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ABSTRACT
The increased production and use of electrical and electronic equip-
ment leads to obsolescence and disposal problems, necessitating 
materials recovery and recycling. This paper reports results on metal 
bioleaching from printed circuit boards (PCBs) using chemolitho-
trophic bacteria isolated at different sulphide ore biotopes in 
Armenia. Different ways of generating lixiviants were investigated, 
namely using combination of Acidithiobacillus ferrooxidans 61 and 
Acidithiobacillus thiooxidans SO-1 bacteria generating biogenic Fe2 
(SO4)3 and biogenic H2SO4. The sequence between these leaching 
agents permitted design of a 2-step process based on acidolysis and 
redoxolysis to leach non-ferrous metals from PCBs. To compare the 
efficiency of the sequential bioleaching of PCBs, several experimen-
tal runs were realised under the six modes at 10% pulp density. The 
flasks-based tests have witnessed almost complete recovery of Cu 
with the rest of the metals reaching extraction degree above 80%.
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Introduction

Environmental pollution with heavy metals presents a serious threat to living organisms 
in the ecosystems [1–3]. The heavy metals, acute environmental pollutants, may originate 
from discarded solid wastes and industrial wastewater. The heavy metals can accumulate 
in living organisms and then be transmitted via the food chains and pose human health 
risks [4].

Different organic pollutants and metals are not degradable and remain in the envir-
onment for a long time. Remediation using conventional physical and chemical methods 
is often uneconomical and associated with generation of large volumes of chemical-type 
waste [5,6]. On the other hand, the use of microorganisms is known as an environment- 
friendly and cost-effective alternative to recover metals from mineral-based substrates 
[7,8]. Microorganisms have a variety of mechanisms of metal sequestration and possess 
high metal biosorption capacities. In particular, microorganisms have the ability to 
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degrade, detoxify, and even accumulate harmful organic as well as inorganic compounds. 
Different types of microorganisms are suggested to remove and recover metals and 
metalloids from industrial waste streams.

Among the different types of secondary post-consumption wastes (e-waste, spent 
batteries, slags) [9], e-wastes or waste electrical and electronic equipment (WEEE) 
represent the fastest growing and most problematic waste stream in the world (geogra-
phically scattered, poorly understood ‘mineralogy’).

In 2019, the world generated a striking 53.6 Mt of e-waste, an average of 7.3 kg per 
capita. Thus, the global generation of e-waste grew by 9.2 Mt since 2014 and is projected 
to grow to 74.7 Mt by 2030 – almost doubling in only 16 years [10].

Generally, e-waste contains between 3% and 5% in volume printed circuit boards 
(PCBs), which present the most valuable part of WEEE. Typically, PCBs from a PC can 
contain about 7% Fe, 5% Al, 20% Cu, 1.5% Pb, 1% Ni, 3% Sn, and 25% organic 
compounds, together with about 250 ppm Au, 1000 ppm Ag, 110 ppm Pd, and trace 
amounts of As, Sb, Ba, Br, and Bi. Cu and Au in computer derived PCBs could, 
respectively, be found in concentrations 20–40 and 25–250 times higher than in natural 
ores [11].

In order to support the transition towards a circular economy, the European 
Commission has established an EU action plan [12]. This plan requires including 
secondary raw materials such as waste electrical and electronic equipment (WEEE) as 
a source of metals from ‘urban-mine’ raw materials. Besides, existing EU legislation 
encourages the recycling of electronic waste through mandatory targets. However, it is 
acknowledged that only high-quality recycling can ensure the recovery of all raw materi-
als [13]. Nevertheless, the management of WEEE is still to be improved since in Europe 
approximately a mere 35% of the collected stream is recycled, and the rest is land-
filled [14].

Thus, the development of flexible, energy- and resource-saving bio-based technologies 
for extraction of valuable metals from WEEE is important. Biohydrometallurgical 
approaches could permit extraction of valuable and precious metals from PCBs, and the 
remaining metal-depleted streams could be valorised in sectors such as civil engineering 
(most of the depleted metal streams) or safely sent to dumping (a negligible amount).

