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Abstract

The Hubbard-Holstein Hamiltonian describes a prototypical model to study the transport
properties of a large class of materials characterized by strong electron-phonon coupling. Even
in the one-dimensional case, simulating the quantum dynamics of such a system with high
accuracy is very challenging due to the infinite-dimensionality of the phononic Hilbert spaces.
The difficulties tend to become even more severe when considering the incoherent coupling
of the phonon-system to a practically inevitable environment. For this reason, the effects of
dissipation on the metallicity of such systems have not been investigated systematically so
far. In this article, we close this gap by combining the non-Markovian hierarchy of pure states
method and the Markovian quantum jumps method with the newly introduced projected
purified density-matrix renormalization group, creating powerful tensor network methods for
dissipative quantum many-body systems. Investigating their numerical properties, we find a
significant speedup up to a factor ∼ 30 compared to conventional tensor-network techniques.
We apply these methods to study quenches of the Hubbard-Holstein model, aiming for an in-
depth understanding of the formation, stability, and quasi-particle properties of bipolarons.
Our results show that in the metallic phase, dissipation localizes the bipolarons. However,
the bipolaronic binding energy remains mainly unaffected, even in the presence of strong
dissipation, exhibiting remarkable bipolaron stability. These findings shed new light on the
problem of designing real materials exhibiting phonon-mediated high-TC superconductivity.
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1 Introduction

Since the discovery of high-temperature superconductivity in cuprates [1–4], the quest to
identify the underlying pairing mechanism caused an ever-since rapidly increasing theoretical
exploration of effective models for strongly-correlated electronic systems [5–9]. While this
stimulated the unravelling of unconventional pairing mechanisms [10], the well-known elec-
tron-phonon coupling does not seem to be a proper candidate for stabilizing high-temperature
superconductivity (at ambient pressure). The conventional argument for this assessment can
be illustrated best in one dimension at the example of the Hubbard-Holstein model, where it
is established that the electron-phonon interaction generates tightly bound yet heavy electron
pairs, dressed by lattice vibrations (bipolarons). The bipolarons’ effective mass increases much
faster than the corresponding electronic binding energy, rendering a charge-ordered insulat-
ing state the energetically more favorable [11–13]. Nevertheless, in the regime of intermediate
electron-phonon interactions, the existence of a metallic phase has been established, in which
light bipolarons can exist, yet with a much smaller pair-binding energy [14,15]. Recent theo-
retical studies considered the effect of anharmonicities on the properties of the metallic phase
in the Hubbard-Holstein model, indicating the tendency to stabilize light bipolarons even at
larger electron-phonon couplings [16, 17], a crucial requirement for large transition tempera-
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Figure 1: Summary of our main finding: Dissipation tends to localize the bipolarons by
means of effective, non-projective measurements. However, in the metallic regime, the bipo-
laronic binding energy remains mainly unaffected, i.e., bipolarons are stable even for strong
dissipation.

tures into a superconducting state. However, the anharmonic contributions to the phononic
oscillator potentials have been incorporated in a simplified way, such that the resulting models
can be treated semi-analytically. This is mainly due to the extremely high numerical costs for
simulating phononic degrees of freedom, whose local Hilbert spaces are, in principle, infinite-
dimensional. The computational limitations become even more severe when incorporating
more realistic foundations for anharmonicities, such as treating the phononic system as an
open quantum system (OQS) or considering dispersive behavior [18, 19]. The past decades
have also seen a rapid development of highly efficient numerical tools, enabling simulations
of a large number of quantum mechanical degrees of freedom. In particular, the density-ma-
trix renormalization group (DMRG) in its matrix-product state (MPS) formulation [20–23]
provides a well-established framework in today’s efforts with application ranging from (near-)
equilibrium studies of low-dimensional lattice systems [24–31], out-of-equilibrium simulations
following global quenches [32–42], impurity solvers for quantum embedding techniques [43–48]
or as solver in coupled-cluster techniques to study large molecules [49–54]. Despite its large
success on isolated quantum systems, effective numerical schemes to simulate OQSs using
MPS are typically applicable only in the Markovian regime [55–68]. Yet, non-Markovian
(i.e., spectrally structured) environments are the standard in real materials [69, 70], and it is
thus crucial to understand their effects on quantum many-body systems. This becomes even
more relevant given the remarkable development of experimental platforms such as ultracold
quantum gases [71–75], high-quality electromagnetic cavities [76–81], time-resolved pump-
probe experiments on photosynthetic complexes [82], and large arrays of superconducting
qubits [83–89]. These platforms make it possible to study the effects of dissipation in cleaner
environments but also to investigate the possibility to exploit them as a resource to engineer
new phenomena in OQS [90–94]. This work aims to close the gap between the necessity of un-
biased descriptions of OQS on the one hand, and numerically efficient lattice representations,
operating on the required large local Hilbert spaces on the other hand. For that purpose,
we combine a recently introduced mapping of bosonic Hilbert spaces [97,98] with well-known
techniques to describe lattice OQS [93,94,99,100], obtaining powerful, MPS-based tools. We
test and benchmark the obtained methods at the example of the dissipative Hubbard-Hol-
stein model in a large parameter space and explore their applicabilities as a function of the
electron-phonon coupling and dissipation strength.

Having these tools at hand, we are able to study the effect of realistic phonon-anharmonici-
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Figure 2: Cartoon of two possible system-bath partitioning of electron-phonon systems.
Markovian system (left): when considering the electrons and the phonons as the system,
the dissipative terms acting on the phonons can be modelled as Markovian. Non-Markovian
system (right): if only the electrons are treated as the system, the damped phonon modes
constitute a non-Markovian bath. Below both images, a short list of the Markovian and non-
Markovian methods analyzed here is given, together with the corresponding section. For the
non-Markvian hierarchy of equations of motion (HEOM) method, we refer to [95,96].

ties on electron-phonon quasi-particles (polarons, bipolarons), originating from the dissipative
character of the phonons. Here, our main focus is to answer the question of whether or not
dissipation enhances the metallic behavior of (tightly) bound bipolarons. We conduct a sys-
tematic analysis of their binding energy and effective mass, whose ratio serves as a measure
of their metallicity. Surprisingly, in the strong coupling regime, we find a significant sup-
pression of the metallicity compared to the non-dissipative case, which we interpret as a
dissipation-induced measurement, localizing the bipolarons and thereby suppressing trans-
port, as summarized in Fig. 1. However, our calculations also reveal that bipolarons in the
metallic regime are unexpectedly stable, even in the presence of strong dissipation.

