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Abstract 
The receivers in Concentrated Solar Power (CSP) plants of this study are made of vertical 

panels of metallic tubes in which molten salt flows. The salt is heated by the solar 

radiation hitting the surface of the tubes and the heat it carries is then used to produce 

electricity. The daily thermal loading/unloading of the solar receivers causes a 

combination of high temperature creep and fatigue in the receiver tubes. Additionally, the 

presence of molten salt inside the tubes can lead to severe corrosion. For this technology 

to be profitable, the lifetime of the solar receiver should be at least of 25 years. The 

objective of this thesis is the modelling of the thermomechanical behaviour of receiver 

tubes made of nickel alloy 230 and the prediction of their lifetime under the conditions 

encountered in the field of CSP. 

In a first stage, an extensive experimental campaign was launched to assess the 

mechanical behaviour of alloy 230 at different temperatures and under various loading 

conditions. Additionally, a metallographic analysis of part of the tested samples was 

conducted to understand the micro-scale phenomena responsible for the macroscopic 

behaviour of alloy 230. In a second stage, based on the results of the experimental 

campaign and on results found in the scientific literature, a behaviour model based on the 

Chaboche framework was selected and implemented in the finite-element code Lagamine 

developed at the University of Liège. A specific formulation was proposed for the 

temperature-dependence of the model parameters. Consecutively, a damage model was 

associated to the behaviour model to predict the lifetime of the tubes under fatigue and 

creep, and the combination of both. This damage model is based on the unified Lemaitre 

damage model which is compatible with the Chaboche framework. In a third stage, the 

modelling of corrosion was added, for which a simplified model was created based on 

limited experimental data from the literature to simulate uniform corrosion. The resulting 

full model (behaviour, damage, and corrosion) is highly complex and requires long 

computational times for the precise modelling of the receiver tubes. In this respect, two 

methods were developed to make calculations faster using simplifying hypotheses. Both 

methods proved to be efficient for the reduction of computational time, but only one of 

the methods is really reliable in terms of accuracy of the results.  

Finally, one receiver tube was modelled using the finite-element model and its lifetime 

was evaluated for a specific loading case. The results showed that the estimated lifetime 

exceeded the target of 25 years, and that uniform corrosion did not have a significant 

impact on the lifetime and behaviour. 
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Résumé 
Les récepteurs des centrales solaires thermiques à concentration de cette étude sont 

constitués de panneaux de tubes métalliques verticaux dans lesquels circule du sel fondu. 

Ce sel est réchauffé par le rayonnement solaire concentré sur la surface des tubes, et la 

chaleur ainsi emmagasinée est ensuite utilisée pour la production d’électricité. Le 

chargement/déchargement thermique journalier des récepteurs solaires provoque à la fois 

du fluage à haute température et de la fatigue. Par ailleurs, la présence de sel fondu à 

l’intérieur des tubes peut créer d’importants problèmes de corrosion. Pour que ce type de 

technologie soit rentable, on estime qu’une durée de vie minimale de 25 ans est nécessaire 

pour le récepteur solaire. L’objectif de cette thèse est de modéliser le comportement 

thermomécanique des tubes de récepteurs solaires en alliage 230 (alliage de nickel) et de 

prédire leur durée de vie. 

Dans un premier temps, une campagne expérimentale a été lancée pour étudier le 

comportement thermomécanique de l’alliage 230 à différentes températures et sous divers 

chargements. En outre, une analyse métallographique a été menée sur une partie des 

éprouvettes testées pour comprendre les phénomènes microscopiques responsables du 

comportement macroscopique de l’alliage. Dans un second temps, à partir des résultats 

expérimentaux et de résultats de la littérature, un modèle de comportement basé sur la loi 

constitutive de Chaboche a été choisi et implémenté dans le code éléments finis Lagamine 

développé à l’université de Liège. Une formulation spécifique a été proposée pour 

exprimer la dépendance à la température des paramètres du modèle. Ensuite, un modèle 

d’endommagement a été associé au modèle de comportement pour prédire la durée de vie 

sous fatigue, fluage, ou une combinaison des deux. Ce modèle est basé sur le modèle 

unifié de Lemaitre, qui s’intègre facilement à la loi de Chaboche. Dans un troisième 

temps, un modèle simplifié a été créé pour simuler la corrosion uniforme en se basant sur 

les données expérimentales disponibles dans la littérature. Le modèle complet 

(comportement, endommagement, et corrosion) est très complexe et nécessite de longs 

temps de calcul pour modéliser précisément les tubes de récepteur. Deux méthodes ont 

donc été mises en place pour réduire les temps de calcul en utilisant des hypothèses 

simplificatrices. Les deux méthodes ont permis de réduire significativement les temps de 

calcul, mais une seule des deux s’est avérée vraiment fiable et précise.  

Enfin, un tube de récepteur a pu être modélisé en utilisant le code élément fini et sa durée 

de vie a été estimée pour un cas de charge particulier. Les résultats montrent que la durée 

de vie estimée est supérieure à l’objectif de 25 ans, et que la corrosion uniforme n’a pas 

d’impact significatif sur la durée de vie, ni sur le comportement mécanique du récepteur.  
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Nomenclature 
𝑡 Time 

𝑇 Temperature 

휀/휀/𝜺 Total strain (scalar/Voigt notation/tensorial notation) 

휀𝑡ℎ/휀𝑡ℎ Thermal strain 

휀𝑚/휀𝑚 Mechanical strain 

휀𝑝/휀𝑝 Plastic/Viscoplastic strain 

휀𝑒/휀𝑒 Elastic strain 

𝜎/𝜎/𝝈 Stress (scalar/Voigt notation/tensorial notation) 

�̂�/�̂� Deviatoric stress 

�̃�/�̃� Effective stress 

𝜎𝑣 Viscous overstress 

𝜎𝑑/𝜎𝑑 Delayed stress 

𝐸 Elasticity tensor (Voigt notation) 

𝐺 Shear modulus 

𝐶 Consistent tangent matrix 

𝐽(𝜎) Von Mises equivalent stress (scalar) 

𝑝 Plastic multiplier 

𝑅 Drag stress (scalar) – isotropic hardening 

𝑓 Von Mises yield surface 

𝑋/𝑋𝑖 Back-stress (Voigt notation) – total backstress/partial back-stress 

𝑌𝑖 Mean stress evolution (Voigt notation) 

𝑞 Plastic strain memory surface radius 

휁 Plastic strain memory surface centre 

𝑛∗ Normal to the plastic strain memory surface 

𝑛 Normal to the yield surface 

𝐷 Total damage 

𝐷𝑓 Fatigue damage variable 

𝐷𝑐 Creep damage variable 

𝐷𝑢 Uniform corrosion damage variable 

𝑌 Strain energy density release rate 

𝑤𝑠 Energy stored by hardening 

𝑟 Plastic multiplier with damage 

𝒥 Jacobian matrix 
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Model parameters 

Symbol Parameter Feature 

𝐸 Young modulus 

Elasto-(visco)plasticity 𝜈 Poisson ratio 

𝜎𝑦 Yield strength 

𝑏 Rate of isotropic hardening 
Isotropic hardening 

𝑄 Asymptotic value of 𝑅 

𝐾 Norton-Hoff parameter 
Viscosity 

𝑛 Norton-Hoff exponent parameter 

𝑛𝐴𝐹 Number of back-stresses 

Kinematic hardening 
𝐶𝑖 Armstrong-Frederick parameter (asymptotic 

value) 

𝛾𝑖 Armstrong-Frederick parameter (rate) 

𝑏𝑖 Static recovery parameter Static recovery (in 

kinematic hardening) 𝑟𝑖 Static recovery exponent 

𝑛𝐴𝐹,𝑐𝑦𝑐 Number of back-stresses for cyclic hardening 

Cyclic hardening  

(within kinematic 

hardening rule) 

𝐷𝛾𝑖 Cyclic hardening rate 

𝑎𝛾𝑖 Cyclic hardening parameter for asymptotic value 

𝑏𝛾𝑖 Cyclic hardening parameter for asymptotic value 

𝑐𝛾𝑖 Cyclic hardening parameter for asymptotic value 

𝑏𝐷𝛾 Rate parameter for temperature evolution 

𝑛𝐴𝐹,𝑌 Number of back-stresses for mean stress 

evolution 
Mean stress evolution 

(within kinematic 

hardening rule) 
𝛼𝑏,𝑖 Rate of mean stress evolution 

𝑌𝑠𝑡,𝑖 Asymptotic value for mean stress evolution 

𝑓𝐸  Weighing factor Influence of the 

temperature history 𝑓𝐸
𝑆 Saturation value of the weighing factor 

𝐷𝑐𝑟𝑖𝑡 Critical damage value 

Damage 

𝑆𝑓 Fatigue damage parameter 

𝑠𝑓 Fatigue damage exponent parameter 

𝑆𝑐 Creep damage parameter 

𝑠𝑐 Creep damage exponent parameter 

𝑘𝑐 Rabotnov creep damage exponent parameter 

𝐾𝑢 Rate of corrosion (linear rule) 

𝐾𝑝 Rate of corrosion (parabolic rule) 

𝐿𝑒 Characteristic length of the element 



viii 

 

CONTENTS 

Introduction  .................................................................................................................... 1 

1 Context ................................................................................................................................. 2 

2 Objectives of the thesis ......................................................................................................... 4 

3 Outline .................................................................................................................................. 5 

4 References ............................................................................................................................ 6 

Chapter 1: Thermo-mechanical behaviour of alloy 230 and experimental 

campaign………………………………………………………………………………...7 

1 Alloy 230 .............................................................................................................................. 8 

1.1 Composition ....................................................................................................... 8 

1.2 Thermal and mechanical properties ................................................................... 8 

1.2.1 Thermal properties ...................................................................................... 8 

1.2.2 Mechanical properties................................................................................. 9 

1.3 Microstructure .................................................................................................. 10 

1.3.1 As-received microstructure ...................................................................... 10 

1.3.2 Microstructure after testing ...................................................................... 11 

2 Experimental campaign ...................................................................................................... 17 

2.1 Tensile tests ...................................................................................................... 17 

2.2 Creep ................................................................................................................ 18 

2.3 Relaxation ........................................................................................................ 19 

2.4 Fatigue ............................................................................................................. 20 

2.5 Combined creep-fatigue ................................................................................... 23 

2.5.1 Isothermal creep-fatigue ........................................................................... 23 

2.5.2 Anisothermal creep-fatigue ...................................................................... 25 

3 Conclusion .......................................................................................................................... 28 

4 References .......................................................................................................................... 28 

Chapter 2: Modelling of the thermo-mechanical behaviour of alloy 230……….…30  

1 Model .................................................................................................................................. 32 

1.1 Basic Chaboche model ..................................................................................... 32 

1.1.1 Notation .................................................................................................... 32 



ix 

 

1.1.2 Elastic domain .......................................................................................... 33 

1.1.3 Isotropic hardening ................................................................................... 34 

1.1.4 Kinematic hardening................................................................................. 35 

1.1.5 Viscoplasticity .......................................................................................... 37 

1.1.6 Thermal variation ..................................................................................... 38 

1.2 Advanced features of the Chaboche model ..................................................... 38 

1.2.1 Cyclic hardening and strain memory surface ........................................... 38 

1.2.2 Mean stress evolution ............................................................................... 39 

1.2.3 Temperature history .................................................................................. 40 

1.3 Numerical implementation .............................................................................. 41 

1.3.1 Model features .......................................................................................... 41 

1.3.2 Description of the algorithm ..................................................................... 42 

2 Parameter identification ...................................................................................................... 49 

2.1 Sensitivity analysis .......................................................................................... 49 

2.1.1 Method ...................................................................................................... 49 

2.1.2 Results ...................................................................................................... 52 

2.2 Method for the identification of parameters .................................................... 59 

2.2.1 Direct identification .................................................................................. 59 

2.2.2 Identification through trial and error ........................................................ 62 

3 Temperature-dependence of the material parameters ......................................................... 66 

3.1 Mathematical formulation of temperature dependence ................................... 67 

3.1.1 Linear interpolation of parameters ........................................................... 67 

3.1.2 Exponential function ................................................................................ 68 

3.1.3 Double exponential ................................................................................... 68 

3.1.4 Parameter identification ............................................................................ 70 

3.2 Comparison of the different approaches .......................................................... 71 

3.2.1 Continuity under anisothermal loading .................................................... 71 

3.2.2 Cyclic hardening ....................................................................................... 72 

4 Conclusion .......................................................................................................................... 74 

5 References .......................................................................................................................... 74 

 



x 

 

Chapter 3: Damage model for thermo-mechanical creep-fatigue………………….77 

1 Damage modelling .............................................................................................................. 78 

1.1 Predicting failure .............................................................................................. 78 

1.1.1 Linear summation of damage ................................................................... 78 

1.1.2 Strain range partitioning ........................................................................... 79 

1.1.3 Continuum damage theory ....................................................................... 80 

1.2 Lemaitre unified damage model ...................................................................... 81 

1.2.1 Concept ..................................................................................................... 81 

1.2.2 Mathematical model ................................................................................. 82 

1.2.3 Parameter identification ............................................................................ 85 

2 Advanced Lemaitre-type model for creep-fatigue .............................................................. 86 

2.1 Fatigue damage ................................................................................................ 86 

2.2 Creep damage .................................................................................................. 87 

2.3 Coupled fatigue-creep ...................................................................................... 88 

2.4 Implementation ................................................................................................ 89 

2.5 Parameter identification ................................................................................... 90 

2.5.1 Fatigue damage parameters ...................................................................... 90 

2.5.2 Creep damage parameters ......................................................................... 91 

2.6 Influence of the material forming .................................................................... 92 

3 Coupled behaviour-damage model ..................................................................................... 95 

3.1 Integration of damage in the behaviour model ................................................ 95 

3.2 Implementation ................................................................................................ 97 

3.2.1 Strong vs. weak coupling ......................................................................... 97 

3.2.2 Discretization of the behaviour equations ................................................ 98 

3.2.3 Solution of the behaviour equations ......................................................... 99 

3.3 Improvement of the robustness of the model ................................................. 102 

3.4 Validation of the damage model .................................................................... 103 

4 Conclusion ........................................................................................................................ 105 

5 References ........................................................................................................................ 106 

 



xi 

 

Chapter 4: Corrosion modelling…………………………………………………….108 

1 Scope ................................................................................................................................ 109 

1.1 Corrosion in Nickel alloys ............................................................................. 109 

1.1.1 Air oxidation ........................................................................................... 109 

1.1.2 Corrosion by solar salts .......................................................................... 110 

1.1.3 Corrosion by molten chloride salts ......................................................... 111 

1.2 Model requirements ....................................................................................... 112 

2 Corrosion modelling ......................................................................................................... 113 

2.1 Crack-growth models ..................................................................................... 113 

2.2 Diffusion-based models ................................................................................. 114 

2.3 Corrosion damage variable ............................................................................ 115 

3 Corrosion model for the receiver tubes ............................................................................ 118 

3.1 Concept .......................................................................................................... 118 

3.2 Equations and implementation ....................................................................... 119 

3.3 Parameter identification ................................................................................. 121 

3.4 Verification of the model ............................................................................... 122 

4 Conclusion ........................................................................................................................ 124 

5 References ........................................................................................................................ 125 

Chapter 5: Methods for accelerated calculations…………………………………..127 

Introduction ............................................................................................................................... 128 

1 Post-processor for rapid lifetime assessment .................................................................... 128 

1.1 Concept .......................................................................................................... 128 

1.2 Principle of the computation .......................................................................... 129 

1.3 Results ............................................................................................................ 130 

2 Cycle-jump procedure ...................................................................................................... 131 

2.1 General description ........................................................................................ 132 

2.2 Extrapolation method ..................................................................................... 133 

2.3 Choosing Ni and Nj ......................................................................................... 136 

2.3.1 Choice of the number of jumped cycles Nj ............................................. 136 

2.3.2 Choice of the number of computed cycles Ni ......................................... 138 

3 Conclusion ........................................................................................................................ 138 



xii 

 

4 References ........................................................................................................................ 139 

Chapter 6: Modelling of the receiver tube………………………………………….140 

1 Finite-element model ........................................................................................................ 141 

1.1 Scope and hypotheses .................................................................................... 141 

1.2 Loading .......................................................................................................... 142 

1.3 Geometry and meshing .................................................................................. 144 

2 Results .............................................................................................................................. 145 

2.1 Behaviour ....................................................................................................... 146 

2.2 Damage post-processor .................................................................................. 148 

2.3 Cycle-jump applications ................................................................................ 151 

2.3.1 Validation of the cycle-jump method ..................................................... 151 

2.3.2 Lifetime calculation ................................................................................ 152 

2.3.3 Comparison with the postprocessor ........................................................ 153 

2.4 Influence of corrosion .................................................................................... 155 

3 Conclusion ........................................................................................................................ 158 

4 References ........................................................................................................................ 158 

Conclusions and perspectives………………………….…………........................….159 

1 General conclusions .......................................................................................................... 159 

2 Perspectives ...................................................................................................................... 161 

 

 

 



Introduction  1 

 

Introduction 
 

TABLE OF CONTENTS 

1 Context ...................................................................................................................... 2 

2 Objectives of the thesis .............................................................................................. 4 

3 Outline ....................................................................................................................... 5 

4 References ................................................................................................................. 6 

 

 

  



Introduction  2 

 

1 CONTEXT 

Over the past decades, the need for energy has been increasing steadily worldwide (see 

Figure 1). Up until the 19th century, the main energy source in use was biomass, i.e., wood 

that mostly served for domestic use (heating, cooking, …). The invention of the steam 

engine at the end of the 18th century led to the 1st industrial revolution: throughout the 

19th century, coal-powered machines progressively replaced hand production methods 

and allowed the development of the industry. The progress of technology continued 

throughout the 20th century with the growth of the petroleum industry which allowed the 

development of faster and more efficient means of transport (automotive industry, 

aviation, cargo ships, …). Nowadays, our modern way of life is highly dependent on 

energy. On the other hand, most of the energy produced comes from highly polluting 

fuels such as coal, oil, and gas, which account for a quarter of the greenhouse gas 

emissions worldwide. Additionally, the available fuel supplies are decreasing sharply, 

leading to an increase in energy prices. In this context, it is essential to find and develop 

more sustainable and less polluting energies.  

 

Figure 1 - Global primary energy consumption by source. Source: [1]; data from [2] and [3] 

Solar energy, although it only represents about 1% of the current global energy 

consumption, is a very promising alternative to non-renewable energies as it is 

inexhaustible and available in large quantities: harvesting the solar energy on 25% of the 

surface of the Sahara desert would be enough to cover the whole world’s energy 

consumption [4]. The main difficulty presented with solar energy – as with all renewable 

sources of energy in general – has long been the non-continuous availability. Indeed, 

whereas the functioning of a nuclear or a coal power plant can be adapted to the demand, 

energy from solar power can only be harvested during the day. Although electricity can 
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be stored using batteries, this is not a good solution on a large scale as the making of 

batteries is very energy-costly and their lifetime is limited (5 to 20 years). 

Concentrated Solar Power (CSP) is a technology that allows the harvesting and storage 

of solar energy for the production of electricity. Figure 2 shows a CSP plant with thermal 

storage. The plant consists in a field of mirrors (heliostats) which reflect the sunlight 

towards a receiver placed on top of a tower. The receiver, shown in Figure 3 (a), is made 

of multiple panels of metallic tubes displayed in Figure 3 (b). A heat-transfer fluid, also 

called working fluid, is heated as it circulates inside the tubes. This fluid, once heated, 

can be stored or used for the direct production of electricity: the hot working fluid is used 

to heat water and turn it into steam, which is then used to put a turbine into motion, which 

in turn activates a generator. The first generation of CSP plants used water vapor as a 

heat-transfer fluid, which could not be stored. The second generation of CSP plants uses 

molten salt (usually solar salt: 60%NaNO3, 40%KNO3), which can be stored in insulated 

tanks thanks to its good capacity at retaining heat. The production of electricity is 

therefore made independent from the sun power harvesting. The main advantage of this 

type of CSP technology compared to other renewable energies is that the solar energy can 

easily be stored, and therefore electricity can be produced continually through night and 

day. 

 

Figure 2 – Concentrated Solar Power plant (source: US Department of Energy)  

Increasing the temperature of the working fluid is a good way to improve the efficiency 

of a CSP plant, however, solar salt is not stable above 565°C. The third generation of CSP 

plants, which is currently being developed, aims at using salts that can reach higher 

temperatures, such as chlorine salts which remain stable at temperatures as high as 730°C. 

However, increasing the temperature and changing the type of salt can lead to problems 

regarding the corrosion and the long-term resistance of the receiver.  
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(a) 

 

(b) 

 
Figure 3 – (a) Installation of the solar receiver of the Cerro Dominador CSP plant, Chile; the receiver is about to be 

lifted at the top of the 220 m high tower - (b) Close-up of a panel of tubes. Source: John Cockerill (2019) 

The tubes of the receiver are generally made of stainless steel or nickel-based alloy. These 

materials are known for their good mechanical properties at high temperature and high 

resistance to corrosion. However, the tubes are subjected to a complex loading which 

combines thermo-mechanical fatigue (cyclical loading with temperature changes), creep 

(several hours of continuous loading every day), and corrosion from the salt. The 

combined impact of these phenomena is difficult to estimate, especially over an expected 

lifetime of 25 to 30 years.  

2 OBJECTIVES OF THE THESIS 

John Cockerill (formerly CMI) has been working on the development of 2nd and 3rd 

generation CSP plants for several years. This thesis was realized as part of two projects 

conducted by John Cockerill: Solar Perform (2016-2019) and Solar GNext (2019-2023).  

In 2016, the Solar Perform project was launched. The objectives of this first project were:  

• The study of the thermo-mechanical durability of alloy 230, a nickel alloy used 

by John Cockerill to make their solar receiver. A large experimental campaign 

was conducted by the CRM Group (Centre de Recherches Métallurgiques). The 

Metallurgy and Materials Science (MMS) division of the University of Liège was 

also involved for the metallographic analysis of different samples. 

• The development of a numerical model for the design of the solar receivers to 

predict the behaviour and lifetime of the tubes of the receiver. 
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• The development of a new coating to be applied on the receiver to maximize its 

absorbance (done by Lithcote Europe, a Belgian company specialized in 

coatings).  

In 2019, the project Solar GNext, focusing on the development of 3rd generation CSP 

plants, was started. This second project centres around the impact of corrosion by the 

molten salts in receivers, the possibility to minimize the impact of corrosion through 

coatings or inhibitors, the research of new materials (nickel alloys) and new salts, and the 

longevity of these materials at higher temperatures. The same industrial partners were 

involved in this second project (CRM Group for the thermo-mechanical and corrosion 

testing, and Lithcote for the development of coatings).  

To achieve the goals of these two projects in coordination with the different partners, this 

thesis sets the following objectives: 

• The development and implementation of a thermo-mechanical creep-fatigue law 

within the finite-element code Lagamine [5] developed at the University of Liège. 

• The development of a damage model adapted to thermo-mechanical creep-fatigue. 

• The development of a corrosion damage model. 

• The identification of the material parameters for nickel-based alloy 230 at 

different temperatures based on the results provided by the CRM Group and the 

validation of the behaviour and damage models. 

• The development of tools to make the calculations faster and make the model an 

efficient design tool from an industrial point of view.  

• The application of the developed model to the tubes of the receiver to estimate 

their lifetime. 

3 OUTLINE 

The body of this thesis is divided into six chapters. 

The first chapter focuses on the thermo-mechanical study of alloy 230 at various 

temperatures. It contains a metallographic analysis of some samples tested in different 

conditions such as fatigue, creep, and combined creep-fatigue. In addition, the main 

results from the experimental campaign on alloy 230 are presented and analysed.  

The second chapter details the behaviour model, based on the Chaboche model, and its 

implementation in the finite-element code Lagamine. A sensitivity analysis on the model 

parameters is also presented. This sensitivity analysis serves as a basis for a step-by-step 

method for the identification of the model parameters. 
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The third chapter deals with the damage model, which is based on the Lemaitre damage 

model. It covers the development and the numerical integration of the model, with and 

without coupling with the behaviour model of chapter 2. 

In the fourth chapter, the subject of corrosion is tackled. An analysis of the experimental 

data available in the literature is detailed. Based on this analysis, a simple corrosion model 

is proposed and developed within the framework of the above-mentioned behaviour and 

damage models. 

The fifth chapter deals with numerical efficiency and proposes tools to obtain numerical 

results rapidly and accurately. Two methods for reducing computational times are 

evaluated and compared. 

Finally, in the sixth chapter, the tubes from the solar receivers are modelled to assess their 

lifetime. Different configurations are tested, using the methods developed in chapter 5 

and testing the influence of corrosion. 
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1 ALLOY 230 

The material studied in this research is alloy 230 (UNS N06230), a nickel-chromium-

tungsten-molybdenum alloy known to have a high strength and a good resistance to 

corrosion at high temperatures. The material tested by the CRM Group as part of the 

research was provided by Haynes® in the shape of bars. A small sample of tube was also 

provided to test for differences between bars and tubes. 

1.1 COMPOSITION 

The chemical composition of alloy 230 is given in Table 1.1 – Chemical composition in 

percentage by weight of alloy N06230 [2]. The presence of tungsten and molybdenum 

gives the alloy a good resistance at high temperatures as these elements diffuse slowly in 

nickel. Chromium, along with manganese, silicon and lanthanum, help improve the 

resistance to oxidation [1]. Alloy 230 has a density of 8.97g/cm3. 

Table 1.1 – Chemical composition in percentage by weight of alloy N06230 [2] 

Ni Cr W Co Fe Mo Mn 

Balance (47.49-

65.19) 
20-24 13-15 5.0 max. 3.0 max. 1-3 0.3-1 

Si Al C P S B La 

0.25-0.75 
0.2-

0.5 

0.05-

0.15 

0.03 

max. 

0.015 

max. 

0.015 

max. 

0.005-

0.05 

In order to obtain its optimal mechanical properties, the alloy is heat-treated at 

temperatures between 1177°C and 1246°C before being rapidly cooled. This treatment 

limits carbide precipitation in the material to ensure a good ductility. The melting 

temperature of alloy 230 is between 1301°C and 1371°C. 

1.2 THERMAL AND MECHANICAL PROPERTIES 

1.2.1 Thermal properties 

Alloy 230 has a relatively low thermal expansion coefficient compared to other similar 

materials (high-strength nickel alloys, stainless steels, etc.), as shown in Figure 1.1.  For 

instance, the thermal expansion of alloy 230 being heated from room temperature to 

700°C is around 1%. Since thermal deformation is the cause for the appearance of 

mechanical strains and stresses in the solar receiver, using a material with a low thermal 

expansion is advantageous. 

The thermal conductivity of alloy 230 is not very high and varies from 8.9 W.m-1.K-1 at 

room temperature to 26.4 W.m-1.K-1 at 900°C. For comparison, the thermal conductivity 
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of stainless steel 304, alloy 800H, and Hastelloy X are respectively 16.2, 11.5, and 9.2 

W.m-1.K-1 at room temperature. The limited thermal conductivity of alloy 230 is however 

acceptable for the application to the solar receivers since the receiver tubes are very thin 

(around 1.5 mm). 

 
Figure 1.1 – Thermal expansion from room temperature of alloy 230, Hastelloy X, alloy 800H, and 304 stainless 

steel; data from Haynes [3] 

1.2.2 Mechanical properties 

Figure 1.2 shows the 0.2% yield strength and ultimate tensile strength (UTS) of alloy 230 

at different temperatures. Both the 0.2% yield strength and the UTS decrease with 

temperature. The UTS starts to decrease more steeply after 650°C, while the 0.2% yield 

strength is rather stable between 500°C and 750°C. Overall, alloy 230 exhibits high 

tensile strength up to 750°C, with a 0.2% yield strength above 300 MPa and a UTS above 

550 MPa.  

 
Figure 1.2 – 0.2% yield strength and ultimate tensile strength of alloy 230 at different temperatures [4] 
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At room temperature, the Young modulus of alloy 230 is about 212 GPa. The value of 

the Young modulus progressively decreases with temperature, as can be seen in Figure 

1.3. 

 
Figure 1.3 – Variation of the Young modulus of alloy 230 with temperature [2] 

1.3 MICROSTRUCTURE 

The microstructure of alloy 230 has been studied extensively in the literature. Additional 

analysis was performed by the CRM and by the Metallurgy and Material Science (MMS) 

lab of the University of Liège. All of the following analysis has been made on samples 

taken from bars, although the grain size was also measured on samples from tubes for 

comparison. 

1.3.1 As-received microstructure 

The ASTM (American Society for Testing and Materials) grain size is defined by Eq. 

(1.1), where 𝑛 is the number of grains per inch at 100X magnification and 𝐺 is the ASTM 

grain size. 

𝑛 = 2𝐺−1 (1.1) 

The ASTM grain size measured by CRM was of 4.5 for the bar. For the tube, the grain 

size was measured at 4.5 in the transversal direction and 5 in the longitudinal direction. 

These results are consistent with the data given by Haynes (grain size from 3 to 5 for bars, 

from 4 to 6.5 for sheets).  

In its solution-annealed state, the material has a fully austenitic structure [1], [5], [6]. 

Despite the annealing process, uniformly distributed carbides can be observed, both on 

grain boundaries and inside grains, as shown in Figure 1.4. Those carbides are known to 

be tungsten-rich M6C carbides which resist re-solution during the annealing process. 

Owing to their high stability, these carbides prevent grain-boundary migration and grain 
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growth when the material is exposed to very high temperatures [1], [7]. The presence of 

these carbides gives alloy 230 a good resistance to high-temperature creep and thermo-

mechanical fatigue.  

 

Figure 1.4 – Microstructure of as-received Haynes® 230 (bar) – MMS lab 

In addition to these primary carbides, some smaller secondary M23C6 carbides can be 

found along grain boundaries [7]. These precipitates are known to form when the material 

is exposed to temperatures below 1150°C [8]. They form mainly at grain boundaries, pre-

existing dislocations, and twin boundaries and are the only precipitates that have been 

found to form at temperatures between 650°C and 980°C [1], [5]. The amount of 

precipitation depends on the temperature, time, and loading of the material.  

1.3.2 Microstructure after testing 

As part of this research project, alloy 230 was tested at the CRM under different 

conditions. The experimental campaign is detailed in Section 2 below.  

To get a better understanding of the changes of behaviour that can occur in the material 

when it is subjected to loading, several samples that had been tested were analysed by the 

Metallurgy and Materials Science lab at the University of Liège.  

The samples were cut using wire electrical discharge machining or a cut-off wheel. They 

were then mounted within resin and finally polished using a 1-micron diamond 

suspension to achieve a mirror finish. 
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The microstructure of the specimens was observed using an Olympus BX60M 

microscope. After an observation of the material in the polished condition, the surface 

was chemically etched using a solution of HCl and HNO2 to reveal the microstructural 

constituents of the specimen (grains and precipitates). 

1.3.2.1 Fatigue at 700°C 

Figure 1.5 shows the microstructure of alloy 230 after a fatigue test at 700°C with a strain 

amplitude Δ휀 = ±0.3% and a frequency of 0.5 Hz. The test was conducted to rupture, 

which occurred after around 8000 cycles, meaning the material was exposed to a 

temperature of 700°C for around 4,5 hours. 

 

Figure 1.5 – Microstructure of alloy 230 after a fatigue test at 700°C with a strain amplitude 𝛥휀 = ±0.3%  

Compared to the reference state (Figure 1.4), the microstructure of the specimen after 

fatigue shows a recrystallised structure with twinning boundaries. The grain boundaries 

are more contrasted than in the reference, and some of them appear to be serrated, which 

is a sign of secondary precipitation taking place along the grain boundaries. 

1.3.2.2 Creep at 700°C 

Two creep samples were studied, both tested at 700°C:  

• Sample ZC3 which was tested under a constant stress of 165 MPa for a duration 

of 7103h (rupture), shown in Figure 1.6. 

• Sample ZC4 which was tested under a constant stress of 295 MPa for a duration 

of 172h (rupture), shown in Figure 1.7. 
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In both samples, the grains are elongated in the loading direction. In the ZC3 sample, the 

grain boundaries are more contrasted than in the reference (Figure 1.4), and some grain 

boundaries display serrations which indicate secondary precipitation. In the ZC4 sample, 

the grain boundaries are also more contrasted than the reference but less than the ZC3 

sample. This can be explained from the difference in the duration of the tests. Sample 

ZC3 was exposed to a temperature of 700°C for more than 7000h, that is around 40 times 

longer than sample ZC4. Therefore, it is expected that more precipitation occurred in 

sample ZC3. 

 
Figure 1.6 – Microstructure of alloy 230 after a creep test at 165 MPa (7103h) 

 
Figure 1.7 – Microstructure of alloy 230 after a creep test at 295 MPa (172h) 
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1.3.2.3 Creep-fatigue at 700°C 

Creep-fatigue tests are strain-controlled cyclic tests which comprise hold times at 

maximum and/or minimum strain. Figure 1.8 shows the microstructure of the material 

after a creep-fatigue test at 700°C with a strain amplitude 𝛥휀 = ±0.3% and hold times of 

120s at 휀 = −0.3% (compressive hold). The strain rate for loading and unloading is equal 

to 0.1%/s. The rupture occurred after 1378 cycles, corresponding to a total test time of 48 

hours. The microstructure is similar to the microstructure obtained from the fatigue test 

(Section 1.3.2.1), with precipitates both inside grains and at grain boundaries, as well as 

twinning boundaries. 

 

Figure 1.8 – Microstructure of alloy 230 after a creep-fatigue test at 700°C with a strain amplitude 𝛥휀 = ±0.3% 

Figure 1.9 shows the rupture plane and Figure 1.10 shows a secondary crack. Both 

pictures are evidence of a transgranular mode of cracking, usually associated with fatigue. 

In the literature, studies made on alloy 230 at 800°C and 850°C show that low-cycle 

fatigue testing result in transgranular cracking [9], while creep testing leads to 

intergranular cracking [6]. Mixed creep-fatigue loadings with hold times in tension led to 

mixed modes of cracking, with an increased influence of intergranular cracking with 

longer hold times [9], [10]. The fact that only transgranular cracking is observed in our 

case may be due to the fact that the hold times (where creep is likely to occur) are applied 

under compression, which is not favourable for the development of cracks. However, the 

lifetime under creep-fatigue is much shorter than the lifetime of the equivalent fatigue 

test studied above (same temperature, strain amplitude, and strain rate). This severe 

reduction of the lifetime does not seem to be linked directly to creep damage, which 

consists of grain boundary voiding and intergranular decohesion, but rather to 
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environmental factors. Indeed, thermal ageing causes significant precipitation and plays 

an important role in the lifetime reduction [11]. Additionally, oxidation was observed 

along the cracks and could have assisted the crack propagation.  However, there is no sign 

that oxidation was responsible for crack initiation. 

 
Figure 1.9 – Rupture surface of the tested sample after the creep-fatigue test at 700°C 

 
Figure 1.10 – Secondary crack in the material after creep-fatigue testing at 700°C 

1.3.2.4 Anisothermal creep-fatigue between 300°C and 700°C 

A test similar to the creep-fatigue test was performed with varying temperatures. In the 

anisothermal case, however, hold times of 120s were applied both in tension and 

compression. The temperature is varied along with the strain: compression phases 

correspond to the maximum temperature (700°C) and tensile phases to the minimum 

temperature (300°C). The strain rate is set to around 0.002% to match the temperature 

variation. Rupture occurred after 1549 cycles, corresponding to a total test duration of 

330 hours. 
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Figure 1.11 shows the microstructure of the sample after testing. As for the fatigue and 

creep-fatigue tests, significant precipitation can be observed at grain boundaries and 

inside grains as well as twinning. 

 

Figure 1.11 – Microstructure of alloy 230 after anisothermal creep-fatigue testing 

The cracking mode is transgranular, as it was for the isothermal creep-fatigue tests. Figure 

1.12 shows a close-up of a crack in the longitudinal plane. Once again, the effect of creep 

on the fracture mode may be less significant in these tests because the hold times at high 

temperature occur under compressive strain. The tensile hold times are done at 300°C, 

where little to no creep occurs. 

 

Figure 1.12 – Transgranular crack in the sample after anisothermal creep-fatigue testing 
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2 EXPERIMENTAL CAMPAIGN 

The following section summarizes the results of the mechanical experimental campaign 

performed on alloy 230 by the CRM for the Solar PERFORM and Solar GNEXT projects. 

All the samples tested were manufactured from bars of alloy 230. 