To recover metals from e-waste, pyrometallurgical [15,16], hydrometallurgical [17,18] 
and biometallurgical [19,20] techniques are traditionally employed. The first and second 
are required the use of either high temperatures or aggressive chemicals to melt or 
degrade the metal-containing matrix, resulting in significant economic cost and large 
environmental impact. Bioleaching, however, could be an environment-friendly metals 
recycling option. It is well tested, particularly in the extraction of metals from low-grade 
ores [21] and recently from e-waste [22–26]. Bioleaching is based on the ability of 
microorganisms to regenerate leaching agents, which are responsible for metal extraction 
[27–29]. For Cu extraction, the process is based on the action of Fe(III), which oxidises 
metallic Cu in the input material, transforming it into soluble Cu(II) accompanied by the 
ferric iron reduced to Fe(II). The role of the microorganisms is to re-oxidise Fe(II) back 
to Fe(III) and accomplish the cyclic process.

In contrast to natural ores bioleaching, in case of WEEE treatment, an iron or 
eventually a sulphur source has to be provided in addition to the nutritive medium. 
This is usually realised in the form of ferrous sulphate, with acid provided directly via pH 
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control through sulphuric acid or the addition of elemental sulphur. Such an approach 
increases process operating costs, however. Furthermore, ‘urban-mine’ raw materials are 
often highly acid-consuming and therefore require significant pH buffering agents to 
maintain an acidic environment [26,30–33].

Recently, studies done at the University of Liege, Belgium [34,35] have revealed that 
leaching of WEEE materials is inhibited by the presence of toxic elements in the substrate 
itself. In such a way, the toxicity is considered as a key factor which limits pulp density 
and leaching efficiency [36,37]. To overcome these problems, staggering lixiviant pro-
duction and adding the feed in a two-step mode have been tried, which necessitates the 
production of ferric iron in a primary tank. The biolixiviant is then mixed with the 
‘urban-mine’ substrate in a separate tank where metal dissolution occurs. Under this 
configuration, there is no need for the microorganisms to be in contact with the 
materials, thus allowing work at increased pulp densities [38]. Such attempts eliminate 
the toxicity in the leaching step, and no regeneration of the ferric iron or acid (proton 
lixiviant) occurs since they are consumed by the material to be leached. As a result, the 
system may be limited in terms of ferric iron availability for the leaching step.

Acidolysis (formation of acids) and redoxolysis (microbially driven or catalysed 
oxidation and reduction processes) are among the principal metal mobilisation mechan-
isms [39–41]. The dissolution of metals by biogenic acids occurs through acidolysis [42]. 
Acidolysis is driven by a variety of autotrophic sulphur oxidisers (e.g. Acidithiobacillus 
thiooxidans, Acidithiobacillus caldus, Sulfobacillus thermosulfidooxidans etc.), as well as 
heterotrophic (Bacillus, Pseudomonas, Chromobacterium) and fungal cells (Aspergillus, 
Penicillium) [43–45]. In the leaching systems, Fe3+ is one of the most used redoxolysis 
agent, which is then reduced to Fe2+ in the course of the bioleaching. Further on, Fe2+ is 
re-oxidized to Fe3+ by iron oxidisers (Acidithiobacillus ferrooxidans, Leptospirillum 
ferrooxidans, Sulfobacillus thermosulfidooxidans) [46,47]. Chemolithotrophic iron and 
sulphur oxidising bacteria are among the well-known bioleaching consortia which can 
perform the above described activity.

A. ferrooxidans is one of the most important microorganisms for Cu recovery [48]. 
Several studies focus on the tolerance of A. ferrooxidans to different metals [49] evaluat-
ing and reporting resistivity to high concentrations of Cu (up to 800 mM CuSO4) [50] 
and other metals such as Zn, Ni, Fe, Cd, Cr, Mo, Ag and As [51].