The article is structured as follows. In Sec. 2 we briefly review the Markovian quantum
jumps (QJ) method [100] and the non-Markovian hierarchy of pure states (HOPS) method
[99], and introduce their efficient MPS realization, using the recently developed projected
purification (PP) mapping. Then, in Sec. 3 we apply HOPS and QJ to study the effect of
dissipation on the bipolarons in the Hubbard-Holstein model, and in Sec. 4 we summarize our
findings. In App. C, a systematic comparison between QJ and HOPS can be found.

2 Methods

Dissipative electron-phonon systems can be described in two different ways, depending on how
they are decompose into a “system” and an “environment”. Thus, in this section, we present
both a Markovian (system = electrons + phonons) and a non-Markovian (system = electrons
only) open system method. These methods can be combined with MPS techniques in order to
be able to treat many-body systems. The electron-phonon Hamiltonian we considered takes
the form:

Ĥtot =

Markovian sys.︷ ︸︸ ︷
Ĥf︸︷︷︸

non-Markovian sys.

+ Ĥb + Ĥint = Ĥf +
∑

j

ωj â
†
j âj +

∑

j

gj
(
L̂j â

†
j + L̂†j âj

)
, (1)
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where Ĥf is an arbitrary Hamiltonian acting on the fermionic degrees of freedom, Ĥb describes

a collection of harmonic oscillators representing the phonons, and L̂ is an operator acting on
the fermions. The index j labels the lattice sites and the parameters ωj and gj are the
vibration frequencies of the harmonic oscillators and the electron-phonon coupling constants,
respectively. In addition to the unitary dynamics described by Eq. (1), we consider dissipation
of the form of phonon losses so that the time evolution of the “electron+phonon” density
matrix is described by the Lindblad master equation [101]:

∂tρ̂ = −i[Ĥtot, ρ̂] +
∑

l

D̂lρ̂D̂
†
l −

1

2
{D̂†l D̂l, ρ̂} , (2)

where D̂j =
√
κâj are the corresponding Lindblad operators acting on each phononic lattice

site.

2.1 Quantum jumps

In the left panel of Fig. 2 we show a system decomposition where both the electrons and
the phonons are part of the physical system, and dissipation acts on the phonons only. This
representation can be modeled as Markovian via the master equation Eq. (2), which can be
rewritten as an evolution for pure states with a stochastic process so that averaging over
its samples gives the correct expectation values for the observables. From a numerical point
of view, this is highly beneficial since for each random process one only has to store the
O(
√
Nρ) complex coefficients, with Nρ being the number of entries of the density matrix

of the electron-phonon system. A typical so-called pure state unravelling of the Lindblad
equation Eq. (2) is given by the QJ method (we discuss a different unravelling, the homodyne
detection method in App. D). Working with pure states, a stochastic process Q is introduced
so that the density matrix, time-evolved by the Lindblad equation, is obtained from averaging
over many realizations of the stochastic process:

E [|Ψ(t)〉
q
〈Ψ(t)|

q
] = ρ̂(t) , (3)

where q ∈ Q is a collection of pseudo-random numbers identifying a so-called trajectory. Here,
every single step q in a trajectory Q is specified by (i) deciding if a dissipative event (quantum
jump) has to occur and (ii) choosing the lattice site where the jump happens. Thereby, instead
of constructing the density matrix one computes the expectation values of an observable Ô
for every trajectory and averages them according to:

〈Ô〉(t) = E [〈Ψ(t)|
q
Ô |Ψ(t)〉

q
] . (4)

In App. A we provide a detailed derivation of the QJ method together with a sketch of the
algorithm.

2.2 Hierarchy of pure states

Another bipartition of Eq. (1) is possible by treating the electrons as system only, wrapping
the phononic system into a non-Markovian bath, as shown in the right panel of Fig. 2. Tracing
out the phonons in Eq. (2) makes it possible to derive a non-Markovian stochastic Schrödinger
equation [102] for the fermionic degrees of freedom only |ψ(t)〉:

∂t |ψ(t)〉 = −iĤf |ψ(t)〉+ g
∑

j

L̂jz
∗
j (t) |ψ(t)〉 − g

∑

j

L̂†j

∫ t

0
ds α∗j (t− s)

δ |ψ(t)〉
δz∗j (s)

. (5)
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Here αj(t) represents the environment correlation function, which on site j and at zero tem-
perature is given by the Fourier-transform of the spectral density Jj(ω). Furthermore, zj(t)
denotes a colored noise that satisfies E

[
zj(t)z

∗
j′(t
′)
]

= α(t − t′)δj,j′ , while the term δ/δz∗j (s)
represents the functional derivative with respect to z∗. The observables for the electronic
system are then obtained by averaging the dynamics of Eq. (5) over many trajectories. In
practical calculations, solving Eq. (5) is exceptionally challenging because of the last term of
the right-hand side, which is non-local in time [103]. This problem can be solved efficiently
by the HOPS method [93,99], where one defines:

|ψ(1,j)(t)〉 = Dj(t) |ψ(t)〉 ≡
∫ t

0
ds α∗j (t− s)

δ |ψ(t)〉
δz∗j (s)

(6)

which is labeled first auxiliary state relative to site j. One then introduces the k-th auxiliary
state in a recursive manner:

|ψ(k,j)(t)〉 = [Dj(t)]
k |ψ(t)〉 , (7)

and defines a state on the combined fermionic and bosonic Hilbert space as:

|Ψ(t)〉 =
∑

k

Ck(t) |ψ(k)(t)〉 ⊗ |k〉bos , (8)

where |k〉bos ≡ ⊗j |k〉bos
j labels an effective bosonic mode corresponding to the k-th auxiliary

state and Ck(t) is a time-dependent coefficient. The hierarchy then takes the form of a simple
Schrödinger equation for the state on the combined fermionic and bosonic Hilbert space
(see App. B for a detailed description and the full representation of the effective Hamiltonian
and a sketch of the HOPS algorithm). Being a pure state method, HOPS [104] is more suited
for many-body systems than its density matrix formulation, the so-called HEOM method
[95,96]. Moreover, time-evolving density matrices with MPS methods is non-trivial since one
needs to guarantee the positivity of ρ at all times [105]. In the next section, we present how
the open systems methods described above can be hybridized with many-body approaches to
tackle the non-Markovian dynamics of many-body systems.