For confidentiality reasons, all the test results are normalized, i.e., the values have been 

divided by an adequate factor for each type of test. 

2.1 TENSILE TESTS 

Tensile tests were performed at various temperatures to obtain the stress-strain relation 

of the material. The normalized results are shown in Figure 1.13. The maximum strain 

휀𝑚𝑎𝑥 was chosen in a range from 1% to 5%. 휀𝑚𝑎𝑥 was used to normalize the strain in 

Figure 1.13 and the stress value at 휀𝑚𝑎𝑥 for the test at room temperature was used to 

normalize the stress. The strain range is limited to this maximum strain in the figure 

because large strain behaviour is not of interest for the application to solar receivers. The 

stress-strain curves are consistent with the general properties given by the manufacturer 

(see section 1.2.2): the stress is highest at room temperature and the behaviour remains 

more or less the same at temperatures ranging from 200°C to 700°C. Above 700°C, the 

stresses are lower and tend to decrease with increasing strain (softening of the material). 

 

Figure 1.13 – Tensile test results at different temperatures. The stress is normalized with the value of the stress at a 

deformation 휀𝑚𝑎𝑥 at room temperature. 
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2.2 CREEP 

Several creep tests were performed at temperatures ranging from 600°C to 850°C.  Figure 

1.14 shows the typical creep behaviour of alloy 230 at high temperature. Three stages can 

be distinguished:  

• Primary creep, where the creep rate is initially high but decreases with time due 

to strain hardening. This stage is usually very short for alloy 230, particularly at 

higher temperatures. 

• Secondary creep, where the creep rate remains constant due to a balance between 

strain hardening and thermal softening or recovery of dislocations. 

• Tertiary creep, where the strain rate increases exponentially due to necking and 

coalescence of defects, leading to rupture. 

 
Figure 1.14 – Schematic of a typical creep test for alloy 230 

The secondary creep phase is the most interesting for design purposes: primary creep is 

only a transitory state and tertiary creep corresponds to a highly damaged material, which 

should be avoided.  

Figure 1.15 shows the secondary creep strain rate at different temperatures for three tested 

values of creep stress. The data comes from experiments done at the CRM and data 

provided by Haynes®. A logarithmic scale is used for the strain rate. For a given value of 

the creep stress, the evolution of creep strain rate with temperature is exponential. It can 

also be noted that the creep rate is relatively small at 600°C (10−4 %/ℎ), even for a high 

stress like 276 MPa, which corresponds to 92% of the yield stress. 
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Figure 1.15 – Secondary creep strain rate as a function of temperature for different creep stress values 

2.3 RELAXATION 

Multiple hardening and relaxation (MHR) tests were performed at different temperatures. 

These tests consist in applying sequential strain holds and increasing the value of the 

strain at each new hold time, as shown in Figure 1.16. The sample is first maintained at a 

0.1% strain for a duration 𝑡𝑟𝑒𝑙, then the strain is increased to 0.2% and held at this strain 

for another period 𝑡𝑟𝑒𝑙, then the strain is increased to 0.3%, etc… Relaxation is a 

phenomenon related to creep, and both are associated to the viscosity of the material at 

high temperature. The main mechanism is the diffusion of atoms which tend to eradicate 

dislocations, and therefore lower the mechanical resistance of the material. The stress 

curves shown in Figure 1.16 are normalized with the maximum stress obtained on the test 

at 600°C. 

MHR tests show the relaxation behaviour of the material: at high temperature, the stress 

gradually decreases when the strain is kept constant. As can be seen in Figure 1.16, 

relaxation becomes more significant with increasing temperatures. At 600°C, there is 

little to no change in the stress level, which is coherent with the creep strain rate measured 

at 600°C (see Section 2.2 above). Starting from 700°C, there is a rapid and significant 

drop in the value of the stress. It can be noted that the rate of relaxation increases with 

temperature, i.e., the stress drops more rapidly at higher temperatures, which is expected 

because diffusion rates of atoms in metals become higher with increasing temperatures. 
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Figure 1.16 – Multiple hardening and relaxation tests at temperatures from 600°C to 850°C.  

The stress curves are normalized with the maximum stress at 600°C. 

2.4 FATIGUE 

Strain-controlled low-cycle fatigue (LCF) tests were performed at various temperatures 

with different strain amplitudes Δ휀. Figure 1.17 represents the imposed strain for the low-

cycle fatigue tests. The imposed strain has a triangular waveform and evolves between 

−Δ휀 and +Δ휀. Ahmed [12] showed that the value of the frequency has little to no effect 

on the LCF response of alloy 230 at temperatures below 871°C; therefore, the frequency 

of the loading was set to 0.5 s-1 for all tests as a compromise between an efficient control 

and a limited duration of the test. For tests above room temperature, the samples were 

heated with an inductor. 

 

Figure 1.17 – Imposed strain for the low-cycle fatigue tests 

Figure 1.18 and Figure 1.19 show the normalized stress amplitude from the LCF tests. 

The results are grouped by strain amplitude in Figure 1.18 and by temperature in Figure 

1.19. For each graph, the stress amplitude 𝜎𝑎𝑚𝑝 is normalized with the maximum stress 

of all LCF tests at that temperature or strain rate: for instance, at 0.2% strain amplitude in 
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Figure 1.18, the maximum stress amplitude 𝜎max(0.2%) is obtained at the last cycle of the 

400°C test. The curves plotted in the 0.2% graph correspond to 𝜎𝑎𝑚𝑝/𝜎max(0.2%). 

From Figure 1.18, it can be observed that for a given strain amplitude, the stress levels 

are similar at high temperature. The room temperature stress amplitude is systematically 

above the other curves at low and intermediate cycle numbers, however, towards the end 

of the tests, stress amplitudes are often higher for medium temperatures (400 to 700°C). 

Above 700°C, cyclic hardening (i.e., an increase of the stress amplitude with cycles) is 

not as significant, and the final stress amplitude is lower than for temperatures ranging 

from 400°C to 700°C.  

The change of behaviour with temperature is clearly not monotonous: for instance, with 

a 0.4% strain amplitude, the material exhibits cyclic softening at room temperature, 

significant cyclic hardening at temperatures from 400°C to 700°C, and a rapid 

stabilization at 800°C and 850°C. 

  

  
Figure 1.18 – Stress amplitude of LCF tests for strain amplitudes of 0.2%; 0.3%; 0.4%; 0.5% 

Figure 1.19 shows that at every temperature the stress amplitude is higher for higher strain 

amplitudes. At room temperature, the stress amplitude increases in the first 100 cycles 
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and then decreases (cyclic softening for Δ휀 = 0.5% and 0.4%) or stabilizes. From 400°C 

to 700°C, the material exhibits significant cyclic hardening. For temperatures above 

700°C, the stress amplitude tends to stabilize more rapidly.  

  

  

  
Figure 1.19 – Stress amplitude for various low-cycle fatigue tests at 25°C; 400°C; 500°C; 600°C; 700°C; 750°C; 

800°C; 850°C 

Figure 1.20 shows the normalized stress-strain hysteresis loops at cycles 2, 100, 5500 and 

10000 (near rupture) for a low-cycle fatigue test at 700°C with a 0.3% strain amplitude. 
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There is a noticeable thinning of the hysteresis loop with increasing cycles, which is 

evidence of the cyclic hardening. The stress-strain hysteresis loops for cycles 5500 and 

10000 overlap almost perfectly, which shows the stabilization of the material behaviour. 

 

Figure 1.20 – Normalized stress vs. strain hysteresis loops at different cycles for the LCF test at 700°C with a 0.3% 

strain amplitude 

2.5 COMBINED CREEP-FATIGUE 

2.5.1 Isothermal creep-fatigue 

At high temperature, alloy 230 exhibits viscous behaviour, which can be influenced by 

the viscosity of the material. In order to test the effect of viscosity on the cyclic behaviour, 

creep-fatigue tests were performed. These tests are cyclic tests that include one or several 

hold times in each cycle, as represented in Figure 1.21. The test characteristics are 

summarized in Table 1.2, where 𝑇 is the temperature, 𝑡𝐻
− the hold time under compressive 

strain, 𝑡𝐻
+ the hold time under tensile strain, Δ휀 the strain amplitude, and 휀̇ the strain rate 

during the ramp loading. 

Table 1.2 – Creep-fatigue test characteristics 

Test 𝑇 𝑡𝐻
− 𝑡𝐻

+ Δ휀 휀̇ 
C700 

700°C 𝑡1 
0s 

0.3% 0.6%/s 
TC700 𝑡1 

C800 1 

800°C 

𝑡1 

0s 0.25% 0.1%/s C800 2 5𝑡1 
C800 3 30𝑡1 
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Figure 1.21 – Loading for the isothermal creep-fatigue tests 

Figure 1.22 shows the normalized maximum and minimum stresses for the creep-fatigue 

tests performed at 800°C with a strain amplitude of 0.25% (C800-1, C800-2, and C800-

3). The stress amplitude from fatigue tests with 0.2% and 0.3% strain amplitude is also 

plotted for comparison. The stress amplitude for creep-fatigue tests is more or less the 

same, regardless of the hold time. Compared to the fatigue tests, there is a clear shift 

towards tensile stresses with increasing number of cycles. This shift also seems to be 

more significant for higher hold times. The shift towards tensile stress is due to the 

asymmetry of the loading: during the compressive strain hold, the stress relaxes towards 

smaller values of the compressive stress, as can be seen in Figure 1.23 for test C800-3. 

After 10 cycles, the maximum compressive stress is approximately 80% of the maximum 

tensile stress. 

 
Figure 1.22 – Normalized stress amplitude for the creep-fatigue tests at 800°C 

The lifetime in terms of number of cycles is significantly reduced for tests with hold times 

compared to pure fatigue tests, and the reduction is larger for longer hold times. Since the 

stress levels are similar for the three 800°C creep-fatigue tests, a likely explanation for 
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this reduction is the influence of thermal ageing and the larger amount of plastic 

deformation that occurs during the relaxation phase. 

 

Figure 1.23 – Normalized stress-strain hysteresis loop for the creep-fatigue test C800-3 at 800°C with 30𝑡1 hold time 

in compression 

The hysteresis loops shown in Figure 1.23 are similar for all cycles. However, it can be 

noted that the Young modulus (i.e., the slope of the linear parts of the loop) decreases 

slightly with increasing number of cycles. This could also be due to thermal ageing or to 

damage of the material. 

2.5.2 Anisothermal creep-fatigue 

The behaviour of the material under varying temperature is studied using anisothermal 

creep-fatigue tests, similar to the isothermal ones described in section 2.5.1 above. The 

imposed loading is shown in Figure 1.24: a mechanical strain 휀𝑚 is imposed to the sample 

while the temperature is made to vary at the same time. The mechanical strain is defined 

by Eq. (1.2) where 휀 is the total strain and 휀𝑡ℎ is the thermal strain caused by thermal 

expansion. Practically, a first cycle without mechanical strain, i.e., the temperature is 

varied at zero applied force, is performed to measure the thermal strain with an 

extensometer. The total strain to apply as a function of time on one cycle is then calculated 

as the sum of the targeted mechanical and measured thermal strains. 

휀𝑚 = 휀 − 휀𝑡ℎ (1.2) 

The sample is held under compressive mechanical strain at high temperature 𝑇𝑚𝑎𝑥 and 

under tensile strain at low temperature 𝑇𝑚𝑖𝑛, as shown in Figure 1.24. Two maximum 

temperatures were tested. For confidentiality reasons, the values of temperatures 𝑇𝑚𝑖𝑛 
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and 𝑇𝑚𝑎𝑥 are not disclosed here, but the unique 𝑇𝑚𝑖𝑛 is in the range of 25°C to 500°C 

(temperatures at which no creep or relaxation occurs) and the two chosen values of 𝑇𝑚𝑎𝑥 

were above 600°C (temperatures at which creep and relaxation are present). 

  

Figure 1.24 – Loading of the anisothermal creep-fatigue tests: imposed temperature (top) and imposed mechanical 

strain (bottom) 

Figure 1.25 shows the hysteresis loops at different cycles for one of the anisothermal 

creep-fatigue tests. When the mechanical strain increases from -0.25% to +0.25%, the 

behaviour is similar to the behaviour under isothermal loading, i.e., the stress increases 

with increasing strains. It can be observed that despite the hold time, no stress relaxation 

occurs at +0.25%, which is expected since this value of the strain corresponds to 

temperature 𝑇𝑚𝑖𝑛 where the material shows no creep or relaxation. When the strain is 

lowered to negative values, the absolute value of the stress increases at first, and then 

decreases. This is due to the temperature changes: as the compressive strain is increased, 

so is the temperature. Increasing the temperature leads to a softening of the material, as 

shown in sections 2.1 and 2.4. Once the peak compressive strain is reached, the stress 

relaxes (i.e., decreases in absolute value) during the hold time 𝑡𝐻
−. 

By comparing the curves at different cycles, it can be observed that the Young modulus 

decreases significantly with increasing number of cycles, similarly to what was observed 

for the isothermal test (Figure 1.23). It is likely that the effect of thermal ageing is more 

visible at lower temperatures, therefore, the decrease of the Young modulus seems more 

significant here than in the isothermal test which is kept at 𝑇𝑚𝑎𝑥. 
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Figure 1.25 – Hysteresis loops for an anisothermal creep-fatigue test at cycles 2, 10, 300, 500, and 600 

Figure 1.26 shows the normalized maximum and minimum stresses per cycle for an 

anisothermal test and the equivalent isothermal test at 𝑇𝑚𝑎𝑥 (same Δ휀 and same 𝑡𝐻
−). The 

compressive stresses are more or less the same, however, the tensile stresses are much 

higher for the anisothermal tests. This is due to the fact that the tensile stresses develop 

at lower temperatures, where hardening of the material is more significant. The lifetime 

in terms of number of cycles is significantly reduced with the anisothermal loading 

compared to the isothermal loading. 

 

Figure 1.26 – Normalized stress amplitude for an anisothermal creep-fatigue test between 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥 and a 

corresponding isothermal creep-fatigue test at 𝑇𝑚𝑎𝑥 
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3 CONCLUSION 

In this chapter, the mechanical behaviour of alloy 230 was studied at different 

temperatures and under varying temperatures.  

In the first part, an analysis of the microstructure allowed to get a better understanding of 

the rupture mechanisms of alloy 230 under creep-fatigue loadings. This analysis was 

based on observations made by the Metallurgy and Materials Science lab at the University 

of Liège and works from the literature. The results show that the addition of compressive 

hold times in a cyclic loading do not affect the cracking mode, which remains 

transgranular. However, it leads to much shorter lifetimes which could be explained by 

the increased importance of thermal ageing and corrosion. 

In the second part, the results from the experimental campaign are shown and analysed. 

The tensile and fatigue behaviour of alloy 230 is rather stable at temperatures ranging 

from 200°C to 700°C. Alloy 230 exhibits significant cyclic hardening at all temperatures. 

Viscoplastic effects are visible from 600°C but become really significant at temperatures 

above 700°C. The resistance to fatigue and creep are reduced with increasing 

temperatures. For tests with asymmetrical loadings, such as creep-fatigue tests with hold 

times only in tension or only in compression, a significant evolution of the mean stress is 

observed. At high temperature, the Young modulus tends to decrease with increasing 

number of cycles in creep-fatigue tests, due to thermal ageing or damage. 
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1 MODEL 

The constitutive model that was chosen to represent the thermo-mechanical behaviour of 

alloy 230 was originally developed by Ahmed and Hassan [1]. It is based on a previous 

isothermal version of the model [2] which derives from the Chaboche viscoplastic 

constitutive model framework [3].  

1.1 BASIC CHABOCHE MODEL 

Chaboche developed a general model for the description of the mechanical plastic and 

viscoplastic behaviour of materials. In this model, the state of the material at a given time 

depends on the current values of observable variables – such as temperature and total 

strain – and on a set of internal variables [4].  

The main features of the Chaboche model are summarized hereafter.  

1.1.1 Notation 

In a 3-dimensional case, stresses and strains are represented by 3-by-3 second-order 

tensors (bold 𝝈 or 𝜺). Owing to their symmetry, these tensors can be rewritten as 6-by-1 

vectors using the Voigt notation (underlined 𝜎). Eq. (2.1) shows the stress tensor in its 

original form, and the equivalent Voigt notation (𝜎).  

𝝈 = [

𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧
𝜎𝑦𝑥 𝜎𝑦𝑦 𝜎𝑦𝑧
𝜎𝑧𝑥 𝜎𝑧𝑦 𝜎𝑧𝑧

] ⟺ 𝜎 =

{
 
 

 
 
𝜎1
𝜎2
𝜎3
𝜎4
𝜎5
𝜎6}
 
 

 
 

=

{
 
 

 
 
𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑧𝑧
𝜎𝑥𝑦
𝜎𝑥𝑧
𝜎𝑦𝑧}
 
 

 
 

 (2.1) 

Using the notation 𝜎 defined in Eq. (2.1), the double contracted product of two 2nd order 

tensors 𝜎𝐴 and 𝜎𝐵 is given by Eq. (2.2), using Einstein’s summation convention: 

𝝈𝐴: 𝝈𝐵 = 𝜎𝑖𝑗
𝐴𝜎𝑖𝑗

𝐵  

⟺ 𝜎𝐴: 𝜎𝐵 = 𝜎1
𝐴𝜎1

𝐵 + 𝜎2
𝐴𝜎2

𝐵 + 𝜎3
𝐴𝜎3

𝐵 + 2(𝜎4
𝐴𝜎4

𝐵 + 𝜎5
𝐴𝜎5

𝐵 + 𝜎6
𝐴𝜎6

𝐵) 
(2.2) 

Similarly, the 4th order elasticity tensor can be simplified and rewritten as a 6-by-6 array, 

as shown in Eq. (2.3), where 𝐸 is the Young modulus and 𝜈 is the Poisson’s ratio: 
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𝐸 =
𝐸

1 + 𝜈

[
 
 
 
 
 
 
 
 
 
1 − 𝜈

1 − 2𝜈

𝜈

1 − 2𝜈

𝜈

1 − 2𝜈
0 0 0

𝜈

1 − 2𝜈

1 − 𝜈

1 − 2𝜈

𝜈

1 − 2𝜈
0 0 0

𝜈

1 − 2𝜈

𝜈

1 − 2𝜈

1 − 𝜈

1 − 2𝜈
0 0 0

0 0 0 1/2 0 0
0 0 0 0 1/2 0
0 0 0 0 0 1/2]

 
 
 
 
 
 
 
 
 

 (2.3) 

The double contracted product (tensor 𝒄) of a 4th order tensor 𝑪 and a 2nd order tensor 𝒂 

is defined by Eq. (2.4): 

𝒄 = 𝑪: 𝒂 

𝑐𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝑎𝑘𝑙 
(2.4) 

This product can be rewritten using Voigt notation, as shown in Eq. (2.5): 

𝑐 = 𝐶: 𝑎 

𝑐𝑖 = 𝐶𝑖1𝑎1 + 𝐶𝑖2𝑎2 + 𝐶𝑖3𝑎3 + 2(𝐶𝑖4𝑎4 + 𝐶𝑖5𝑎5 + 𝐶𝑖6𝑎6)  𝑤𝑖𝑡ℎ 𝑖 = 1: 6 
(2.5) 

The Voigt notation is particularly useful for the implementation of the model in a 

computer code, as it reduces the necessary memory storage and simplifies mathematical 

operations on tensors. 

1.1.2 Elastic domain 

The total strain can be decomposed into thermal 휀𝑡ℎ, elastic 휀𝑒, and plastic (or inelastic) 

휀𝑝 strains, as expressed in Eq. (2.6): 

휀 = 휀𝑡ℎ + 휀𝑒 + 휀𝑝 (2.6) 

The stress and elastic strain are related through Hooke’s law: 

𝜎 = 𝐸: 휀𝑒 (2.7) 

The yield locus is defined using the von Mises criterion given by Eq. (2.8), where 𝑋 is 

the back-stress representing kinematic hardening, 𝑅 is the isotropic hardening parameter, 

and 𝜎𝑦 is the yield stress. In the principal stress space, the von Mises criterion describes 

a sphere of radius 𝑅 + 𝜎𝑦 with its centre translated by a vector 𝑋 from the origin, as shown 

in Figure 2.1. Initially, while no hardening has occurred, the yield surface is centred at 

the origin and has a radius 𝜎𝑦. As hardening occurs, the yield surface can grow in size 

(isotropic hardening) and/or be translated (kinematic hardening).  
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𝑓 = 𝐽(𝜎 − 𝑋) − 𝑅 − 𝜎𝑦 ≤ 0 (2.8) 

The von Mises stress 𝐽(𝜎) is defined by Eq. (2.9), where �̂� is the deviatoric stress: 

𝐽(𝜎) = √
3

2
�̂�: �̂� (2.9) 

 

Figure 2.1 - Schematics of the von Mises criterion with isotropic and kinematic hardening 

Plastic flow occurs when 𝑓 = 0 and 
𝜕𝑓

𝜕𝜎
: �̇� > 0, i.e., when the yield surface has been 

reached and loading is applied. The normal plastic flow rule is written as Eq. (2.10), where 

𝑝 is the plastic multiplier (also known as cumulative plastic strain) defined by Eq. (2.11): 

휀̇𝑝 = �̇�
𝜕𝑓

𝜕𝜎
 

(2.10) 

�̇� = √
2

3
휀̇𝑝: 휀̇𝑝 (2.11) 

To solve Eq. (2.10) the different hardening rules must first be defined. 

1.1.3 Isotropic hardening 

Isotropic hardening corresponds to the evolution of the size of the yield surface with the 

increase of the cumulated plastic strain 𝑝. In the Chaboche model, isotropic hardening is 

represented by a scalar variable 𝑅, also known as drag stress. The evolution of the drag 

stress 𝑅 can be defined by a simple differential equation (2.12), which leads to a stable 

asymptotic behaviour. 𝑏 and 𝑄 are material parameters that depend on temperature. As 
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can be deduced from the integrated form of the isotropic hardening equation (2.13), 𝑄 is 

the asymptotic value of the drag stress and 𝑏 is related to the rate of evolution of 𝑅. 

�̇� = 𝑏(𝑄 − 𝑅)�̇� (2.12) 

𝑅 = 𝑄(1 − 𝑒−𝑏𝑝) (2.13) 

Since the drag stress is a function of the cumulated plastic strain, isotropic hardening can 

be used to describe cyclic hardening. Figure 2.2 shows the evolution of the stress-strain 

hysteresis loop for a virtual material subjected to a uniaxial cyclic loading. At cycle 1, 

where no hardening has occurred, the size of the yield surface corresponds to the yield 

stress 𝜎𝑦 (120 MPa). After a large number of cycles, isotropic hardening has saturated, 

and the size of the yield surface is equal to 𝜎𝑦 + 𝑄 (270 MPa). 

 

Figure 2.2 - Isotropic hardening for a virtual material under strain-controlled uniaxial cyclic loading 

1.1.4 Kinematic hardening 

Kinematic hardening can be understood as the translation of the elastic domain in the 

stress space.  

Kinematic hardening can be represented numerically using the Armstrong-Frederick 

nonlinear flow rule [5], [6]: 

�̇� =
2

3
𝐶휀̇𝑝 − 𝛾𝑋�̇� (2.14) 

The first term of Eq. (2.14) corresponds to the linear rule proposed by Edelman and 

Drucker [7] based on the works of Prager [8]. With the linear rule, an increment of the 

𝑄 

𝜎𝑦 



Chapter 2 – Modelling of the thermo-mechanical behaviour of alloy 230 36 

 

 

plastic strain 𝛿휀𝑝 leads to an increase of the resistance in the direction of the plastic strain 

increment, i.e., the yield surface is translated following the direction of 𝛿휀𝑝.  

The recall term −𝛾𝑋�̇� added by Armstrong and Frederick diminishes the effect of the 

initial conditions after the increment of plastic strain has occurred. The idea is that the 

material behaviour at a given point depends on the most recent plastic strain increments 

and not on the whole plastic strain path. The recall term therefore creates an evanescent 

strain memory effect. 

Figure 2.3 shows the stress-strain hysteresis loop for a virtual material subjected to a 

strain-controlled uniaxial loading with and without kinematic hardening, modelled using 

the Armstrong-Frederick flow rule. For the material with no hardening, the stress evolves 

linearly with the strain until it reaches the yield limit 𝜎𝑦. For the case with kinematic 

hardening, the stress increases further once the yield limit is reached. However, upon 

reversal of the loading, the size of the yield surface (part where the stress is a linear 

function of the strain) remains unchanged and equal to 2𝜎𝑦. 

 

Figure 2.3 - Visualisation of kinematic hardening for a virtual material without any isotropic hardening subjected to 

uniaxial strain-controlled loading 

The Armstrong-Frederick flow rule also allows to represent the Bauschinger effect, as 

can be seen in Figure 2.3 for the hysteresis loop with kinematic hardening: following the 

initial compressive load, the tensile yield limit is lower than its initial value 𝜎𝑦. 

One drawback of the Armstrong-Frederick formulation is the limited validity of the 

model: if the kinematic hardening is identified for small values of the plastic strain, it will 

quickly reach a saturated value and produce no hardening for higher values of the plastic 

2𝜎𝑦   

2𝜎𝑦   
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strain. Similarly, if the parameters are adapted to higher plastic strains, the behaviour of 

the material will not be reproduced properly in the range of small plastic strains. To 

remedy that problem, Chaboche [9] proposed to simply add multiple back-stresses: 

𝑋 =∑𝑋𝑖
𝑖

 (2.15) 

𝑋𝑖̇ =
2

3
𝐶𝑖휀̇

𝑝 − 𝛾𝑖𝑋𝑖�̇� (2.16) 

Having several back-stresses gives the model more flexibility and increases its validity 

domain. 

1.1.5 Viscoplasticity 

At high temperatures, metallic materials exhibit a viscoplastic behaviour, meaning time 

and strain rate influence the inelastic behaviour. The elastic domain can still be defined 

using Eq. (2.8) and the hardening equations presented above are still valid for the 

viscoplastic model, however, the stress state can be such that 𝑓 > 0. The viscous 

overstress 𝜎𝑣 is defined by Eq. (2.17): 

𝜎𝑣 = 𝐽(𝜎 − 𝑋) − 𝑅 − 𝜎𝑦 > 0 (2.17) 

A viscoplastic potential was defined by Malinin and Khajinsky [10], with two material 

parameters 𝐾 and 𝑛: 

Ω =
𝐾

𝑛 + 1
⟨
𝐽(𝜎 − 𝑋) − 𝑅 − 𝜎𝑦

𝐾
⟩

𝑛+1

 (2.18) 

Where 〈𝑥〉 denotes the Macaulay brackets defined by Eq. (2.19): 

〈𝑥〉 = {
𝑥 if 𝑥 ≥ 0
0 if 𝑥 < 0

 (2.19) 

The normal flow rule defined by Eq. (2.10) for rate-independent plasticity becomes: 

휀̇𝑝 = �̇�
𝜕Ω

𝜕𝜎
=
3

2
�̇�
�̂� − 𝑋

𝐽(𝜎 − 𝑋)
 (2.20) 

�̇� = ⟨
𝐽(𝜎 − 𝑋) − 𝑅 − 𝜎𝑦

𝐾
⟩

𝑛

 (2.21) 

This finally gives Eq. (2.22), which is similar to the Norton-Hoff equation: 

𝜎𝑣 = 𝐾�̇�
1
𝑛 (2.22) 
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Viscous effects can also be modelled by introducing a recovery term in the kinematic 

hardening flow rule. Indeed, at high temperatures metals are subjected to thermal 

recovery, during which grains reduce their stored energy by removing or rearranging 

defects such as dislocations. This results in a decrease of hardening. A mathematical 

model of this phenomenon was initially proposed by Orowan [11] and later generalized 

by Chaboche and Rousselier [4] as Eq. (2.23), introducing material parameters 𝑏𝑖 and 𝑟𝑖: 

�̇�𝑖 =
2

3
𝐶𝑖휀̇

𝑝 − 𝛾𝑖𝑋𝑖�̇� − 𝑏𝑖𝐽(𝑋𝑖)
𝑟𝑖−1

𝑋𝑖 (2.23) 

For high values of the strain rate, the two first terms of Eq. (2.23) are dominant and 

kinematic hardening evolves as displayed in 1.1.4. However, for low values of the strain 

rate, hardening is lowered and can be completely recovered if the material is maintained 

at a zero strain rate for a long enough time. 

1.1.6 Thermal variation 

The behaviour of a given material changes with the temperature 𝑇. To take this into 

account, the material parameters of the Chaboche model can be considered temperature 

dependent. To also take into account the rate of temperature variation �̇�, an additional 

term is necessary in the hardening equations, as shown in equations (2.24) and (2.25) 

where [�̇�𝑖]�̇�=0 and [�̇�]
�̇�=0

 denote the expressions of �̇�𝑖 and �̇� without thermal variation 

(equations (2.23) and (2.12)): 

�̇�𝑖 = [�̇�𝑖]�̇�=0 +
1

𝐶𝑖
 
𝑑𝐶𝑖
𝑑𝑇

�̇�𝑋𝑖 (2.24) 

�̇� = [�̇�]
�̇�=0

+ (
1

𝑏

𝜕𝑏

𝜕𝑇
+
1

𝑄

𝜕𝑄

𝜕𝑇
)𝑅�̇� (2.25) 

1.2 ADVANCED FEATURES OF THE CHABOCHE MODEL 

1.2.1 Cyclic hardening and strain memory surface 

As mentioned in Section 1.1.3, isotropic hardening can be used to model cyclic hardening. 

However, cyclic hardening does not necessarily manifest as an increase of the size of the 

yield surface. This is the case for alloy 230, which displays significant cyclic hardening 

without any change in the size of the yield surface, as demonstrated by Ahmed et al. [2]. 

In this case, kinematic hardening can be used to model cyclic hardening by making the 

hardening modulus 𝛾𝑖 dependent on the plastic strain multiplier 𝑝, as proposed by 

Marquis [12]. The parameter 𝛾𝑖 evolves from its initial value 𝛾𝑖
𝑖𝑛𝑖𝑡 to a saturated value 𝛾𝑖

𝑓
 

at a rate 𝐷𝛾𝑖 as shown in Eq. (2.26). It changes the amplitude of variation of the back-

stress 𝑋𝑖.  



Chapter 2 – Modelling of the thermo-mechanical behaviour of alloy 230 39 

 

 

�̇�𝑖 = 𝐷𝛾𝑖(𝛾𝑖
𝑓
− 𝛾𝑖)�̇� (2.26) 

Experiments show that the amount of cyclic hardening is dependent on the strain 

amplitude. In order to model this, the asymptotic value of the hardening modulus  𝛾𝑖
𝑓
 can 

be calculated as a function of the strain memory surface, which is used to model the strain-

range dependence of the material [13]. The strain memory surface 𝑔𝑀 is defined by Eq. 

(2.27) to (2.29), where 𝐻 is the Heaviside step function, 〈𝑥〉 are the Macaulay brackets, 

and 휂 a material parameter representing the rate of evolution to a steady memory surface. 

The value of 휂 is set to 0.5 for an instantaneous memorization. The vectors 𝑛 and 𝑛∗ 

defined by Eq. (2.30) and (2.31) correspond to the normal to the yield surface 𝑓 and to 

the memory surface 𝑔𝑀, respectively. The plastic strain memory surface defines a sphere 

of centre 휁 and radius 𝑞 in the plastic strain space. 

𝑔𝑀 (휀
𝑝 − 휁) =

2

3
𝐽 (휀𝑝 − 휁) − 𝑞 (2.27) 

�̇� = √
2

3
휂𝐻(𝑔𝑀)〈𝑛: 𝑛

∗〉�̇� (2.28) 

휁̇ = (1 − 휂)𝐻(𝑔𝑀)〈𝑛: 𝑛
∗〉𝑛∗�̇� (2.29) 

With: 

𝑛 =
3

2

�̂� − 𝑋

𝐽(𝜎 − 𝑋)
 (2.30) 

𝑛∗ =
3

2

휀𝑝 − 휁

𝐽 (휀𝑝 − 휁)
 (2.31) 

The saturated value of the hardening modulus 𝛾𝑖
𝑓
 can be calculated as a function of the 

plastic strain memory surface radius and 3 material parameters 𝑎𝛾𝑖, 𝑏𝛾𝑖, 𝑐𝛾𝑖: 

𝛾𝑖
𝑓
= 𝑎𝛾𝑖 + 𝑏𝛾𝑖exp (−𝑐𝛾𝑖𝑞) (2.32) 

1.2.2 Mean stress evolution 

Ahmed and Hassan [1] showed that asymmetrical cyclic loading of alloy 230 (such as 

creep-fatigue with hold times only in tension or only in compression) resulted in a 

significant evolution of the mean stress: in the case of cyclic loading with compressive 

dwell times, the hysteresis loops tend to shift towards tensile stresses. In order to model 

this effect, Yaguchi et al. [14] proposed a modification of the kinematic hardening rule.  

More specifically, the second term (recall term) of Eq. (2.23) is modified by the addition 

of a tensor 𝑌𝑖, as initially proposed by Chaboche and Nouailhas [15]: 
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�̇�𝑖 =
2

3
𝐶𝑖휀̇

𝑝 − 𝛾𝑖(𝑋𝑖 − 𝑌𝑖)�̇� − 𝑏𝑖𝐽(𝑋𝑖)
𝑟𝑖−1�̇�𝑖 (2.33) 

Tensor 𝑌𝑖 evolves according to Eq. (2.34), where 𝛼𝑏,𝑖 is the rate of evolution of 𝑌𝑖 and 

𝑌𝑠𝑡,𝑖 controls the saturated value of 𝑌𝑖: 

�̇�𝑖 = −𝛼𝑏,𝑖 (
3

2
𝑌𝑠𝑡,𝑖

𝑋𝑖

𝐽(𝑋𝑖)
+ 𝑌𝑖) 𝐽(𝑋𝑖)

𝑟𝑖 (2.34) 

1.2.3 Temperature history 

In the case of thermo-mechanical loading, the material is exposed alternatively to high 

temperatures and low temperatures. It is well known that for most metallic materials, 

exposure to high temperatures leads to changes in the microstructure. These changes are 

often irreversible and influence the subsequent material behaviour even if lower 

temperatures are reached. 

To take into account the influence of the maximum temperature in the loading history 

𝑇𝑚𝑎𝑥, Ahmed and Hassan [1] proposed to make some of the model parameters dependent 

on 𝑇𝑚𝑎𝑥. This dependence is controlled by the equivalent plastic strain 𝑝, which can be 

seen as a measure of microstructural changes. Moreover, in the case of cyclic loading, 𝑝 

increases with the number of cycles, i.e., with the amount of time the material is exposed 

to 𝑇𝑚𝑎𝑥. 

The parameter 𝐷𝛾𝑖, which controls the rate of cyclic hardening (see Eq. (2.26) in section 

1.2.1) is made dependent on the maximum temperature through Eq. (2.35), where 𝐷𝛾𝑖
𝑇𝑚𝑎𝑥  

is the saturation value of parameter 𝐷𝛾𝑖 at temperature 𝑇𝑚𝑎𝑥 and 𝑏𝐷𝛾 is a rate parameter: 

�̇�𝛾𝑖 = 𝑏𝐷𝛾(𝐷𝛾𝑖
𝑇𝑚𝑎𝑥 − 𝐷𝛾𝑖)�̇� (2.35) 

The Young modulus 𝐸 is also made dependent on the maximum temperature, using a 

weighted average as shown in Eq. (2.36), where 𝑡 is the time since the beginning of 

loading, and 𝑇𝑚𝑎𝑥 the maximum temperature encountered so far in the loading. 𝐸(𝑇, 0) 

denotes the value of the Young modulus of the virgin material at temperature 𝑇. 

𝐸(𝑇, 𝑡) = 𝑓𝐸𝐸(𝑇, 0) + (1 − 𝑓𝐸)𝐸(𝑇𝑚𝑎𝑥, 0) (2.36) 

The value of the weighing factor 𝑓𝐸  evolves as a function of the cumulative plastic strain 

towards its saturation value 𝑓𝐸
𝑆 at a rate 𝑏𝐸: 

𝑓�̇� = 𝑏𝐸(𝑓𝐸
𝑆 − 𝑓𝐸)�̇� (2.37) 
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1.3 NUMERICAL IMPLEMENTATION 

The Chaboche model described above was implemented in the Lagamine finite-element 

code developed at the University of Liège [16] as a material subroutine. Table 2.1 

summarizes the different features of the model and their corresponding equations. The 

mention optional means that the feature will be ignored if it is not activated by the user 

through the choice of model parameters. 