Currently, it is accepted that the oxidation of sulphide minerals occurs by indirect 
mechanism involving a Fe(III) ion (Equation 1) with the process efficiency being limited 
by the activity of the microorganisms and their ability to regenerate the leaching agent – 
Fe(III) (Equation 2). 

MSþ 2Fe3þ ! M2þ þ S0 þ 2Fe2þ (1) 

4Fe2þ þ 4Hþ þO2 !
A:ferrooxidans 4Fe3þ þ 2H2O (2) 

Depending on the mode of regeneration of the oxidising agent (Fe(III)), one could 
distinguish an indirect ‘non-contact’ and a ‘contact’ mechanism [52]. In case of 
a ‘non-contact’ mechanism, ferric iron is regenerated in the liquid phase by free 
‘swimming’ planktonic bacteria. The indirect ‘contact’ mechanism is based on the 
attachment of bacteria to the surface of the sulphide mineral. Once adhered to the 
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surface of the mineral, bacteria produce extracellular polymeric substances (EPS) 
which mediate attachment of cells on the substrate surface. In case of ‘contact’ 
mechanism, the electrochemical processes that result in mineral dissolution take 
place in the bacterium-mineral interface [53,54]. Overall, it is accepted that the 
oxidation of minerals is realised by the Fe(III) ions associated with extracellular 
polymeric substances.

Depending on the conditions being practised, Cu bioleaching efficiency from PCBs 
has been reported to vary from 50% to 100%, with leaching times of up to 5 days and pulp 
densities in the range of 1–3%. Several investigations have shown that sulphur- and 
ferrous iron-supplemented media are efficient for bioleaching [19,37,55]. Wu et al. 2018 
[56] investigated Cu extraction from PCBs using bacteria-free culture supernatant. They 
showed that nearly 100% of Cu could be recovered during 2 h at pulp density of 5%. In 
the same work, it is also implied that the non-contact mechanism was predominant in 
bioleaching of Cu from PCBs.

Some bioleaching studies are performed in a single step only, where PCBs and 
inoculum are employed together in the bioleaching system. Because WEEE is hetero-
geneous with more than 60 elements being present during a bioleaching process, metals 
different from the metal of interest could also be brought into solution, including toxic 
metals. These toxic metals could affect the biological activity of the chemolithotrophic 
bacteria [22,57–59].

Based on the open questions and the process challenges briefly summarised above, the 
main aim of this study is to investigate the ability for metal recovery from PCBs using 
a sequential two-step bioleaching including combination of acidolysis and redoxolysis. In 
the first stage, generation of oxidising agent (Fe3+ or H+) by iron and/or sulphur 
oxidising bacteria is performed, then in the second stage the biogenic solution of Fe3+ or 
H2SO4 is used for bioleaching of PCBs. As a result, all the metals targeted for extraction 
are excluded from direct contact with the biomass. In order to optimise bioleaching 
process and metallurgical recovery, we have applied a sequential bioleaching process 
using lixiviants obtained by A. ferrooxidans and A. thiooxidans. Thus, fresh bio-based 
reagents are used making the process economical and environment-friendly. The bio-
leachate obtained from the PCBs dissolution could be reused via re-oxidising Fe2+ by iron 
oxidising bacteria to Fe3+ in a continuous cycle. The metals in the bioleachate which 
could affect bacterial activity could also be recirculated but purged away once their 
concentration exceeds the tolerable limits.

Materials and methods

Preparation of PCBs

In this work, the researchers used multi-layer printed circuit boards originating mainly 
from discarded laptops made by ASUS. The depopulated PCB samples were cut by 
scissors into pieces (1.5 × 1 cm) which were further used in the experiments. Before 
bioleaching, the existing passive layer (green solder mask) of the PCBs was removed by 
boiling the fragmented PCBs in 10% NaOH for 15 minutes. Afterwards, the samples were 
thoroughly washed with deionised water, dried and preserved for leaching. The samples 
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were weighed before and after each of the above-mentioned pre-treatment procedures. 
Figure 1 schematically shows the procedure for preparing the PCBs for leaching.