2.3 Matrix-product states and Projected purification

Matrix-product states [106–108], also known as tensor trains, provide well-established numer-
ical representations for 1D quantum many-body systems. There are efficient MPS algorithms
available for both ground state [22,23,109] and time dependent [40] problems. Here, we pro-
vide a very short introduction to MPS and projected purified DMRG (PP-DMRG) [97,98], fo-
cussing on the relevant technical aspects to combine them with QJ [100] and HOPS [93,99,103].
Importantly, exploiting the PP mapping is required to treat the large local bosonic Hilbert
spaces efficiently and thus rendering the discussed OQS-techniques suitable for MPS algo-
rithms.

For any pure state with L sites and a finite number of local degrees of freedom σ1, σ2, ..., σL
(σi = 1, 2, ..., di with local dimensions di) the coefficient tensor cσ1,σ2,...,σL can be reshaped as

|Ψ〉 =
∑

σ1,...,σL

cσ1···σL |σ1 · · ·σL〉 −→ |Ψ〉MPS
=

∑

σ1,...,σL
m0,...,mL

Mσ1
1;m0,m1

· · ·MσL
L;mL−1,mL

|σ1 · · ·σL〉 ,

(9)

6



SciPost Physics Submission

· · ·

nf;1 nf;2 nf;L−1 nf;LnP ;1 nP ;2 nP ;L−1 nP ;LnB;1 nB;2 nB;L−1 nB;L

HOPS System

HOPS Bath

QJ System

Figure 3: MPS representation in an enlarged Hilbert space with each physical site consisting
of a physical fermionic, a physical bosonic, and a bosonic bath site. Adapted from [97].

where {Mσi
i;mi−1,mi

} are mi−1×mi rectangular matrices. This representation has two main ad-
vantages: it allows for optimal and physically motivated compression of the state via singular-
value decompositions (SVDs) and decomposes the coefficient tensor into local objects, which,
moreover, can be related to the system-environment picture of the original DMRG [20,21].

MPSs and matrix-product operators (MPOs), which follow the same structure, are often
represented graphically in terms of tensor network diagrams. Therein, geometric shapes
represent the rank-3 or rank-4 tensors. It is essential to note that the dimensions of the
MPS tensors on some site j, called bond dimensions mj , typically grow exponentially with
the entanglement when bipartitioning the system at the sites j − 1, j. When it comes to
time-evolution methods, time-dependent variational principle (TDVP) [110, 111] is a well-
established technique, which is based on the Dirac-Frenkel variational principle and consists
of subsequently updating a small number (typically one or two) of site-tensors [40]. One must
bear in mind, however, that in its original formulation, this method is particularly prone
to cause significant errors when used for time-evolving a product state with a large local
Hilbert space dimension [40]. Clearly, MPO-based techniques, such as the time-evolving
block decimation (TEBD) [108] or the W I,II [112], can overcome this limitation, but are also
suffering from systematic Trotter errors [113]. However, we found it to be sufficient to time-
evolve the state with the slower but more accurate global Krylov method [40] up to the point
where the bond dimension is as large as the local Hilbert space dimension and then to switch
to TDVP.

The description of bosonic degrees of freedom has posed substantial challenges to MPS
methods because of their infinite-dimensional Hilbert spaces. Much work has been devoted
to an accurate and efficient truncation of bosonic Hilbert spaces, resulting in successful tech-
niques such as the pseudo site (PS) method [24] and the local-basis optimization (LBO)
method [19, 114–117]. In this context, a newly-introduced MPS method is the so-called pro-
jected purification [97]. For the class of Hamiltonians described by Eq. (1), the electron-
phonon interaction term Ĥint does not conserve the number of phonons. The breaking of the
associated U(1) symmetry prevents the site tensors of the MPS from having a block-diagonal
structure, resulting in a significant slow-down of matrix operations [118]. For a thorough
presentation of the method, we refer to Refs. [97]. The main idea of the PP method is to
restore the U(1) symmetry artificially by doubling the bosonic Hilbert space, precisely as one
does for the thermal purification method [105] (see Fig. 3), and to modify the bosonic creation

7
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Figure 4: PP speedup for intermediate (blue) and strong (orange) electron-phonon coupling
as a function of the dissipation strengths. The speedup factor is significant for large electron-
phonon couplings and small dissipation strength, corresponding to a large bosonic local Hilbert
space dimension as indicated in the inset. The time evolutions were performed with the QJ
method for systems with L = 20 sites for a single trajectory. All other parameters were the
same as those described in Fig. 15.

and annihilation operators as follows:

â†j −→ â†P ;j ⊗ b̂B;j

âj −→ âP ;j ⊗ b̂
†
B;j ,

(10)

where b̂B;j , b̂
†
B;j are the bare operators defined in Eq. (33) of App. B. Accompanied by this

transformation, a local gauge condition on the allowed states is imposed, i.e., on each pair of
physical and bath sites, the sum of the number of physical particles nP and bath particles
nB has to be conserved nP + nB = nph,max − 1, where nph,max is the maximal phononic local
Hilbert space dimension. The second key ingredient of the PP method consists in adopting a
truncation method for the local Hilbert space dimension of the phononic sites that is analogous
to the one exploited by MPS algorithms for truncating the bond dimension. Thereby, imposing
a discarded weight δ, defined as the maximally allowed leakage of spectral weight for density
matrices belonging to any lattice bipartition, determines a truncation in both the physical
dimensions and the bond dimensions. Thus, if the diagonal elements of the phononic reduced
density matrices decay fast enough, truncations can reduce the actually used local dimensions:
dmax ≤ nph,max.

From a more general point of view, it is the decay of the single-site reduced density-matrix
(1RDM) diagonal elements ρσj ,σj that controls the possible speed up generated by the PP

mapping. Therefore, while large local dimensions are doable within PP-DMRG, in practice,
one has to check for converged diagonal elements of the 1RDM and, if required, increase
the maximally allowed local dimension to keep the truncation error δ at an acceptable level.