Table 2.1 - Summary of the features available for the advanced Chaboche model 

Features Equations 

Strain partition 휀 = 휀𝑡ℎ + 휀𝑒 + 휀𝑝 

Hooke’s law 𝜎 = 𝐸: 휀𝑒 

Yield surface (von 

Mises) 
𝑓 = 𝐽(𝜎 − 𝑋) − 𝑅 − 𝜎𝑦 ≤ 0 

Viscoplasticity 
�̇� = ⟨

𝐽(𝜎 − 𝑋) − 𝑅 − 𝜎𝑦

𝐾
⟩

𝑛

 

for 𝑓 = 𝐽(𝜎 − 𝑋) − 𝑅 − 𝜎𝑦 > 0 

Isotropic hardening �̇� = 𝑏(𝑄 − 𝑅)�̇� 

Kinematic hardening 

 

Optional: 

• Static recovery 

• Thermal variation 

• Mean stress 

evolution 

�̇�𝑖 =
2

3
𝐶𝑖휀̇

𝑝 − 𝛾𝑖(𝑋𝑖 − 𝑌𝑖)�̇� − 𝑏𝑖𝐽(𝑋𝑖)
𝑟𝑖−1�̇�𝑖

+
1

𝐶𝑖
 
𝑑𝐶𝑖
𝑑𝑇

�̇�𝑋𝑖 

With:  

�̇�𝑖 = −𝛼𝑏,𝑖 (
3

2
𝑌𝑠𝑡,𝑖

𝑋𝑖

𝐽(𝑋𝑖)
+ 𝑌𝑖) 𝐽(𝑋𝑖)

𝑟𝑖 

Cyclic hardening 

(optional) 

�̇�𝑖 = 𝐷𝛾𝑖(𝛾𝑖
𝑓
− 𝛾𝑖)�̇� 

With:  

𝛾𝑖
𝑓
= 𝑎𝛾𝑖 + 𝑏𝛾𝑖exp (−𝑐𝛾𝑖𝑞) 

Effect of temperature 

history 

(optional) 

On cyclic hardening: 

�̇�𝛾𝑖 = 𝑏𝐷𝛾(𝐷𝛾𝑖
𝑇𝑚𝑎𝑥 − 𝐷𝛾𝑖)�̇� 

On the Young modulus: 

𝐸(𝑇, 𝑡) = 𝑓𝐸𝐸(𝑇, 0) + (1 − 𝑓𝐸)𝐸(𝑇𝑚𝑎𝑥, 0) 

With �̇�𝐸 = 𝑏𝐸(𝑓𝐸
𝑆 − 𝑓𝐸)�̇� 

1.3.1 Model features 

The optional features listed in Table 2.1 were implemented in the numerical model along 

with the base model. This means these features can be activated or deactivated depending 

on the material and range of temperature studied. 
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The number of back-stresses 𝑛𝐴𝐹 for the description of kinematic hardening is a material 

parameter. For alloy 230, it was chosen to use 𝑛𝐴𝐹 = 3 to have a high flexibility without 

excessively increasing the number of material parameters. 

Among the total 𝑛𝐴𝐹 back-stresses, the number of back-stresses that are used to describe 

cyclic hardening is 𝑛𝐴𝐹,𝑐𝑦𝑐. It can be equal to 0 if no cyclic hardening occurs or if cyclic 

hardening is modelled entirely through isotropic hardening. For alloy 230, the value is 

𝑛𝐴𝐹,𝑐𝑦𝑐 = 2. 

Similarly, for the description of the mean stress evolution, only 𝑛𝐴𝐹,𝑌 back-stresses are 

used. For alloy 230, 𝑛𝐴𝐹,𝑌 = 2. 

To sum things up, the two first back-stresses follow Eq. (2.33) with a varying 𝛾𝑖 parameter 

as described in Section 1.2.1, while the third back-stress follows Eq. (2.23) with a constant 

𝛾3. 

The dependence to the maximum temperature, which only has an influence for 

anisothermal loadings, can be activated or deactivated using parameter 𝑖𝑎𝑛𝑖𝑠𝑜𝑡ℎ.  

1.3.2 Description of the algorithm 

In a finite-element analysis, the goal of the material law is to determine, for each element, 

the consistent tangent matrix 𝐶 and the stress increment Δ𝜎 obtained for a given strain 

increment Δ휀. The elementary consistent tangent matrices are then assembled within the 

FE code to build the global tangent matrix, which is used for the resolution of the global 

equilibrium of the structure. 

The implementation of the Chaboche model as a material law was done following the 

work of Ahmed [17]. The details of the discretization of the equations can be found in his 

thesis and in Appendix 1. A summary of the algorithm implemented in Lagamine is 

provided in this section. 

The constitutive model consists in a set of differential equations detailed in Table 2.1 

above. At each time step (i.e., for each strain increment Δ휀 corresponding to a time 

increment Δ𝑡), these equations are linearized using the implicit Euler method. This 

numerical method is used to solve differential equations such as Eq. (2.38) using values 

of 𝑦 and 𝑡 at the end of the time step, as shown in Eq. (2.39), where subscripts 𝑘 and 𝑘 +

1 stand for the beginning and the end of the time step, respectively: Δ𝑡 = 𝑡𝑘+1 − 𝑡𝑘. 

Because the value of the unknown 𝑦𝑘+1 appears on both sides of Eq. (2.39), an iterative 

process such as the Newton-Raphson method is required to numerically solve it. 

𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦) (2.38) 
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𝑦𝑘+1 = 𝑦𝑘 + Δ𝑡 ∗ 𝑓(𝑡𝑘+1, 𝑦𝑘+1) (2.39) 

The radial return mapping algorithm, first introduced by Wilkins [18], is used to solve the 

viscoplasticity equations. This algorithm consists in the two following steps: 

• First, a predictor elastic step is computed. For this step, the increment of plastic 

strain Δ𝑝 is considered equal to zero. Applying Hooke’s law gives a direct 

evaluation of the trial stress increment Δ𝜎𝑡𝑟.  

• Secondly, the von Mises criterion is checked using the trial stress obtained from 

the first step, that is 𝑓𝑡𝑟 = 𝐽(𝜎𝑘 + Δ𝜎
𝑡𝑟 − 𝑋) − 𝑅 − 𝜎𝑦: 

o If 𝑓𝑡𝑟 ≤ 0, the stress state becomes 𝜎𝑘+1 = 𝜎𝑘 + Δ𝜎
𝑡𝑟 and the code can 

move on to the next time step; 

o If 𝑓𝑡𝑟 > 0, a plastic corrector Δ𝑝 > 0 is applied iteratively until 𝑓𝑘+1 ≤ 0, 

or, in the case of viscoplasticity (see section 1.1.5), until 𝑓𝑘+1 = 𝐾 (
Δ𝑝

Δ𝑡
)

1

𝑛
. 

The two steps of the radial return mapping algorithm are illustrated in Figure 2.4 for a 

uniaxial loading. 

 

Figure 2.4 - Radial return mapping for a uniaxial loading case 

1.3.2.1 Elastic predictor 

For the computation of the elastic predictor, the increment of plastic strain is zero. 

Therefore, the total strain increment can be rewritten as Eq. (2.40): 
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Δ휀 = Δ휀𝑒 + Δ휀𝑡ℎ (2.40) 

The increment of thermal strain Δ휀𝑡ℎ is computed using Eq. (2.41), where 𝛼 is the thermal 

expansion coefficient and 𝐼 the identity matrix in the Voigt notation. The increment of 

temperature Δ𝑇 is computed using a thermal law in Lagamine. Mechanical loading is 

considered to have no influence on heat transfer, which is a valid hypothesis for the solar 

receivers where there is no fast deformation. 

Δ휀𝑡ℎ =
𝛼(𝑇𝑘) + 𝛼(𝑇𝑘+1)

2
Δ𝑇𝐼 (2.41) 

The value of the elastic predictor Δ𝜎𝑡𝑟 is determined using the discretized expression of 

Hooke’s law: 

Δ𝜎tr = Δ(𝐸: 휀𝑒) = Δ𝐸: 휀𝑘+1
𝑒 + 𝐸𝑘+1: (Δ휀 − Δ휀

𝑡ℎ) (2.42) 

Although the elasticity tensor 𝐸 is not time-dependent, it is temperature dependent. 

Therefore, in the case of thermal loading with a variation of temperature Δ𝑇 = 𝑇𝑘+1 −

𝑇𝑘, the value of 𝐸 is not constant over the time step: 

Δ𝐸 = 𝐸(𝑇𝑘+1) − 𝐸(𝑇𝑘) (2.43) 

Ahmed and Hassan [1] showed that if the variation of the elasticity tensor is not taken 

into account, the stress-plastic strain hysteresis loops shift towards higher absolute values 

of the plastic strain, i.e., there is a wrong numerical accumulation of plastic strain. As a 

result, the radius and centre of the plastic strain memory surface are also modified. This 

has an impact on the computation of cyclic hardening parameters and therefore results in 

inaccurate representation of the material behaviour. 

Another problem occurs with the discretization shown in Eq. (2.42). Consider an out-of-

phase thermo-mechanical loading such as the one described in Section 2.5.2 of Chapter 1 

and represented in Figure 2.5 (a), that is, a creep-fatigue loading with varying 

temperatures where the maximal strain corresponds to the minimal temperature. The 

mechanical strain is defined as:  

휀𝑚 = 휀 − 휀𝑡ℎ (2.44) 

By using the end-of-step values, the Young modulus is slightly underestimated during the 

loading phases (increase of the temperature and increase of the deformation in absolute 

value) and it is slightly overestimated during unloading (decrease of temperature and 

decrease of the deformation in absolute value). This causes a shift in the plastic and elastic 
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strain, as shown in Figure 2.5 (b). To avoid this issue, Eq. (2.42) is rewritten using the 

values at mid-step instead of the values at the end of the step for the elasticity tensor and 

the elastic strain:  

Δ𝜎tr = Δ𝐸:
1

2
(휀𝑘
𝑒 + 휀𝑘+1

𝑒 ) +
1

2
(𝐸𝑘+1 + 𝐸𝑘) : (Δ휀 − Δ휀

𝑡ℎ) 
(2.45) 

Using Eq. (2.45), the model gives the hysteresis loops shown in Figure 2.5 (c). The stress-

elastic strain curve is close to a straight line, corresponding to Hooke’s law (note: in this 

case, the effect of the temperature history is not taken into account). 

 

  

Figure 2.5 – Out-of-phase thermo-mechanical test: (a) Loading; (b) Stress-strain hysteresis loops computed using 

values of 𝐸 and 휀𝑒 at the end of the time step and (c) in the middle of the time step 

Once the trial stress is computed, the back-stress also needs to be updated. Indeed, in the 

absence of plastic deformation, the equation for the evolution of the back-stress becomes: 

�̇�𝑖
𝑡𝑟 = −𝑏𝑖𝐽(𝑋𝑖

𝑡𝑟)
𝑟𝑖−1

�̇�𝑖
𝑡𝑟 +

1

𝐶𝑖
 
𝑑𝐶𝑖
𝑑𝑇

�̇�𝑋𝑖
𝑡𝑟 (2.46) 

This equation is discretized using the implicit backward Euler scheme and solved using 

the Newton-Raphson method. Details can be found in the thesis of Ahmed [17].  
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As the model was developed for alloy 230 which shows negligible amounts of isotropic 

hardening, the temperature dependence of the drag stress proposed in Eq. (2.25) was not 

implemented in the model. Therefore, the parameters for isotropic hardening are 

considered constant with temperature. 

With the updated value of the back-stress, the von Mises criterion is checked: 

𝑓𝑡𝑟 = 𝐽(𝜎𝑡𝑟 − 𝑋𝑡𝑟) − 𝑅 − 𝜎𝑦 

 

(2.47) 

If 𝑓𝑡𝑟 ≤ 0, the von Mises criterion is verified. In this case, the tensors 𝑌𝑖 (𝑖 = [1, 𝑛𝐴𝐹𝑌]) 

can be updated using Eq. (2.48) based on Eq. (2.34) and the computation of the step is 

terminated. Otherwise, the algorithm proceeds with the plastic corrector. 

𝑌𝑖,𝑘+1 − 𝑌𝑖,𝑘
Δ𝑡

= −𝛼𝑏,𝑖 (
3

2
𝑌𝑠𝑡,𝑖

𝑋𝑖,𝑘+1

𝐽(𝑋𝑖,𝑘+1)
+ 𝑌𝑖,𝑘+1) 𝐽(𝑋𝑖,𝑘+1)

𝑟𝑖
 (2.48) 

1.3.2.2 Plastic corrector 

For the computation of the plastic corrector, the viscoplastic framework described in 

section 1.1.5 is considered. This framework can also be used to model rate-independent 

plasticity by choosing appropriate values for the viscosity parameters 𝐾 and 𝑛 as shown 

by Chaboche [9]. Indeed, for 𝐾 ≈ 0, equations (2.17) and (2.22) lead to the expression of 

the von Mises yield surface for the rate-independent case: 

𝑓 = 𝜎𝑣 = 𝐾�̇�
1
𝑛 ≈ 0 

(2.49) 

If the von Mises criterion is not verified in the elastic predictor step, a plastic strain 

increment Δ휀𝑝 defined by Eq. (2.51), where 𝑛 is the normal to the yield surface defined 

by Eq. (2.30), is added to the total strain increment: 

Δ휀 = Δ휀𝑒 + Δ휀𝑝 + Δ휀𝑡ℎ (2.50) 

Δ휀𝑝 = √
3

2
Δ𝑝𝑛 (2.51) 

The discretization of Hooke’s law leads to: 

𝜎𝑘+1 = 𝜎𝑘 + Δ𝜎 = 𝜎𝑘 + Δ𝐸: (휀𝑘+1 − 휀𝑘+1
𝑝

− 휀𝑘+1
𝑡ℎ ) + 𝐸𝑘+1: (Δ휀 − Δ휀

𝑝 − Δ휀𝑡ℎ) (2.52) 

With the assumption of plastic strain incompressibility, Eq. (2.52) can be rewritten as Eq. 

(2.53) by using Eq. (2.42) defining Δ𝜎𝑡𝑟. 𝐺 is the shear modulus defined by Eq. (2.54): 

𝜎𝑘+1 = 𝜎𝑘 + Δ𝜎
𝑡𝑟 − 2(𝐺𝑘 + Δ𝐺)Δ휀

𝑝 (2.53) 
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𝐺 =
1

2

𝐸

1 + 𝜈
 (2.54) 

The equations to solve are equations (2.51), (2.53), (2.48), and equations (2.21), (2.24), 

(2.13) written in their incremental form as equations (2.55), (2.56), (2.57). By combining 

these equations together, Ahmed [17] reduced the problem to one equation for the 

unknown Δ𝑝 and 𝑛𝐴𝐹 equations for the unknowns 𝐽(𝑋𝑖,𝑘+1) (with 𝑖 ∈  ⟦1, 𝑛𝐴𝐹⟧). The 

rest of the variables can be computed from these 1 + 𝑛𝐴𝐹 variables. The details of the 

mathematical developments and the final equations are presented in Appendix 1. 

Δ𝑝

Δ𝑡
= ⟨
𝐽(𝜎𝑘+1 − 𝑋𝑘+1) − 𝑅𝑘+1 − 𝜎𝑦

𝐾
⟩

𝑛

 (2.55) 

𝑋𝑖,𝑘+1 − 𝑋𝑖,𝑘
Δ𝑡

=
2

3
𝐶𝑖
Δ휀𝑝

Δ𝑡
 − 𝛾𝑖(𝑋𝑖,𝑘+1 − 𝑌𝑖,𝑘+1)

Δ𝑝

Δ𝑡
− 𝑏𝑖𝐽(𝑋𝑖,𝑘+1)

𝑟𝑖−1
𝑋𝑖,𝑘+1

+
1

𝐶𝑖
 
𝑑𝐶𝑖
𝑑𝑇

ΔT

Δ𝑡
𝑋𝑖,𝑘+1, for 𝑖 ∈  ⟦1, 𝑛𝐴𝐹⟧ 

(2.56) 

𝑅 = 𝑄(1 − 𝑒−𝑏(𝑝𝑘+Δ𝑝)) (2.57) 

The final system of equations is solved in a 2-step scheme: first the equation for Δ𝑝 is 

solved using Newton-Raphson method with an initial value Δ𝑝 = �̇�𝑘 ∗ Δ𝑡 and considering 

𝑋𝑖,𝑘+1 = 𝑋𝑖
𝑡𝑟. If the Newton-Raphson method converges towards a negative value of Δ𝑝, 

which does not make sense physically, the current value of the increment of cumulative 

plastic strain is set to: Δ𝑝𝑐𝑢𝑟𝑟 =
Δ𝑝𝑖𝑛𝑖𝑡

10
, where Δ𝑝𝑖𝑛𝑖𝑡 is the value at the beginning of the 

Newton-Raphson iterative process. Then, using Δ𝑝𝑐𝑢𝑟𝑟, the 𝑛𝐴𝐹 remaining equations are 

solved (using Newton-Raphson method) to find 𝐽(𝑋𝑖)
𝑐𝑢𝑟𝑟

.  

These two steps are repeated, using updated values 𝐽(𝑋𝑖)
𝑐𝑢𝑟𝑟

 and Δ𝑝𝑐𝑢𝑟𝑟, until 

convergence is achieved successively in both steps. This separation was proposed by 

Ahmed [17] to avoid the full computation of the Jacobian matrix at every Newton-

Raphson iteration, and to prevent issues that might arise due to the difference of order of 

magnitude between Δ𝑝 and 𝐽(𝑋𝑖). 

Finally, a closed-form expression of the consistent tangent modulus 𝐶 defined by Eq. 

(2.58) can be derived from the equations. Details are presented in Appendix 1. In the 

elastic case, the tangent modulus is equal to the elasticity tensor 𝐸.  

𝐶 =
𝑑𝜎

𝑑휀
 (2.58) 
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Having a closed-form expression of the tangent modulus helps with solving the global 

equilibrium in the finite-element code. It is usually more efficient and saves computation 

time compared to numerical approximations of the tangent modulus. 

1.3.2.3 Flow chart 
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2 PARAMETER IDENTIFICATION 

The Chaboche-type model implemented contains multiple features and can model 

complex material behaviours. However, due to this complexity, a large number of 

material parameters is required. For a complete model (all features included) the 

following parameters must be identified: 

• 3 elasticity parameters: the Young modulus 𝐸, the Poisson’s ratio 𝜈, and the yield 

stress 𝜎𝑦; 

• 2 viscosity parameters 𝐾 and 𝑛; 

• 2 isotropic hardening parameters 𝑏 and 𝑄; 

• 2∗ 𝑛𝐴𝐹 kinematic hardening parameters 𝐶𝑖 and  𝛾𝑖 and 2 ∗ 𝑛𝐴𝐹 static recovery 

parameters 𝑏𝑖 and 𝑟𝑖; 

• 4* 𝑛𝐴𝐹,𝑐𝑦𝑐 parameters for cyclic hardening 𝑎𝛾𝑖 , 𝑏𝛾𝑖 , 𝑐𝛾𝑖 , and 𝐷𝛾𝑖; 

• 2* 𝑛𝐴𝐹,𝑌 parameters for the mean stress evolution 𝛼𝑏,𝑖 and 𝑌𝑠𝑡,𝑖; 

• 3 parameters for the influence of the maximum temperature 𝑏𝐷𝛾 , 𝑏𝐸 , 𝑓𝐸
𝑆. Contrarily 

to the rest of the parameters, these 3 parameters are not temperature-dependent. 

Some of these parameters, such as the Young modulus and the Poisson’s ratio, are well-

known and can be found in the literature or identified from simple tests (typically tensile 

tests). However, it can be more difficult to understand the precise effect of other 

parameters and their influence on the results of the constitutive model. To get a better 

understanding of the role of each parameter, a sensitivity analysis was performed (section 

2.1). Using the results of the sensitivity analysis and information found in the literature, 

a procedure for the identification of parameters was then established. 

The results of the sensitivity analysis were presented at the XIV International Conference 

on Computational Plasticity (COMPLAS 2017) [19].  

2.1 SENSITIVITY ANALYSIS 

2.1.1 Method 

The sensitivity analysis is based purely on numerical tests. The sensitivity of the model 

to a particular parameter 𝑃 is evaluated by performing a specific numerical test with a set 

of parameters, and then repeating the same test while changing the value of 𝑃 and 

observing the changes in the obtained results.  

2.1.1.1 Numerical tests 

The temperature-dependent parameters listed above were tested on two isothermal 

uniaxial cyclic tests represented in Figure 2.6 (a). The different characteristics of the two 
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tests (strain amplitude, strain rate, hold time, frequency) are given in Table 2.2. The two 

tests differ regarding the strain rate and the hold time applied. This is done so the effect 

of time-dependent features (static recovery, stress relaxation) can be better observed. The 

parameters related to the influence of the maximum temperature were tested on 

anisothermal cyclic test, similar to the isothermal tests but with the addition of 

temperature variations represented in Figure 2.6 (b).  

  
Figure 2.6 – Loading of the numerical tests: (a) imposed strain and (b) imposed temperature for the anisothermal tests 

Table 2.2 – Isothermal test characteristics: strain amplitude, strain rate, hold time, and frequency 

Test 1 (high rate) Test 2 (low rate) Test 3 (anisothermal) 

Δ휀 = 2% 

휀̇ = 0.2%/𝑠 

𝑡𝐻 = 20𝑠 

𝑓 = 0.025 𝐻𝑧 

Δ휀 = 2% 

휀̇ = 0.002%/𝑠 

𝑡𝐻 = 1000𝑠 

𝑓 = 3.33 ∗ 10−4 𝐻𝑧 

Δ휀 = 2% 

휀̇ = 0.2%/𝑠 

𝑡𝐻 = 20𝑠 

𝑓 = 0.025 𝐻𝑧 

𝑇 ∈ [450 − 850]°𝐶 

2.1.1.2 Sensitivity measure 

In order to evaluate the sensitivity in a simple and objective way, 4 scalar criteria were 

defined based on the test results: 

• 𝐹1 is the tensile stress obtained during the 1st cycle right before the hold time. This 

is equivalent to a tensile test (see Figure 2.7). 

• 𝐹2 is the amount of relaxation computed on the 1st cycle during the hold time, 

illustrated in Figure 2.8. 

• 𝐹3 is the stress amplitude at the 50th cycle, where the hysteresis loop is stabilized. 

𝐹3 is equal to 
𝜎𝑚𝑎𝑥−𝜎𝑚𝑖𝑛

2
 as illustrated in Figure 2.9. 

• 𝐹4is the mean stress at the 50th cycle, equal to 
𝜎𝑚𝑎𝑥+𝜎𝑚𝑖𝑛

2
 as illustrated in Figure 

2.9. 
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Figure 2.7 – Criterion 𝐹1 (tensile stress) for the measure of parameter sensitivity 

 
 

Figure 2.8 – Criterion 𝐹2 (relaxation) for the measure of parameter sensitivity 

 
Figure 2.9 – Criteria 𝐹3 (cyclic hardening) and 𝐹4 (mean stress) 

2.1.1.3 Reference parameters 

The sensitivity analysis requires coherent sets of parameters to obtain consistent results 

from the numerical tests. Reference parameters corresponding to other nickel alloys were 

taken from the literature. The lists of studied parameters with the corresponding reference 

set are detailed in Table 2.3. The first column indicates the parameters for which the 

sensitivity analysis is performed; the second column indicates the reference article from 

which parameters are taken and the list of parameters used in their model. The values of 

the parameters can be found in the given references. 

F1 

F2 

[s] 
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Table 2.3 – Reference parameters used for the sensitivity analysis 

Studied parameters Reference set of parameters Material 

𝐾, 𝑛, 𝑏, 𝑄, 𝐶1, 𝐶2, 𝛾1, 𝛾2 
Zhan and Tong [20] 

𝐸, 𝜎𝑦, 𝐾, 𝑛, 𝑏, 𝑄, 𝐶1, 𝛾1, 𝐶2, 𝛾2, 𝛼𝑏,1, 𝑌𝑠𝑡,1, 𝑟1 
RR1000 

𝑏1, 𝑟1, 𝛼𝑏,1, 𝑌𝑠𝑡,1, 𝐷𝛾1 , 

𝑎𝛾1 , 𝑏𝛾1 , 𝑐𝛾1 , 휂 

Yaguchi et al. [14] 

𝐸, (𝜎𝑦 = 0), 𝐾, 𝑛, 𝐶1, 𝛾1𝑏1, 𝑟1, 𝛼𝑏,1, 𝑌𝑠𝑡,1 
IN738LC 

𝑏𝐸 , 𝑓𝐸
𝑠 

Yaguchi et al. [21] 

𝐸, (𝜎𝑦 = 0), 𝐾, 𝑛, 𝐶1, 𝛾1𝑏1, 𝑟1, 𝛼𝑏,1, 𝑌𝑠𝑡,1 
IN738LC 

Some of the model parameters could not be found in the literature. Instead, a reference 

value was set for those parameters by considering the indications given in the thesis of 

Ahmed [17]. The values of these parameters are given in Table 2.4 below. 

Table 2.4 - Reference values for parameters not found in the literature 

𝐷𝛾1 𝑎𝛾1 𝑏𝛾1 𝑐𝛾1 휂 𝑏𝐸 𝑓𝐸
𝑠 

10 300 100 10 0.2 1000 0.2 

2.1.2 Results 

The following sections detail the results of the sensitivity analysis for the studied 

parameters. The influence of a given parameter 𝑃 is computed for each criterion 𝐹𝑖 

defined in section 2.1.1.2 as 
𝜕𝐹𝑖

𝜕𝑃
: 

• If 
𝜕𝐹𝑖

𝜕𝑃
> 0, the value of 𝐹𝑖 increases with increasing 𝑃; 

• If 
𝜕𝐹𝑖

𝜕𝑃
≈ 0, 𝑃 has little to no influence on 𝐹𝑖; 

• If 
𝜕𝐹𝑖

𝜕𝑃
< 0, the value of 𝐹𝑖 decreases with increasing 𝑃; 

2.1.2.1 Viscosity 

The influence of the viscosity parameters 𝐾 and 𝑛 is shown in Figure 2.10. As can be 

observed from the values of 
𝜕𝐹𝑖

𝜕𝐾
 and 

𝜕𝐹𝑖

𝜕𝑛
, these two parameters influence mostly the stress 

levels (𝐹1 on the 1st cycle, 𝐹3 on the stabilized cycle). The parameters also have a small 

influence on relaxation (𝐹2): increasing 𝐾 increases the amount of stress relaxation, 

however, the effect of the exponent 𝑛 is less clear. The hysteresis loops shown in Figure 

2.10 (d) for different values of 𝑛 indicate that above a certain value, the behaviour is not 

affected by changes of 𝑛. 

�̇� = ⟨
𝐽(𝜎 − 𝑋) − 𝑅 − 𝜎𝑦

𝐾
⟩

𝑛
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(a) 

 

(b) 

 

(c)

 

(d)

 

Figure 2.10 – Influence of viscosity parameters (a) effect of 𝐾 on 𝐹𝑖; (b) effect of 𝑛 on 𝐹𝑖; (c) effect of 𝐾 on the 

stabilized hysteresis loop; (d) effect of 𝑛 on the stabilized hysteresis loop 

2.1.2.2 Isotropic hardening 

The physical meaning of the isotropic hardening parameters and their effect on the yield 

surface has already been discussed in section 1.1.3. 𝑄 is the asymptotic value of the drag 

stress 𝑅 as illustrated in Figure 2.2 of Section 1.1.3. Figure 2.11 illustrates the effect of 

the rate parameter 𝑏 on the evolution of the stress amplitude. As expected, for high values 

of 𝑏, the stress amplitude converges faster towards its asymptotic value. 

𝑅 = 𝑄(1 − 𝑒−𝑏𝑝) 
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Figure 2.11 – Stress amplitude on test 1 with different values of the isotropic hardening rate 𝑏 

2.1.2.3 Kinematic hardening 

Figure 2.12 shows the effect of a variation in parameters 𝐶𝑖 and 𝛾𝑖. These parameters 

mostly influence the stress levels (𝐹1 at cycle 1 and 𝐹3 at cycle 50). It can be observed 

that they have inverse effects: increasing 𝐶𝑖 leads to an increase in stress levels, whereas 

an increase of 𝛾𝑖 leads to a decrease in the stress levels. In the absence of other effects 

such as static recovery or mean stress evolution, the Armstrong-Frederick flow rule 

defined by Eq. (2.16) can be integrated as Eq. (2.59). The value of the back-stress is 

proportional to 
𝐶𝑖

𝛾𝑖
, which explains the results observed in Figure 2.12. 

𝑋𝑖 =
2

3

𝐶𝑖
𝛾𝑖
(1 − 𝑒−𝛾𝑖𝑝)𝑛 (2.59) 

  
Figure 2.12 – Sensitivity to parameters (a) 𝐶1; (b) 𝛾1; (c) 𝐶2; and (d) 𝛾2 

�̇�𝑖 =
2

3
𝐶𝑖휀̇

𝑝 − 𝛾𝑖(𝑋𝑖 − 𝑌𝑖)�̇� − 𝑏𝑖𝐽(𝑋𝑖)
𝑟𝑖−1�̇�𝑖 
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The value of 
𝜕𝐹𝑗

𝜕𝐶𝑖
 and 

𝜕𝐹𝑗

𝜕𝛾𝑖
 is around 10 times smaller for 𝑖 = 1 than for 𝑖 = 2. This can be 

explained by the respective order of magnitude of the reference values of the parameters. 

Parameters 𝐶1 and 𝛾1 are about 10 times bigger than 𝐶2 and 𝛾2. Because the impact of 

these parameters is proportional to the ratio 
𝐶𝑖

𝛾𝑖
, multiplying 𝐶1 by two will have more or 

less the same impact on 𝐹1 and 𝐹3 as multiplying 𝐶2 by two (same Δ𝐹𝑗). This can be seen 

in Figure 2.13 (a): the blue solid line represents a decrease of 50% for 𝐶1 and the blue 

dashed line a decrease of 33% for 𝐶2; the two curves are very close, especially when 

considering the extrema. However, when computing 
𝜕𝐹𝑗

𝜕𝐶𝑖
 by finite differences, the value 

of the denominator Δ𝐶𝑖 is 10 times larger for 𝐶1. This explains the difference of order of 

magnitude observed between Figure 2.12 (a) and (c).  

 

Figure 2.13 – Effect of the variation of parameters 𝐶𝑖 and 𝛾𝑖 on the shape of the hysteresis loop (a) parameters 𝐶1 and 

𝐶2; (b) parameters 𝛾1 and 𝛾2 

2.1.2.4 Static recovery 

Static recovery is controlled by parameters 𝑏𝑖 and 𝑟𝑖 in the equation for kinematic 

hardening. It is a time-dependent effect. Therefore, the influence of these parameters is 

more visible for test 2 which is slower and has longer hold times. This is clearly visible 

in Figure 2.14. Since 𝑟𝑖 is also used in the calculation of tensor 𝑌𝑖 representing the mean 

stress evolution, the tests for the sensitivity to 𝑟𝑖 as a static recovery parameter were 

performed by setting parameters 𝛼𝑏,1 and 𝑌𝑠𝑡,1 to 0. 

�̇�𝑖 =
2

3
𝐶𝑖휀̇

𝑝 − 𝛾𝑖(𝑋𝑖 − 𝑌𝑖)�̇� − 𝑏𝑖𝐽(𝑋𝑖)
𝑟𝑖−1�̇�𝑖 
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Figure 2.14 shows the influence of parameters 𝑏1 and 𝑟1. As expected, the influence is 

most significant on the criterion 𝐹2, which corresponds to stress relaxation. An increase 

in either of these parameters leads to an increase of the stress relaxation. 

  

Figure 2.14 – Sensitivity to (a) parameter 𝑏1; (b) parameter 𝑟1 

The two parameters also have a small influence on the stress level. Indeed, the static 

recovery term 𝑏𝑖𝐽(𝑋𝑖)
𝑟𝑖−1�̇�𝑖 in Eq. (2.23) lowers the absolute value of the back stress, 

therefore lowering the stress level. This effect is time-dependent and therefore not 

significant in Test 1 which has high strain rates and short hold times.  

2.1.2.5 Mean stress evolution 

The evolution of the mean stress is controlled by parameters 𝛼𝑏,𝑖, 𝑌𝑠𝑡,𝑖 and 𝑟𝑖. Figure 2.15 

shows that as expected, the three parameters mostly influence the value of criterion 𝐹4, 

the mean stress after 50 cycles. 

   

Figure 2.15 – Sensitivity to mean stress evolution parameters (a) 𝛼𝑏,1; (b) 𝑌𝑠𝑡,1; (c) 𝑟1 

�̇�𝑖 = −𝛼𝑏,𝑖 (
3

2
𝑌𝑠𝑡,𝑖

𝑋𝑖

𝐽(𝑋𝑖)
+ 𝑌𝑖) 𝐽(𝑋𝑖)

𝑟𝑖 
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As mentioned in section 1.2.2, 𝛼𝑏,𝑖 controls the rate of evolution of the mean stress and 

𝑌𝑠𝑡,𝑖 its asymptotic value, as can be seen in Figure 2.16 (a) and (b), respectively. Looking 

at Eq. (2.34) reminded above, it is also expected that 𝑟𝑖 has an influence on the rate of the 

mean stress evolution towards its asymptotic value. This is confirmed by the results 

shown in Figure 2.16 (c). 

(a) 

 

(b) 

 

(c) 

 

Figure 2.16 – Evolution of the mean stress in Test 1 for different values of (a) 𝛼𝑏,1, (b) 𝑌𝑠𝑡,1 and (c) 𝑟1 

2.1.2.6 Cyclic hardening 

Cyclic hardening is modelled mathematically by making parameter 𝛾𝑖 depend on the 

plastic strain multiplier 𝑝. Four parameters are required: 𝑎𝛾𝑖 , 𝑏𝛾𝑖 , 𝑐𝛾𝑖 for the asymptotic 

value of 𝛾𝑖 and 𝐷𝛾𝑖 for the rate of evolution. The influence of 𝑎𝛾1 , 𝑏𝛾1 , 𝑐𝛾1is shown in 

Figure 2.17. These parameters mainly influence criterion 𝐹3, the stress amplitude after 50 

cycles. The 3 parameters also have an influence on the mean stress (𝐹4). This is because 

the back stress is used to define the evolution of tensor 𝑌𝑖: a change in the amplitude of 

𝑋1 has an impact on the amplitude of 𝑌1. 

   

Figure 2.17 – Sensitivity to cyclic hardening parameters (a) 𝑎𝛾1 , (b) 𝑏𝛾1 , and (c) 𝑐𝛾1 

�̇�𝑖 = 𝐷𝛾𝑖(𝛾𝑖
𝑓
− 𝛾𝑖)�̇�   &   𝛾𝑖

𝑓
= 𝑎𝛾𝑖 + 𝑏𝛾𝑖exp (−𝑐𝛾𝑖𝑞) 
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Considering that 𝐷𝛾1is a rate parameter, its influence is shown more effectively as a 

function of cycles rather than on a single moment in time. Figure 2.18 (a) shows the 

sensitivity of the 4 criteria to 𝐷𝛾1. From these results, it seems that the influence of 𝐷𝛾1 is 

most significant on 𝐹1, the stress level after the 1st cycle. This is because with the values 

of 𝐷𝛾1 used for tests, the back-stress reached a stable value before the 50th cycle, as can 

be seen in Figure 2.18 (b).  Therefore, the impact on criterion 𝐹3 appears negligible. 

Nevertheless, the role of 𝐷𝛾1 in cyclic hardening is clearly shown in Figure 2.18 (b). It 

can also be noted that, similarly to 𝑎𝛾1 , 𝑏𝛾1 and 𝑐𝛾1, parameter 𝐷𝛾1 has an influence on the 

mean stress and on the amount of stress relaxation due to its direct influence on the value 

of the back-stress. 

 
 

Figure 2.18 – Influence of parameter 𝐷𝛾1 (a) on the 4 criteria and (b) on the evolution of stress amplitude 

2.1.2.7 Influence of the maximum temperature  

a. Young modulus 

The influence of the maximum temperature on the Young modulus is modelled using 2 

parameters 𝑏𝐸 and 𝑓𝐸
𝑆. The effect of these parameters can be seen in Figure 2.19. 