Culture growth and lixiviant preparation

A. thiooxidans SO-1 (KP455985) were grown at 30ºC in a modified 0 K medium con-
sisting in (NH4)2SO4-0.5 g/L, KCl-0.05 g/L, K2HPO4-0.5 g/L, MgSO4∙7 H2O-0.5 g/L, 
Ca(NO3)2-0.01 g/L, and elemental sulphur − 10 g/L. The elemental sulphur has served 
as a source of sulphuric acid after its conversion by the microorganisms. Upon reaching 
a logarithmic phase of growth, the culture liquid was filtered using a 589/2 Whatman 
filter to remove the remaining elemental sulphur and used for bioleaching. For receiving 
a bacteria-free supernatant (biogenic H2SO4), the bacterial lixiviant was filtered through 
0.2 µm membrane under vacuum. The above steps have aimed to generate a biogenic H2 

SO4 used in the leaching process – acidolysis.
A. ferrooxidans 61 (KM819692) was grown at 30ºC in a modified 9 K medium 

containing 44.2 g/L FeSO4·7 H2O. Similar to the A. thiooxidans, once the logarithmic 
growth phase was reached, the culture liquid was used for bioleaching. For obtaining 
a bacteria-free lixiviant (biogenic Fe2(SO4)3), the culture liquid was filtered using a 0.2  
µm membrane under vacuum. This step is redoxolysis, given the biogenic Fe3+ used as 
the main oxidising agent.

Cells’ enumeration was determined by direct counting under a microscope (Optica 
B-810, Italy) using a Thoma Chamber. The initial cell number was determined as 2.5x108 

and 3.0x108 cells/mL for A. ferrooxidans 61 and A. thiooxidans SO-1, respectively.

Bioleaching

The bioleaching experiments were performed in 250 mL Erlenmeyer flasks placed on an 
orbital shaker-incubator (Biosan, Latvia) run at 220 rpm and temperature of 40ºC.

Tests were performed at 10% PCBs pulp density with pH of the lixiviant adjusted to 
1.1 using a 10 N H2SO4.

To compare the efficiency of the sequential bioleaching of PCBs, several experimental 
runs were realised under the six modes described below:

Figure 1. View of depopulated PCBs after: dismantling and components removal (a), being cut (b) and 
chemical pre-treatment (c).
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(A) Single-stage bioleaching by biogenic H2SO4.
(B) Single-stage bioleaching by biogenic Fe2(SO4)3.
(C) Two-stage bioleaching: the initial step was realised using cell-free lixiviant (bio-

genic H2SO4) obtained from A. thiooxidans SO-1 and the 2nd stage by cell-free 
lixiviant (biogenic Fe2(SO4)3) from A. ferrooxidans 61.

(D) Two-stage bioleaching: the first step was done with a lixiviant obtained from 
A. thiooxidans SO-1 and the 2nd stage – lixiviant obtained from A. ferrooxidans 
61.

(E) Two-stage bioleaching: the first step was done with cell-free lixiviant obtained 
from A. ferrooxidans 61 and the 2nd stage – by the cell-free lixiviant from 
A. thiooxidans SO-1.

(F) Two-stage bioleaching: the first step was done by the lixiviant obtained from 
A. ferrooxidans 61 and the 2nd stage by lixiviant obtained from A. thiooxidans 
SO-1.

Sampling for determination of pH, redox potential and metal concentration was per-
formed at 1, 3 and 24 hours. Evaporation was compensated prior to each sampling using 
the respective leachates.