8
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In App. C we present a detailed benchmark and convergence analysis of the PP-enhanced
HOPS and QJ methods for the dissipative Hubbard-Holstein model. Most importantly, both
methods are numerically stable and well-controlled in different physical situations, rendering
a combination of both an ideal toolset for studying OQS dynamics. While QJ allows for an
efficient simulation of weak-and intermediate-dissipation, HOPS reveals its strengths when
considering the limit of intermediate to strong dissipation. However, both methods benefit
significantly when combined with PP. In Fig. 4 we illustrate the speedup provided by adopting
the PP mapping for a system of L = 20 lattice sites and one trajectory (note that larger system
sizes were out of reach for the reference calculations). We find that the runtime is significantly
reduced when using the PP mapping for all analyzed parameters. In particular, we observe
a substantial speed-up of a factor of ∼ 30 for small dissipation and strong electron-phonon
coupling, i.e., for large local Hilbert space dimensions > 20, while it is less significant for
medium and strong dissipation (factor ∼ 5). Note that the reduced speedup in the strongly
dissipating regime is not severe for the overall runtime. This can be attributed to the fact
that strong dissipation naturally reduces the correlations in the system and thus the bond
dimension, too (c.f., Fig. 17 in App. C). Therefore, combining QJ with PP allows for the
numerically efficient application of QJ in exactly that parameter regime, where QJ was also
found to be the method of choice.

3 Metallicity in the dissipative Hubbard-Holstein model

The Hubbard-Holstein Hamiltonian describes spinful fermions coupled to Einstein phonons
[119]. We consider the one-dimensional case of the form of Eq. (1) that reads:

ĤHH = −J
L∑

j=1

∑

σ=↑,↓

(
ĉ†j,σ ĉj+1,σ + h.c.

)
+U

L∑

j=1

n̂j,↑n̂j,↓+ω
L∑

j=1

â†j âj+g
L∑

j=1

(
âj + â†j

)
n̂j . (11)

Here, U denotes the onsite Hubbard-interaction while g measures the electron-phonon cou-
pling, and the phonon frequency is given by ω. In the following, we fix J as the unit of energy
and J−1 as the unit of time. Despite its conceptional simplicity, Eq. (11) provides a minimal
model for the complex interplay between lattice vibration and electronic degrees of freedom
in the strong coupling regime. Such a physical situation occurs, for instance, in Alkali-doped
C60 fullerene molecules [120,121], a class of unconventional superconductors that recently has
been investigated for optically induced superconductivity [122–124]. However, understanding
in particular the regime of competing (spinless) fermion-phonon and onsite Hubbard-interac-
tion remains a challenging numerical task even in equilibrium, with lots of numerical effort
conducted in the past decade [11, 16, 114, 125–131]. We aim to push the limit towards com-
plete microscopic modeling of the out-of equilibrium dynamics, incorporating the effect of
dissipation on a strongly-correlated quantum many-body system with up to L = 40 lattice
sites. We note that the dissipative Hubbard-Holstein model considered here can be derived
from a more general perspective, where the electronic degrees of freedom are coupled to a
global bosonic environment (see App. E). We emphasize that in contrast to previous works,
we made no strong assumptions about the phonons to render it more tractable [16,17].

The phase diagram of the Hubbard-Holstein model at half-filling sketched in Fig. 5a has
been investigated comprehensively, and in the regime of large phonon frequencies, the picture
of three different phases has been established [11, 125, 132–136]. In the limit of vanishing
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Figure 5: (a) phase diagram of the Hubbard-Holstein model at a constant phonon oscillation
frequency ω = 2 J adapted from Ref. [11]. The colored arrows indicate quenches from the
Hubbard ground state at U = J into the SDW, the metallic and the CDW phase. (b)
double occupancy dynamics after global quenches from the Hubbard ground state. They were
performed with HOPS at intermediate dissipation κ = J (solid line) and strong dissipation
κ = 4 J (dashed line). The double occupancy dynamics in the electron systems depend more
strongly on the phonon loss rate for large electron-phonon coupling g.

electron-phonon coupling g/U → 0, a correlated spin-density wave (SDW) phase exists, remi-
niscent of a Hubbard Mott phase. In the opposite limit g/U →∞, strong phonon fluctuations
drive the system into a Peierls state, usually referred to as charge-density wave (CDW) phase.
This limit is understood most easily when transforming the Hubbard-Holstein model into a
polaronic description through a Lang-Firsov transformation [137]. Then, the Hubbard on-

site interaction is renormalized by the phonons as U → U − 2g2

ω and for sufficiently large
electron-phonon couplings, a dominant attractive interaction between the polarons features
a spontaneous breaking of the system’s translational symmetry. For intermediate couplings

U ∼ 2g2

ω , the competition between attractive phonon-mediated polaron-polaron and repulsive
electron-electron interactions drive the system towards a metallic Luther-Emery phase [135].
There has been a vivid debate about whether this metallic regime may also realize supercon-
ductivity, with today’s assessment being that superconducting correlations are always sub-
dominant, compared to charge-correlations [11, 135]. However, when incorporating gaussian
or quartic anharmonicities in the phonon potentials, a strengthening of the metallic behav-
ior has been observed and the question of whether anharmonic phonons may even drive the
Hubbard-Holstein model into a superconducting state arises [16,138,139]. Here, we study the
effect of a realistic source of anharmonicities, namely a dissipative coupling of the phonons to
an environment.