Parameter 𝑏𝐸 controls the rate of 𝑓𝐸  towards a saturated value 𝑓𝐸
𝑆. As can be seen in Figure 

2.19 (a), for a high value of 𝑏𝐸 (1000 or 10000), the Young modulus changes during the 

1st cycle of loading; for a lower value (𝑏𝐸 = 10), the change is more progressive. 

Parameter 𝑓𝐸
𝑆 controls the final proportion of 𝐸(𝑇𝑚𝑎𝑥, 0) in the value of the Young 

modulus 𝐸 for any temperature. Figure 2.19 (b) shows the hysteresis loop at cycle 50 for 

3 values of 𝑓𝐸
𝑆. A small value means the Young modulus at all temperature will be close 

to 𝐸(𝑇𝑚𝑎𝑥, 0) (blue curve); a larger value means the maximum temperature has less 

influence. 

𝐸(𝑇, 𝑡) = 𝑓𝐸𝐸(𝑇, 0) + (1 − 𝑓𝐸)𝐸(𝑇𝑚𝑎𝑥 , 0)      

𝑓�̇� = 𝑏𝐸(𝑓𝐸
𝑆 − 𝑓𝐸)�̇� 
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(a) 

 

(b)

 
Figure 2.19 – Effect of parameters (a) 𝑏𝐸 and (b) 𝑓𝐸

𝑆 on the shape of the hysteresis loop of an anisothermal cyclic test 

b. Cyclic hardening 

Parameter 𝑏𝐷𝛾 was not tested in this sensitivity analysis, as it would have required values 

of the cyclic hardening parameters at different temperatures. However, from the equation 

of evolution of 𝐷𝛾𝑖, it is clear that 𝑏𝐷𝛾 controls the rate of 𝐷𝛾𝑖 towards 𝐷𝛾𝑖
𝑇𝑚𝑎𝑥 . Ahmed and 

Hassan [1] showed that adding this feature in their model improves the fitting between 

the model and the experimental results on the evolution of the mean stress and the stress 

amplitude for anisothermal tests.  

2.2 METHOD FOR THE IDENTIFICATION OF PARAMETERS 

Using the results of the sensitivity analysis and results from the literature, a method is 

proposed for the parameter identification of the advanced Chaboche model implemented. 

Part of the identification method was presented at the 2018 NUMISHEET conference and 

published in the proceedings [22]. 

2.2.1 Direct identification 

Some parameters can be identified directly from simple tests, using linear interpolation 

or other simple methods.  

2.2.1.1 Model parameters 

The first step is to fix values for 𝑛𝐴𝐹 , 𝑛𝐴𝐹,𝑐𝑦𝑐 and 𝑛𝐴𝐹,𝑌, the number of equations for 

kinematic hardening, cyclic hardening, and mean stress evolution, respectively. In the 

absence of cyclic hardening, 2 back-stresses (𝑛𝐴𝐹 = 2) are sufficient to model the 

hardening behaviour of most materials, as shown by Tong et al. [23]. However, when 

cyclic hardening is represented through the equation of kinematic hardening, the 

evolution of the stress amplitude and of the mean stress during cyclic tests must be taken 

into consideration for the choice of 𝑛𝐴𝐹. Particularly, it is necessary to have 𝑛𝐴𝐹 ≥ 𝑛𝐴𝐹,𝑐𝑦𝑐 

�̇�𝛾𝑖 = 𝑏𝐷𝛾(𝐷𝛾𝑖
𝑇𝑚𝑎𝑥 − 𝐷𝛾𝑖)�̇� 
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and 𝑛𝐴𝐹 ≥ 𝑛𝐴𝐹,𝑌. For alloy 230, cyclic hardening usually occurs in two phases: a rapid 

hardening that develops during the first 100 cycles, followed by a slow hardening or 

softening depending on the strain amplitude and the temperature (see Section 2.4 of 

Chapter 1). Similar observations can be made for the mean stress. Considering this, a 

value 𝑛𝐴𝐹,𝑐𝑦𝑐 = 𝑛𝐴𝐹,𝑌 = 2 seems appropriate for cyclic hardening and evolution of the 

mean stress. The total number of back-stresses was set to 3 in order to gain more 

flexibility and have a third back-stress dedicated to fitting the shape of the hysteresis loop, 

and more particularly the slope of the stress-strain curves for relatively high values of the 

plastic strain.  

2.2.1.2 Elasticity parameters 

Direct identification can be used for elasticity parameters. The Poisson’s ration can be 

found in the literature for most materials; the Poisson’s ratio for alloy 230 is given in [24] 

at several temperatures. The Young modulus corresponds to the slope of the linear part 

of a tensile or cyclic test, as illustrated in Figure 2.20. Similarly, the yield stress 𝜎𝑦 can 

be considered as the stress at the end of the linear part in a tensile test, or as twice the size 

of the linear part in a cyclic test.    

 

Figure 2.20 – Identification of the Young modulus 𝐸 and the yield stress 𝜎𝑦 on a cyclic test taken from [17] 

2.2.1.3 Isotropic hardening 

The asymptotic value of isotropic hardening 𝑄 can be determined from a uniaxial cyclic 

test by measuring the increase of the size of the yield surface (linear part of the hysteresis 

loop), as shown in Figure 2.2 of section 1.1.3. Similarly, the value of 𝑅(𝑝) = 𝑄(1 −

𝑒−𝑏𝑝) can be measured at different cycles to identify parameter 𝑏: the plastic strain 

multiplier can be expressed as Eq. (2.60), where 𝑁 is the number of cycles and Δ휀𝑝 the 

amplitude of the plastic strain. Parameter 𝑏 can then be identified as the slope in the linear 

regression of  − ln (1 −
𝑅(𝑁)

𝑄
) versus 𝑝(𝑁).  
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𝑝(𝑁) = 2𝑁Δ휀𝑝 (2.60) 

An example of this method can be found in [23]. The method was however not used for 

alloy 230. Indeed, Ahmed et al. [2] showed that the size of the yield surface of alloy 230 

does not change during cyclic tests, therefore no isotropic hardening is considered for this 

material. 

2.2.1.4 Kinematic hardening 

In the case of uniaxial loading, the back-stress can be expressed as a scalar 𝑋 = 𝐽(𝑋). For 

a cyclic loading with no hold time (no time-dependent effects), the value of this total 

back-stress can be identified similarly to 𝑄, as shown in Figure 2.21. Its value must be 

identified on the 1st cycle to avoid taking into account cyclic hardening. However, this 

only gives the value of the total back-stress and not of the parameters 𝐶𝑖 and 𝛾𝑖. Still, this 

value brings some information for the identification of kinematic hardening parameters: 

𝑋∞ =∑
𝐶𝑖
𝛾𝑖

𝑖

 (2.61) 

 

Figure 2.21 – Identification of the total back-stress 𝑋 for a uniaxial cyclic test 

2.2.1.5 Viscosity 

The viscosity parameters 𝐾 and 𝑛 can be identified directly from relaxation and creep 

tests performed after saturation of the hardening variables 𝑅 and 𝑋, as proposed by Otin 

[25]. Indeed, Eq. (2.21) can be rewritten as Eq. (2.62). When the hardening variables have 

reached their saturated values 𝑅∞ and 𝑋∞, the middle term of Eq. (2.62) can be calculated. 

log(𝜎𝑣) = log(𝐽(𝜎 − 𝑋) − 𝜎𝑦 − 𝑅) =
1

𝑛
log(�̇�) + log (𝐾) (2.62) 
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The plastic strain rate can easily be evaluated for an isothermal creep test or an isothermal 

relaxation test as Eq. (2.63) (the strain and stress are written as scalars as this applies to 

uniaxial tests): 

�̇� = 휀̇ − 휀̇𝑒 = 휀̇ −
�̇�

𝐸
 (2.63) 

Parameters 𝐾 and 𝑛 can then be identified through linear regression by plotting log(𝜎𝑣) 

versus log(�̇�). 

The viscosity parameters were not used for alloy 230. Indeed, the model implemented 

includes two ways of representing time-dependent and rate-dependent effects: viscosity 

and static recovery. The use of static recovery gives a better representation of relaxation 

for different loading cases, as there are as many static recovery terms as there are back-

stresses. This provides a way to finely tune the parameters. Both viscosity and static 

recovery can be used simultaneously, however, to simplify the identification process, 

viscosity parameters were discarded for alloy 230. 

2.2.2 Identification through trial and error 

Once the parameters that can be identified through direct methods are set, the following 

27 parameters must be identified: 

• 2∗ 𝑛𝐴𝐹 kinematic hardening parameters 𝐶𝑖 and  𝛾𝑖 and 2 ∗ 𝑛𝐴𝐹 static recovery 

parameters 𝑏𝑖 and 𝑟𝑖 (with 𝑛𝐴𝐹 = 3); 

• 4* 𝑛𝐴𝐹,𝑐𝑦𝑐 parameters for cyclic hardening 𝑎𝛾𝑖 , 𝑏𝛾𝑖 , 𝑐𝛾𝑖 , and 𝐷𝛾𝑖  (with 𝑛𝐴𝐹,𝑐𝑦𝑐 = 2); 

• 2* 𝑛𝐴𝐹,𝑌 parameters for the mean stress evolution 𝛼𝑏,𝑖 and 𝑌𝑠𝑡,𝑖 (with 𝑛𝐴𝐹,𝑌 = 2); 

• 3 parameters for the influence of the maximum temperature 𝑏𝐷𝛾 , 𝑏𝐸 , 𝑓𝐸
𝑆. 

Considering the multitude of parameters and their interdependence, the identification 

must be done through trial and error. This can be done manually or by using an optimizing 

algorithm with reasonable initial values.  

The parameters can be split into different categories that can be identified on specific 

tests. For instance, the kinematic hardening parameters 𝐶𝑖 and 𝛾𝑖 can be identified using 

the first cycles of a cyclic test with high strain rates. Having high strain rates ensures that 

static recovery will not take place, and therefore parameters 𝑏𝑖 and 𝑟𝑖 will have no 

influence, as shown in the sensitivity analysis (Section 2.1.2.4). The static recovery 

parameters can then be identified using relaxation tests. For the identification of cyclic 

hardening, multiple low-cycle fatigue tests can be used. Finally, for the evolution of the 

mean stress, it is necessary to use tests with asymmetrical loading – otherwise the mean 

stress remains equal to 0. 
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For the optimisation process to reach a good solution, it is essential to have initial values 

that are based on physical considerations and are likely to be close to an optimal solution. 

For each group of parameters, a first initial estimate is identified using simple forms of 

the equations of the model and/or by performing a few numerical tests manually. 

The group of parameters is then optimised using an optimisation algorithm. For this study, 

the Fortran program OPTIM [26] developed at the University of Liège was used. OPTIM 

is based on the Levenberg-Marquardt algorithm.  

Sections 2.2.2.1 to 2.2.2.5 give detailed explanations on how to obtain reliable estimates 

for the parameters. After the initial estimate, a fine tuning is then performed for each 

group of parameters using OPTIM. Section 2.2.2.6 gives detailed explanations on the 

functioning of OPTIM. 

2.2.2.1 Kinematic hardening 

Tong et al. [23] proposed a method to find an estimate of 𝐶𝑖 and 𝛾𝑖 for 𝑛𝐴𝐹 = 2 based on 

the first cycle of a uniaxial test. This method is based on the assumption that the first 

back-stress controls the evolution of hardening for low values of the plastic strain and the 

second the evolution for higher values of the plastic strain. With this hypothesis, one can 

assume that the first back-stress quickly reaches a stationary value and the slope of the 

hysteresis curve at high levels of plastic deformation is controlled by the second back-

stress. For the model with 3 back-stresses, the same method is used. In the case of 𝑛𝐴𝐹 =

3 however, it is the third back-stress 𝑋3 that controls the behaviour at higher values. The 

two other back-stresses 𝑋1 and 𝑋2 – which are also used for the modeling of cyclic 

hardening and mean stress evolution – are assumed to be equal for the initial estimate, as 

it is impossible to distinguish a separate contribution of these two back-stresses on the 1st 

cycle, i.e., 𝐶1 = 𝐶2 and 𝛾1 = 𝛾2. 

2.2.2.2 Static recovery 

As shown in the sensitivity analysis, the effect of static recovery is mostly visible on 

relaxation tests. The assumption of 𝑋1 = 𝑋2 made for kinematic hardening can also be 

made for static recovery for the initial estimate. This reduces the number of parameters 

to estimate from 6 to 4. 

2.2.2.3 Cyclic hardening 

For cyclic hardening, the saturated value 𝛾𝑖
𝑓
 can be identified for cyclic tests with 

different strain amplitudes. For a given test, the cycle number 𝑛 corresponding to the peak 

of stress amplitude curve (see Figure 2.22) and the cycle number 𝑟 corresponding to the 

rupture of the sample must first be identified.  
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Figure 2.22 – Identification of cycles n (maximum stress) and r (rupture) on the stress amplitude curve of a fatigue 

test at room temperature (experimental result taken from [17]) 

Parameters 𝛾1
𝑓
 and 𝛾2

𝑓
 can be identified using the values of the stress amplitude 

respectively at cycle 𝑛 and 𝑟 to solve Eq. (2.64), where 𝑁 is the cycle number and 𝑝(𝑁) 

can be approximated using Eq. (2.60). Considering 𝛾2 represents the long-term cyclic 

hardening, at cycle 𝑛 (which is below 100, i.e., short-term), the value of 𝛾2 is assumed to 

be equal to 𝛾2(𝑁 = 1). 

𝜎𝑎𝑚𝑝 = 𝜎𝑦 +∑
𝐶𝑖

𝛾𝑖(𝑁)
(1 − 𝑒−𝛾𝑖(𝑁)𝑝(𝑁))

𝑛𝐴𝐹

𝑖=1

 (2.64) 

Using values of 𝛾𝑖
𝑓
 obtained for different strain amplitudes, the parameters 𝑎𝛾𝑖, 𝑏𝛾𝑖, and 

𝑐𝛾𝑖 can be identified using Eq. (2.32). For a uniaxial test, the radius of the plastic strain 

memory surface 𝑞 can be approximated as the maximum plastic strain in absolute value 

during the loading history. 

The rates of cyclic hardening 𝐷𝛾1 and 𝐷𝛾2 can be identified manually by trial and error 

from the stress amplitude curve, using Eq. (2.64) and Eq. (2.26).  

2.2.2.4 Mean stress evolution 

Due to the complexity of the equations for mean stress evolution, the simplest approach 

for a first estimate of the parameters is to start from values found in the literature. Then, 

more adequate values can be obtained manually by trial and error using the mean stress 

evolution of a cyclic test with asymmetrical loading (e.g., hold time only in compression).  

2.2.2.5 Maximum temperature influence 

The 3 parameters controlling the influence of maximum temperature can finally be 

identified using anisothermal cyclic tests. The initial values of parameters 𝑓𝐸
𝑆 and 𝑏𝐸 were 

taken from the work of Ahmed and Hassan [1], who also worked on alloy 230. 
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The rate of evolution of cyclic hardening parameters 𝐷𝛾𝑖 towards their value at maximum 

temperature is controlled by the rate parameter 𝑏𝐷𝛾 in Eq. (2.35). It is difficult to estimate 

the value of this parameter by looking at experimental results only. The most efficient 

approach in this case is to use the optimization code directly, with a reasonable initial 

value. For instance, choosing an initial value of 𝑏𝐷𝛾 of the same order of magnitude as 

𝐷𝛾1 or 𝐷𝛾2 gives good results. 

2.2.2.6 OPTIM code 

OPTIM is an optimisation algorithm based on the Levenberg-Marquardt method [27]. 

The objective of the algorithm is to minimise an objective function representing the 

difference between one or several reference curve(s) – usually experimental curves – and 

one or several numerical curves obtained using the FE Lagamine code. Figure 2.23 

illustrates the calculation of the difference between two curves. The values 𝑢𝑖
𝑅𝐸𝐹 and 𝑢𝑖

𝐹𝐸 

of the curves are interpolated at each 𝑥𝑖 to compute the difference 𝑆 using Eq. (2.65): 

𝑆 = √∑(𝑢𝑖
𝐹𝐸 − 𝑢𝑖

𝑅𝐸𝐹)²

𝑖

 (2.65) 

The variable 𝑢 can be any variable computed by the FE model and available from 

experimental tests: a stress, a strain, a nodal displacement, etc.  

 

Figure 2.23 – Estimation of the difference between a reference curve (REF) and a finite-element curve (FE) 

Optimisation is an iterative process. Figure 2.24 illustrates the different steps that make 

up one iteration for the optimization of 𝑛𝑃 parameters: 

1. An initial set of parameters to optimize 𝑃𝑗  (𝑗 = 1: 𝑛𝑃) is given as an input to the 

program. 
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2. The FE code computes the wanted FE curve with parameters 𝑃𝑗. At the same time, 

the code also computes two additional curves for each 𝑃𝑗: one with a positive 

perturbation of the parameter and another with a negative perturbation. This way, 

it is possible to determine the effect of each parameter on the FE curve at each 

time step. 

3. The objective function 𝑆 is computed in OPTIM. 

4. The derivatives of 𝑆 with respect to each 𝑃𝑗 is computed in OPTIM using the 

perturbed FE curves computed in step 2. The details of the equations can be found 

on the Dokuwiki website for OPTIM [26]. 

5. A new set of parameters 𝑃𝑗 is determined by OPTIM from the derivatives of 𝑆 and 

the values of 𝑆 using a Levenberg-Marquardt algorithm. The process is then 

restarted from step 1 using the new values of 𝑃𝑗 until a stop criterion is met (either 

stabilization of the objective function, or until the maximum number of iterations 

is reached). 

 

Figure 2.24 – Flowchart of the OPTIM algorithm 

3 TEMPERATURE-DEPENDENCE OF THE MATERIAL 

PARAMETERS 

Using the method described in section 2.2, the parameters were identified for alloy 230 

at the temperatures for which sufficient experimental data were available. For 

intermediate temperatures, parameters can then be interpolated between identified values. 

This can be done using different methods of interpolation, such as linear [28]–[30], 
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polynomial [21], or exponential [31], [32] functions. However, another way to tackle the 

issue of temperature-dependence is to define the parameters as mathematical functions of 

the temperature prior to the identification step, and then directly identify the coefficients 

of these functions [33]. This section details the different approaches which were 

implemented in the FE code. The content presented in this section is a summary of the 

study published in the European Journal of Mechanics/A Solids in 2021 [34]. 

3.1 MATHEMATICAL FORMULATION OF TEMPERATURE DEPENDENCE 

3.1.1 Linear interpolation of parameters 

As a first approach, the parameters were identified for several temperatures separately 

(see Section 2.2). The choice of the interpolation function between two testing 

temperatures then depends on the shape of the curve defined by the identified parameters. 

For instance, parameters 𝐶2 and 𝛾2 identified at five temperatures are shown in Figure 

2.25. Piecewise linear interpolation is the simplest and most efficient interpolation 

method, as it does not require additional parameters and it is adapted to non-monotonous 

evolutions, as illustrated for 𝐶2 in Figure 2.25 (a).  

 

Figure 2.25 – Linear interpolation of parameters (a) 𝐶2 and (b) 𝛾2 identified at five different temperatures 

independently 

Due to the complexity of the model, the solution to the identification problem at a given 

temperature is not unique. Therefore, there is no guarantee that sets of parameters 

identified independently for each test temperature are coherent with one another. This 

makes the validity of the model uncertain for temperatures in-between the identification 

temperatures when using linear interpolation. 
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3.1.2 Exponential function 

To ensure the consistency of parameters across temperatures, Hosseini et al. [33] 

proposed a new formulation of the parameters as exponential functions of the temperature 

and showed that it gave good results for the representation of mid-life cycle of fatigue 

and creep-fatigue tests. This formulation described by Eq. (2.66) defines any 𝑃 parameter 

of the Chaboche model as a function of the temperature 𝑇 in Kelvin, 𝐴𝑃, 𝐵𝑃, 𝐶𝑃 being the 

parameters associated to 𝑃(𝑇): 

𝑃 = 𝐴𝑃 (1 − 𝐵𝑃 exp (
𝑇

𝐶𝑃
)) (2.66) 

Let 𝑛𝑃 the number of parameters and 𝑛𝑇 the number of test temperatures, this means 

instead of identifying each parameter for each temperature – therefore a total of 𝑛𝑇 ∗ 𝑛𝑃 

parameters – only 3 temperature-dependence parameters must be identified for each 

parameter 𝑃 – a total of 3 ∗ 𝑛𝑃 parameters. The parameters 𝐵𝐶𝑖, 𝐵𝛾𝑖, 𝐵𝑏𝑖 and 𝐶𝐶𝑖 , 𝐶𝛾𝑖, 𝐶𝑏𝑖 

related to the various back-stresses 𝑋𝑖 are the same for every 𝑖. This choice is made for 

practical reasons, as it is impossible to differentiate the effect of temperature on each 

back-stress separately. For similar reasons, exponent parameters 𝑏, 𝑟𝑖, 𝑐𝛾𝑖 are kept 

constant with temperature. 

3.1.3 Double exponential 

The formulation with a single exponential has one major drawback: the evolution of 

parameters with temperature – and therefore the behaviour it represents – is necessarily 

monotonous. It is the case for the majority of parameters: the Young modulus and the 

yield stress decrease with temperature; time-dependent effects such as static recovery 

increase with temperature; etc. However, experimental results taken from Barrett et al. 

[35] show that the cyclic hardening behaviour of alloy 230 is not monotonous with 

temperature. Long-term cyclic hardening, for instance, can be quantified as the difference 

between the stress amplitude at the end of the test and the stress amplitude after the 

saturation of the short-term hardening (around the 100th cycle for alloy 230), as shown in 

Figure 2.26 for LCF tests with a strain amplitude of 0.8% at different temperatures. It can 

be observed that alloy 230 shows increasing amounts of cyclic hardening between 24°C 

and 427°C, but decreasing amounts of cyclic hardening between 649°C and 760°C.  The 

high amount of cyclic hardening around 600°C can be explained by the significant 

precipitation of fine carbides at this temperature, while the decrease in hardening between 

649°C and 760°C is due to the less dense carbide distribution at higher temperatures [36], 

[37].  
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Figure 2.26 – (a) Stress amplitude at different temperatures for a strain-controlled LCF test with 0.8% total strain 

amplitude from Barrett et al., (2016) with the 100th and the rupture cycles highlighted (b) Evolution of long-term 

cyclic hardening with temperature 

Long-term cyclic hardening is modelled through the variation of parameter 𝛾2 from its 

initial value 𝛾2
𝑖𝑛𝑖𝑡 towards its saturated value 𝛾2

𝑓
. When static recovery and evolution of 

mean stress can be neglected – this is the case for LCF tests – kinematic hardening can 

be integrated yielding to Eq. (2.59) (see 2.1.2.3). At the end of an LCF test, considering 

that 𝑒−𝛾𝑖𝑝 ≪ 1 and combining Eq. (2.59) with the von Mises criterion in uniaxial form, 

the stress amplitude can be approximated by Eq. (2.67): 

𝜎𝑎𝑚𝑝 ≈ 𝜎𝑦 + 𝑅 +∑
𝐶𝑖
𝛾𝑖

3

𝑖=1

 (2.67) 

Considering that 𝑅 is equal to 0 for alloy 230, it can be inferred from Eq. (2.67) that a 

value of 𝛾𝑖
𝑓
/𝛾𝑖

𝑖𝑛𝑖𝑡 larger than 1 induces softening, while for smaller values of this ratio, 

hardening is significant. Considering the experimental data shown in Figure 2.26, the 

value of 𝛾2
𝑓
/𝛾2

𝑖𝑛𝑖𝑡 should be above 1 at 24°C, decrease between 24°C and 427°C, and then 

increase between 649°C and 760°C. 

To account for the variation in the cyclic hardening behaviour of alloy 230 with 

temperature, a new formulation was set for cyclic hardening parameters 𝑎𝛾𝑖, 𝑏𝛾𝑖 and 𝑐𝛾𝑖 

with the sum of two exponential functions and five temperature dependence parameters, 

as shown in Eq. (2.68): 
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𝑃 = 𝐴𝑃 (1 − 𝐵𝑃 exp (
𝑇

𝐶𝑃
)) + 𝐴𝑃 (1 − 𝐷𝑃 exp (

𝑇

𝐸𝑃
)) (2.68) 

Similarly to what was done in section 3.1.2, the parameters 𝐵𝑃, 𝐶𝑃, 𝐷𝑃, and 𝐸𝑃 are 

considered identical for 𝑎𝛾𝑖 and 𝑏𝛾𝑖 for a given 𝑖, that is: 𝐵𝑎𝛾𝑖
= 𝐵𝑏𝛾𝑖

;  𝐶𝑎𝛾𝑖
= 𝐶𝑏𝛾𝑖

;  𝐷𝑎𝛾𝑖
=

𝐷𝑏𝛾𝑖
;  𝐸𝑎𝛾𝑖

= 𝐸𝑏𝛾𝑖
 for 𝑖 ∈ [1,2]. Using the double exponential formulation in Eq. (2.32) 

and writing 𝑒−𝑐𝛾𝑖𝑞 as 𝐾𝑞, parameter 𝛾𝑖
𝑓
 can be expressed as Eq. (2.69): 

𝛾𝑖
𝑓
= (𝐴𝑎𝛾𝑖

+ 𝐴𝑏𝛾𝑖
𝐾𝑞)(1 − 𝐵𝑎𝛾𝑖

exp(
𝑇

𝐶𝑎𝛾𝑖
))

⏟                          
𝑃1

+ (𝐴𝑎𝛾𝑖
+ 𝐴𝑏𝛾𝑖

𝐾𝑞)(1 − 𝐷𝑎𝛾𝑖
exp(

𝑇

𝐸𝑎𝛾𝑖
))

⏟                          
𝑃2

 

(2.69) 

 

Figure 2.27 – Double-exponential formulation of parameter 𝛾2
𝑓

 as a function of temperature, normalized with 

𝛾2
𝑖𝑛𝑖𝑡which is almost constant with temperature. 

Figure 2.27 shows the evolution of parameter 𝛾2
𝑓
 with temperature using the double-

exponential formulation. The initial value 𝛾2
𝑖𝑛𝑖𝑡 is almost constant with temperature, 

which makes its influence on the shape of  𝛾2
𝑓
/𝛾2

𝑖𝑛𝑖𝑡 negligible. The values are consistent 

with the analysis above: 𝛾2
𝑓
/𝛾2

𝑖𝑛𝑖𝑡 is above 1 at 24°C, decreases between 24°C and 427°C, 

and increases between 649°C and 760°C. 

3.1.4 Parameter identification 

With the exponential and double-exponential formulation, the identification of the 

parameters can be done using the procedure detailed in section 2.2. All the temperature-

dependent parameters follow the single exponential formulation, except for the 3*𝑛𝐴𝐹,𝑐𝑦𝑐 

cyclic hardening parameters that are used to define 𝛾𝑖
𝑓
. For alloy 230, considering the 
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choice of parameters 𝑛𝐴𝐹 = 3, 𝑛𝐴𝐹,𝑐𝑦𝑐 = 2, and 𝑛𝐴𝐹,𝑌 = 2, the total number of parameters 

to identify with the exponential and double-exponential formulations is: 

𝑛𝑃,𝑒𝑥𝑝 = 3 ∗ (7 + 4𝑛𝐴𝐹 + 2𝑛𝐴𝐹,𝑌 + 𝑛𝐴𝐹,𝑐𝑦𝑐) + (4 + 3)𝑛𝐴𝐹,𝑐𝑦𝑐 = 89 (2.70) 

To put things in perspective, the number of temperature-dependent parameters with linear 

interpolation would be expressed as Eq. (2.71), where 𝑛𝑇 is the number of temperatures 

for which parameters are identified: 

𝑛𝑃,𝑙𝑖𝑛 = 𝑛𝑇 ∗ (7 + 4𝑛𝐴𝐹 + 2𝑛𝐴𝐹,𝑌 + 4𝑛𝐴𝐹,𝑐𝑦𝑐) = 31𝑛𝑇 (2.71) 

𝑛𝑃,𝑙𝑖𝑛 is higher than 𝑛𝑃,𝑒𝑥𝑝 if 𝑛𝑇 ≥ 3, therefore it is interesting to use the exponential 

formulation to limit the total number of parameters. 

The direct identification and the initial estimates of parameters is first done separately for 

several temperatures. The parameters for the exponential and double-exponential 

formulations can then be computed using the Excel solver. The optimisation process can 

be performed using the groups of parameters defined in section 2.2.2. 

3.2 COMPARISON OF THE DIFFERENT APPROACHES 

The temperature-dependent formulation proposed with the (double) exponential function 

improves the model on two aspects:  

• The continuity and consistency of the model across temperatures. 

• A better representation of cyclic hardening with the double exponential 

formulation. 

3.2.1 Continuity under anisothermal loading 

The use of linear interpolation of parameters can lead to convergence problems when 

performing anisothermal simulations. Indeed, the discontinuity of the derivative of the 

parameters with respect to the temperature often induces issues around temperatures 

presenting strong parameter value peaks. However, this problem can be resolved simply 

by using a function of class 𝐶1 to describe the parameter evolution with the temperature, 

which is the case of the exponential formulation. 

Figure 2.28 shows the results of a strain-controlled out-of-phase thermo-mechanical test 

taken from [38] where the imposed mechanical strain decreases with increasing 

temperatures. The loading is shown in Figure 2.28 (a). The stress-strain curve obtained 

on the first cycle was computed using either the linear interpolation of parameters or the 

single-exponential formulation. The double-exponential formulation was not used here 

because it only applies to cyclic hardening, which has no effect on the first cycle. The 

parameters for the linear interpolation were identified at 204°C, 427°C, 649°C, 760°C, 
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and 871°C based on experimental results from [17]. The results of the simulations are 

shown in Figure 2.28 (b). The curve obtained using linear interpolation is almost identical 

to the curve obtained with the exponential formulation. However, a strong discontinuity 

appears in the curve with linear interpolation around 649°C. This phenomenon can be 

explained by the fact that one or several parameters reach a peak at 649°C, in this case 

parameter 𝛾2. The continuity of parameter 𝛾2 as a function of the temperature can be 

significantly improved with the exponential formulation. 

 

Figure 2.28 – Anisothermal results: (a) thermal and mechanical loading; (b) hysteresis loop for the 1st cycle showing a 

comparison between experiment and simulations with linear interpolation and exponential formulation. 

3.2.2 Cyclic hardening 

As shown in section 3.1.3, the cyclic hardening behaviour of alloy 230 is not monotonous 

with temperature. The stress amplitude of low-cycle-fatigue tests at different 

temperatures with a strain amplitude Δ휀 = 0.8% taken from [35] are compared with the 

simulations in Figure 2.29. Numerical results were obtained using either the single-

exponential or the double-exponential formulation for the cyclic hardening parameters. 

The rest of the parameters are expressed using the single-exponential formulation.  

The single-exponential formulation does not give good results at all temperatures, as can 

be seen in Figure 2.29. In particular, the long-term cyclic hardening is underestimated at 

temperatures of 24°C, 427°C, and 649°C, while it is over-estimated at 760°C. This can 

be a major issue when trying to estimate the lifetime of the material under a specific 

loading: if the stress is not estimated properly, the lifetime may be over or under-estimated 

as well. The results obtained with the double-exponential formulation are closer to the 

experimental curves and bring significant improvement compared to the single-

exponential formulation. 
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Although using double-exponential formulation increases the number of parameters to be 

identified (5 parameters for double-exponential versus 3 parameters for single-

exponential), it significantly improves the accuracy of the model. Moreover, the double-

exponential is only necessary for a restrained number of parameters (cyclic hardening 

parameters 𝑎𝛾𝑖 , 𝑏𝛾𝑖 , 𝑖 = 1: 2), this only adds 4 parameters. 

 

Figure 2.29 – Stress amplitude for strain-controlled LCF tests with 𝛥휀 = 0.8% at:  

(a) 24°C; (b) 204°C; (c) 427°C; (d) 649°C; (e) 760°C 
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4 CONCLUSION 

In this chapter, a material model was developed for the simulation of thermo-mechanical 

behaviour of Haynes 230 at temperatures ranging from room temperature to 850°C. The 

material model is based on the Chaboche model framework and contains multiple features 

to describe the macroscopic material behaviour as accurately as possible such as: 

• Isotropic hardening 

• Kinematic hardening 

• The modelling of viscous effect: this can be done using the Norton law or within 

the kinematic hardening rule by simulating static recovery. 

• The modelling of cyclic hardening through the kinematic hardening rule 

• The evolution of the mean stress for asymmetrical cyclic loadings 

• The influence of the maximum temperature in the loading history. 

The material law containing all these features was implemented as part of the Lagamine 

finite-element code developed at the University of Liège. 

Because the model contains numerous features, it also requires a large number of material 

parameters. A sensitivity analysis was performed to determine the influence of each 

parameter on the model response and get a better understanding of the impact of each 

individual feature on the global behaviour. Thanks to this analysis, a step-by-step 

identification method was designed based on the use of specific mechanical tests. Finally, 

a specific formulation was developed for the expression of the temperature-dependence 

of the material parameters. This formulation smoothens the evolution of parameters with 

temperature and improves the continuity of the model on anisothermal tests. 
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1 DAMAGE MODELLING 

One of the objectives of the Solar Perform project was to predict the lifetime of solar 

receivers made of alloy 230. The loading of the receivers is complex, as it includes daily 

cycling, large temperature variations and gradients, and long hold times at high 

temperatures. As a consequence, the material undergoes creep, fatigue, and possibly 

thermal ageing. All these effects can interact and accelerate the degradation of the 

material. Due to this complexity, it is impossible to determine the lifetime by simple 

extrapolation of experimental results.  

A mathematical model that takes into account both creep and fatigue, as well as their 

interaction, is necessary to accurately predict the failure of the solar receivers. In this 

section, a brief review of existing mathematical models for damage is given, followed by 

a detailed presentation of the Lemaitre damage model. 

1.1 PREDICTING FAILURE 

1.1.1 Linear summation of damage 

The linear summation of damage for fatigue was developed by Miner in 1945 [1]. It is a 

very simple rule that can be applied to cyclic loadings of known stress level. The damage 

produced by a number of cycles 𝑁𝑖 at a stress level 𝜎𝑖 is defined as 
𝑁𝑖

𝑁𝑅,𝑖
, where 𝑁𝑅,𝑖 is the 

number of cycles to rupture for that stress level. The Miner rule, written as Eq. (3.1), 

supposes that damages at different stress levels can be added and rupture occurs when the 

sum of these damages is equal to 1: 

∑
𝑁𝑖
𝑁𝑅,𝑖

𝑖

= 1 (3.1) 

Similarly, Robinson [2] proposed a summation rule for creep shown in Eq. (3.2), where 

𝑡𝑖 is the time spent at a given stress level and temperature, and 𝑡𝑅,𝑖 the rupture time for 

that stress level and temperature. 

∑
𝑡𝑖
𝑡𝑅,𝑖

= 1

𝑖

 (3.2) 

The two rules can be combined as Eq. (3.3) in the case of creep-fatigue: 

∑
𝑁𝑖
𝑁𝑅,𝑖

𝑖

+∑
𝑡𝑗

𝑡𝑅,𝑗
= 1

𝑗

 (3.3) 
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This rule can be practical for a rapid preliminary assessment of lifetime, however, it has 

been shown to be conservative and not well adapted to the creep-fatigue of alloy 230 [3], 

as shown in Figure 3.1 where the fatigue damage 𝐷𝑓 corresponds to the first sum in Eq. 

(3.3) and the creep damage 𝐷𝑐 corresponds to the second sum. The two damages were 

calculated for different creep fatigue tests with strain amplitudes of 0.5%, 1%, or 1.5% 

and tensile hold times of 3 min, 10 min, or 30 min. For the five tests, the combined  fatigue 

and creep damage is largely above 1. 

 

Figure 3.1 – Linear damage summation for creep-fatigue tests on Inconel 617 and Haynes 230 alloys. 

