G-X0"

X

®n

X
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Case with microdefects closure:

Ry

AR, OR . )
—= —Z and —= are the same as for the case without microdefects closure. Due to the
0Ag€” 0AT 0AX;

partition of the stress in its negative and positive parts, there is no exact analytical

. Ry . . L
expression of v The following expression is therefore an approximation:

OR;,  1+v[ 3 N H; l_{_z }[(trg)+f}[(—trg) 191

ddc E |1-D 1-hD| E|1-D " 1—hD

Where H (x) is the Heaviside step function.
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