Dissipation and double occupancy. Previously, the effect of dissipation in the Hubbard-
Holstein model has been investigated using HOPS, reporting an enhancement of supercon-

10
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ducting correlations following a quench from a Neel state [93]. We connect to these findings

and evaluate the dynamics of the double occupancy 〈n̂j,↑n̂j,↓〉. As the initial state, we choose
the ground state of the Hubbard model (g = 0, κ = 0) at U = J , and perform a quench to
a point in the SDW phase (2g2/ω = 0.5 J), one in the metallic phase (2g2/ω = 1.5 J), and one
in the CDW phase (2g2/ω = 4J). As a method, we use HOPS, which is particularly tailored
for quenching in both κ and g. In Fig. 5b, we show the dynamics of the double occupancy
on the central site of a 20-electron system for intermediate (κ = J) and strong dissipation
(κ = 4J). Quenching into the SDW regime of the Hubbard-Holstein phase diagram (green
curve), we find only a weak dependency on the dissipation strength. This is consistent with
dominant spin-spin correlations in the SDW phase, which are relatively insensitive to the
phonon occupations. On the other hand, quenching into the CDW regime of the Hubbard-
Holstein phase diagram (blue curve), there is a strong dependency on the dissipation. This
can be understood by noting that strong phonon fluctuations drive charge correlations and
the formation of double occupations in the Peierls phase. However, increasing the dissipation
strength allows the phonons to escape the system, weakening charge correlations. Surpris-
ingly, the quenches into the metallic regime (purple curve) resemble the behavior found in the
SDW quenches. The weak dependency on the dissipation strength indicates a strong suppres-
sion of charge correlations, already for moderate dissipation, an observation that counteracts
the reported observation of enhanced metallicity driven by gaussian or quartic phonon anhar-
monicities [16, 138,139]. On the other hand, these findings are still consistent with enhanced
superconducting correlations [93].

Polarons and bipolarons. In order to disentangle the roles of g and κ and study the impact
of dissipation on quasi-particle formation and their metallicity, we investigate further global
quenches from the ground state of the Hubbard-Holstein Hamiltonian at finite g, switching on
dissipation. For that purpose, we decompose the electronic annihilation (creation) operators
into strictly single- and two-particle operators

ĉj,σ = ŝj,σ + sgn(σ)ŝ†j,σ̄d̂j , (12)

where ŝj,σ = ĉj,σ(1−n̂j,σ̄) and d̂j = ĉj,↓ĉj,↑. Upon applying a Lang-Firsov transformation [137],
the Hubbard-Holstein Hamiltonian acquires the form

ĤLF = −J
∑

j,σ

(
D̂†j
( g
ω

)
ĉ†j,σ ĉj+1,σD̂j+1

( g
ω

)
+ h.c.

)
+ Ueff

∑

j

n̂j,↑n̂j,↓ + ω
∑

j

â†j âj

= −J
∑

j

(
T̂ bpj,j+1 +

∑

σ

T̂ pj,j+1,σ + Û bpj

)
+ ω

∑

j

â†j âj , (13)

where Ueff =
(
U − 2g2

ω

)
. We, furthermore, introduced the bipolaron potential energy Û bpj =

Ueff d̂
†
j d̂j , the displacement operator D̂†j

( g
ω

)
= eg/ω(â†j−âj), and the polaronic and bipolaronic

hopping operators, T pi,j,σ and T bpi,j , respectively:

T̂ pi,j,σ = D̂†i
( g
ω

)
ŝ†i,σ ŝj,σD̂j

( g
ω

)
+ h.c. , (14)

T̂ bpi,j = D̂†i
( g
ω

)
d̂†i

(∑

σ

ŝi,σ ŝ
†
j,σ

)
d̂jD̂j

( g
ω

)
+ h.c. . (15)
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Figure 6: Eigenvalues tk of bipolaronic hopping matrix T̂ bpi,j,σ as function of time, after turning
on dissipation to κ = 1 J and κ = 4 J in the three different regions of the ground-state phase
diagram. In the SDW phase, a large single-particle gap indicates a small bipolaronic effective
mass, while the flat band in the CDW phase represents heavy bipolarons. Both phases are
basically insensitive to dissipation. In the metallic phase, the gap closing shows that strong
dissipation κ = 4 significantly increases the bipolarons’ effective mass. We simulated a system
with L = 20 sites with QJ, with timestep dt = 0.01 J−1 and computed |Q| = 200 trajectories,
using kmax = 40 local basis states, a max. bond dimension of m = 2000 fixing the discarded
weight to δ = 10−10.

Measuring the full hopping matrix T̂ bpi,j , we can study the kinetic energies tk of bipolaronic

quasi-particles from a diagonalization of 〈T̂ bpi,j〉 ≡ tbpij where we label the eigenstates by quasi

momenta kn ≡ 2π
L n with corresponding eigenvalues tk. As for the quench from the Hubbard

ground state, in the following we consider a system with L = 20 sites and compute |Q| = 200
trajectories with maximal local dimension dmax = 40, maximal bond dimension m = 2000,
discarded weight δ = 10−8 and timestep dt = 0.01 J−1. We also check, by Fourier transforming
the hopping matrix, that assigning the ordered eigenvalue numbers n with quasi momenta
is reasonable. From the kinetic energies we determine the maximal quasi-particle velocity
veff by taking the discretized derivative at keff = π/2. Then, in the quasi-particle picture we
introduce an estimation for the bipolaronic quasi-particle mass via

meff =
keff

veff
= keff

(
∆tk
∆k

∣∣∣∣
keff

)−1

. (16)
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Figure 7: Binding energy (circles) and metallicity (crosses), after the dissipative quenches at
κ = 4J from the three points in the Hubbard-Holstein phase diagram considered in Fig. 6.
Analyzing the sign of the binding energy ∆E, we observe the formation of stable bipolarons
in the metallic and in the CDW phase, but not in the SDW phase. Most interestingly, in the
metallic phase, strong dissipation localizes the bipolarons (the metallicity decreases) without
disrupting their stability (∆E is constant).

If there are stable bipolaronic quasi-particles in the system, then meff yields the smallest
quasi-particle mass and thereby provides a measure for their metallicity. This interpretation
immediately becomes clear, when inspecting the CDW quenches in Fig. 6 (most right column).
Here, we observe a nearly flat band over the whole simulation time, indicating the insulating
character of the CDW phase that stems from localized bipolarons. In turn, in the SDW
phase, a single-particle gap is found, indicating a very small bipolaron effective mass. In the
metallic phase, we find the strongest dependency on the dissipation strength. An initially large
metallicity is suppressed upon time-evolving for the case of κ = 4J , i.e., the single-particle
gap closes, indicating localization of bipolaronic quasi-particles.