Chemical analysis

The metal concentration of the PCBs before and after bioleaching was determined by an 
Inductively Coupled Plasma Optical Emission Spectrometry (Agilent 5800ICP-OES) and 
atomic emission absorption (AES). The spent PCBs were acid digested before being 
subjected to ICP-OES analysis. To this end, 0.25 g of PCBs were heated at 150ºC with 10  
mL HNO3:HCl (3:1) for 15 minutes in a microwave digestion unit [29]. Concentrations 
of Fe3+ and Fe2+ were determined by the complexometric method with EDTA [60]. All 
experiments were performed in triplicate. The data presented here are the average values 
from the repeated experiments with ±2% variation.

Sulphate was detected by a trichloroacetic acid method [61] and measured at 360 nm 
by UV-6300PC double beam spectrophotometer (VWR).

Cu extraction rate was calculated during the first 2 hours of the leaching process as: 

d Cu2þ� �
=dt (3) 

where d[Cu2+] – is the change in concentration of Cu during 1 and 2 hours,
dt – is the leaching period (hour).
The calculation of metal recovery has followed equation 4. 

MR %ð Þ ¼
CMl � 50
m� CMs

� 100 (4) 

where MR is metal recovery, %
CMl – concentration of leached metal in the pregnant leaching solution (PLS), %
CMs – metal concentration in the input solid, %
m – mass of used PCBs, g
50 – volume of the leachate inside the flasks, mL
The standard deviation was calculated through equation 5. 
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SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P xþμð Þ

2

N

s

(5) 

where
SD – standard deviation,
x – value in the data set,
µ – mean of the data set,
N – number of data points in the population.

Results and discussions

Table 1 shows the main metal content in the prepared PCBs.
It could be noted that Cu, Al, Ni and Pb present the principal non-ferrous metals of 

interest. Since Pb and Sn are known as non-soluble in sulphuric acid media, we decided 
to focus on the degree of bringing Cu, Zn, Al, and Ni in solution only.

Provided the bioleaching of PCBs has required the indirect leaching mechanism by 
biogenic H2SO4 and ferric iron Fe(III), we could assume that the role of A. thiooxidans 
SO-1 in the process is to catalyse the oxidation of the elemental sulphur to sulphuric acid 
through dissolved oxygen involvement (Equation 6). On the other side, the main role of 
A. ferrooxidans 61 in the process is the oxidation of Fe(II) to Fe(III) (Equation 2), the 
latter being a strong oxidising agent. 

S0 þ 1:5O2 þH2O !
A:thiooxidans; A:ferrooxidans

2Hþ þ SO2�
4 (6) 

Accordingly, the biogenic H2SO4 and Fe3+ mobilise zero valent Cu from WEEE under 
two routes shown in equations 7 and 8, respectively. 

Cu0 þH2SO4 þ 0:5O2 !
Chemical CuSO4 þH2O Acidolysisð Þ (7) 

Cu0 þ 2Fe3þ !
Chemical Cu2þ þ 2Fe2þ þ SO4

2� Redoxolysisð Þ (8) 

It is assumed that during the PCB bioleaching, the bacterial attachment on the substrate 
surface is not essential, because the main oxidising agent responsible for the leaching is 
Fe (III). Hence, it can be hypothesised that the bioleaching of PCBs takes place by indirect 
‘non-contact’ mechanism. In our study, we have used two types of lixiviants: culture- 
bearing lixiviant containing iron and sulphur oxidising bacteria and corresponding cell- 
free liquids.

Table 1. Main metal concentra-
tion in the input PCBs.

Metal, % Concentration

Cu 21.53
Al 6.95
Pb 3.2
Zn 0.78
Ni 5.12
Fe 3.86
Sn 1.98
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Figure 2 shows the sequence of the two-stage PCB leaching involving biogenic H2SO4 

(acidolysis) and biogenic Fe2(SO4)3 (redoxolysis) process.
Figures 3–7 in the next section show the results from the comparative bio-assisted 

extraction for Cu, Zn, Al, and Ni, following the six bioleaching modes combining single 
and two-stage steps.