Results from Chen et al. [3] 

1.1.2 Strain range partitioning 

The concept of strain range partitioning was introduced in 1971 by Manson and Halford 

[4]. Their idea was to separate the contributions of creep deformation, which is associated 

to diffusion mechanisms and grain boundary sliding, and other plastic deformations, 

caused by sliding within the grains, for the computation of lifetime. They proposed to 

divide the total inelastic strain range into four components: 

• Plastic strain reversed by plasticity Δ휀𝑝𝑝 

• Creep strain reversed by creep Δ휀𝑐𝑐 

• Plastic strain reversed by creep Δ휀𝑝𝑐 

• Creep strain reversed by plasticity Δ휀𝑐𝑝 

In this notation, the first letter refers to the type of strain imposed in the tensile part of the 

cycle (loading), while the second letter refers to the type of strain imposed during the 

compressive part of the cycle (reversed loading). 
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A Manson-Coffin law, relating the inelastic strain amplitude Δ휀𝑥𝑦 (subscripts 𝑥 and 𝑦 

refer to either creep or plasticity) to the number of cycles to failure 𝑁𝑥𝑦, can be fitted for 

each of these contributions based on specific tests: 

𝛥휀𝑥𝑦 = 𝐶(𝑁𝑥𝑦)
𝛽
  (3.4) 

The total number of cycles to failure is then computed by adding the contribution of each 

strain component as shown in Eq. (3.5) where 𝐹𝑥𝑦 is the ratio of the strain component 

Δ휀𝑥𝑦 on the total strain amplitude: 

1

𝑁
=
𝐹𝑝𝑝

𝑁𝑝𝑝
+ 
𝐹𝑐𝑐
𝑁𝑐𝑐

+
𝐹𝑝𝑐

𝑁𝑝𝑐
+
𝐹𝑐𝑝

𝑁𝑐𝑝
 (3.5) 

Although this method was shown to give good results for 2¼ Cr-1Mo steel, it is very 

difficult to apply in general. Firstly, it requires multiple very specific tests to identify the 

Manson-Coffin parameters 𝑁𝑥𝑦 for each component; secondly, it is difficult to partition 

the strain properly on any loading cycle. 

Wu [5] proposed a method inspired by strain range partitioning for the life prediction of 

gas turbine materials. In this model, the strain is divided in two physics-based 

components: 

• Intragranular deformation 휀𝑔; 

• Deformation due to grain boundary sliding 휀𝑔𝑏𝑠, which usually develops under 

creep loading. 

The lifetime prediction model of Wu is interesting because it is based on physical 

considerations, however, it also requires extensive knowledge of the material behaviour 

at a microscopic scale, which is not easily obtained, especially when considering a wide 

range of temperatures as is the case for the application in this study. 

1.1.3 Continuum damage theory 

In 1958, Kachanov introduced the concept of ‘continuity’ to model the microcracking in 

materials under creep loading [6]. The idea was to model the continuity of the material 

by a scalar variable 𝜓 ∈ [0,1]. The absence of damage is characterized by 𝜓 = 1, whereas 

rupture – i.e., the appearance of a mesoscopic crack – corresponds to 𝜓 = 0.  

Creep normally consists of three stages: 

• Primary creep, characterized by a relatively high initial strain rate which decreases 

with time due to hardening of the material. 

• Secondary creep, during which the strain rate is constant and microcracks form 

gradually. 
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• Tertiary creep, where the strain rate increases exponentially due to coalescence of 

voids at grain boundaries which accelerates fracturing. 

To model the progressive build-up of microcracks, Kachanov proposed to use a power 

law to describe the evolution of the continuity variable 𝜓, where 𝐴 and 𝑛 are material 

parameters:  

�̇� = −𝐴 (
𝜎

𝜓
)
𝑛

 (3.6) 

The ration 𝜎/𝜓 can be interpreted as an effective stress. 

Rabotnov later modified the law proposed by Kachanov, using a scalar damage variable 

𝜔 = 1 − 𝜓 instead of the continuity variable 𝜓 and introducing a new material parameter 

𝑘 [7]: 

�̇� =
𝐴

(1 − 𝜔)𝑘
(
𝜎

1 − 𝜔
)
𝑛

 (3.7) 

The concept of a scalar variable to model damage and the use of the effective stress was 

later expanded by Lemaitre and Chaboche to a more general thermodynamic framework, 

detailed in Section 1.2 hereafter. 

1.2 LEMAITRE UNIFIED DAMAGE MODEL 

1.2.1 Concept 

The unified damage model proposed by Lemaitre is based on the concepts introduced by 

Kachanov and Rabotnov. In the Lemaitre model, the state of the material is represented 

by a scalar variable 𝐷, equivalent to the 𝜔 variable of Rabotnov. This variable can also 

be in the form of a tensor to represent anisotropic damage. In this work, however, only 

the scalar form is used, i.e., damage is considered isotropic. This assumption was made 

because the only experimental data available (from the experimental campaign and from 

the literature) consist in uniaxial tests. Therefore, it would be impossible to quantify the 

effect of damage produced in one direction on the behaviour in other directions. 

The damage variable 𝐷 varies between 0 (no damage) and 1 (rupture). The value of 1 is 

a theoretical value corresponding to rupture; numerically, the value of 𝐷 is limited to a 

critical damage value 𝐷𝑐𝑟𝑖𝑡 < 1 that would correspond to the appearance of a mesoscopic 

crack. At a microscopic level, 𝐷 can be understood as a representation of the 

concentration of voids in the material. An effective stress �̃� can be defined according to 

Eq. (3.8).  
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�̃� =
𝜎

1 − 𝐷
 (3.8) 

This effective stress corresponds to the stress that would be required to produce the same 

strain on the undamaged material, as illustrated in Figure 3.2.  

 
Figure 3.2 – Schematic representation of the concept of effective stress �̃�; on the left: damaged material under stress 

𝜎; on the right: equivalent undamaged material under stress �̃� 

In the case of unidimensional elasticity, this is equivalent to considering that the Young 

modulus is decreased by a factor 1 − 𝐷.  

�̃� =
𝜎

1 − 𝐷
= 𝐸휀𝑒 ⟺ 𝜎 = (1 − 𝐷)𝐸휀𝑒 (3.9) 

In the 3D case, this leads to the modified Hooke’s law written with the effective stress as 

Eq. (3.10) using the Voigt notation described in Section 1.1.1 of Chapter 2: 

�̃� = 𝐸: 휀𝑒 (3.10) 

Which can be written in index notation as Eq. (3.11), where 𝛿𝑖𝑗 is the Kronecker symbol: 

�̃�𝑖𝑗 =
𝐸

1 + 𝜈
(휀𝑖𝑗
𝑒 +

𝜈

1 − 2𝜈
휀𝑘𝑘
𝑒 𝛿𝑖𝑗) (3.11) 

The inverse relationship can also be expressed using index notation: 

휀𝑖𝑗
𝑒 =

1 + 𝜈

𝐸
�̃�𝑖𝑗 −

𝜈

𝐸
�̃�𝑘𝑘𝛿𝑖𝑗 (3.12) 

1.2.2 Mathematical model 

To define the evolution of the damage variable 𝐷, Lemaitre introduced the 

thermodynamic variable 𝑌 [8] – not to be mistaken with the tensor 𝑌𝑖 which represents 

mean stress evolution in the behaviour model – as shown in Eq. (3.13), where �̇� is the 
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equivalent plastic strain rate defined in Section 1.1.2 of Chapter 2, 𝑆 and 𝑠 are material 

parameters.  

�̇� = (
𝑌

𝑆
)
𝑠

�̇� (3.13) 

 

The thermodynamic variable 𝑌 is the strain energy density release rate and can be 

expressed as Eq. (3.14): 

𝑌 =
1

2
휀𝑒: 𝐸: 휀𝑒 (3.14) 

Considering the modified Hooke’s law with the effective stress, the variable 𝑌 can be 

rewritten as a function of the stress 𝜎: 

𝑌(𝜎) =
1

2
𝐸−1: �̃�: �̃� =

1 + 𝜈

2𝐸

𝜎𝑖𝑗𝜎𝑖𝑗
(1 − 𝐷)2

−
𝜈

2𝐸
(
𝜎𝑘𝑘
1 − 𝐷

)
2

 (3.15) 

1.2.2.1 Microdefects closure 

Under compressive loading, microdefects tend to close; this means the area which carries 

the load is larger in compression compared to the area carrying the load in tension. The 

value of damage is however not modified by microdefects closure as this closure is only 

momentary and does not correspond to a healing of the material. Experimentally, this can 

be observed by measuring the Young modulus in tension and compression: the apparent 

Young modulus in compression is bigger than the apparent Young modulus in tension. 

To mathematically express the effect of microdefects closure, a crack closure parameter 

ℎ is introduced [9]. For a unidimensional stress state, the effective stress is then redefined 

as Eq. (3.16) in compression, while the regular expression of Eq. (3.8) is used in tension. 

The parameter ℎ is usually equal to 0.2 for metals [10]. 

�̃� =
𝜎

1 − ℎ𝐷
 (3.16) 

In a 3D stress state, separating compressive and tensile components is not as simple. The 

model proposed by Lemaitre divides the stress tensor into a positive part 〈𝜎〉+ and a 

negative part 〈𝜎〉−. The positive/negative part of the tensor can be computed from its 

positive/negative eigenvalues 𝑠𝐾 and the corresponding normalized eigenvectors �⃗�𝐾, as 

shown in Eq. (3.17), where 〈. 〉 denotes the Macaulay brackets: 
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〈𝜎〉𝑖𝑗
+ = ∑〈𝑠𝐾〉𝑞𝑖

𝐾

3

𝐾=1

𝑞𝑗
𝐾      and     〈𝜎〉𝑖𝑗

− = 𝜎𝑖𝑗 − 〈𝜎〉𝑖𝑗
+  (3.17) 

The definition of the effective stress given by Eq. (3.8) and the modified Hooke’s law of 

Eq. (3.11) are no longer valid under the assumption of microdefects closure. Instead, the 

effective stress can be written as Eq. (3.18): 

�̃�𝑖𝑗 =
⟨𝜎⟩𝑖𝑗

+

1 − 𝐷
+

⟨𝜎⟩𝑖𝑗
−

1 − ℎ𝐷
+

𝜈

1 − 2𝜈
[
𝛿𝑘𝑙⟨𝜎⟩𝑘𝑙

+ − ⟨𝜎𝑘𝑘⟩

1 − 𝐷
+
𝛿𝑘𝑙⟨𝜎⟩𝑘𝑙

− + ⟨−𝜎𝑘𝑘⟩

1 − ℎ𝐷
] 𝛿𝑖𝑗 (3.18) 

Similarly, the relation between the stress and the elastic strain which was expressed by 

Eq. (3.12) is now written as Eq. (3.19): 

휀𝑖𝑗
𝑒 =

1 + 𝜈

𝐸
[
⟨𝜎⟩𝑖𝑗

+

1 − 𝐷
+

⟨𝜎⟩𝑖𝑗
−

1 − ℎ𝐷
] −

𝜈

𝐸
[
⟨𝜎𝑘𝑘⟩

1 − 𝐷
−
⟨−𝜎𝑘𝑘⟩

1 − ℎ𝐷
] 𝛿𝑖𝑗 (3.19) 

The strain energy density release rate 𝑌, previously defined by Eq. (3.15) can then be 

calculated as a function of the stress tensor 𝜎 using Eq. (3.20): 

𝑌(𝜎) =
1 + 𝜈

2𝐸
[
〈𝜎〉𝑖𝑗

+ 〈𝜎〉𝑖𝑗
+

(1 − 𝐷)2
+ ℎ

〈𝜎〉𝑖𝑗
− 〈𝜎〉𝑖𝑗

−

(1 − ℎ𝐷)2
] −

𝜈

2𝐸
[
〈𝜎𝑘𝑘〉

2

(1 − 𝐷)2
+ ℎ

〈−𝜎𝑘𝑘〉
2

(1 − ℎ𝐷)2
] (3.20) 

Note that in the case where ℎ = 1, Eq. (3.19) is equivalent to the modified Hooke’s law 

of Eq. (3.12) and Eq. (3.20) becomes equivalent to Eq. (3.15). However, from a numerical 

standpoint, it is much more efficient to use equations (3.10) and (3.15) when ℎ = 1 since 

they do not require the computation of the positive and negative parts of the stress tensor.  

1.2.2.2 Damage threshold 

Damage only occurs in a material after a certain cumulative plastic strain 𝑝𝐷 is reached 

[8]. The threshold is dependent on the material, on the temperature, as well as on the type 

of loading. A more objective threshold can be defined using the energy stored by 

hardening 𝑤𝑠 (Eq. (3.21)). Damage occurs once the energy stored over time 𝑤𝑠 reaches a 

threshold 𝑤𝐷, which is a temperature-dependent material parameter. 

𝑤𝑠 = ∫ (
𝐴

𝑚
𝑝
1−𝑚
𝑚 𝑅(𝑝)�̇�) 𝑑𝑡

𝑡

0

+∑
3

2
𝐶𝑖𝑋𝑖: 𝑋𝑖

𝑖

 (3.21) 

In Eq. (3.21), 𝐴 and 𝑚 are correction parameters to take into account the saturation of 

energy stored from isotropic hardening once isotropic hardening is saturated [11]. 𝑅 and 

𝑋𝑖 are respectively the drag stress and the back-stresses defined in Chapter 2; 𝐶𝑖 is a 

parameter associated to kinematic hardening. 
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1.2.3 Parameter identification 

In the unified Lemaitre damage model, when ℎ is fixed at a constant value of 0.2, there 

are 5 parameters to identify at each temperature: 

• 2 damage parameters 𝑠 and 𝑆; 

• 3 parameters for the initialisation of damage 𝐴, 𝑚, and 𝑤𝐷. 

To identify these parameters, Otin proposed a simple method based on creep tests and 

fatigue tests [12]. The parameters 𝑠 and 𝑆 are first identified from creep tests, by 

considering that the damage threshold is reached when secondary creep starts. For a 

uniaxial tensile creep test, the effect of microdefects closure is not taken into account 

since the stress is always positive (i.e., ⟨𝜎⟩
−
= 0). Therefore, the theoretical time to 

rupture 𝑡𝑅,𝑡ℎ can be obtained by integrating Eq. (3.13) as Eq. (3.22), where 𝑡𝐷 is the time 

to start of secondary creep, and 𝜎 the creep stress. The critical value of damage 𝐷𝑐𝑟𝑖𝑡 is 

set to 0.3, as is usually the case for metallic materials [11]. 

𝑡𝑅,𝑡ℎ = 𝑡𝐷 + (
2𝐸𝑆

𝜎2
)
𝑠 1

�̇�
 ∫ (1 − 𝐷)2𝑠𝑑𝐷

𝐷𝑐𝑟𝑖𝑡

0

 (3.22) 

For alloy 230 at 760°C, the parameters in case of pure creep are identified through trial 

and error using Eq. (3.22) and experimental data from Haynes. The resulting points are 

shown in Figure 3.3 for parameters 𝑠 = 3.5 and 𝑆 = 8 (optimised values). 

 
Figure 3.3 – Theoretical and experimental creep times to rupture used for the identification of parameters s and S at 

760°C 

Using these values, it is now possible to identify the parameters for the damage threshold. 

For a uniaxial fatigue test, the number of cycles to rupture 𝑁𝑅 can be approximated by 

Eq. (3.23), where 𝑁𝐷 is the number of cycles corresponding to the damage threshold, Δ휀𝑝 

is the plastic strain amplitude on a cycle, and 𝜎 is the stress amplitude: 
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𝑁𝑅 = 𝑁𝐷 +
𝐷𝑐𝑟𝑖𝑡
2Δ휀𝑝

(
2𝐸𝑆

𝜎2
)
𝑠

 (3.23) 

From this equation, it is possible to estimate the value of 𝑁𝐷 for different fatigue tests by 

using the experimental values of 𝑁𝑅, Δ휀𝑝 and 𝜎. Using results of fatigue tests at 760°C 

from the literature [13], values of 𝑁𝐷 were computed. These values are shown in Table 

3.1. The values obtained for 𝑁𝐷 are very close to the values of 𝑁𝑅. This result means that 

with the parameters identified from creep tests, damage due to fatigue evolves extremely 

rapidly towards a critical value once initiated. In addition, these parameters lead to 

considering that the material remains undamaged for most of the duration of the test, 

which seems unlikely at such a high temperature. 

Table 3.1 – Number of cycles to rupture and number of cycles for the appearance of damage for 3 fatigue tests at 

760°C 

Δ휀 𝑁𝑅 𝑁𝐷 

0.8% 1657 1622 

0.6% 4196 4138 

0.4% 85079 84878 

Considering these results, the identification of parameters was not conducted further, as 

it seems the model is not well adapted to alloy 230. In particular, having the same two 

parameters for both creep and fatigue damage does not seem appropriate for this material.  

2 ADVANCED LEMAITRE-TYPE MODEL FOR CREEP-

FATIGUE 

In this section, a new damage model derived from the Lemaitre unified model is proposed 

to represent the damage of materials, and more specifically alloy 230, under 

thermomechanical creep-fatigue. 

In this model, the damage caused by fatigue and the damage caused by creep are separated 

in two components 𝐷𝑓 and 𝐷𝑐, such that the total mechanical damage is 𝐷 = 𝐷𝑓 + 𝐷𝑐. 

Indeed, it is known from experimental observations that fatigue and creep cause different 

effects in alloy 230 [14]–[17]. 

2.1 FATIGUE DAMAGE 

The fatigue damage is modelled using Eq. (3.24), which is the same as Eq. (3.13) with 

parameters specific to fatigue 𝑆𝑓 and 𝑠𝑓. The expression for 𝑌(𝜎) is given by Eq. (3.15) 

if no microdefects closure is taken into account, or by Eq. (3.20) in the case with 

microdefects closure.  
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�̇�𝑓 = (
𝑌(𝜎)

𝑆𝑓
)

𝑠𝑓

�̇� (3.24) 

For simplification, no damage threshold is considered: damage starts with plasticity. 

Although this assumption is not physically accurate, it is acceptable in the case of the 

model for solar receivers. Indeed, the solar receivers are exposed to a combination of 

creep and fatigue; the time to the onset of secondary creep is short for alloy 230 (a few 

hours or less, depending on the stress and temperature) therefore it is fair to assume that 

the damage threshold is rapidly achieved for the receiver tubes exposed to daily high-

temperature thermomechanical loading with hold times of several hours. 

2.2 CREEP DAMAGE 

Creep damage is modelled using the Rabotnov-Kachanov equation (Eq. (3.7)) shown in 

section 1.1.3, with the variable 𝑌(𝜎) instead of 𝜎, 𝐷 the total mechanical damage, and 

𝑠𝑐, 𝑆𝑐, and 𝑘𝑐 the creep damage parameters: 

�̇�𝑐 = (
𝑌(𝜎)

𝑆𝑐
)

𝑠𝑐
1

(1 − 𝐷)𝑘𝑐
  (3.25) 

One drawback of this formulation for creep damage is that numerically, creep damage 

will occur even for short loadings, or for cyclic loadings with high frequencies. In reality, 

creep is a long-term phenomenon and creep damage takes time to develop. Therefore, a 

delayed stress concept is introduced to prevent creep damage from occurring for high-

frequency loadings. The stress used for the computation of creep damage is a delayed 

stress 𝜎𝑑, defined by Eq. (3.26) where 𝜏 is the characteristic time for the appearance of 

creep. 

𝑑𝜎𝑑

𝑑𝑡
=
𝜎 − 𝜎𝑑

𝜏
 (3.26) 

The concept of delayed stress is illustrated in Figure 3.4 for a unidimensional cyclic 

loading with a frequency 𝑓 = 0.25𝑠−1. The real stress (in blue) and the stress with a value 

of 𝜏 = 0.1𝑠 are almost the same. Indeed, if it is considered that creep damage appears 

after 0.1s, the original curve of 𝜎 with a frequency 0.25𝑠−1 can be used for the 

computation of creep. However, if creep damage only appears after 10 or 100 seconds, 

then creep will not develop under a loading frequency of 0.25𝑠−1. The delayed stress for 

these values remains close to 0. 
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Figure 3.4 – Delayed stress on a cyclic loading of frequency 0.25s-1 for different values of the characteristic time 𝜏 

2.3 COUPLED FATIGUE-CREEP 

As mentioned above, the fatigue and creep damages are summed to form the total 

mechanical damage 𝐷 = 𝐷𝑓 + 𝐷𝑐. However, the two damages are not completely 

independent of one another as would be the case in the linear summation damage model 

(see Section 1.1.1).  

Experimental observations on alloy 230 show that the two phenomena can interact. This 

can be deduced from the study of cracks that form in the material during mechanical tests. 

At 850°C, low-cycle fatigue loadings lead to transgranular cracking [14], whereas creep 

loading generates cracks at grain boundaries (intergranular cracking) [18]. When creep 

and fatigue are combined by introducing hold times in the cyclic loading, the fracture 

mode evolves from transgranular (no hold time) to mixed transgranular/intergranular 

(short hold times), and even to mainly intergranular cracking (long hold times) [14], [19]. 

The presence of mixed transgranular/intergranular modes of fracture shows that fatigue 

and creep damages interact and tend to enhance one another. This is true for combined 

creep-fatigue when tensile creep is applied. The results of the metallurgical analysis 

detailed in Section 1.3 of Chapter 1 seem to indicate this is not the case for compressive 

creep. These results, however, were not yet available at the time of development of the 

damage model, which was based purely on considerations from the literature. 

The coupling between creep and fatigue is done through the use of the effective stress in 

the computation of 𝑌 (Eq. (3.15)). Indeed, the total damage 𝐷 is used in the expression of 

variable 𝑌. A high value of either creep or fatigue damage increases the value of 𝑌, which 
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is proportional to 1/(1 − 𝐷)2 (in the case without microdefects closure). This increase of 

𝑌 creates in turn an increase of both creep and fatigue damage rates. 

2.4 IMPLEMENTATION 

The equations for creep and fatigue damage were implemented in the Lagamine code as 

an additional feature of the behaviour model presented in Chapter 2. In the first version 

of the model, the behaviour is not coupled to damage. This means the value of damage 

does not impact the behaviour of the material, i.e., the effective stress is not used in the 

material law. A second version of the model with coupling, detailed in Section 3 of the 

present chapter, was later implemented. 

In the non-coupled version, the equations for creep and fatigue damage are solved at the 

end of the time step; the values of the stress 𝜎𝑘+1 and the cumulative plastic strain 𝑝𝑘+1 

at the end of the time step are known. For simplification, the values at the end of the time 

step are written without indices in the following paragraphs: 𝜎𝑘+1 → 𝜎; 𝐷𝑘+1 → 𝐷; 

𝑝𝑘+1 → 𝑝. 

Equations (3.24) and (3.25) expressing the evaluation of 𝐷𝑓 and 𝐷𝑐 respectively are 

discretised using an implicit Euler scheme: 

𝐷𝑓 = 𝐷𝑓,𝑘 + (
𝑌(𝜎, 𝐷 )

𝑆𝑓
)

𝑠𝑓

(𝑝 − 𝑝𝑘) (3.27) 

𝐷𝑐 = 𝐷𝑐,𝑘 + (
𝑌(𝜎𝑑 , 𝐷 )

𝑆𝑐
)

𝑠𝑐
1

(1 − 𝐷 )𝑘𝑐
 Δ𝑡 (3.28) 

With 𝐷 = 𝐷𝑓 + 𝐷𝑐. 

Equations (3.27) and (3.28) can be rewritten in a residual form as Equations (3.29) and 

(3.30). These are nonlinear equations that can be solved using the Newton-Raphson 

method. 

𝐹𝑓 = 𝐷𝑓 − 𝐷𝑓,𝑘 − (
𝑌(𝜎, 𝐷)

𝑆𝑓
)

𝑠𝑓

(𝑝 − 𝑝𝑘) = 0 (3.29) 

𝐹𝑐 = 𝐷𝑐 − 𝐷𝑐,𝑘 − (
𝑌(𝜎𝑑 , 𝐷)

𝑆𝑐
)

𝑠𝑐
1

(1 − 𝐷)𝑘𝑐
= 0 (3.30) 

For the solution of these equations, a staggered scheme is used: 

A. The Newton-Raphson method (also called Newton method) is applied to equation 

(3.29) to find the converged value 𝐷𝑓
𝐴 and 𝐷𝐴 while considering 𝐷𝑐 = 𝐷𝑐,𝑘. Let 𝑛 
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the subscript denoting the 𝑛-th iteration of the Newton method. The method 

consists in computing the consecutive values of 𝐷𝑓
𝑛 using Eq. (3.31): 

𝐷𝑓
𝑛+1 = 𝐷𝑓

𝑛 − (
𝜕𝐹𝑓

𝜕𝐷𝑓
(𝐷𝑓

𝑛))

−1

𝐹𝑓(𝐷𝑓
𝑛) (3.31) 

At the end of each iteration, the value of 𝐷 is updated to 𝐷𝑛+1 = 𝐷𝑓
𝑛+1 + 𝐷𝑐. 

Convergence for this step is achieved when the difference between two 

consecutive iterations is smaller than the imposed precision 𝜖: 
|𝐷𝑓
𝑛+1−𝐷𝑓

𝑛|

𝐷𝑓
𝑛 < 𝜖. 

B. Eq. (3.30) is solved to find the converged values 𝐷𝑐
𝐵 and 𝐷𝐵 using the new value 

of 𝐷𝑓 = 𝐷𝑓
𝐴. The consecutive values of 𝐷𝑐

𝑛 are computed using Eq. (3.32): 

𝐷𝑐
𝑛+1 = 𝐷𝑐

𝑛 − (
𝜕𝐹𝑐
𝜕𝐷𝑐

(𝐷𝑐
𝑛))

−1

𝐹𝑐(𝐷𝑐
𝑛) (3.32) 

At the end of each iteration, the value of 𝐷 is updated to 𝐷𝑛+1 = 𝐷𝑓
𝐴 + 𝐷𝑐

𝑛+1. 

Convergence for this step is achieved when the difference between two 

consecutive iterations is smaller than the imposed precision 𝜖: 
|𝐷𝑐
𝑛+1−𝐷𝑐

𝑛|

𝐷𝑐
𝑛 < 𝜖. 

C. Step A is performed again while considering the updated value of creep damage:  

𝐷𝑐 = 𝐷𝑐
𝐵. 

Steps B and C are repeated until both steps converge with 
|𝐷𝐴−𝐷𝐵|

𝐷𝑘
< 𝜖, where 𝜖 is the 

precision for the convergence of the Newton-Raphson method. 

The expressions for the derivatives of 𝐹𝑓 and 𝐹𝑐 are given in Appendix 2. 

2.5 PARAMETER IDENTIFICATION 

There are two types of parameters to identify for the damage model: 

• 𝑆𝑓 and 𝑠𝑓 for fatigue damage. 

• 𝑆𝑐, 𝑠𝑐 and 𝑘𝑐 for creep damage. 

2.5.1 Fatigue damage parameters 

The expression of the number of cycles to rupture for a uniaxial fatigue test can be derived 

from the integration of Eq. (3.24), as done in Section 1.2.3. Here, the damage threshold 

is considered to be close to zero, i.e., 𝑁𝐷 ≈ 0: 

𝑁𝑅 ≈
𝐷𝑐𝑟𝑖𝑡
2Δ휀𝑝

(
2𝐸𝑆𝑓

𝜎2
)
𝑠𝑓

 (3.33) 
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Since the stress amplitude 𝜎 and the plastic strain amplitude Δ휀𝑝 are not constant over the 

whole duration of the test, the value of 𝑁𝑅 is approximated by using the values at mid-

life. Using the Excel solver on the set of data obtained from the experimental campaign, 

a first approximation of parameters 𝑠𝑓 and 𝑆𝑓 can be found.  

Figure 3.5 shows the result of the identification of parameters 𝑠𝑓 and 𝑆𝑓, where 𝑁𝑅,𝑡ℎ are 

the values of number of cycles to rupture calculated using Eq. (3.33), and 𝑁𝑅,𝑒𝑥𝑝 the 

experimental number of cycles to rupture. 

 
Figure 3.5 – Identification of fatigue damage parameters at different temperatures 

This first approximation can then be refined using an optimization code such as OPTIM 

to obtain parameters based on the full stress and strain histories. 

2.5.2 Creep damage parameters 

As for the Lemaitre unified model, an analytical expression of the time to rupture 𝑡𝑅 in 

pure creep can be obtained from the integration of Eq. (3.25) (in this case, the total 

damage is equivalent to the creep damage): 

𝑡𝑅 = (
2𝐸𝑆𝑐
𝜎2

)
𝑠𝑐

∫ (1 − 𝐷𝑐)
𝑘𝑐+2𝑠𝑐𝑑𝐷

𝐷𝑐𝑟𝑖𝑡

0

 (3.34) 

Using this equation, the 3 parameters can be identified manually through trial and error 

and optimized by minimizing the relative error between experimental values 𝑡𝑅,𝑒𝑥𝑝 and 

theoretical values 𝑡𝑅,𝑡ℎ obtained from Eq. (3.34) using the Excel solver. For 

simplification, exponent parameters 𝑠𝑐 and 𝑘𝑐 are kept constant with the temperature. 

This ensures that the evolution of 𝑆𝑐 with temperature is monotonous. 
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Figure 3.6 shows the result of the identification at 5 different temperatures: the 

experimental times to rupture from Haynes data and from the creep tests performed by 

CRM are shown in grey, while the computed theoretical values are shown with 

transparent shapes outlined in black. No data is available at temperatures below 600°C, 

as almost no creep occurs below this temperature. The identification was not performed 

for temperatures above 800°C since it would be beyond the range of temperature that is 

used for solar receivers. 

 
Figure 3.6 – Identification of the creep damage parameters at different temperatures 

2.6 INFLUENCE OF THE MATERIAL FORMING 

The experimental tests used for the identification of the parameters were performed on 

samples manufactured from bars of alloy 230. This was done for practical reasons, as tube 

samples are more sensitive to buckling and would have been more difficult to adapt to 

the testing machines. 

Tubes are manufactured from sheets of alloy 230 which are bent and welded. Sheets and 

bars do not have the same properties, especially regarding the lifetime under creep and 

fatigue. In particular, sheets have shorter lifetimes under creep and fatigue. This could be 

due to the presence of residual stresses from rolling. However, the exact origin of this 

difference is not known. A comparative analysis of the microstructure of samples of tubes 

or sheets and samples of bars after creep and fatigue testing would be necessary to find 

out what causes the reduction in lifetime, however, this was not included in the project. 

Figure 3.7 shows the stresses required to reach rupture in creep for different durations of 

the test. It is clear that for a given stress, the time to reach rupture is smaller for sheets 
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than for bars and plates. This is true at all temperatures considered. However, when 

multiplying the rupture stress for sheet by a correction coefficient 𝑘, the resulting curve 

is approximately the same as the rupture curve for bars and plates. 

 
Figure 3.7 – Creep rupture properties of alloy 230 for Bar/Plate and Sheet - data from Haynes [20]. The square points 

correspond to ruptures for sheet with the stress multiplied by a correction coefficient 𝐾𝑐  ≈ 1.13 

Let 𝜎𝑏/𝑝
𝑇,𝑡𝑅 and 𝜎𝑠ℎ

𝑇,𝑡𝑅 the stresses required to reach rupture under 𝑡𝑅 hours at a temperature 

𝑇 respectively for a bar or plate and for a sheet. The correction coefficient 𝐾𝑐 was 

determined using the Excel solver to minimize the sum of the squares of the relative 

differences between 𝜎𝑏/𝑝
𝑇,𝑡𝑅 and 𝐾𝑐𝜎𝑠ℎ

𝑇,𝑡𝑅, as shown in Eq. (3.35). The obtained value is 

𝐾𝑐 = 1.125. 

𝑆 =∑∑
( 𝜎𝑏/𝑝

𝑇,𝑡𝑅 − 𝐾𝑐𝜎𝑠ℎ
𝑇,𝑡𝑅)

𝜎𝑏/𝑝
𝑇,𝑡𝑅

𝑡𝑅𝑇

 (3.35) 

This correction coefficient can then be applied in the model by multiplying by 𝑘 the stress 

used to compute the creep damage. 

For fatigue, a difference between bars/plates and sheets/tubes can also be observed, 

although data is scarcer due to the difficulty of performing fatigue tests on sheets. Data 

found for welded tubes at 595°C [21] and for sheets at 816°C [17] are shown in Figure 

3.8. Considering the equation for fatigue damage, it would seem best to apply a correction 

coefficient either on the stress level or on the plastic strain. However, neither of these 
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values are available for the data comparing plates/bars to sheets/tubes for the fatigue of 

Haynes 230. Therefore, a general coefficient on the lifetime is applied instead. For each 

set of points in Figure 3.8 (a) and (b), a power law is fitted so the number of cycles to 

rupture 𝑁𝑅 can be expressed as a function of the total strain amplitude Δ휀 as shown in Eq. 

(3.36), where 𝑎 and 𝑏 are parameters of the power law. 

Δ휀 = 𝑎(𝑁𝑅)
𝑏 ⟺𝑁𝑅 = (

Δ휀

𝑎
)

1
𝑏
 (3.36) 

A coefficient 𝐾𝑓 is then determined so as to minimize the sum 𝑆 written in Eq. (3.37). 

The value obtained with the Excel solver is 𝐾𝑓 = 3.144. 

𝑆 =∑∑

( (𝑁𝑅)𝑠ℎ𝑒𝑒𝑡
𝑇,Δ𝜀 −

1
𝐾𝑓
(𝑁𝑅)𝑏𝑎𝑟

𝑇,Δ𝜀)

(𝑁𝑅)𝑠ℎ𝑒𝑒𝑡
𝑇,Δ𝜀

Δ𝜀𝑇

 (3.37) 

The resulting corrected curves are shown in grey in Figure 3.8. The corrected curve is 

very conservative for the results at 816°C, but give a good approximation at 595°C. 

  
Figure 3.8 – Fatigue life comparison between bar/plate and tube/sheet at (a) 595°C and (b) 816°C 

In the finite-element model, the equations for damage are modified to include 4 correction 

coefficients 𝐾1, 𝐾2, 𝐾3 and 𝐾4, as shown in Eq. (3.38) and (3.39). Coefficient 𝐾1 is 

equivalent to 𝐾𝑓 and 𝐾4 is equivalent to 𝐾𝑐. Coefficients 𝐾2 and 𝐾3 are not used in the 

model for alloy 230 but were implemented so they could be used for other materials, 

depending on the available data. 
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�̇�𝑓 = 𝐾1 (
𝑌(𝐾2 ∗ 𝜎)

𝑆𝑓
)

𝑠𝑓
𝑑𝑝

𝑑𝑡
 (3.38) 

�̇�𝑐 = 𝐾3 (
𝑌(𝐾4 ∗ 𝜎

𝑑)

𝑆𝑐
)

𝑠𝑐
1

(1 − 𝐷)𝑘𝑐
 (3.39) 

3 COUPLED BEHAVIOUR-DAMAGE MODEL 

Damage impacts the behaviour of the material. This can be seen experimentally from a 

softening of the material or a decrease of the Young modulus. In the Chaboche-Lemaitre 

model, damage can be coupled to the behaviour through the effective stress.  

3.1 INTEGRATION OF DAMAGE IN THE BEHAVIOUR MODEL 

The coupling of damage with the Chaboche model described in Chapter 2 can be done by 

using the effective stress �̃� in the elasticity law: 

휀𝑒 = 𝐸−1: �̃� (3.40) 

The effective stress �̃� is defined by Eq. (3.8) in the case with no microdefects closure and 

by Eq. (3.18) in the case with microdefects closure. In the yield criterion, however, the 

value of the stress is replaced by 
𝜎

1−𝐷
 in both cases. Indeed, the yield criterion is written 

for the viscoplastic case in Eq. (3.41). For the plastic case, the same equation can be used 

by setting 𝜎𝑣 = 0. 

𝑓 − 𝜎𝑣 = 𝐽 (
𝜎

1 − 𝐷
− 𝑋) − 𝑅 − 𝜎𝑦 − 𝜎𝑣 = 0 (3.41) 

Plasticity is controlled by slips and produced by shear stresses, and the sign has no 

influence [8]. Therefore the decomposition in positive and negative parts is not necessary. 