Bipolarons’ stability and metallicity. In order to determine the stability of bipolaronic
quasi-particles, we furthermore calculated the averaged, bipolaronic binding energy [14]. Us-
ing Eqs. (14) and (15) this quantity can be written as the difference between the site-averaged
bipolaronic and polaronic energies

∆E =
1

L

∑

j

(
〈Û bpj 〉+ 〈T̂ bpj,j+1〉 − 〈T̂

p
j,j+1,↑〉 − 〈T̂

p
j,j+1,↓〉

)
, (17)

where ∆E > 0 indicates that bipolarons are instable and tend to decay into two polarons,
whereas ∆E < 0 signals the formation of stable bipolaronic quasi-particles. In Fig. 7, the
dashed lines represent the obtained bipolaronic binding energies for the case of strong dissipa-
tion. Turning on dissipation in the SDW, ∆E remains constant and positive, i.e., bipolarons
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Figure 8: Effect of anharmonicities and dissipation on the excitation probability of bosonic
modes. The yellow curve is obtained from evaluating excitation probabilities of a harmonic
oscillator ĤHO at inverse temperature β = 1. We compare these to the probabilities obtained
when adding a gaussian, quadratic anharmonicity ĤHO+λe−γ(â†+â)2

with λ = 0.05 J, γ = 0.05
(purple data) and when incorporating dissipation κ = 1 J (blue data). While gaussian anhar-
monicities reduce the spacing between the energy levels and thus increase the probabilities of
populating highly excited states, the effect of dissipation is to leak phonons into the environ-
ment, increasing the ground state occupation while higher excitations are suppressed.

are unstable, which is consistent with the insulating character of the antiferromagnetic Hub-
bard ground state. For the quench in the CDW phase, we find ∆E < 0, which, however,
decreases by roughly a factor of two in the scope of the time-evolution on a time scale which
is comparable to the phonon frequency ω. Nevertheless, the bipolaronic binding energy is
comparably large over the whole time-evolution, indicating stable bipolaronic quasi-particles.
In the metallic regime, we also observe ∆E < 0, which surprisingly is nearly time-indepen-
dent. Thus, in the metallic phase, even in the presence of strong dissipation, phonons that
are bound to a bipolaronic quasi-particle do not escape into the environment. Note that these
results are in perfect agreement with the time-dependent double occupations shown in Fig. 5b.
Indeed, in the metallic regime, the double occupation is nearly independent on the dissipation
strength, while the decay of double occupations during the dynamics in the CDW phase at
κ = 4 J occurs on the same time scale as the reduction of the bipolaronic binding energy
in Fig. 7.

The solid lines in Fig. 7 illustrate the ratio between the absolute value of the binding
energy and the effective bipolaron mass. This quantity provides a measure for the bipolaronic
metallicity where, for constant binding energies, large ratios correspond to highly mobile
bipolarons. The displayed curves provide a compact overview of our analysis, exhibiting the
persistent insulating character of both the SDW and CDW phase, also in the presence of
dissipation. Moreover, we find a significant decrease in the metallicity in the metallic regime,
which is generated by the increased quasi-particle mass of the bipolarons.
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Gaussian anharmonicities and dissipation. To connect our results to the reported en-
hancement of the metallic phase via gaussian and quartic anharmonic modifications of the
phononic modes, we compared the effects of dissipation and of the anharmonicities investi-
gated in [16, 138] on the excitation probabilities of a single phonon mode. As a reference
distribution, we computed the population of the excited modes by diagonalizing the corre-
sponding Hamiltonian and evaluated the Boltzmann weights at inverse temperature β equal
to the oscillator frequency ω. For the dissipative case, it can be shown that the thermal state
for a single harmonic oscillator ρ̂eqβ = e−βωn̂/N is the steady state solution of a Lindblad

master equation with Lindblad operators D̂1 = e−βω/2â†, D̂2 = â. Combining them with the
Lindblad operator for dissipation D̂3 =

√
κa yields the following equation

∂tρ̂ = −e−βω
(

1

2
{ââ†, ρ̂} − â†ρ̂â

)
− (1 + κ)

(
1

2
{â†â, ρ̂} − âρ̂â†

)
, (18)

which can be solved numerically. In Fig. 8, we show the excitation probabilities of a harmonic
oscillator ĤHO = ωâ†â, an anharmonic oscillator with gaussian anharmonicity ĤG(λ, γ) =

ĤHO + λe−γ(â†+â)2
, and a harmonic oscillator with dissipation Eq. (18). Here, we illustrate

the underlying reason for the seemingly contradicting results: dissipation and gaussian an-
harmonicities have opposite effects on the population of the excited phonon states. While the
decay of the excitation probability is reduced by gaussian anharmonicities, it is enhanced when
considering dissipation. These observations can be connected to our investigation of metal-
licity by noting that the binding energy is mainly unaffected by dissipation in the metallic
phase. This suggests that the metallicity mainly depends on the mean free path length of
the bipolaronic quasi-particles. A recent study has shown that couplings to an environment
can be modeled by measurements, suppressing transport via the formation of decoupled clus-
ters [140]. In the limit of very strong dissipation, this is reminiscent of the quantum Zeno
effect [141]. Comparing the different phonon excitation probabilities in Fig. 8 then suggests
that for dissipation-generated anharmonicities, there is an increasing number of non-projec-
tive measurements corresponding to phonons dissipating to the environment, which strongly
suppresses the transport of bipolarons.

4 Conclusion

Incorporating dissipation into the description of strongly-correlated electron systems coupled
to phonons paved the way to intriguing phenomena such as light-enhanced or cavity-induced
phonon-mediated superconductivity [142–144]. Furthermore, in the prototypical Hubbard-
Holstein model, recent (semi-) analytical investigations suggested the enhancement of the
metallic regime in the presence of anharmonic phonons, posing the question of enhanced
superconducting correlations [16, 138, 139]. In this study, we therefore investigated the effect
of a realistic source of phonon anharmonicities generated by a dissipative coupling of the
phonons to an environment.