The data shown in Figure 3 suggest that the extraction of Cu by biogenic H2SO4 (mode 
A) and biogenic Fe2(SO4)3 (mode B) reaches about 10.2% and 42.3%, respectively, after 
24 h. The addition of biogenic Fe2(SO4)3 during the second stage (1st stage − 24 h, 2nd 

stage − 24 h) resulted in about 83% of Cu reported in the PLS (mode C). In case of 
addition of the corresponding culture bearing liquids in the second stage (mode D), 
almost 74% of Cu (10% in the 1st stage and 64% in the 2nd stage) was leached. In such 
a way, the beneficial effect from the sequential leaching of Cu – modes C and D could be 
demonstrated. It is obvious that the Cu extraction degree under this two-stage leaching is 
largely superior to the one achieved during the single stages (A and B) only, which has 
brought cumulatively about 52.5% Cu recovery. However, it should be noted that Cu 
extraction degree by the culture bearing liquids composed of A. thiooxidans SO-1 (1st 

stage) and A. ferrooxidans 61 (2nd stage) (D) is lower compared to the case when the 
corresponding cell-free lixiviant was used.

Thus, taking into consideration the kinetics of Cu leaching through sequence invol-
ving biogenic H2SO4 and biogenic ferric iron, it can be concluded that the ferric iron is 
the oxidising agent with the greatest significance for the efficient Cu recovery.

Since Cu is the most economically important metal influencing largely the PCBs’ 
intrinsic value, only the leaching kinetics of Cu are presented. Table 2 shows the rates of 

Figure 2. A hypothetical two-stage PCBs bioleaching sequence.
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Cu leaching and Fe3+ reduction during the 1 hour (V1) and the following 2 h (V2) of the 
process.

As can be seen from Table 2, the highest rate of Cu leaching is observed during the 
first hour of PCBs’ leaching with biogenic ferric iron (V1) both in the presence and 
absence of bacterial cells. Over the next 2 hours, the leaching rate drops sharply to 0.2 g/ 
L h (V2).

As seen from the graph shown in Figure 4, after 3 hours of PCBs’ leaching, the amount 
of Fe3+ decreases to 0.78 g/L, and the amount of Cu transferred into the leachate is only 
6.5 g/L (30%). After 24 hours, the amount of leached Cu increases reaching about 9.1 g/L, 
corresponding to nearly 41% recovery in the PLS, with almost complete absence of ferric 
iron in the leaching solution.

It is assumed that ferrous iron resulting from the chemical reaction between the PCBs 
and ferric iron is continuously oxidised to ferric iron in the presence of bacteria, which, 
in turn, in accordance with the above-mentioned Equation 9, promotes Cu dissolution 
and increases its concentration in solution.

As seen from Table 2 and Figure 4, the Cu leaching seems to be conjugated with the 
reduction of ferric to ferrous iron according to reaction 8. Moreover, a correlation 
between the Cu leaching rates and ferric iron reduction is observed which can be 
described by equation 9: 

Figure 3. Cu extraction degree achieved under the 6 different bioleaching modes (duration of each 
stage −24 hours).

Table 2. Rate of Cu leaching and Fe3+ reduction (g/l h).

No. Mode of treatment

Leaching rates of Cu, g/L h Reduction rates of Fe3+, g/L h

V1 V2 V1 V2

1 Biogenic Fe2(SO4)3 (E) 4.4 0.23 7.2 0.42
2 Biogenic Fe2(SO4)3 + At. ferrooxidans 61 (F) 4.5 0.2 7.4 0.39
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d Cu2þ½ �

dt
¼ �

d Fe3þ½ �

2� dt
(9) 

The data presented in Figure 5 show that the degree of Zn brought into solution 
by cell-free biogenic H2SO4 (A) and cell-free biogenic Fe2(SO4)3 (B) reaches 29% 
and 18%, respectively. During the two-stage leaching, a slightly higher extraction of 
Zn is observed under modes E (54.3%) and F (48.4%), with the 1st stage done using 
ferric iron.