The normal to the yield surface 𝑛 can then be defined as Eq. (3.42), where �̂� is the 

deviatoric stress: 

𝑛 =
𝜕𝑓

𝜕𝜎
=

1

1 − 𝐷

3

2

�̂�
1 − 𝐷 − 𝑋

𝐽 (
𝜎

1 − 𝐷
− 𝑋)

 (3.42) 

In the framework of damage coupling, the plastic multiplier 𝑝 from the non-coupled 

framework (see Chapter 2, Section 1.1.2, Eq. (2.11)) is replaced by the variable 𝑟 defined 

by Eq. (3.43): 

�̇� = (1 − 𝐷)�̇� (3.43) 
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The plastic strain rate can then be expressed as Eq. (3.44): 

휀̇𝑝 = �̇�𝑛 (3.44) 

The hardening equations remain the same as those defined in Chapter 2, but the new 

plastic multiplier 𝑟 is used instead of 𝑝. The isotropic hardening is therefore defined by 

Eq. (3.45), while the kinematic hardening is defined by Eq. (3.46) hereafter: 

�̇� = 𝑏(𝑄 − 𝑅)�̇� (3.45) 

�̇�𝑖 =
2

3
𝐶𝑖(1 − 𝐷)휀̇

𝑝 − 𝛾𝑖(𝑋𝑖 − 𝑌𝑖)�̇� − 𝑏𝑖𝐽(𝑋𝑖)
𝑟𝑖−1

𝑋𝑖 +
1

𝐶𝑖

𝑑𝐶𝑖
𝑑𝑇

�̇�𝑋𝑖 (3.46) 

The value of the drag stress 𝑅 can be expressed directly as a function of 𝑟, similarly to 

the case without damage (see Chapter 2 – Section 1.1.3): 

𝑅 = 𝑄(1 − 𝑒−𝑏𝑟) (3.47) 

The evolution of damage is described by Eq. (3.24) for fatigue damage and Eq. (3.25) for 

creep damage, defined respectively in sections 2.1 and 2.2 of this chapter. 

The material model coupled with damage can be described by combining the equations 

detailed above into a system of nonlinear equations. This system is shown in Eq. (3.48): 

{
 
 
 
 
 
 

 
 
 
 
 
 

휀̇ − 휀̇𝑡ℎ − 휀̇𝑒 − �̇�𝑛 = 0

𝐽 (
𝜎

1 − 𝐷
− 𝑋) − 𝑅 − 𝜎𝑦 − 𝜎𝑣 = 0

�̇�𝑖 −
2

3
𝐶𝑖(1 − 𝐷)휀̇

𝑝 + 𝛾𝑖(𝑋𝑖 − 𝑌𝑖)�̇� + 𝑏𝑖𝐽(𝑋𝑖)
𝑟𝑖−1

𝑋𝑖 −
1

𝐶𝑖

𝑑𝐶𝑖
𝑑𝑇

�̇�𝑋𝑖 = 0 (𝑖 = 1: 𝑛𝐴𝐹)

휀𝑒 − 𝐸−1: �̃� = 0

{
 
 

 
 �̇�𝑓 − (

𝑌(𝜎, 𝐷)

𝑆𝑓
)

𝑠𝑓

�̇� = 0

�̇�𝑐 − (
𝑌(𝜎𝑑, 𝐷)

𝑆𝑐
)

𝑠𝑐 1

(1 − 𝐷)𝑘𝑐
= 0

 (3.48) 

Note: the second equation, related to the von Mises criterion, is different in the case of a 

viscoplastic material for which the Norton law is applied. In this case, Eq. (3.49) is used.  

ℛ𝑟 = Δ𝑟 − (1 − 𝐷)Δ𝑡 ⟨
𝐽 (

𝜎
1 − 𝐷 − 𝑋) − 𝑅

(𝑟) − 𝜎𝑦

𝐾
⟩

𝑛

 (3.49) 

To compute the values of the stresses, strains, and other internal variables, these equations 

must be discretized to be solved numerically at each time step in the finite element code. 
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3.2 IMPLEMENTATION 

3.2.1 Strong vs. weak coupling 

The system of equations given in Eq. (3.48) consists of 5+𝑛𝐴𝐹 equations that need to be 

solved at every time step. With the exception of the yield surface and the damage 

equations which are scalar, these equations are in tensorial form (or vectorial, considering 

the Voigt notation is used). This means that the system actually consists of 15+6*𝑛𝐴𝐹 

nonlinear scalar equations. 

To solve this type of system of equations, a numerical method such as the Newton 

method, already mentioned in Section 2.4, can be used. This method requires the 

computation of the Jacobian matrix. Let ℛ(𝒲) a system of equations of dimension 𝑛, 

where 𝒲 is the vector of variables to find: 

ℛ(𝒲) = {
ℛ1(𝒲1, … ,𝒲𝑛) 

…
ℛ𝑛(𝒲1, … ,𝒲𝑛

} (3.50) 

 The Jacobian matrix 𝒥 is the 𝑛-by-𝑛 matrix defined by Eq. (3.51): 

𝒥 =

[
 
 
 
 
𝜕ℛ1
𝜕𝒲1

…
𝜕ℛ1
𝜕𝒲𝑛

⋮ ⋱ ⋮
𝜕ℛ𝑛
𝜕𝒲1

…
𝜕ℛ𝑛
𝜕𝒲𝑛]

 
 
 
 

 (3.51) 

In the Newton method, the Jacobian matrix is inverted to compute successive guesses 

𝒲𝑘 of the 𝒲 vector following Eq. (3.52): 

𝒲𝑘+1 = 𝒲𝑘 − [𝒥(𝒲𝑘)]
−1

ℛ(𝒲𝑘) (3.52) 

Numerically, the Jacobian is not directly inverted (this would require a large number of 

calculations and be very inefficient from a computational point of view), but the term 

𝒳 = [𝒥(𝒲𝑘)]
−1

ℛ(𝒲𝑘) is calculated by solving Eq. (3.53) for 𝒳 through an LU 

(Lower-Upper) decomposition of 𝒥(𝒲𝑘). 

ℛ(𝒲𝑘) = 𝒥(𝒲𝑘)𝒳 (3.53) 

A larger Jacobian matrix results in slower computations of the successive iterations of the 

Newton method, since the CPU time for solving Eq. (3.53) is dependent on the size of the 

Jacobian.  
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In order to limit the size of the Jacobian, and therefore limit computational times, the 

system of equations (3.48) can be solved in two steps, by separating the damage from the 

behaviour equations. The behaviour is still coupled to damage, but the values of damage 

𝐷𝑓 and 𝐷𝑐 used for the computation of the behaviour (stress, strains, hardening, etc.) are 

the values of the previous time step. Once the stresses and strains have been computed, 

their updated values are used to compute the damages as was done for the non-coupled 

model (see details in Section 2.4). This is referred to as “weak coupling”. Not only this 

method is advantageous regarding the computational time, but this also allows to re-use 

the implementation of the non-coupled damage model for the solution of the damage 

equations. Moreover, the derivatives of the behaviour equations with respect to the 

damage variables do not need to be analytically computed. 

The system to solve for the behaviour model with weak coupling is therefore a system of 

13+6*𝑛𝐴𝐹 equations: 

{
  
 

  
 

휀̇ − 휀̇𝑡ℎ − 휀̇𝑒 − �̇�𝑛 = 0

𝐽 (
𝜎

1 − 𝐷
− 𝑋) − 𝑅 − 𝜎𝑦 − 𝜎𝑣 = 0

�̇�𝑖 −
2

3
𝐶𝑖(1 − 𝐷)휀̇

𝑝 + 𝛾𝑖(𝑋𝑖 − 𝑌𝑖)�̇� + 𝑏𝑖𝐽(𝑋𝑖)
𝑟𝑖−1𝑋𝑖 −

1

𝐶𝑖

𝑑𝐶𝑖
𝑑𝑇

�̇�𝑋𝑖 = 0 (𝑖 = 1: 𝑛𝐴𝐹)

휀 𝑒 − 𝐸−1: �̃� = 0

 (3.54) 

Once Eq. (3.54) has been solved, Eq. (3.55) is solved using the method detailed in Section 

2.4. 

{
 
 

 
 �̇�𝑓 − (

𝑌(𝜎, 𝐷)

𝑆𝑓
)

𝑠𝑓

�̇� = 0

�̇�𝑐 − (
𝑌(𝜎𝑑, 𝐷)

𝑆𝑐
)

𝑠𝑐 1

(1 − 𝐷)𝑘𝑐
= 0

 (3.55) 

3.2.2 Discretization of the behaviour equations 

To solve numerically Eq. (3.54), the equations must be discretized with respect to the 

time step Δ𝑡. Similarly to what was done in Section 1.3 of Chapter 2, Eq. (3.54) is 

linearized using the implicit Euler method. For simplicity, the values at the end of the 

time step (e.g.: 𝜎𝑘+1) are written without a subscript (𝜎). Each equation becomes a local 

residual ℛ which is a function of the unknown increments of variables Δ휀𝑒, Δ𝑟, Δ𝑋𝑖, and 

Δ𝜎. 

The local residual associated to the elastic strain ℛ𝜀𝑒  are written as Eq. (3.56): 

ℛ𝜀𝑒 = Δ휀
𝑒 + Δ휀𝑡ℎ − Δ휀 + Δ𝑟𝑛 (3.56) 
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The local residual associated to the plastic strain multiplier ℛ𝑟 is expressed as Eq. (3.57) 

for a plastic material and as Eq. (3.58) for a viscoplastic material: 

ℛ𝑟 = 𝐽 (
𝜎

1 − 𝐷
− 𝑋) − 𝑅(𝑟) − 𝜎𝑦 (3.57) 

ℛ𝑟 = Δ𝑟 − (1 − 𝐷)Δ𝑡 ⟨
𝐽 (

𝜎
1 − 𝐷 − 𝑋) − 𝑅

(𝑟) − 𝜎𝑦

𝐾
⟩

𝑛

 (3.58) 

The local residual(s) corresponding to kinematic hardening is written as Eq. (3.59): 

For 𝑖 ∈ [1, 𝑛𝐴𝐹]: 

ℛ𝑋𝑖 = Δ𝑋𝑖 −
2

3
𝐶𝑖(1 − 𝐷)Δ𝑟𝑛 + 𝛾𝑖(𝑋𝑖 − 𝑌𝑖)Δ𝑟 + 𝑏𝑖𝐽(𝑋𝑖)

𝑟𝑖−1
𝑋𝑖 Δ𝑡

−
1

𝐶𝑖

𝑑𝐶𝑖
𝑑𝑇

Δ𝑇𝑋𝑖 

(3.59) 

Finally, the local residual associated to the stress is written as Eq. (3.60): 

ℛ𝜎 = 휀
𝑒 − 𝐸−1: �̃� (3.60) 

The complete system of equations can finally be written as Eq. (3.61): 

ℛ(Δ𝒲) =

{
 
 

 
 
ℛ𝜀𝑒(Δ휀

𝑒 , Δ𝑟, Δ𝑋𝑖, Δ𝜎)

ℛ𝑟(Δ휀
𝑒 , Δ𝑟, Δ𝑋𝑖, Δ𝜎)

ℛ𝑋𝑖(Δ휀
𝑒 , Δ𝑟, Δ𝑋𝑖, Δ𝜎)

ℛ𝜎(Δ휀
𝑒 , Δ𝑟, Δ𝑋𝑖, Δ𝜎)}

 
 

 
 

= {0} (3.61) 

3.2.3 Solution of the behaviour equations 

3.2.3.1 Elastic predictor 

Similarly to what was done for the behaviour model without damage, an initial elastic 

predictor is estimated by assuming Δ𝑟 = 0. This means the system of equations (3.61) is 

first solved assuming Δ𝑟 = 0, which simplifies the equations a lot. For instance, the 

increment of elastic strain can be immediately computed as Eq. (3.62), where the total 

strain Δ휀 is given to the constitutive model by the finite-element code, and Δ휀𝑡ℎ is 

computed from the temperature variation computed by the thermal law. 

Δ휀𝑒 = Δ휀 − Δ휀𝑡ℎ (3.62) 

In the case without microdefects closure, solving for the elastic predictor is done in the 

same way as in the case with no damage (see Chapter 2 – Section 1.3.2.1). The only 

difference is that the stress 𝜎 is replaced by the effective stress �̃� and 𝑟 is used instead of 
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the plastic multiplier 𝑝. In the case with microdefects closure, however, ℛ𝜎 is not linear 

and the Newton method must be used to find the updated value of 𝜎. The use of the 

Newton method is further detailed in the next paragraphs.  

Once the elastic predictor has been estimated, the von Mises yield criterion 𝑓 is checked 

(see Eq. (3.41)). If 𝑓 ≤ 0, the initial hypothesis of Δ𝑟 = 0 is validated and the calculation 

is complete for this time step and element. If not, the nonlinear system of equations (3.61) 

must be solved considering Δ𝑟 > 0. 

For the coupled model, although an elastic predictor is computed, the radial return 

mapping method is not used. This means instead of computing an elastic estimate of  𝜎 

and then trying to find an additional term to the stress to verify the von Mises criterion 

(−2(𝐺 + Δ𝐺)Δ휀𝑝 in the non-coupled model), the full system of equations (3.61) is solved 

in the plastic step. The interests of using an elastic predictor anyway are: 

1. The computation is much simpler and time-efficient; computing the solution of 

the full equations in the case where the material is in the elastic domain would 

unnecessarily increase computation times. 

2. The elastic predictor can be used as an initial guess for the Newton method when 

solving for the plastic case. 

3.2.3.2 Solution for the plastic case: 𝜟𝒓 > 𝟎 

First, an initial estimate of Δ𝒲 = {Δ휀𝑒 , Δ𝑟, Δ𝑋𝑖, Δ𝜎}
𝑇
 is evaluated, using the values 

obtained in the elastic predictor step. Let Δ𝒲0 be the initial estimate, and  Δ𝒲𝑘 the value 

of Δ𝒲 at the 𝑘-th iteration of the Newton method. The Newton method consists in 

computing the successive values Δ𝒲𝑘 given by Eq. (3.63) and solved as explained in 

Section 3.2.1: 

Δ𝒲𝑘+1 = Δ𝒲𝑘 − [𝒥(Δ𝒲𝑘)]
−1

ℛ(Δ𝒲𝑘) (3.63) 

The iterations are computed until the convergence criterion written as Eq. (3.64) is 

achieved. 𝜖𝑁𝑅 is the user-defined precision for the convergence of the Newton-Raphson 

method, and ‖𝑥‖ denotes the Euclidian norm. 

‖ℛ(Δ𝒲𝑘)‖ < 𝜖𝑁𝑅 (3.64) 

To compute the successive iterations Δ𝒲𝑘, the expression of the Jacobian matrix of the 

system must be analytically derived from Eqs. (3.56) to (3.60). 



Chapter 3 – Damage model for thermo-mechanical creep-fatigue 101 

 

 

3.2.3.3 Jacobian matrix 

The Jacobian matrix of ℛ is a square matrix of dimension 13+6*𝑛𝐴𝐹: 

𝒥 =

[
 
 
 
 
 
 
 
 
 
𝜕ℛ𝜀𝑒

𝜕Δ휀𝑒
𝜕ℛ𝜀𝑒

𝜕Δ𝑟

𝜕ℛ𝜀𝑒

𝜕Δ𝑋𝑖

𝜕ℛ𝜀𝑒

𝜕Δ𝜎

𝜕ℛ𝑟
𝜕Δ휀𝑒

𝜕ℛ𝑟
𝜕Δ𝑟

𝜕ℛ𝑟
𝜕Δ𝑋𝑖

𝜕ℛ𝑟
𝜕Δ𝜎

𝜕ℛ𝑋𝑖
𝜕Δ휀𝑒

𝜕ℛ𝑋𝑖
𝜕Δ𝑟

𝜕ℛ𝑋𝑖
𝜕Δ𝑋𝑖

𝜕ℛ𝑋𝑖
𝜕Δ𝜎

𝜕ℛ𝜎

𝜕Δ휀𝑒
𝜕ℛ𝜎

𝜕Δ𝑟

𝜕ℛ𝜎

𝜕Δ𝑋𝑖

𝜕ℛ𝜎

𝜕Δ𝜎 ]
 
 
 
 
 
 
 
 
 

 (3.65) 

Using the Voigt notation, the derivative of a 6-by-1 vector such as ℛ𝜀𝑒  (which is a 3-by-

3 matrix in tensorial notation) with respect to a 6-by-1 vector such as Δ휀𝑒 (also a 3-by-3 

matrix in tensorial notation) is a 6-by-6 matrix: 

𝜕ℛ𝜀𝑒

𝜕Δ휀𝑒
=

[
 
 
 
 
 
𝜕(ℛ𝜀𝑒)

1

𝜕Δ휀1
𝑒 …

𝜕(ℛ𝜀𝑒)
1

𝜕Δ휀6
𝑒

⋮ ⋱ ⋮
𝜕(ℛ𝜀𝑒)

6

𝜕Δ휀1
𝑒 …

𝜕(ℛ𝜀𝑒)
6

𝜕Δ휀6
𝑒 ]
 
 
 
 
 

=

[
 
 
 
 
 
1

1
1

1
1

1 ]
 
 
 
 
 

 (3.66) 

The different components of the Jacobian matrix are given in Appendix 3. 

3.2.3.4 Consistent tangent modulus 

The consistent tangent modulus 𝐶, necessary for solving the global equilibrium in a finite-

element model, is defined by Eq. (3.67) and can be derived from the Jacobian. 

𝐶 =
𝑑𝜎

𝑑휀
 (3.67) 

As proposed by Lemaitre and Desmorat [8], the local residual ℛ can be split into two 

parts for the calculation of the tangent matrix: ℛ𝑖, the contribution from the internal 

variables; and ℛ𝑒, the contribution from the external loading: 

ℛ = ℛ𝑖 − ℛ𝑒 with ℛ𝑒 = {

Δ휀

0
⋮
0

} (3.68) 

By performing a small perturbation on Eq. (3.68) after convergence, this gives: 

𝛿ℛ = 𝛿ℛ𝑖 − 𝛿ℛ𝑒 = 0 ⟺ 𝛿ℛ𝑖 = 𝛿ℛ𝑒  (3.69) 
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By definition of the Jacobian matrix, the following relation can be written as Eq. (3.70) 

(brackets have been added to make it more understandable): 

{𝛿ℛ𝑖} = [𝒥] {𝛿Δ𝒲} (3.70) 

Therefore, the relation between 𝛿Δ𝜎 and 𝛿Δ휀 can be found: 

{
 

 
𝛿Δ휀𝑒

δΔ𝑟
𝛿Δ𝑋𝑖
𝛿Δ𝜎 }

 

 

= [𝒥]
−1

{

𝛿Δ휀

0
0
0

} (3.71) 

Finally, the consistent tangent modulus can be approximated as: 

𝐶 ≈
𝛿Δ𝜎

𝛿Δ휀
= [𝒥]

{𝜎,𝜀𝑒}

−1

 (3.72) 

[𝒥]
{𝜎,𝜀𝑒}

−1

 corresponds to the part of the inverse of the Jacobian situated from line 8 + 6𝑛𝐴𝐹  

to line 13 + 6𝑛𝐴𝐹  and columns 1 to 6. 

3.3 IMPROVEMENT OF THE ROBUSTNESS OF THE MODEL 

As established in the previous sections, the coupled model with microdefects closure 

consists of a large number of nonlinear equations. To solve this type of system of 

equations, the Newton method is most commonly used [22]. However, this method is not 

always successful. This proved to be the case for the coupled model with microdefects 

closure, in which there is no analytical expression of the Jacobian matrix and therefore an 

approximation is used (see Appendix 3). When the Newton method cannot reach a 

solution in the material law for an element, the time increment is reduced for the finite-

element computation. If this occurs frequently, the total number of time steps to complete 

the calculation is significantly increased, and therefore the computation time as well. 

Thus, finding a method that is more robust to solve the nonlinear system of equations of 

the coupled model is of critical importance to have reasonable computation times. 

To find a more robust algorithm, the performances of 14 Newton-like methods were 

studied and compared with the classical Newton algorithm. More precisely, the 

robustness and efficiency of each method were evaluated on 10 systems of equations 

taken from the literature. For each algorithm, the effect of numerical damping was also 

studied. Figure 3.9 shows the number of iterations and CPU time obtained with the 15 

algorithms used on the 10 systems of equations. The points at 𝑁𝑖𝑡𝑒𝑟 = 250 correspond to 

a failure of the method to converge within the required precision and maximum number 

of iterations. The size of the points corresponds to the maximum value of the condition 
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number of the Jacobian, which can be understood as a measure of how difficult the system 

is to solve. It can be deduced from Figure 3.9 that the classic Newton algorithm is 

generally the best regarding of computational time. 

 

Figure 3.9 – CPU time vs. number of iterations for solving the 10 systems of equations, using 9 different starting 

points for each system. 

The algorithms with and without damping were then tested on the material law with 

coupled damage. The conclusion of the study was that in general, the Newton method is 

the fastest method. For robustness in the material law, the best option turned out to be the 

use of numerical damping on the Newton algorithm. 

An article was published in the journal Finite Elements in Analysis and Design in 2022 

about this study [23]. The preprint version of this article is included in the thesis as 

Appendix 4. 

3.4 VALIDATION OF THE DAMAGE MODEL 

The parameters of the damage model were identified based on fatigue tests and creep 

tests. To verify that the model is valid for the application to the receiver tubes, it is 

necessary to check the results the model gives on combined creep-fatigue tests. Indeed, 

the receiver tubes are subjected to thermo-mechanical cyclic loadings with hold times at 

high temperature, i.e., anisothermal creep-fatigue loadings. 

Due to a lack of comparative data on the influence of tensile hold times versus 

compressive hold times, the effect of microdefects closure was not considered here (i.e., 

parameter ℎ is set to 1). 
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The results given by the model are first compared to the isothermal creep-fatigue results 

of the tests detailed in Chapter 1. Figure 3.10 shows the number of cycles to rupture 

obtained with the model and the experimental number of cycles to rupture of isothermal 

creep-fatigue tests at 800°C for different hold times in compression with a strain 

amplitude of 0.25%. The experimental value corresponding to a 0s hold time (i.e., a 

fatigue test) was extrapolated from the fatigue data at 800°C as it was not tested 

experimentally. The hold times are expressed as multiples of the base hold time 𝑡1 for 

confidentiality purposes. The base hold time 𝑡1 is in the order of a few minutes. It can be 

observed that the lifetime predicted by the model are in good agreement with the 

experimental results, except for the test with 5𝑡1 hold time which is much smaller than 

the experimental value. When looking at the results from the model, it seems that the 

number of cycles to rupture converges towards an asymptotic value for increasing hold 

times. This can be explained by the phenomenon of relaxation: during the hold time, the 

stress relaxes towards smaller absolute values, at which creep damage becomes smaller. 

The longer the time hold, the more the stress relaxes, and the less significant the additional 

damage becomes. For instance, for the test with 30𝑡1 hold times, the stress relaxes below 

100 MPa in absolute value after 5𝑡1. The creep lifetime at 100 MPa is around 1200 h, 

making the creep damage increment small for a hold time less than a few hours. 

 

Figure 3.10 – Number of cycles to rupture (left axis) and duration (right axis) of the creep-fatigue tests at 800°C with 

𝛥휀 = ±0.25% as a function of the compressive hold time 

However, this damage behaviour does not seem to be completely confirmed 

experimentally. Indeed, in Figure 3.10, it is clear that the number of cycles to rupture 

diminishes continuously with increasing hold times, contrarily to the numerical results 

which seem to tend to an asymptote. When looking at the duration of the tests, it can be 

observed that the 5𝑡1 and the 30𝑡1 tests last about the same amount of time.  

The anisothermal test performed between 300°C and 800°C with hold times of 5𝑡1 in 

compression (at 800°C) and in tension (at 300°C) was also modelled. The obtained 

numerical lifetime is 𝑁𝑅 = 291 cycles, which is much lower than the experimental result 
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of 603 cycles. However, this result is consistent with the isothermal results, since the 

model also gave an underestimated lifetime for the 5𝑡1 isothermal test. 

As observed in the metallographic analysis (see Chapter 1, Section 1.3.2), the addition of 

compressive hold times at high temperature does not change the cracking mode, which 

tends to indicate that creep does not play a significant role in the decrease of lifetime with 

compressive hold times. Instead, the decrease in number of cycles to rupture could be 

explained by thermal ageing, which is known to decrease the fatigue lifetime of alloy 230, 

as explained in Section 1.3.2.3 of Chapter 1. From a modelling point of view, it would 

therefore be more accurate to activate the microdefects closure effect (no creep damage 

in compression) and to change the fatigue damage parameters depending on the 

temperature history (thermal ageing). Unfortunately, the metallurgical analysis and the 

creep-fatigue tests with different hold times were done in the last year of the project, 

which did not leave time to develop a new model. 

A damage model that includes thermal ageing, for instance by expressing the fatigue 

damage parameters as a function of the time spent at high temperature in the loading 

history, would probably give better results on the creep-fatigue tests with compressive 

hold times and would be an interesting perspective for future improvements of the 

existing model. A damage model with thermal ageing would also require extensive 

experimental research to accurately quantify the effects of different hold times in 

compression and tension. 

4 CONCLUSION 

In this chapter, a Lemaitre-type damage model was developed for the modelling of creep 

and fatigue damage of Haynes 230 under thermo-mechanical loading. This model is based 

on two damage variables – one for fatigue and one for creep – that represent the volume 

fraction of voids in the material due to fatigue and creep, respectively. The evolution of 

fatigue damage is based on the Lemaitre damage formulation and depends on the rate of 

the cumulative plastic strain. The creep damage, on the other hand, is based on the 

equation of Kachanov and depends only on the stress level and temperature. The 

parameters related to fatigue and creep damage were identified using fatigue tests and 

creep tests, respectively. 

The model can also take into account the effect of microdefects closure that takes place 

under compressive stress through the decomposition of the stress tensor into a positive 

part (tensile) and a negative part (compressive).  

The effect of damage can be coupled with the material behaviour by using the concept of 

effective stress. The model was implemented in the Lagamine finite-element code and 
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coupled with the behaviour law presented in Chapter 2. A non-coupled version was also 

implemented.  

The model performs well for fatigue tests and creep tests, however, it does not give 

optimal results for combined creep and fatigue. In particular, the model does not simulate 

properly the influence of thermal ageing on the fatigue lifetime. Further improvements to 

the model could be developed by including the modelling of thermal ageing. 
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1 SCOPE  

Nickel alloys are known for their good resistance to corrosion. However, the use of highly 

corrosive molten salts at high temperature in solar receivers could have a significant 

impact on the long-term integrity of the tubes. Moreover, the potential material loss that 

can result from corrosion can modify the geometry of the tubes and influence the thermo-

mechanical behaviour. Therefore, it is essential to include corrosion in the modelling of 

the receiver tubes for an accurate lifetime prediction. 

1.1 CORROSION IN NICKEL ALLOYS 

Corrosion is a complex phenomenon that can take different forms: 

• Uniform corrosion, where oxides are formed as a uniform layer on the surface of 

the material. 

• Localized corrosion, which can lead to pitting or the formation of crevices. This 

type of corrosion is often due to initial defaults in the surface. 

• Stress corrosion cracking, where corrosion and mechanical loading interact. 

In the literature, some information can be found on the corrosion behaviour of nickel 

alloys, as summarised hereafter. 

1.1.1 Air oxidation 

Although the solar receivers are not directly concerned by oxidation in air (a coating is 

applied on the external surface of the tubes), it can be interesting to study it as the 

chemical reactions involved are globally the same. Both in the case of air oxidation and 

corrosion by solar salts, oxygen diffuses to form oxides with metallic elements in the 

material. Moreover, experimental tests involving oxidation in air are easier to perform 

than experiments involving corrosion in salts. The literature is therefore more extensive 

on the combination between oxidation and mechanical behaviour. 

Calvarin-Amiri et al. [1] studied the effect of a tensile creep stress on the formation of 

oxides in a Ni-Cr20 alloy at 600°C and 900°C. They observed that the addition of the 

stress does not affect the type of oxides being formed. However, the rate of corrosion is 

increased. They determined that above a critical strain, the diffusion of O2 is increased, 

leading to thicker layers of corroded material. 

Fournier et al. [2] studied the influence of a cyclic loading with either compressive or 

tensile hold times at 550°C on a 9Cr-Mo steel. They observed that the lifetime was shorter 

with compressive hold times than with tensile hold times, which can seem counter-

intuitive at first since tensile stresses tend to generate higher amounts of damage in the 

material (see Chapter 3). The shorter lifetime observed with compressive hold times could 



Chapter 4 – Corrosion modelling  110 

 

 

be due to the repeated cracking of the oxide layer, as explained by Aoto et al. [3]. First, 

the oxide layer forms during the compressive hold time. While the original material is 

under a compressive strain, the newly formed oxide is at a near zero-strain state. When 

the loading is reversed, the oxide is subjected to a larger tensile strain than the base 

material, considering their respective initial states. As a result, the oxide is more likely to 

crack and allow oxidation to progress further. 

Several studies on stainless steels or nickel-base alloys report shorter lifetimes with 

compressive hold times [2], [4], or lifetimes equivalent to cases with tensile hold times 

[5].  

1.1.2 Corrosion by solar salts 

Solar salt, which is in use for the 2nd generation of concentrated solar power (CSP) plants, 

is composed of 60% NaNO3 and 40% KNO3. The effect of exposure to this salt has been 

tested on various stainless steels and nickel-based alloys at different temperatures. Most 

of the available results are from static corrosion tests: the material is immersed in the salt 

at high temperature for a long duration (a few hundred to a few thousand hours). 

Afterwards, the oxide is removed, and the weight loss is measured. Alternatively, 

microscopic analyses can be done on the oxide layer (before removal) to determine its 

composition.  

Generally, the corrosion of nickel alloys by solar salts is characterized by: 

• The formation of a protective NiO layer on the surface of the material [6], [7]; 

• The outwards migration of Cr and its dissolution in the salt [6], [8]. 

For alloy 230, a layer of chromium oxide Cr2O3 can be observed under the protective 

nickel oxide layer, as shown in Figure 4.1. The dissolution of tungsten (W) in the salt is 

also observed [7]. At 600°C after 3000 h of exposure to solar salt, the corrosion rate of 

alloy 230 was estimated to be around 24 µm/year. This corrosion rate is estimated from 

the descaled mass loss and takes into account both the reduction of material from 

dissolution in the salt and the amount of material turned into oxide. The actual mass loss 

before removing the oxide is in fact around 1.1 mg/cm², corresponding to a corrosion rate 

of 3.26 µm/year. Another study [9] found that the actual weight loss (not counting the 

oxide layer) at 600°C after 3000h was about 1.05 mg/cm², which corresponds to a 

corrosion rate of 3.12 µm/year, which is consistent with the results from the 

aforementioned study.  

Sandia laboratories also performed dynamic corrosion tests on several materials, among 

which alloy 230 [10]. The test consists in pumping molten salt at 600°C from a tank to 

make it flow through a heated section of a pipe made of alloy 230, representing a solar 

receiver tube. The temperature of the inner wall of the pipe is maintained at 670°C using 
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inductive heating. After passing through this pipe section, the salt flows to another test 

section where coupons of materials are placed. These coupons remain at the same 

temperature as the salt (around 600°C). Finally, the salt is sent back into the initial tank 

where it can be pumped and sent again through the test piping. The resulting corrosion 

rates were 8 to 20 times higher than those obtained from static tests. Specifically, for the 

coupons of alloy 230, the corrosion rate was estimated at 403 ± 71 µm/year. The oxides 

were found to be the same as in static tests, but local pitting was observed on the surface. 

However, the results were different for the pipe. In particular, the analysis of the pipe 

revealed a depletion of Ni in the corrosion layer and a higher concentration of Cr. A 

possible explanation is that with the increased corrosion rate due to both high temperature 

(670°C) and flowing medium (salt), the rapid dissolution of Cr and W leads to a weaker 

oxidation layer. This type of oxide layer would result in a progressive uniform removal 

of pipe material. 

 

Figure 4.1 – Corrosion of alloy 230 by solar salt at 680°C after 1025 hours  

(a) Scanning Electron Microscopy; (b) Wavelength Dispersive Spectroscopy Line scan [7] 

1.1.3 Corrosion by molten chloride salts 

Chloride salts are particularly interesting for the 3rd generation of Concentrated Solar 

Power plants thanks to their good stability at high temperatures. Solar salts used in 2nd 

generation plants start degrading at temperatures above 565°C, whereas chloride salts 
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remain stable at up to 800°C. The major problem with these salts is the corrosion caused 

by impurities such as H2O, O2, or OH-. 

A study from the Sandia Laboratories [11] concluded that the presence of cobalt or 

refractory metals such as tungsten, molybdenum, or tantalum could increase the corrosion 

resistance because these elements form stable spinel that block the diffusion of chromium. 

Alloy 230 contains significant amounts of tungsten, cobalt, and molybdenum, making it 

a good candidate for the 3rd generation solar receivers. 

However, a study conducted on several Ni-based alloys in a ternary NaCl-KCl-MgCl2 

salt at 700°C showed that alloy 230 corroded more than other alloys containing higher 

contents of molybdenum [12]. The corrosion phenomenon for alloy 230 included pitting 

and significant intergranular corrosion, along with a depletion of chromium in the 

material. 

Other studies with MgCl2-KCl showed that corrosion rates are multiplied by a factor 4 to 

5 with fluid flow [13], [14]. The corrosion mechanism was identified to be caused by 

selective oxidation of chromium occurring mainly at grain boundaries. However, with the 

addition of Mg as an inhibitor in the salt, the corrosion rate was close to 0 for alloy 230 

[13]. For chloride salts, the best solution may be to find chemical inhibitors or to apply a 

protective coating on the inside of the tubes. 

1.2 MODEL REQUIREMENTS 

To model the behaviour of the tubes from the solar receiver, a Chaboche-type model was 

implemented (see Chapter 2). Along with the behaviour model, a mechanical damage 

model was implemented to predict the lifetime of the tubes (Chapter 3). These two models 

are coupled, so that mechanical damage influences the behaviour of the material and vice-

versa. 

Ideally, the modelling of corrosion should be integrated with the thermo-mechanical and 

damage model. Indeed, it is expected that potential material loss occurring from corrosion 

could affect the overall thermo-mechanical behaviour of the tubes. The design chosen by 

John Cockerill with a safety margin allows for a reduction of the thickness of about one 

third during the lifetime of the tube. Such a reduction could have a significant impact on 

the stress distribution in the tube. 

In addition, the model must be relatively generic to be adaptable to different combinations 

of materials and corrosive environments (solar salt/chloride salts), as well as efficient in 

terms of computation times, even for a large structure such as the tubes of the receivers, 

which are about 20 meters long with a diameter of a few centimetres.  
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On the other hand, corrosion is a complex phenomenon, particularly in the case of thermal 

cycling. The following aspects remain unknown due to lack of experimental results: 

• The effects of the flowing salt: erosion, renewal of corrosive elements. 

• The effect of temperature variation; although it is evident that this has a 

deleterious impact compared to static tests, it is difficult to quantify the impact of 

the temperature variation. 

• The interaction between creep and corrosion or fatigue and corrosion. 

Strong simplifying hypotheses must be made for the modelling of corrosion.  

2 CORROSION MODELLING 

Various models for corrosion can be found in the literature. Three main types of models 

can be distinguished: 

• Crack-growth models, in which the propagation of cracks at the microstructural 

level is studied. 

• Diffusion model, which aim at representing the progression of corrosion in a 

structure through the diffusion of corrosive elements. 

• Models based on a corrosion damage variable, in which the effect of corrosion is 

represented by a damage variable similar to the one from Lemaitre damage model. 

2.1 CRACK-GROWTH MODELS 

Crack-growth models are among the most common for the simulation of corrosion. A 

crack-growth model can simply constitute of an equation to determine the moment of 

crack initiation and an equation describing the crack growth [15]. Much more complex 

models have also been developed, such as the model of Sedlak et al. [16] or the model of 

Bolotin and Shipkov [17], who developed a more comprehensive model of the crack 

which includes equations for the diffusion of corrosive elements within the crack, the 

computation of the stress at the crack tip, and the change of geometry of the crack 

depending on the loading. 

Crack-growth models can also be implemented within a finite-element framework. 

Wenman et al. [18] proposed a 2D model to simulate the corrosion cracking in the section 

of a pipe. The pitting phenomenon is represented by the deactivation of elements. To take 

into account the initial defects on the material surface, each element on the surface is 

initially assigned a random number: if that number is above a certain value and the plastic 

strain in that element reaches a predefined threshold, the element is deactivated. This 

corresponds to the crack initiation, illustrated in Figure 4.2 (a). Once a crack is initiated, 

it can propagate to any neighbouring element (i.e., the neighbouring elements become 
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candidates for deactivation) if the equivalent stress in this element is above a predefined 

threshold. 

 

Figure 4.2 – Finite-element cracking model (a) Initiation of cracking by deactivation of elements in the two layers 

closest to the surface; (b) Crack propagation – Wenman et al. [18] 

This model is compatible with the previously developed model; however, it requires 

extremely fine meshes, which would make it impossible to model a whole tube of the 

receiver. Moreover, the sudden deactivation of elements creates discontinuities which are 

likely to cause convergence problems in a finite element code. 