In order to be able to perform the required, numerically very challenging, dissipative
quantum many-body simulations for large systems we combined both HOPS and QJ, two
established out-of equilibrium methods to describe OQS, with the recently introduced PP-
DMRG. We tested and benchmarked the obtained numerical tools, demonstrating their feasi-
bility in capturing the complex, dissipative out-of equilibrium dynamics after global quenches.
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Interestingly, we found that both methods, being comparably computationally efficient, ex-
hibit complementary regimes of the physical model parameter in which they yield precise
and numerically well-controlled time-evolution schemes. In particular, HOPS proved to be
the method of choice for the case of intermediate and strong dissipation and large electron-
phonon couplings, whereas QJ yielded excellent performance for weak dissipation and weak
to intermediate electron-phonon couplings. As a consequence, using the PP-mapping, we
elevated OQS methods to be applicable in an efficient and unbiased way to a broad class of
dissipative quantum many-body systems, using tensor network algorithms. We believe that
the discussed, tensor network-based Markovian (QJ) and non-Markovian (HOPS) methods
will be very fruitful tools for addressing relevant problems such as thermalization of quan-
tum systems [145–147], cooling of quantum many-body systems [148, 149], exciton dynamics
in light-harvesting complexes [150, 151], and quantum transport in two-terminal dissipative
setups [152–157]. Moreover, as mentioned in App. B, the methods developed here for sys-
tems described by Eqs. (1) and (2), can be generalized to multiple phonon modes per site, to
phonon modes coupled to baths with arbitrary spectral structures, or to non-local phonons
coupled to several sites [158]. This latter generalization could, for instance, make it possible
to study dissipative versions of the Hubbard-Fröhlich model [159,160].

Having established the PP-enhanced HOPS and QJ methods, we turned to the ques-
tion of whether dissipation enhances metallicity in the Hubbard-Holstein model. For that
purpose, we performed a series of quenches, investigating the formation of bipolarons, i.e.,
phonon-mediated bound two-electron quasi-particles and their metallicity. Here, we defined
metallicity as the ratio between the bipolaronic binding energy and its effective mass. In the
metallic regime of the Hubbard-Holstein ground-state phase diagram, we found that the time
dependence of the bipolaronic binding energy remains mainly unchanged, i.e., the phonons
that contribute to bound electron pairs do not tend to escape the system. Studying the
bipolaronic kinetic energy dynamics, we observed melting of the bipolaronic single-particle
gap upon increasing dissipation, indicating an increased scattering rate. Consequently, the
effect of dissipation is to enhance the bipolaronic effective mass, yielding an overall reduction
of the bipolaronic metallicity. Since our results contrast previous findings when considering
gaussian anharmonicities, we calculated the phononic excitation probabilities for the different
sources of anharmonic phonons. We show that the effect of a gaussian anharmonicity is to
reduce the decay of the excitation probabilities compared to the harmonic situation. In con-
trast, dissipation has the opposite effect, generating a quick decay of the phonon excitation
probabilities. Here, the picture of a quantum jump description of the dissipative dynamics
creates an interesting connection to the quantum Zeno effect [141, 161]. The rapid decay of
phononic excitation probabilities suggests a significant rate of jump events of phonons from
the system into the environment, even at moderate dissipation strengths. These jump events
can be interpreted as local measurements, which suppress the delocalization of the bipolaronic
quasi-particles.

Nevertheless, we also find that the bipolaronic binding energy is very robust against dis-
sipation in the metallic regime. This is a remarkable observation, in particular, since the
calculated binding energies are of the order of 0.15 J and thereby much smaller than the stud-
ied dissipation strengths κ = 1J, 4J . Understanding the origin of this unexpected robustness
of formed bipolarons in the metallic regime would be an interesting theoretical question, par-
ticularly concerning phonon-mediated superconductivity. Furthermore, our results imply that
the various sources of phonon-anharmonicities need to be considered very thoroughly when
deriving effective, microscopic models for real materials. In particular, the question arises
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of what happens if competing effects such as gaussian anharmonicities and dissipation ex-
ist. Here, further investigations are indispensable and may especially address the question
of whether the robustness of the bipolarons can carry over to the case of intrinsic material
sources of anharmonicities.
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Time-dependent variational principle for quantum lattices, Phys. Rev. Lett. 107, 070601
(2011), doi:10.1103/PhysRevLett.107.070601.

[111] J. Haegeman, C. Lubich, I. Oseledets, B. Vandereycken and F. Verstraete, Unifying
time evolution and optimization with matrix product states, Phys. Rev. B 94, 165116
(2016), doi:10.1103/PhysRevB.94.165116.

[112] M. P. Zaletel, R. S. K. Mong, C. Karrasch, J. E. Moore and F. Pollmann, Time-evolving
a matrix product state with long-ranged interactions, Phys. Rev. B 91, 165112 (2015),
doi:10.1103/PhysRevB.91.165112.

25

https://doi.org/10.1103/PhysRevLett.113.150403
https://doi.org/10.1080/00018732.2014.933502
https://doi.org/10.1088/0143-0807/33/4/805
https://doi.org/10.1016/s0375-9601(97)00717-2
https://doi.org/10.1021/acs.jctc.7b00751
https://doi.org/10.1007/s10955-015-1236-7
https://doi.org/10.1103/PhysRevLett.93.207204
https://doi.org/10.1103/PhysRevB.55.2164
https://doi.org/10.1103/PhysRevLett.99.220405
https://doi.org/10.1103/PhysRevLett.93.040502
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1103/PhysRevLett.107.070601
https://doi.org/10.1103/PhysRevB.94.165116
https://doi.org/10.1103/PhysRevB.91.165112


SciPost Physics Submission

[113] M. Suzuki, General decomposition theory of ordered exponentials, Proceedings of the
Japan Academy, Series B 69(7), 161 (1993).

[114] C. Brockt, F. Dorfner, L. Vidmar, F. Heidrich-Meisner and E. Jeckel-
mann, Matrix-product-state method with a dynamical local basis optimization
for bosonic systems out of equilibrium, Phys. Rev. B 92, 241106 (2015),
doi:10.1103/PhysRevB.92.241106.

[115] R. J. Bursill, Density-matrix renormalization-group algorithm for quantum lattice
systems with a large number of states per site, Phys. Rev. B 60, 1643 (1999),
doi:10.1103/PhysRevB.60.1643.

[116] B. Friedman, Optimal phonon approach to the spin peierls model with nonadiabatic
spin-phonon coupling, Phys. Rev. B 61, 6701 (2000), doi:10.1103/PhysRevB.61.6701.

[117] H. Wong and Z.-D. Chen, Density matrix renormalization group approach to the
spin-boson model, Phys. Rev. B 77, 174305 (2008), doi:10.1103/PhysRevB.77.174305.