The biogenic H2SO4 was found to be more effective for Al extraction (Figure 6). The 
Al recovery under A and B modes was 21% and 10%, respectively, suggesting that the 
biogenic H2SO4 is the better option for Al recovery, not the biogenic Fe2(SO4)3. The 
highest Al recovery has been reached under D mode (54%) with cell-free lixiviants 
obtained by sulphur and iron oxidising bacteria.

The results shown in Figure 7 suggest that during sequential leaching of Ni from 
PCBs, the influence of biogenic H2SO4 and biogenic Fe2(SO4)3 is nearly equal, the 
recoveries being 43.4% (C) and 39.8% (E) regardless of the sequence of lixiviant 
addition.

Table 3 shows the variation of pH and redox potential during the leaching 
experiments.

In our previous experiments (data not shown), we have studied metal extraction 
from PCBs in the range of pH 1.0–2. It has been shown that the lower the pH, the 
higher the metal extraction yield, which is consistent with other similar studies 
[26,62]. The presented data show that pH increases from its initial value of 1.1 to 
about 1.6–1.9 in all the tested modes. It is worth mentioning that, in the course of 

Figure 4. Kinetics of Cu extraction from PCBs and iron speciation in the biogenic Fe2(SO4)3 + At. 
ferrooxidans 61 system (F).
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the 24 h test duration, no formation and precipitation of jarosite (e.g. KFe3(SO4)2 

(OH)6) were observed. The redox potential decreased in all tested modes as the 
leaching process progressed, accompanied by ferric iron reduction.

Figure 5. Zn extraction degree during 6 different modes of bioleaching (duration of each stage −24 h).

Figure 6. Al extraction degree during 6 different modes of bioleaching (duration of each stage −24 h).
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Conclusions

A sequential two-step bioleaching by acidolysis and redoxolysis has proved efficient for 
recovery of non-ferrous metals contained in end-of-life (EoL) PCBs. For Cu, Ni and Zn, 
the best combination was found to be a biogenic H2SO4 obtained from A. thiooxidans 
SO-1 in the first stage and biogenic Fe2(SO4)3 obtained from A. ferrooxidans 61 in 
the second. For Cu, Zn and Ni, altogether, the optimum lixiviant was a bacteria-free 
biogenic solution (mode C). For Al, however, a culture-bearing liquid with A. thiooxidans 
SO-1 and A. ferrooxidans 61 (mode D) was the more efficient option, not a bacteria-free 
lixiviant one.

It can be concluded that a sequential bioleaching with biogenic H2SO4 and biogenic 
Fe2(SO4)3 is a promising process way and depending on the targeted metal to be 
recovered, a choice could be made between either single- or double-stage bioleaching 
involving A. ferrooxidans 61 and A. thiooxidans SO-1 bearing solutions, containing, 
respectively, biogenic Fe2(SO4)3 and H2SO4. The sequence order could vary with the 
targeted metal.

Figure 7. Ni extraction degree during 6 different modes of bioleaching (duration of each stage −24 h).

Table 3. Variation in pH, redox potential (vs. Ag/AgCl) and acid consumed during single-step and two- 
step bioleaching experiments (acid consumption: 5 ml of 10 N H2SO4 in 1000 ml medium).

N Bioleaching modes

pH Redox potential (mV)

0h 3h 24h 0h 3h 24h

1 A 1.1 1.4 1.85 634 472 421
2 B 1.1 1.75 1.98 680 570 489
3 C 1.1 1.3 1.61 634 464 397
4 D 1.1 1.23 1.56 654 464 375
5 E 1.1 1.35 1.75 680 524 499
6 F 1.1 1.31 1.7 688 520 460
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It is clear that the sequential bioleaching is an environment-friendly approach with 
low energy demand and low CO2 footprint and a reduced amount of inorganic acids. 
Further work will aim to increase the pulp density of the process and investigate the 
selective extraction of the non-ferrous metals in e-waste streams, by means of the 
simultaneous or sequential use of sulphur and iron oxidising bacteria or their consortia, 
as well as of heterotrophic bacteria.
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