2.2 DIFFUSION-BASED MODELS 

Several models of corrosion are based on the diffusion of the corrosive chemical elements 

or of the elements in the material which are likely to form oxides or dissolve in the 

corrosive environment. Those diffusion models can be separated in two categories 

depending on the scale at which they are applied: microscopic models and macroscopic 

models. 

Microscopic models can be of interest to get a better understanding of the corrosion 

phenomenon and its interaction with the mechanical behaviour. Zhao et al. [19] developed 

a model for the outwards diffusion of aluminium in nickel alloy RR1000 exposed to air 

oxidation. The diffusion model is coupled with a crystal plasticity model to consider the 

changes in behaviour depending on the Al concentration. A similar model was developed 

by Karabela et al. [20] for the diffusion of oxygen in the same alloy. In their models, the 

diffusion of oxygen is determined using a modified version of Fick’s second law of 

diffusion, where 𝐶𝑂 is the concentration of oxygen, 𝑡 is the time, ∇ is the gradient operator, 

𝐷𝑂 the oxygen diffusivity, 𝑃 the mean pressure, and 𝑀 a pressure factor: 
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𝜕𝐶𝑂
𝜕𝑡

= ∇(𝐷𝑂∇𝐶𝑂 −𝐷𝑂𝐶𝑂𝑀∇𝑃) (4.1) 

The second term on the right-hand side of Eq. (4.1) models the influence of mechanical 

loading on the diffusion process. This equation of diffusion was also coupled with a 

Chaboche-like model to model the crack-growth behaviour in nickel alloy RR1000 [21].  

In the finite-element framework, the concentration of any diffusing element is defined as 

an additional degree of freedom, similarly to the temperature (the equation of diffusion is 

analogous to the heat equation). This approach requires the development of specific 

elements with additional degrees of freedom for the concentration of the diffusing 

chemical elements. 

For a macroscopic approach, the same concept can be used with a mobile boundary 

defining the frontier between the base material and the corrosive environment [22], [23]. 

The velocity of the boundary is determined from the diffusion of the corroded chemical 

elements modelled using Fick’s second law. This type of model is particularly well 

adapted for the simulation of gradual material loss due to corrosion. For instance, such 

models were developed for the corrosion of bioabsorbable metal stents [22], [23], using 

the Arbitrary Lagrangian-Eulerian (ALE) adaptive remeshing method within the Abaqus 

software. The ALE technique allows for large variations in the geometry even with an 

initially coarse mesh [24]. Figure 4.3 shows the evolution of the geometry of a bar of Mg-

1Ca in a corrosive environment [23]. The thickness of the bar reduces significantly. 

 

Figure 4.3 – Change of geometry due to corrosion modelled by a mobile boundary [23] 

2.3 CORROSION DAMAGE VARIABLE 

Corrosion can also be modelled using the concept of damage variable initially developed 

for mechanical damage (see Chapter 3). The advantage of this type of modelling is that it 
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is readily integrable in the existing model developed for the thermo-mechanical behaviour 

and damage of alloy 230. To take corrosion into account, a corrosion damage variable 

𝐷𝑐𝑜𝑟𝑟 can be added to the existing mechanical damage variable: 

𝐷 = 𝐷𝑚𝑒𝑐ℎ + 𝐷𝑐𝑜𝑟𝑟 = 𝐷𝑓 + 𝐷𝑐 + 𝐷𝑐𝑜𝑟𝑟 (4.2) 

This concept of damage variable was used by Neu and Sehitoglu [25] in a linear 

summation damage model, where the damage variable corresponds to 𝐷 = 𝑁/𝑁𝑅, with 

𝑁 the current number of cycles and 𝑁𝑅 the number of cycles to rupture (unlike the 

Lemaitre damage variable, which represents the proportion of voids in the material). The 

total damage is considered as the sum of 3 contributions: fatigue damage 𝐷𝑓, creep 

damage 𝐷𝑐, and oxidation damage 𝐷𝑜𝑥 (analogous to 𝐷𝑐𝑜𝑟𝑟 in Eq. (4.2)). The oxidation 

damage is based on the growth rate of the oxide layer. It is computed using a power 

function of time, to represent the repeated cracking of the oxide layer. A phase factor is 

also included in their formulation to consider the influence of the 

temperature/deformation phasing: when tensile strain is present at high temperature, 

creep is estimated to be the principal cause for damage; however, when compressive 

strain is maintained at high temperature, the oxide layer formed is more likely to rupture 

when the strain is reversed, as explained in section 1.1.1 of this chapter. The creep damage 

is also dependent on this phasing factor. 

More recently, models based on the concept of damage variable as defined by Lemaitre 

[26] were developed for corrosion. Notably, da Costa-Mattos et al. [27] proposed to add 

a stress corrosion cracking variable 𝐷𝑆𝐶  defined by Eq. (4.3) to the classic unified damage 

model of Lemaitre. 𝑆 and 𝑅 are parameters dependent on the material and the corrosive 

environment, and 𝐷 is the total damage. This equation is almost equivalent to the 

Kachanov model for creep damage (see Section 1.1.3 of Chapter 3). 

�̇�𝑆𝐶 = (
𝑆𝜎

1 − 𝐷
)
𝑅

 (4.3) 

Gastaldi et al. used this stress corrosion cracking damage [28] with an added uniform 

corrosion damage 𝐷𝑢 for the simulation of the degradation of bioresorbable stents. The 

uniform corrosion is modelled by a simple linear corrosion law, where 𝑘𝑢 is a parameter 

related to the corrosion kinetics, 𝛿𝑢 is a characteristic dimension of the uniform corrosion 

(such as the critical thickness), and 𝐿𝑒 is a characteristic length of the finite element: 

�̇�𝑢 =
𝛿𝑢
𝐿𝑒
𝑘𝑢 (4.4) 
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For a brick element, the characteristic length 𝐿𝑒 is defined by Eq. (4.5), where 𝑉𝑒 is the 

volume of the element: 

𝐿𝑒 = √𝑉𝑒
3

 (4.5) 

Once the damage is above a critical value 𝐷𝑐𝑟𝑖𝑡, the finite element is deactivated to 

represent the material loss due to corrosion. 

Figure 4.4 shows the modelling of a bioabsorbable stent using the stress corrosion model, 

the uniform corrosion model, or both. In cases where uniform corrosion is taken into 

account, the stent is noticeably thinner due to the deactivation of finite elements that 

reached the damage threshold. 

 

Figure 4.4 – Stress distribution  and damage in a bioabsorbable stent – (SC) Stress corrosion model; (U) Uniform 

corrosion model; (SCU) Combined stress corrosion and uniform corrosion [28] 

Galvin at al. [29] added two parameters to Eq. (4.4): 

�̇�𝑢 =
𝛿𝑢
𝐿𝑒
𝑘𝑢𝜙𝑒𝜅𝑒 (4.6) 

Parameter 𝜙𝑒 is dependent on the plastic strain amplitude in the element and on the 

corrosion time. Parameter 𝜅𝑒 relates to the number of faces of the element exposed to 

corrosion: an element exposed to the corrosive environment on all its faces will corrode 

much faster than an element exposed on only one face. 
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Amerinatanzi et al. [30] added a factor 𝜆𝑒 in Eq. (4.4) to model the susceptibility to pitting 

corrosion of surface elements. A random value of this parameter is attributed to each 

element at the beginning of the simulation to represent the initial surface defects. This is 

similar to the Wenman model described in section 2.1.  

3 CORROSION MODEL FOR THE RECEIVER TUBES 

3.1 CONCEPT 

Based on the models found in the literature and the requirements exposed in section 1.2, 

the chosen model is a model based on a corrosion damage variable. More specifically, 

uniform corrosion is modelled through a variable 𝐷𝑢 which can be added to the 

mechanical damages 𝐷𝑓 (fatigue) and 𝐷𝑐 (creep) to form the total damage: 

𝐷 = 𝐷𝑓 + 𝐷𝑐 + 𝐷𝑢 (4.7) 

The stress corrosion damage model described in section 2.3 is not taken into account due 

to lack of experimental results: indeed, the equation for stress corrosion is similar to the 

equation of creep damage and it is difficult to distinguish these two phenomena from 

experimental results. Both creep and oxidation/corrosion occur at high temperature and 

over long periods of time. The measure of pure creep damage could only be done from 

creep tests performed in vacuum or in protective atmosphere to avoid oxidation from air.  

The deactivation of elements is not used either in the model. Indeed, the deactivation of 

elements is only of interest if the corrosion is made to progress through the structure: once 

a surface element is deactivated, the code searches for neighbouring elements that have 

become exposed to the corrosive environment and activates corrosion damage in these 

elements. This approach requires complex developments in the finite element code and is 

not necessary for the application to the tubes. Indeed, the tubes are very thin (less than 2 

mm thick for a diameter of around 5 cm), and the allowable material loss due to corrosion 

corresponds to one third of the thickness. Therefore, a mesh with three elements along 

the thickness, as shown in Figure 4.5, with corrosion damage only in the inner layer of 

the tube is sufficient to model corrosion in the tubes (N.B. due to the symmetry, only half 

of the tube needs to be modelled). When the total damage in the elements with corrosion 

reaches a value close to 1, this means a third of the thickness of the tube has been 

consumed, which can be considered as a failure criterion. Note: the critical damage 

allowed for other elements is 𝐷𝑐𝑟𝑖𝑡 = 0.3, but in the case of corrosion the critical damage 

can be set to a value close to 1 since destruction of the element is allowed. 
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Although the corroded elements are not deactivated, the coupling between damage and 

behaviour allows the simulation of loss of resistance through the use of the effective stress 

(see Section 1.2.1 of Chapter 3). Indeed, the increased damage in the corroded elements 

results in a loss of stiffness and, as a result, in a redistribution of the stresses towards the 

less damaged elements. 

 
Figure 4.5 – Distinction between elements with corrosion damage and elements without corrosion damage  

in the mesh of the tube 

3.2 EQUATIONS AND IMPLEMENTATION 

The uniform corrosion is considered to be independent of the stress state. The numerical 

integration of uniform damage equation is therefore done independently of the rest of the 

computation. In the material law, the uniform corrosion damage is simply added to the 

other damages at the end of the time step, as written in Eq. (4.7).   

Following the works presented in section 2.3, a simple linear damage law is implemented 

using Eq. (4.8), where 𝐾𝑢 is a parameter related to the kinetics of corrosion, and 𝐿𝑒 the 

characteristic length of the element: 

�̇�𝑢 =
𝐾𝑢
𝐿𝑒

 (4.8) 

This equation is equivalent to Eq. (4.4) above, with parameters 𝛿𝑢 and 𝑘𝑢 being 

assembled into a unique parameter 𝐾𝑢, which is the linear corrosion rate expressed as a 

corroded length per unit time, e.g., in µm/year. The uniform corrosion damage 𝐷𝑢 can be 

understood as the proportion of the element that has been corroded. 

Eq. (4.8) can easily be discretized using the finite difference method: 
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𝐷𝑢
𝑛+1  = 𝐷𝑢

𝑛 +
𝐾𝑢
𝐿𝑒
Δ𝑡 (4.9) 

By default, the characteristic length of the element 𝐿𝑒 is defined as the cubic root of the 

volume of the element (Eq. (4.5)) for a 3D element, or as the square root of the area of 

the element in 2D. However, in the tubes, elements are only exposed to the corrosive 

environment on one side and corrosion progresses in the radial direction. Therefore, it 

makes more sense to consider 𝐿𝑒 as the initial size of the element in the radial direction. 

In the code, 𝐿𝑒 can be defined as a parameter or be computed automatically if no value is 

given by the user. 

Linear corrosion works well with materials such as Mg alloys which degrade over time, 

however, for materials that form a protective oxide layer like alloy 230, corrosion usually 

follows a parabolic law [31]. Let ℎ be the thickness of the oxide layer and 𝐾𝑝 the parabolic 

rate of corrosion, the evolution of ℎ with time follows Eq. (4.10): 

𝑑ℎ

𝑑𝑡
=
𝐾𝑝

ℎ
 (4.10) 

Considering 𝐷𝑢 as the proportion of element that is corroded gives Eq. (4.11): 

𝐷𝑢 =
ℎ

𝐿𝑒
 (4.11) 

From Eq. (4.10) and Eq. (4.11), the parabolic law of corrosion can be derived: 

𝑑𝐷𝑢
𝑑𝑡

=
𝐾𝑝

𝐿𝑒
2𝐷𝑢

 (4.12) 

This equation can be integrated as Eq. (4.13): 

𝐷𝑢 =
1

𝐿𝑒
√2𝐾𝑝𝑡 (4.13) 

The uniform corrosion damage 𝐷𝑢 is proportional to the square root of time, meaning 

the rate of corrosion decreases with time. In the numerical model, Eq. (4.12) is 

discretized using an explicit Euler scheme: 

𝐷𝑢
𝑛+1  =

{
 

 
1

𝐿𝑒
√2𝐾𝑝Δ𝑡          𝑓𝑜𝑟 𝑛 = 0

𝐷𝑢
𝑛 +

𝐾𝑝

𝐿𝑒2𝐷𝑢
𝑛 Δ𝑡    𝑓𝑜𝑟 𝑛 > 0

 (4.14) 
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3.3 PARAMETER IDENTIFICATION 

The parameters for the corrosion of alloy 230 in solar salts can be identified based on data 

from the literature, mainly data from Sandia Laboratories [6], [7]. As mentioned in section 

1.1.2, the studies give values of the mass loss with and without counting the oxide. The 

weight difference between the initial sample and the sample with oxide does not give a 

precise information on the volume or thickness of material that got depleted. Indeed, 

while some elements of the alloy are migrating outwards and being dissolved in the salt, 

oxygen is diffusing inwards to form oxides, which do not have the same density as the 

base material. For some materials, such as 347 stainless steel at 500°C, the weight after 

corrosion is actually higher than the weight before corrosion. Therefore, the oxidation 

rate parameters (𝐾𝑢 for linear rate and 𝐾𝑝 for parabolic rate) are based on the thickness 

of the oxide and not on the actual weight loss. Figure 4.6 shows the descaled weight loss 

– that is, the difference of weight between the sample after the test and the sample after 

removal of the oxide – of samples of alloy 230 immersed in molten solar salt at 400°C, 

500°C, and 600°C for different durations. The evolution of the weight loss indicates a 

parabolic rate of corrosion; therefore, the parabolic law is chosen for alloy 230 in molten 

solar salt. 

 
Figure 4.6 – Descaled weight loss of alloy 230 in solar salt at different temperatures [6], [7] 

Let 𝑤𝑙 the descaled weight loss. From this value, the oxide thickness ℎ can be computed 

using Eq. (4.15), where 𝜌 is the density of alloy 230: 

ℎ(𝑡, 𝑇) =
𝑤𝑙(𝑡, 𝑇)

𝜌
 (4.15) 
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Using Eq. (4.11) above, the corresponding corrosion damage can be calculated for a 

virtual element with an arbitrary characteristic length 𝐿𝑒. Note that 𝐿𝑒 should be larger 

than the maximum value of ℎ, otherwise 𝐷𝑢 becomes larger than 1, which physically does 

not make sense. Combining Eq. (4.11) with Eq. (4.13), the following equation is obtained: 

𝐷𝑢 =
ℎ

𝐿𝑒
=
1

𝐿𝑒
√2𝐾𝑝𝑡 ⟹ ℎ(𝑡, 𝑇) = √2𝐾𝑝(𝑇)𝑡 (4.16) 

For each temperature, the value of 𝐾𝑝(𝑇) can be estimated as the slope of ℎ2(𝑡)/2 by 

performing a linear regression. Figure 4.7 shows the evolution with time of the oxide 

layer thickness at different temperatures obtained with the model and from experimental 

data. The results obtained with the model – i.e., Eq. (4.16) – fit the experimental data 

well. 

 
Figure 4.7 – Oxide thickness ℎ at different temperatures; experimental data from [6], [7] 

3.4 VERIFICATION OF THE MODEL 

To verify the implemented model, a simple case study was designed. A beam, shown in 

Figure 4.8, is subjected to a uniformly distributed stress evolving from 0 to 20 MPa along 

the x direction. The nodes on the left side of the beam are fixed in the x direction, the 

nodes on the bottom side are fixed in the y direction, and the nodes on the back are fixed 

in the z direction to avoid rigid body motion as well as bending of the beam. The upper 

surface of the beam is exposed to corrosion and only the elements in blue in the figure 

have corrosion damage activated. The model is tested with the linear law and a fictitious 

value of 𝐾𝑢 chosen to reach high values of 𝐷𝑢 under a small time. 
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Figure 4.8 – Mesh of the beam with elements 5, 19, 20 indicated 

The evolution of damage in elements 5, 19, and 20 is plotted in Figure 4.9 (a). Elements 

19 and 20 are not exposed to corrosion, therefore, their corrosion damage remains equal 

to 0. In element 5 however, the damage evolves linearly up to a value of about 0.65. The 

stress-strain curves are plotted in Figure 4.9 (b). For elements 19 and 20, the curve is 

linear, since the material remains in the elastic domain, and the maximum stress is around 

26 MPa. For element 5 however, the stress is much smaller and is not linear with the 

strain. Indeed, with the coupled damage model, the relation between the unidirectional 

stress 𝜎5 in element 5 and the elastic strain 휀𝑒 becomes: 

𝜎5 = (1 − 𝐷)𝐸휀𝑒 (4.17) 

It is clear that the model takes into account the reduction of the stress due to the corrosion 

damage. As a result, the imposed load is redistributed to the other elements. Instead of 

ending the test with a stress of 20 MPa in each element (as would be the case in the 

absence of corrosion), the stress in the elements of the surface is smaller and the elements 

underneath compensate with a larger stress. Let 𝜎𝑡𝑜𝑝 be the stress in the top elements of 

the beam, 𝜎𝑏𝑜𝑡 the stress in the bottom elements (elements 19 and 20 in Figure 4.9), and 

𝑆𝑒𝑙 the surface of the elements perpendicularly to the applied load. The total can be 

rewritten as: 

3𝑆𝑒𝑙𝜎 = 𝜎𝑡𝑜𝑝𝑆𝑒𝑙 + 2𝜎𝑏𝑜𝑡𝑆𝑒𝑙 (4.18) 

Considering a total imposed load 𝜎 = 20 MPa and a corrosion damage 𝐷 = 0.65, the 

values of 𝜎𝑡𝑜𝑝 and 𝜎𝑏𝑜𝑡 can be derived from the combination of Eq. (4.17) and (4.18): 
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𝜎𝑡𝑜𝑝 = (1 − 𝐷)
𝜎

1 −
𝐷
3

= 8.93 𝑀𝑃𝑎 
(4.19) 

𝜎𝑏𝑜𝑡 =
𝜎

1 −
𝐷
3

= 25.53 𝑀𝑃𝑎 (4.20) 

These correspond to the values for element 5 (𝜎𝑡𝑜𝑝), 19 and 20 (𝜎𝑏𝑜𝑡) shown in Figure 

4.9. 

(a) 

 

(b) 

 
Figure 4.9 – Evolution of (a) corrosion damage and (b) stress for elements 5, 19, and 20 of the beam 

This simple case study shows that the corrosion model behaves as expected with the 

behaviour model. More advanced test cases are studied in Chapter 6. 

4 CONCLUSION 

Corrosion in nickel-based alloys, and in alloy 230 in particular, is a complex 

phenomenon. Depending on the environment (air, solar salt, chloride salt), the 

temperature, and the loading conditions, the rate of corrosion and the type of oxide that 

form can change. Modelling corrosion in a physically accurate manner would require 

extensive experimental data and analysis to identify the underlying chemical mechanisms 

responsible for corrosion.  

A simplified model was developed for the modelling of uniform corrosion of alloy 230 

in solar salt or chloride salts.  

Based on the results of static corrosion tests, the corrosion law was identified to be 

parabolic. The parameters for corrosion of alloy 230 in solar salt were identified at 

different temperatures based on static corrosion tests from the literature. 

John Cockerill and the CRM are currently carrying further experimental tests activating 

the effects of corrosion, including fatigue tests in molten salts and dynamic tests, where 

the molten salt flows inside tubes of alloy 230. The results of these tests will probably 
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bring information on how to improve the modelling of corrosion damage, particularly 

regarding stress corrosion cracking and the influence of salt flow. 
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INTRODUCTION 

The behaviour and damage models detailed in Chapter 2 and 3 are used to simulate the 

behaviour of solar receivers over long time-periods (around 30 years, i.e., more than 

10000 cycles). In a finite-element (FE) code, the computational time (CPU time) for the 

simulation of one cycle varies depending on the refinement of the mesh. Using the 

Lagamine FE code, simulations were run with a mesh of 1000 elements. The simulation 

of one cycle (i.e., one day) takes about 10 minutes in Lagamine. The simulation of the 

whole lifetime of the receiver would therefore take about 3 months. Evidently, this kind 

of computational times is not acceptable and would make it impossible to design the solar 

receiver. 

Different methods have therefore been put in place to allow computation of the lifetime 

of the receiver without having to run the full FE code for every cycle. 

1 POST-PROCESSOR FOR RAPID LIFETIME ASSESSMENT 

The first method consists in a post-processor code applied on a non-coupled simulation 

that computes the evolution of the damage variables until they reach their critical value. 

1.1 CONCEPT 

The idea of the post-processor stems from the fact that the behaviour of the material seems 

to stabilize after a few hundred cycles. Indeed, the change in stress amplitude tends to get 

slower with increasing number of cycles (note that this is not necessarily obvious when 

looking at the figures in Chapter 1 since the x axis (number of cycles) is represented using 

a logarithmic scale). The stabilization of the stress amplitude is particularly visible for 

cyclic tests with small amplitudes of deformation, as can be seen in Figure 5.1. For the 

solar receivers, preliminary design studies have shown that the strain amplitude was in 

the range of 0.1% to 0.4%.  

 

Figure 5.1 – Normalized stress amplitude of a fatigue test at 700°C with a total strain amplitude of 0.4% 



Chapter 5 – Methods for accelerated calculations 129 

 

 

Moreover, it can be observed on the creep-fatigue anisothermal tests that the stress tends 

to shift towards positive stresses (see Chapter 1, Section 2.5.2). Since most of the damage 

is expected to happen at high temperature, when the front of the tube is under compressive 

stress, using an early value of the stress amplitude is actually conservative (higher 

compressive stress at the beginning of the simulation). 

Therefore, it is reasonable to make the calculation of the evolution of damage with the 

hypothesis that the stress amplitude remains constant after a few hundred cycles. In the 

damage post-processor, the material behaviour is therefore considered constant over the 

cycles, while the damage variables are updated using the model developed in Chapter 3, 

Section 2. 

The post-processor is however not adapted for the coupled model or for uniform corrosion 

damage, as corrosion is expected to have a more significant impact on the mid-term 

behaviour of the structure. These observations explain why the damage post-processor is 

only implemented for fatigue and creep damage without coupling to the mechanical 

behaviour model described in Chapter 2. 

1.2 PRINCIPLE OF THE COMPUTATION 

The damage post-processor was implemented as a Python script that takes several input 

files and parameters. To use the damage postprocessor, a finite-element simulation must 

first be run until the behaviour (i.e., the stresses) are more or less stabilized. Then, the 

damage postprocessor is launched, starting from the last cycle computed in the FE code 

to calculate the values of 𝐷𝑓 and 𝐷𝑐 at every following cycle, until the critical damage 

𝐷𝑐𝑟𝑖𝑡 is reached. 

To compute the increment of damages 𝐷𝑓 and 𝐷𝑐 on a cycle, the evolution of the following 

variables is required: 

• The temperature 𝑇; 

• The rate of the plastic multiplier �̇�; 

• The stress tensor 𝜎; 

• The delayed stress 𝜎𝑑. 

A file containing the values of these variables at the different time steps of the last 

computed cycle defines the input file of the postprocessor. The last values of the plastic 

multiplier and of the damage variables are also required since they are used as the starting 

point for the postprocessor. 

Some parameters of the damage model are also necessary. These include the fatigue 

damage parameters 𝑆𝑓 and 𝑠𝑓, the creep damage parameters 𝑆𝑐, 𝑠𝑐, and 𝑘𝑐, the correction 
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coefficients 𝑘1 to 𝑘4, the microdefects closure parameter ℎ and the critical damage 𝐷𝑐𝑟𝑖𝑡, 

as well as the elasticity parameters 𝐸 and 𝜈.  

With all these data, the postprocessor can compute the evolution of 𝐷𝑓 and 𝐷𝑐 using the 

method described in Section 2.4 of Chapter 3. 

1.3 RESULTS 

To test the accuracy of the post-processor, a simple test case was considered. The test 

consists of one cubic element being subjected to a uniaxial isothermal creep-fatigue 

loading with hold times both in tension and compression. The resulting stress amplitude 

computed by the FE code is shown in Figure 5.2. It can be observed that the stress 

amplitude is somewhat stable after 500 cycles. 

 

Figure 5.2 – Stress amplitude computed by the FE code for a creep-fatigue test at 700°C 

The fatigue and creep damages were also computed with a full simulation by the FE code 

for validation of the postprocessor. To test the accuracy of the postprocessor, three 

different starting points are tried: 100 cycles; 500 cycles; 1000 cycles. The results are 

shown in Figure 5.3 for fatigue damage (a) and creep damage (b). It can be seen that with 

the 1000 cycles starting point, the results given by the postprocessor match that of the FE 

simulation. However, for earlier starting points (100 cycles and 500 cycles), the predicted 

lifetime is longer (lower damage) and therefore not conservative. This is due to the fact 

that the stress amplitude is smaller at 100 and 500 cycles than the stabilized amplitude. 

The error on the lifetime (number of cycles where 𝐷𝑐 + 𝐷𝑓 = 𝐷𝑐𝑟𝑖𝑡) is of 109% for the 

start at 100 cycles, 22.5% for the start at 500 cycles, and 0.3% for the start at 1000 cycles.   

The postprocessor only gives good results once the behaviour is really stabilized, and 

therefore is not ideal for use in simulations where there is no certainty as to when this 
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stabilization occurs. It can be a good tool to get a rapid assessment of the order of 

magnitude of the lifetime but is not very accurate as a design tool. 

 

Figure 5.3 – Evolution of (a) fatigue damage and (b) creep damage as computed by the non-coupled FE code and the 

postprocessor, using different starting points 𝑛𝑖 

2 CYCLE-JUMP PROCEDURE  

In order to get a more accurate prediction of the lifetime than with the postprocessor and 

to be able to compute the long-term evolution of damage on large meshes with the coupled 

model (and with corrosion modelling), it is necessary to have at least a partial FE 

computation of the behaviour (stresses, hardening, strains, …) over the whole lifetime of 

the structure. 

One commonly used procedure in the case of cyclic loadings is the cycle-jump procedure 

[1]–[4]. This consists in computing a number of cycles 𝑁𝑖 in the FE code, and then 

extrapolating the results from these 𝑁𝑖 cycles over a number of cycles 𝑁𝑗. The FE code is 

then restarted from cycle 𝑁𝑖 + 𝑁𝑗  and the process is repeated. Figure 5.4 illustrates the 

method. 

 

Figure 5.4 – Illustration of the cycle-jump procedure (from [2]) 
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By simulating fewer cycles in the FE code, a significant decrease of the total 

computational time can be obtained. Moreover, by regularly running the FE code, the 

stresses and strains are updated and the modelling of damage is made more accurate. 

2.1 GENERAL DESCRIPTION 

The cycle-jump procedure was implemented for the Lagamine FE code. It consists of two 

programs: 

• A Fortran extrapolator, which reads the result files from Lagamine, computes the 

extrapolated variables, and writes them in an input file for Lagamine; 

• A Python script, that is used to modify the Lagamine execution files to specify the 

cycles that need to be computed, launch the FE simulations, and the extrapolator. 

Figure 5.5 presents the flowchart of the cycle-jump procedure. The green boxes 

correspond to functions done by the Python script, while the blue boxes correspond to 

functions done by the Fortran extrapolator. The use of the Fortran language for the 

extrapolator was made necessary by the format of the Lagamine input and output files. 

Indeed, these files are written using the binary ‘unformatted’ Fortran, which are not easily 

readable by Python. 

 

Figure 5.5 – Flowchart of the cycle-jump procedure 

Both the Python and Fortran codes use an input file specific to the cycle-jump procedure. 

In this file, described in the Lagamine Dokuwiki [5], all the information necessary for the 

cycle-jump is given. The first section of the file contains generic information such as the 

simulation file names, options for saving the results, the period of the cyclic loading, and 
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the final value of time for the simulation. The second section defines the choice of number 

of cycles to compute 𝑁𝑖 and number of cycles to jump 𝑁𝑗. Several options are available 

for the definition of these parameters, which will be described in Section 2.3 hereafter. 

Finally, the third section defines the extrapolation method and the variables that need to 

be extrapolated. Indeed, extrapolating all the variables of the FE code is usually not 

necessary. For instance, in the case of the solar receivers, the applied thermal loading is 

the same at every cycle. Since the thermal properties of the material do not change over 

time, the thermal variables (thermal strain, temperature field, …) are the same for every 

cycle. It is therefore unnecessary to extrapolate these variables.  

2.2 EXTRAPOLATION METHOD 

The ‘jump’ consists in extrapolating the values of the variables at the last time step of the 

cycle over 𝑁𝑗 cycles. 

The simplest way to perform an extrapolation of variables is to use a linear extrapolation 

from the results of the last two computed cycles. Let 𝑋 be a variable and 𝑛 the last cycle 

at which it was computed. 𝑋(𝑛) represents the value of 𝑋 at the final time step of cycle 

𝑛. To compute the increment of 𝑋 over a cycle 
Δ𝑋

Δ𝑁
, Eq. (5.1) can be used: 

Δ𝑋

Δ𝑁
= 𝑋(𝑛) − 𝑋(𝑛 − 1) (5.1) 

Using a linear extrapolation, the value of 𝑋 at cycle 𝑛 + 𝑁𝑗 is then calculated using Eq. 

(5.2): 

𝑋(𝑛 + 𝑁𝑗) = 𝑋(𝑛) +
Δ𝑋

Δ𝑁
∗ 𝑁𝑗 (5.2) 

The FE simulation can then be restarted from the newly computed values at 𝑛 + 𝑁𝑗. 

Figure 5.6 shows the results of a simulation with cycle jumps compared to a full coupled 

FE simulation for a creep-fatigue test at 700°C. For the full FE simulation, only the 

maximum and minimum stress curves are plotted. Note that here, contrarily to the 

example shown in Section 1.3 above, the behaviour is coupled with damage and therefore 

the stress amplitude decreases over time. For the simulation with jumps, the number of 

cycles to compute 𝑁𝑖 was set to 25 in the first 50 cycles (where the behaviour is not 

stabilized) and 5 cycles afterwards. Similarly, the number of cycles to jump 𝑁𝑗 was set to 

10 for the 50 first cycles and to 50 afterwards. It can be noted that the stresses and damage 

variables are almost equal for both simulations. The cycle-jump procedure gives very 

accurate results, even when only 5 out of 55 cycles are actually computed in the FE code. 
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By considering a critical damage 𝐷𝑐𝑟𝑖𝑡 of 0.3, the error made on the lifetime using the 

cycle-jump is equal to 1.4%. 

 

Figure 5.6 – Comparison between a full FE simulation and the cycle-jump using linear extrapolation for a creep-

fatigue test at 700°C - (a) and (c) stress amplitude (Full FE) and stress (with jumps), (b) fatigue damage, (d) creep 

damage 

In Figure 5.6 (c), it can be observed that the stresses computed using the cycle-jump 

procedure are not as regular as those from the full computation. Small peaks can be seen 

at the beginning of a group of 𝑁𝑖 cycles, for instance at cycle 180 and at cycle 510. These 

peaks are due to small numerical errors between two consecutive cycles that are used for 

the extrapolation. Figure 5.6 (a) shows a close-up view of the tensile stresses of cycles 71 

to 75. Between these cycles, it can be noted that the maximum stress oscillates slightly 

from one cycle to another. This is due to the numerical precision set in the FE code and 

has little to no impact on the overall stress evolution in the full computation. However, in 

the case of the cycle-jump, only the variation on the last two cycles (74 and 75) is taken 

into account. As a result, the extrapolation enhances the numerical error and creates a 

shift towards compressive stresses at the beginning of the next simulated cycles.  

This does not seem to be a major problem overall since after one cycle computed by the 

FE code, the stress values fit the full computation values again, but this could cause 

convergence issues on larger scale simulations (particularly on larger meshes). To prevent 

this phenomenon, one could simply increase the precision in the FE simulation, however, 
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this would mean reducing the time steps and therefore increasing the computation times. 

An alternative is to extrapolate the values on a larger number of cycles. Let 𝑚 be the 

number of cycles used for the extrapolation (with 2 < 𝑚 < 10). To compute the variation 

Δ𝑋

Δ𝑁
 from the values on 𝑚 cycles, the method of least squares can be used. Let 𝑋 the mean 

value of 𝑋 at the end of cycles 𝑛 −𝑚 + 1 to 𝑛 and 𝑁 the mean value of the cycles: 

𝑋 =
1

𝑚
∑ 𝑋(𝑖)

𝑛

𝑖=𝑛−𝑚+1

 (5.3) 

𝑁 =
1

𝑚
∑ 𝑖

𝑛

𝑖=𝑛−𝑚+1

 (5.4) 

The value of 
Δ𝑋

Δ𝑁
 can then be calculated using Eq. (5.5): 

Δ𝑋

Δ𝑁
=
∑ (𝑖 − 𝑁)(𝑋(𝑖) − 𝑋)𝑛
𝑖=𝑛−𝑚+1

∑ (𝑖 − 𝑁)
2

𝑛
𝑖=𝑛−𝑚+1

 (5.5) 

Figure 5.7 shows the comparison between the full simulation and the simulation with 

cycle-jump, where the extrapolation is done using values from the last 5 computed cycles.  

 

Figure 5.7 – Comparison between a full coupled FE simulation and the cycle-jump using least squares extrapolation 

on 5 cycles for a creep-fatigue test at 700°C (a) stress amplitude, (b) fatigue damage, (c) creep damage 

The small peaks that were visible on the stress curve on Figure 5.6 (a) have disappeared. 

In addition, the creep damage curve seems slightly improved compared to the cycle-jump 

with linear extrapolation. The error on the lifetime compared to the full simulation is 

0.5%, which is negligible. The use of the least square extrapolation method can therefore 

be useful in cases where increasing the precision of the FE simulation would result in 



Chapter 5 – Methods for accelerated calculations 136 

 

 

prohibitive computational times and linear extrapolation leads to large errors. In this case, 

visible discrepancies appear in the results, as was the case in Figure 5.6 (c); in other cases, 

the simple linear interpolation gives good results despite small numerical perturbations.  

2.3 CHOOSING NI AND NJ 

The choice of 𝑁𝑖 (computed cycles) and 𝑁𝑗 (jumped cycles) values is crucial for the 

accuracy of the simulations with jumps. Indeed, if the number of cycles that are jumped 

𝑁𝑗 is too large, the linear extrapolation may not be valid anymore (most of the variables 

do not evolve linearly with cycles). On the other hand, if 𝑁𝑗 is too small, the computational 

time will not be reduced much, which defeats the point of using the cycle-jump method. 

Similarly, 𝑁𝑖 should be large enough to avoid the impact of small numerical perturbations 

such as the ones seen above, but small enough to limit computational times as much as 

possible. 

2.3.1 Choice of the number of jumped cycles Nj 

In the cycle-jump code, several options were implemented for the definition of 𝑁𝑗: 

• 𝑁𝑗 is kept constant for the whole simulation and must be given by the user. 

• 𝑁𝑗 is predefined for blocks of cycles. 

• 𝑁𝑗 is computed automatically depending on a chosen variable in the model. 

The first option is the simplest but does not allow a good compromise between accuracy 

and computation time. Indeed, the material behaviour tends to evolve rapidly in the first 

100 to 200 cycles and then stabilizes or evolves more slowly. Ideally, the values of 𝑁𝑗 

should then be small at the beginning of the simulation and larger for cycle numbers above 

100 or 200. The second option allows this flexibility in the choice of 𝑁𝑗. As seen in the 

previous section (see Figure 5.6 and Figure 5.7), a small value of 𝑁𝑗 can be defined for 

the beginning of the simulation and a larger value for the rest of the simulation. However, 

it is not always easy to predict which values of 𝑁𝑗 are acceptable, and at which cycle 

number this value can be modified. 

The third option allows to compute automatically an optimal value of 𝑁𝑗 depending on 

the evolution of one or several state variables from the model. Several authors use the 

variation of the damage variable 𝐷 as a criterion for calculating 𝑁𝑗 [2]–[4]. Indeed, the 

damage variable is a good measure of the global variation of behaviour: the evolution of 

the mechanical damage variables 𝐷𝑓 and 𝐷𝑐 are dependent on the stress and on the plastic 

strain multiplier, and the value of total damage directly impacts the behaviour through the 

use of the effective stress in the coupled model. Another advantage is that damage is a 

scalar variable, which makes it easy to use as a mathematical criterion. 
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To compute the value of 𝑁𝑗, a limit is fixed on the increase of the total damage during a 

jump. The number of jumped cycles 𝑁𝑗 is calculated so as to limit the increase of total 

damage to a user-defined value (Δ𝐷)𝑚𝑎𝑥 on all the elements: 

𝑁𝑗 = min
𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

(
(𝛥𝐷)𝑚𝑎𝑥
𝛥𝐷
𝛥𝑁

) (5.6) 

Figure 5.8 shows the results of the simulation of the creep-fatigue test already used in 

section 2.2 above with an automatic calculation of 𝑁𝑗 and linear extrapolation. The 

criterion for the maximum damage increment was set to 0.01. By comparing Figure 5.8 

to Figure 5.6 where 𝑁𝑗 was predefined, it is visible that the jumps are shorter in the case 

of the automatic calculation, and they get shorter as the evolution of damage tends to 

accelerate. As a consequence, the results of the two simulations (full computation and 

simulation with jumps) are closer – the error on the lifetime is 0.5% – but the gain in 

computation time is less significant (150 cycles computed with the automatic 𝑁𝑗 vs. 100 

with the predefined 𝑁𝑗). 

 

Figure 5.8 – Comparison between a full coupled FE simulation and the cycle-jump using linear extrapolation and 

with automatic calculation of 𝑁𝑗 for a creep-fatigue test at 700°C (a) stress amplitude, (b) fatigue damage, (c) creep 

damage  

On this example, the interest of the automatic calculation of 𝑁𝑗 is limited. This result is 

mainly due to the fact that the simulation is overall rather short (less than 600 cycles), and 

the damage evolves rapidly. Additional examples with a more complex structure will be 

shown in Chapter 6. 
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2.3.2 Choice of the number of computed cycles Ni 

The number of cycles computed in the FE code between two jumps should be as small as 

possible to limit computational times (the computational time for extrapolation is 

negligible compared to the computational time required for the simulation of a cycle in 

the FE code). However, 𝑁𝑖 should also be large enough to guarantee the validity of the 

extrapolated results. As seen in Section 2.2, the first cycle after the extrapolation can be 

affected by small numerical mistakes. 

Several values of 𝑁𝑖 were tested on the previous creep-fatigue test. Figure 5.9 shows the 

comparison of the evolution of the total damage 𝐷𝑓 + 𝐷𝑐  for different values of 𝑁𝑖, using 

the linear interpolation and automatic computation of 𝑁𝑗. For 𝑁𝑖 = 2, the results diverge 

at around cycle 150. This is caused by the problem of propagation of small numerical 

errors identified in Section 2.2. Indeed, the first cycle after the jump may be affected by 

the numerical error made in the extrapolation, while the following cycles re-equilibrate. 

Therefore, the difference between the two first cycles computed by the FE code can be 

large and lead to even larger errors during the next extrapolation. For values of 𝑁𝑖 above 

3, the results are equivalent (the difference on total damage between simulations with 

different values of 𝑁𝑖 > 2 at cycle 600 is below 1%). 

 

Figure 5.9 – Total damage computed for a creep-fatigue test using different values of 𝑁𝑖 

3 CONCLUSION 

In this chapter, two methods for a faster calculation of the lifetime were developed. The 

first method consists in a postprocessing tool that computes the damage variables with 

the hypothesis that the material behaviour remains constant after a certain number of 

cycles. This method only works if the damage is not coupled to the behaviour and gives 
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good results if the hypothesis of quasi-constant behaviour is valid. It is a good tool to get 

an estimate of the lifetime but does not always give accurate results. 

The second method is a cycle-jump procedure, in which part of the FE calculation is 

replaced by simple linear extrapolations throughout the simulation. This method gives 

very accurate results but is likely to lead to convergence problems or propagation of 

numerical errors if the parameters of the jump are not chosen properly. 

Both methods were tested and will be compared on a larger scale model in the next 

chapter. 
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1 FINITE-ELEMENT MODEL 

1.1 SCOPE AND HYPOTHESES 

The objective of the work done as part of this thesis is the modelling of the tubes of the 

solar receivers. As mentioned in the introduction, the solar receiver consists in a large 

cylinder made of several panels of tubes. A panel of tubes is about 20 meters tall and 

consists of around 70 tubes. At the top and at the bottom of the panel, the tubes are 

connected to a large header that collects and distributes the molten salt, as can be seen in 

Figure 6.1. The design of the connection between the header and the tubes would require 

specific calculation. in this chapter. Therefore, this chapter only focuses on the part of the 

panel inside the red rectangle in Figure 6.1 (b).  

 
 

Figure 6.1 – (a) Panel of tubes in a solar receiver; (b) schematics of the panel with the header at the top and bottom. 

In addition to being attached at the top and at the bottom, the tubes are fixed in the 

horizontal direction at regular intervals (around 3 meters) on their height to avoid bending 

due to the differential heating. Indeed, the front of the tubes, exposed to the concentrated 

solar flux, reaches higher temperatures than the back of the tube. As a result, the thermal 

strain is larger at the front than at the back of the tube (more dilatation with higher 

temperatures). Since the tubes are fixed horizontally at regular intervals, they cannot bend 

freely as shown in Figure 6.2 and therefore a mechanical strain 휀𝑚 appears to compensate 
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the thermal strain 휀𝑡ℎ. This generates a compressive stress on the front of the tube and a 

tensile stress at the back of the tube. 

 

Figure 6.2 – Schematics of the tube deformation under solar flux 

Instead of modelling the whole panel of tubes, it is assumed that all the tubes within a 

panel are exposed to the same sun radiation at a given height, and that the salt temperature 

inside is the same for every tube. Therefore, only one tube needs to be modelled for a 

given panel. 

1.2 LOADING 

The loading of the tube is mainly thermal. As explained in section 1.1 above, the stresses 

and strains in the tube are caused by thermal dilatation and by the difference of 

temperature between the back and the front of the tube. The loading is conditioned by two 

factors: the temperature of the salt inside the tube 𝑇𝑠𝑎𝑙𝑡 and the solar flux 𝜙𝑞,𝑠𝑜𝑙. Indeed, 

the temperature at the front of the tube is conditioned by the solar flux and the temperature 

of the salt, while the temperature at the back of the tube is equal to 𝑇𝑠𝑎𝑙𝑡. The solar flux 

on a panel, which can be adjusted by changing the focus of the heliostats (mirrors) on the 

ground, is defined to optimize the efficiency of the solar plant. The temperature of the 

salt varies from panel to panel, as the salt is gradually heated as it passes inside the tubes 

of different panels.  

A specific loading case defined by John Cockerill Energy [1] is used in the following 

sections of this chapter. It corresponds to the outlet panel, where the salt temperature and 

surface temperature of the tube are maximal. The characteristics of this loading case are 

summarized in Table 6.1.  
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Table 6.1 – Characteristics of the thermal loading case used in this study 

Salt temperature [°C] 565 

Internal heat transfer coefficient [W/m²K] 11500 

Absorbed solar flux [kW/m²] 890 

The absorbed solar flux is applied only to the part of the tube which is exposed to the sun 

radiation. Moreover, the absorbed flux depends on the angle 휃 between the flux and the 

normal to the tube at a given point, as illustrated in Figure 6.3. The absorbed flux 𝜙𝑞 at 

angular coordinate 휃 (with 휃 ∈ [−
𝜋

2
;
𝜋

2
]) is defined using a sinusoidal function: 

𝜙𝑞 = 𝜙𝑞,𝑠𝑜𝑙 cos(휃) (6.1) 

 

Figure 6.3 – Solar flux on the tube 

The thermal loading is applied during daytime. In reality, the solar flux can vary during 

the day depending on the weather (clouds, changing seasons). At night-time, no loading 

is applied, and the temperature is uniform in the tube. A simplified loading (with no 

seasonal or local variations) is applied to the tube, as shown in Figure 6.4. The solar flux 

(as well as the salt temperature) is gradually increased during the first hour of the cycle – 

this corresponds to sunrise. Then, it is maintained constant for 11 hours. After that, the 

solar flux is gradually decreased towards zero to simulate nightfall and stays at zero 

during the night-time (11 hours).  
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Figure 6.4 – Time variation of the solar flux applied to the tube 

1.3 GEOMETRY AND MESHING 

The receiver tubes are very slender: to maximize the heat transfer from the tube surface 

to the salt, its specific surface area (ratio between the volume in the tube and the area 

through which heat is transmitted) must be maximal and its thickness minimal. The 

specific surface area of a tube of radius r is equal to 2/r (or 1/r considering that only half 

of the tube is exposed to the solar flux). Therefore, tubes should have the smallest radius 

possible to maximize efficiency. In the design chosen by John Cockerill, the diameter of 

the tube is around 5 cm, its thickness about 1.5 mm, while its height is about 20 m. In a 

finite-element model, meshing a whole tube would require a large number of elements 

due to the difference in order of magnitude of the various dimensions. Models with a large 

number of elements require higher computational times. To avoid this problem, the model 

is limited here to a small slice of tube, situated at the height where the solar flux is 

maximal. Moreover, due to the geometry of the tube, only half of it needs to be modelled, 

as shown in Figure 6.5. The nodes at the bottom (nodes corresponding to the middle of 

the tube) are fixed in the y direction. The node at the back is fixed in the x direction to 

simulate the tube supports (see Figure 6.2) and, from a numerical point of view, to block 

the rigid modes in the x direction. In the z direction, the lower section of the tube is fixed 

while the upper section is made to remain parallel to the lower section. This is done to 

model the fact that the tube remains straight. 

The slice of tube is meshed using one element along the height (z direction), three 

elements along the thickness, and 100 elements along the half circumference, as shown 

in Figure 6.5. The thickness is divided into three layers of elements for the modelling of 

corrosion. Indeed, as explained in Section 3.1 of Chapter 4, the preliminary design of the 

tube receiver allows for a third of the thickness to be corroded. Therefore, the inner layer 

of elements can be modelled with corrosion damage, while the rest of the tube is 

considered unreachable by corrosion.  
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Figure 6.5 – Meshing of the half tube 

2 RESULTS 

In this section, the tube is modelled using the 300-element mesh described in Section 1.3 

and the loading from Section 1.2. The general mechanical behaviour of the tube can be 

analysed using the constitutive law presented in Chapter 2. The temperature field in the 

tube is computed using Fourier’s law of conductivity. Figure 6.6 shows the temperature 

field during daytime computed by the finite-element model. The temperature at the very 

front of the tube reaches 700°C, while the temperature at the back of the tube is equal to 

the temperature of the salt, 565°C. 

 

Figure 6.6 - Temperature field in the half tube 

The target lifetime for the receiver is 10,000 cycles (days), which corresponds 

approximately to 25 years or a total of 100,000 hours of electricity production. Several 
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methods are used and compared to estimate the lifetime of the tube under 

thermomechanical loading. In the case of the tube, the lifetime is defined as the time at 

which the damage reaches its critical value 𝐷𝑐𝑟𝑖𝑡 somewhere in the tube. 

First, the lifetime is computed using the postprocessor described in Section 1 of Chapter 

5. Then, the same calculation is made by using the cycle-jump procedure detailed in 

Section 2 of Chapter 5. Finally, the influence of corrosion is tested by adding corrosion 

damage to the inner layer of elements. 

2.1 BEHAVIOUR 

Before estimating the lifetime, it is important to verify the behaviour of the tube and to 

confirm that the results given by the model are consistent with the applied loading. Figure 

6.7 and Figure 6.8 show the axial stress distribution at cycle 100. It is consistent with the 

considerations detailed in Section 1.1: during the day (Figure 6.7) the tube is prevented 

from bending and therefore a mechanical strain appears in the 𝑧 direction to compensate 

the differential thermal dilatation. The front of the tube is under compression while the 

back of the tube is under tensile stress, as represented in Figure 6.2.  

 

Figure 6.7 – Axial stress distribution at cycle 100 (daytime) 

During the day, the mechanical strain is maintained at high temperature. This loading 

leads to a relaxation of the stresses in the tube. The relaxation phenomenon is more 

significant at higher temperatures, which explains why the compressive stress is maximal 

at an angle 휃 around 30° and 60° (with 휃 as in Figure 6.3) and not for 휃 = 0° where the 

temperature is maximal. The relaxation that occurs at high temperature during the day 

causes a shift of the stress curve towards tensile stresses for the front of the tube, which 

in turn leads to a positive stress upon reversal of the thermal strain at night. As shown in 



Chapter 6 – Modelling of the tube  147 

 

 

Figure 6.8, the axial stress is positive (tensile) at the front of the tube during the night, 

while it is negative and small in absolute value in the rest of the tube. 

 

Figure 6.8 – Axial stress distribution at cycle 100 (night-time) 

Figure 6.9 shows the evolution of the 6 components of the stress tensor of the element 

with maximum solar radiation (at the very front of the tube) over the first 100 cycles. The 

most significant component is 𝜎𝑧𝑧, the axial stress. In the 𝑦 direction, a small stress also 

appears due to the fixation in this direction corresponding to the other half of the tube 

(see Figure 6.5). The rest of the stress components are close to zero. It is clear from the 

𝜎𝑧𝑧 curve that significant stress relaxation occurs towards tensile stresses during the first 

few days. After that, the cyclic evolution of the stresses is minimal. 

 

Figure 6.9 – Evolution of the components of the stress tensor for the critical element during the first 100 cycles 
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2.2 DAMAGE POST-PROCESSOR 

The first estimation of the lifetime is done using the damage postprocessor described in 

Chapter 5. To use the damage postprocessor, it is first necessary to run the finite-element 

simulation for a certain number of cycles. Then, the stresses, cumulative plastic strain, 

and damage variables of the last computed cycle are extracted from the result files to 

serve for the postprocessor calculation.  

The postprocessor performs the calculation of damage for only one element at a time. 

Therefore, the critical element(s) in the tube must first be identified. With the hypothesis 

of a stabilized behaviour after a certain number of cycles 𝑁𝑠𝑡𝑎𝑟𝑡 from which the 

postprocessor is started, this element is taken as the element with the maximal value of 

damage at cycle 𝑁𝑠𝑡𝑎𝑟𝑡.  

Figure 6.10 and Figure 6.11 show the fatigue and creep damage variables in the tube after 

100 cycles. For both types of damage, the maximum value is found in the foremost 

element of the tube, where the solar flux is highest.  

 

Figure 6.10 – Fatigue damage in the tube at cycle 100 
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Figure 6.11 – Creep damage in the tube at cycle 100 

It can be noted that the creep damage is much higher than the fatigue damage in this 

loading case. Indeed, the total mechanical deformation remains rather small due to the 

limited temperature gradient between the back and the front of the tube – the front of the 

tube is at 700°C while the back of the tube is at salt temperature, i.e., 565°C. Therefore, 

the plastic strain remains low, which leads to small fatigue damage. On the other hand, 

the temperature at the front of the tube is high enough to cause creep, which can occur 

below the elasticity limit. 

As was shown in Chapter 5, the validity of the postprocessor approach depends largely 

on the number of cycles computed and the stabilization of the stress curves. In order to 

verify if the behaviour is approximately stabilized after 100 cycles, the evolution of the 

von Mises equivalent stress in the critical element is plotted in Figure 6.12 for the 500 

first cycles. The red and blue curves represent the peak daytime von Mises stress and the 

peak night-time von Mises stress, respectively. It can be seen that most of the variations 

occur during the first 100 cycles. The peak stresses are however not perfectly constant 

after 100 cycles, and some minor changes can be observed over the following 400 cycles. 

In particular, the daytime peak stress continues to decrease due to stress relaxation at high 

temperature, while the peak night-time stress increases slightly due to cyclic hardening. 
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Figure 6.12 – Peak von Mises stresses for daytime and night-time over 500 cycles 

To see the impact of the small variations after 100 cycles, the postprocessor was started 

from cycle 100, 200, and 500. Figure 6.13 shows the evolution of the total damage 

computed by the postprocessor. It can be noted that smaller values of 𝑁𝑠𝑡𝑎𝑟𝑡 lead to 

shorter lifetime, which is conservative. For 𝑁𝑠𝑡𝑎𝑟𝑡 = 100, the critical value is reached at 

cycle 8743, which is below the 10,000 cycles target value for the receiver. However, for 

𝑁𝑠𝑡𝑎𝑟𝑡 = 200 and 𝑁𝑠𝑡𝑎𝑟𝑡 =500, the lifetime is 10,487 and 12,822, respectively. 

Considering the estimated lifetime increases for increasing values of 𝑁𝑠𝑡𝑎𝑟𝑡, it is expected 

that the lifetime that would be obtained from a complete finite-element simulation would 

be even larger, and therefore above the target value of 10,000 cycles. 

 

Figure 6.13 – Total damage evolution in the critical element for different values of the starting cycle number 𝑁𝑠𝑡𝑎𝑟𝑡 

These results show that the postprocessor is not the ideal tool for estimating the lifetime, 

as the variability is significant depending on the chosen reference cycle number. 

However, the approach is conservative in this case as the estimated lifetime increases 

with increasing values of 𝑁𝑠𝑡𝑎𝑟𝑡. It can therefore be a sufficient tool for the validation of 
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the tube receiver design or for a pre-design step. Generally, the post-processor is not 

always conservative. Indeed, in a case where the surface temperature of the tube remains 

low (typically below 600°C, where there is little to no relaxation), the stress could 

increase with cycles, leading to an accelerated damage evolution. In such a case, the post-

processor would not be conservative, and a more reliable approach would be necessary 

to compute the lifetime of the tube. 

2.3 CYCLE-JUMP APPLICATIONS 

2.3.1 Validation of the cycle-jump method 

To validate the cycle-jump approach, the loading case defined in Table 6.1 of Section 1.2 

is used with the 300-element mesh. The cycle-jump procedure was run for 5,000 cycles 

and the results were then compared to the results obtained with the full finite-element 

simulation. Figure 6.14 and Figure 6.15 show the comparison between the full finite-

element calculation and the cycle-jump, respectively for the stresses and for the damage 

variable in the critical element. The cycle-jump procedure was started after 100 cycles, to 

avoid making jumps at the beginning of the loading where the variations from one cycle 

to another are large due to the significant stress relaxation (see Figure 6.9 and Figure 

6.12). Figure 6.14 and Figure 6.15 show that there is a good correspondence between the 

full computation and the simulation with cycle jumps. The error on the total damage 

measured at cycle 5,000 is about 0.85%, which is negligible. 

 

Figure 6.14 – Comparison between the evolution of stress components over 5000 cycles obtained with a full finite-

element computation (black curves) and using the cycle-jump procedure (red dashed line) 
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Figure 6.15 – Damage evolution over 5,000 cycles calculated using a full finite-element simulation and the cycle-

jump procedure 

The difference regarding computational time is, however, significant. The CPU time for 

the full computation in the finite-element code is about 4 days and 8 hours, while the 

computation with cycle-jump took only 11 hours (counting the 100 first cycles). The 

computation time is divided by a factor 10 using the cycle-jump procedure, while the 

results remain accurate (less than 1% error). 

2.3.2 Lifetime calculation 

The cycle-jump simulation was continued in order to obtain the lifetime – i.e., the cycle 

number where the total damage 𝐷 reaches the value 𝐷𝑐𝑟𝑖𝑡. The simulation stopped after 

36,900 cycles due to convergence issues. As can be seen in Figure 6.16, a numerical 

problem occurred in the simulation at around cycle 31,000. This sudden change in the 

peak von Mises stresses is likely due to a small numerical error that was multiplied during 

a jump. It led to a significant decrease in the daytime peak stress and an increase in the 

night-time peak stress. This is problematic because the daytime peak stress is in large part 

responsible for the creep damage. Underestimating the von Mises stress level during 

daytime means underestimating creep damage, and therefore overestimating the lifetime. 

The numerical error could probably be avoided by lowering the number of jumped cycles 

𝑁𝑗 during the cycle-jump procedure, but this could not be done in this thesis due to a lack 

of time. 
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Figure 6.16 – Evolution of the peak von Mises equivalent stress during daytime and night-time for the critical 

element of the tube 

Figure 6.17 shows the evolution of fatigue damage and creep damage over 36,900 cycles, 

as calculated using the cycle-jump method. Creep damage is largely predominant, with 

fatigue damage remaining close to 0 during the whole simulation. At 30,000 cycles, the 

value of creep damage is around 0.07, which is still far from the critical value (𝐷𝑐𝑟𝑖𝑡 =

0.3). As can be seen, the evolution of creep damage suddenly slows down after around 

31,000 cycles due to numerical error observed in Figure 6.16. 

 

Figure 6.17 – Evolution of fatigue and creep damages in the critical element  

Although the total lifetime could not be obtained using the cycle-jump method, it shows 

that the target value is largely exceeded. 

2.3.3 Comparison with the postprocessor 

To compare the performances of the two methods (postprocessor and cycle-jump), several 

criteria can be considered: the CPU time, the precision, and the capacity to converge 

(robustness). To measure the precision, the relative error on the value of total damage at 
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5000 cycles was computed based on the full finite-element simulation. Table 6.2 gives 

the values of the different criteria for the four tested configurations. The postprocessor is 

faster than the cycle-jump method and always converges; however, it is highly unreliable 

since the errors are above 200% in the three tested cases.  

Table 6.2 – Comparison of the two computation methods 

Method Parameters 
CPU time (to 

10,000 cycles) 

Error at cycle 

5000 

Convergence 

to lifetime 

Postprocessor 

𝑁𝑠𝑡𝑎𝑟𝑡 = 100 2h 15min 2956% ✓ 

𝑁𝑠𝑡𝑎𝑟𝑡 = 200 4h 20min 540% ✓ 

𝑁𝑠𝑡𝑎𝑟𝑡 = 500 10h 35min 251% ✓ 

Cycle-jump 
𝑁𝑖 = 4 

𝑁𝑗 = 36 
20h 40min 0.04%  

The major drawback of the cycle-jump method is that it is likely to stop because of 

convergence issues and therefore it can be difficult to obtain a value for the lifetime. 

To obtain a value of the lifetime based on available results of the cycle-jump calculation, 

the postprocessor was used, starting from 10,000 cycles and from 30,000 cycles. Figure 

6.19 shows the damage evolution in the critical element obtained using the postprocessor 

with starting points 100, 200, 500 (full FE calculations) as well as 10,000 and 30,000 

(cycle-jump simulations). The damage computed by the postprocessor increases 

exponentially, while the slope of the curve corresponding to the cycle-jump simulation 

(solid black line) seems to decrease with increasing number of cycles. This can be 

explained by the relaxation that keeps taking place cycle after cycle. As can be seen in 

Figure 6.18, the peak daytime von Mises stress keeps decreasing as the simulation 

progresses, causing smaller creep damage increments.  

 
Figure 6.18 – Daytime peak von Mises stress 
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The lifetime estimated starting from 10,000 cycles is around 33,900 days (92 years) while 

the lifetime estimated from 30,000 cycles is around 65,800 days (180 years). However, 

these results should be considered with caution, as the damage model does not take proper 

consideration of thermal ageing, as explained in Chapter 3, Section 3.4. As can be seen 

in Figure 6.17, the fatigue damage remains close to zero during the whole simulation due 

to very low stresses at daytime. At night-time, the tensile stress in the critical element 

remains below the room temperature yield stress, leading to no damage at all. In reality, 

it is likely that thermal ageing would lower the elasticity limit at room temperature and 

cause fatigue damage during the night phases.  

 

Figure 6.19 – Comparison of the damage computed by the postprocessor for the critical element using different 

starting points and the cycle-jump simulation 

2.4 INFLUENCE OF CORROSION 

In this section, the influence of uniform corrosion damage on the tube is evaluated. It is 

important to note that this study does not provide an extensive review of the influence of 

environmental damage in general, as local corrosion, erosion due to the salt flow, or the 

oxide properties are not taken into account due to limited experimental data. 

To simulate corrosion damage, the model proposed in Section 3.1 of Chapter 4 is used. 

The mesh of the tube is the same as the one used in the previous sections; however, the 

inner layer of elements includes corrosion damage. Corrosion is only modelled as a 

depletion of the material, which corresponds to a loss of stiffness of the element in the 

model. 
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The tube receiver is designed to allow one third of the thickness to be taken away by 

corrosion. In the model, complete disintegration of an element corresponds to  𝐷 = 1. 

However, values of damage close to 1 lead to convergence problems in the model, since 

the effective stress is equal to 
𝜎

1−𝐷
. The critical damage in the inner layer of elements is 

therefore set to 0.9 to avoid convergence issue. The critical damage in the rest of the 

elements, which are not affected by corrosion, remains at 0.3. 

The simulation with corrosion was carried out using the cycle-jump method. Similarly to 

the simulation without corrosion, it stopped due to convergence issues after around 

30,000 cycles.  

 

Figure 6.20 – Comparison of the evolution of the peak von Mises stress with corrosion and without corrosion 

Figure 6.20 shows the daytime and night-time peak von Mises stresses for the critical 

element in the case with corrosion and in the case without corrosion (previous 

simulation). On the first 10,000 cycles, there is little to no difference between the two 

cases. From cycle 10,000 to 30,000, the daytime peak stress is more or less the same for 

both simulations, while the night-time peak stress becomes smaller for the simulation 

with corrosion. This could be explained by the fact that with corrosion, the stiffness of 

the whole structure is reduced and therefore the stresses are smaller. 

Figure 6.21 shows the corrosion damage distribution at cycle 10,000 (i.e., after around 25 

years). Most of the corrosion damage occurs at the front of the tube, where the 

temperature is maximal. The maximum value of corrosion damage at 10,000 cycles is 

around 0.161 which corresponds to approximately 80,5 µm of reduction for an element 

with an initial thickness of 0.5 mm. At the back of the tube where the temperature of the 

metal is lower, the corrosion damage reaches around 0.03, corresponding to a material 

loss of 15 µm. The corroded thickness obtained with the model is largely below the design 

value of one third of the total thickness.  
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Figure 6.21 – Corrosion damage distribution at cycle 10,000 

Figure 6.22 shows a comparison between the von Mises stress distribution obtained with 

or without corrosion damage. It can be noted that for the model with corrosion, the stress 

is slightly lower in the inner layer of elements at the front of the tube. This is due to the 

relatively high corrosion damage which lowers the stiffness of the inner layer of elements. 

Apart from that, the stress distribution is globally identical in both cases and no significant 

stress redistribution occurs.  

(a) 

 

(b) 

 

Figure 6.22 – Equivalent von Mises stress distribution at cycle 10,000 (daytime) (a) without corrosion damage and 

(b) with corrosion damage 

This analysis of the influence of corrosion is based on the hypothesis of a parabolic law 

of corrosion obtained from static corrosion tests and will have to be confirmed to validate 

the model or disproven by experimental data from dynamic tests planned in the Solar 
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Gnext project. Based on this hypothesis, corrosion has little influence on the receiver tube 

behaviour within the target lifetime. However, there is a strong possibility that corrosion 

could be accelerated by erosion from the salt flow or by cracking of the oxide layer under 

thermal cycling. The influence of corrosion depicted in this study should therefore be 

considered as a primary analysis only, and not used as a validation of the model. 

3 CONCLUSION 

In this chapter, the tube receiver was modelled for a specific loading case, using different 

methods and configurations.  

The results given by the behaviour model are consistent with the theoretical analysis of 

the tube: during the day when solar radiation hits the receiver, the front of the tube is 

under compressive stress in the axial direction while the back is under tensile stress.  

The lifetime of the tube was estimated using the postprocessing tool and the cycle-jump 

method detailed in Chapter 5. Both methods show that the predicted lifetime is above the 

target value of 10,000 cycles. The results from postprocessor show a high variability 

depending on the initial cycle chosen for the calculation. The cycle-jump method is more 

accurate, but it is sensitive to numerical issues during the jump phases. This chapter shows 

that the complete model (behaviour, damage, and corrosion) is functional but has some 

limitations when using methods to improve computational efficiency.  

Finally, the influence of uniform corrosion was evaluated based on the model developed 

in Chapter 4. Using this model and data from static corrosion tests, it appears that 

corrosion has little influence over the lifetime of the tube. However, further experimental 

data are necessary to validate this corrosion model, particularly regarding the effects of 

erosion due to salt flow, cracking of the corrosion layer due to thermal cycling, and the 

possible appearance of pitting corrosion. 

A complete design of the receiver can be achieved by modelling, among other things: 

• Different slices of the tube (corresponding to different heights). 

• Tubes from a different panel (with other values of the salt temperature and the 

solar flux). 

• The effect of a temporary excess of the solar flux on the tube. 
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Conclusions and perspectives 

1 GENERAL CONCLUSIONS 

In this thesis, a comprehensive behaviour and damage model was developed for the 

modelling of solar receiver tubes undergoing thermomechanical loading combining 

creep, fatigue, and corrosion. 

Chapter 1 focuses on the properties and the behaviour of alloy 230, a nickel-based alloy 

used for the tube receivers. The macroscopic thermomechanical behaviour of this material 

was studied through an extensive experimental campaign led by the Centre de Recherches 

Métallurgiques (CRM Group) including tensile, fatigue, creep, relaxation, and creep-

fatigue tests at various temperatures. A microscopic analysis of some of the tested 

samples was performed by the Metallurgy and Materials Science (MMS) lab of the 

University of Liège to better understand the damage mechanisms at play at the 

microstructural level. This analysis showed that mechanical tests at 700°C resulted in 

significant carbide precipitation, both at grain boundaries and inside grains. The cracking 

mode was transgranular for both fatigue and creep-fatigue tests with compressive hold 

times, although creep-fatigue tests have much shorter lifetimes and creep is normally 

associated with intergranular cracking. The reduction of lifetime with the addition of 

compressive hold times could be due to thermal ageing rather than creep.  

The thermomechanical tests showed that alloy 230 displays good mechanical resistance 

up to 700°C, above which its mechanical properties (yield strength, Young modulus) start 

to degrade sharply. The experimental campaign put in light several aspects of the cyclic 

behaviour of alloy 230: 

• Significant cyclic hardening occurs at temperatures between 400°C and 700°C. 

• For creep-fatigue tests at high temperature, the Young modulus tends to decrease 

with increasing number of cycles. 

• The addition of a compressive hold time in the cyclic loading significantly reduces 

the lifetime of the sample. 

In Chapter 2, a model was chosen and implemented for modelling the behaviour of alloy 

230 at different temperatures. This model is based on the Chaboche model framework 

and was originally developed by Ahmed [1]. It contains multiple features such as 

viscoplasticity, isotropic and kinematic hardening, cyclic hardening, static recovery, 

mean stress evolution, and influence of the temperature history. The model was 

implemented in the Lagamine finite-element code developed at the University of Liège. 

A large sensitivity analysis was conducted on the model parameters to get a better 
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understanding of the impact of each parameter and feature. A specific formulation was 

developed for the temperature-dependence of the parameter to avoid discontinuities in 

the behaviour that can occur when linear interpolation is used between two sets of 

parameters corresponding to two different temperatures.  

Chapter 3 focuses on the modelling of mechanical damage, and more specifically fatigue 

and creep damage. A model based on the Lemaitre model was developed for alloy 230. 

This model contains two damage variables for the modelling of fatigue and creep damage, 

respectively. Two versions of the model were implemented in the Lagamine code:  

• A non-coupled version, in which damage has no effect on the material behaviour. 

• A coupled version, in which increasing damage tends to lower the stiffness of the 

element. The coupling is achieved through the use of the effective stress. 

The model gave good results on fatigue and creep tests; however its validity varies on 

creep-fatigue tests. In particular, the model does not seem well-adapted for time-

dependent effects such as thermal ageing which could play an important role in the 

rupture behaviour of alloy 230. Further developments of the damage model would be 

necessary to include time-dependent effects more accurately. 

In Chapter 4, the effect of corrosion on alloy 230 was studied, using mostly sources from 

the scientific literature. Based on the limited information known on corrosion of alloy 230 

in molten salts, a simplified uniform corrosion model was developed and implemented in 

the finite-element code. The model uses a corrosion damage variable, similar to the 

mechanical damage variables. As a consequence, corrosion is modelled as a loss of 

stiffness of the element to simulate the material loss that normally occurs. Additional 

experimental research is required to further improve the model. 

Chapter 5 details two methods that were implemented to improve the computational 

efficiency of the model. Indeed, modelling a whole receiver tube requires a large number 

of finite elements, which make calculations slow. The first and simplest method 

developed to obtain fast results is a postprocessing tool that computes the evolution of 

damage based on the last results obtained from a finite-element simulation (stresses, 

plastic strain, temperature, etc.). This postprocessing tool is limited to the uncoupled 

model (i.e. damage does not influence the behaviour). The main limitation of this method 

is that its validity is conditioned to the stability of the material behaviour after a given 

number of cycles. Another drawback of the postprocessor is that the influence of damage 

on stress levels is not taken into account (uncoupled approach), and so it does not account 

for the impact of corrosion on the tube lifetime. A second method was therefore developed 

to include corrosion. This second method is called the ‘cycle-jump’ method and consists 

in replacing parts of the finite element calculation by simple linear extrapolations of 
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selected variables. This method significantly reduces the computation time while giving 

results that are very close to a complete finite-element simulation. 

Finally, Chapter 6 dealt with the modelling of the receiver tubes. A specific case study 

was selected and modelled using the finite-element code. The lifetime was estimated 

using the postprocessor and the cycle-jump method. With both methods, the lifetime for 

the chosen loading case was found to be larger than the industrial target lifetime of 25 

years (10,000 cycles). The postprocessor largely underestimated the lifetime, especially 

when started from a small number of cycles. The impact of corrosion was also assessed 

by comparing a simulation with corrosion to a simulation without corrosion. It appears 

that uniform corrosion does not have a significant influence on the tube lifetime. This 

conclusion, however, is only valid for a corrosion phenomenon that conforms to static 

corrosion tests (i.e., uniform corrosion with no influence of the stress state or flow rate), 

which is likely to not be the case in the receiver tubes.  

The work done in this thesis contributed to the progress of thermo-mechanical modelling 

of industrial applications in many ways: 

• The model developed and based on previous work is highly flexible and can be 

adapted to many materials. 

• The introduction of a new formulation for the temperature dependence of the 

parameters proved efficient in improving the continuity of the results on 

anisothermal cases, improving robustness, and reducing the total number of 

parameters. 

• The parameters of the model were identified for alloy 230 at temperatures ranging 

from 20°C to 850°C based on an extensive experimental campaign. 

• Despite its complexity, the model was designed for an industrial application, and 

a particular attention was given to robustness and computational efficiency, with 

the study of Newton-type methods and the implementation of two methods for 

reducing computational times. 

• A metallurgical analysis of the material after testing was done to verify the validity 

of the model hypothesis on damage. 

2 PERSPECTIVES 

The model is already functional and has already been used by John Cockerill to develop 

a monitoring tool that computes on-site the damage caused to the receiver tubes 

depending on the thermal loading applied. However, there is always room for 

improvement.  
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The robustness of the model, and particularly of the cycle-jump method could still be 

improved by an extensive study of the influence of the different parameters and the 

extrapolation methods. 

Regarding mechanical damage, more investigation is required on the topic of thermal 

ageing and its influence at various temperatures to fully validate or modify the damage 

model. The use of a multilevel finite-element model, that is, a model where the 

macroscopic behaviour is derived from the evolution of the microstructure, would be the 

most accurate way of modelling thermal ageing. Another simpler way to include thermal 

ageing in the model could be to introduce a dependence of fatigue and creep damage 

parameters to the temperature history. 

For future improvements of corrosion modelling, ongoing experiments on the corrosion 

of alloy 230, and more specifically corrosion under fatigue loading and corrosion in 

flowing salt should bring more insight on the corrosion phenomena to be expected in the 

receiver tubes. With the current model, this would require adapting the corrosion law to 

the corrosion kinetics observed experimentally and adding a damage variable for stress-

assisted corrosion if needed. From a modelling point of view, models that include the 

diffusion of chemical elements using an additional degree of freedom seem more reliable 

as they simulate the actual physical phenomenon at the origin of corrosion. Another 

advantage is that they also model the diffusion of corrosive elements through the 

structure, which is not the case for the current model. This type of model could not be 

developed in this thesis due to limited time and the fact that the model had to be portable 

to another FE code, but it could be an interesting perspective for later work on the 

corrosion of nickel alloys in molten salts. 
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