[118] S. Singh, R. N. C. Pfeifer and G. Vidal, Tensor network decompositions in the presence of
a global symmetry, Phys. Rev. A 82, 050301 (2010), doi:10.1103/PhysRevA.82.050301.

[119] T. Holstein, Studies of polaron motion: Part I. The molecular-crystal model, Ann.
Phys. 8(3), 325 (1959), doi:10.1016/0003-4916(59)90002-8.

[120] A. F. Hebard, M. J. Rosseinsky, R. C. Haddon, D. W. Murphy, S. H. Glarum, T. T. M.
Palstra, A. P. Ramirez and A. R. Kortan, Superconductivity at 18 k in potassium-doped
c60, Nature 350(6319), 600 (1991), doi:10.1038/350600a0.

[121] K. Tanigaki, T. W. Ebbesen, S. Saito, J. Mizuki, J. S. Tsai, Y. Kubo and
S. Kuroshima, Superconductivity at 33 k in csxrbyc60, Nature 352(6332), 222 (1991),
doi:10.1038/352222a0.

[122] M. Mitrano, A. Cantaluppi, D. Nicoletti, S. Kaiser, A. Perucchi, S. Lupi, P. Di Pietro,
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A Quantum Jumps

In the following, we sketch the main equations of the method presented in Ref. [100]. First,
it is convenient to define an effective, non-hermitian Hamiltonian:

Ĥeff ≡ Ĥtot −
i

2

∑

l

D̂†l D̂l , (19)

that allows us to rewrite the Lindblad equation Eq. (2) as:

∂tρ̂ = −i(Ĥeffρ̂− ρ̂Ĥ
†
eff) +

∑

l

D̂lρ̂D̂
†
l . (20)

Working with pure states, a stochastic process Q is introduced so that the density matrix
time-evolved by the Lindblad equation is obtained from averaging over many realizations:

E [|Ψ(t)〉
q
〈Ψ(t)|

q
] = ρ̂(t) , (21)

where q ∈ Q is a collection of pseudo-random numbers identifying a so-called trajectory. Thus,
instead of constructing the density matrix, one computes observables for every trajectory and
averages over them:

〈Ô〉(t) = E [〈Ψ(t)|
q
Ô |Ψ(t)〉

q
] . (22)

In Fig. 9, we give a sketch of the described unravelling and the random processes involved.
In practice, typically ∼ 102 − 103 trajectories are needed for getting converged observables.

For a trajectory specified by two uniform random numbers q = (q1(t), q2(t)) with qi(t) ∈
[0, 1], the algorithm to compute the time-evolution of |Ψ(t)〉

q
is shown in Fig. 9. The general

idea is to expand the time-evolved state to first order, to decompose the change in its norm

||Ψ(1)(t+ δt)〉|2 = 1− p ≈ 1− δt
∑

l

〈Ψ(t)| D̂†l D̂l |Ψ(t)〉 ≡ 1−
∑

l

pl . (23)

Then, the random number q1(t) is picked and compared to the overall norm change p to decide
whether a jump has to happen. If a jump needs to occur, the second random number q2(t)
is picked to choose the actual jump operator, according to the different jump probabilities
δt 〈Ψ(t)| D̂†l D̂l |Ψ(t)〉.

If the algorithm described above is carried out for each trajectory q, averaging over the
projectors yields:

ρ̂(t+ δt) = E [|Ψ(t)〉
q
〈Ψ(t)|

q
]

= (1− p) |Ψ
(1)(t+ δt)〉√

1− p
〈Ψ(1)(t+ δt)|√

1− p +
∑

l

pl
p

D̂l |Ψ(t)〉√
pl/δt

〈Ψ(t)| D̂†l√
pl/δt

= ρ̂(t)− iδt(Ĥeffρ̂− ρ̂Ĥ
†
eff) + δt

∑

l

D̂lρ̂D̂
†
l , (24)

which in the limit δt→ 0 is precisely the Lindblad equation.
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Time evolve |Ψ(1)(t+ δt)〉 = e−iĤeffδt |Ψ(t)〉

Compute ||Ψ(1)(t+ δt)〉|2 = 1− p

Draw random number q1(t)

q1(t) < p? Compute pl = |D̂l |Ψ(1)(t+ δt)〉|2

Sort
{
p̃l = pl∑

l pl

}
l

in ascending order

Draw random number q2(t)

Choose l′ with q2(t) ∈ [p̃l′−1, p̃l′ ]

Yes

|Ψ(t)〉 ←[ |Ψ(1)(t+ δt)〉
No

|Ψ(t)〉 ←[ 1√
pl′
D̂l′ |Ψ(1)(t+ δt)〉

Figure 9: Algorithmic sketch of the quantum jumps method.

B Hops

For clarity, we consider a single g, ω and κ. Tracing out the phonons transforms the
Schrödinger equation with the Hamiltonian of Eq. (1) into the non-Markovian quantum state
diffusion equation [102] for the state for the fermionic degrees of freedom |ψ(t)〉:

∂t |ψ(t)〉 = −iĤf |ψ(t)〉+ g
∑

j

L̂jz
∗
j (t) |ψ(t)〉 − g

∑

j

L̂†j

∫ t

0
ds α∗j (t− s)

δ |ψ(t)〉
δz∗j (s)

. (25)

Here αj(t) represents the environment correlation function, which on site j and at zero tem-
perature is given by the Fourier-transform of the spectral density Jj(ω). It can be determined,
for instance, from spectroscopic experiments 1 :

αj(t) ≡ 〈âj(t)â†j(t′)〉 =
1√
2

∫ +∞

−∞
dω Jj(ω)e−iω(t−t′) . (26)

In the following we assume that the environment correlation function is given by a single
complex exponential α(t−t′) = e−κ|t−t

′|−iω(t−t′). The term zj(t) in Eq. (5) represents a colored
noise that satisfies E

[
zj(t)z

∗
j′(t
′)
]

= α(t− t′)δj,j′ , which can be generated in practice following
e.g. [93, 162], while the term δ/δz∗j (s) represents the functional derivative with respect to z∗.
The observables for the electronic system are obtained by averaging the results of Eq. (5) over
many trajectories, as explained for QJ in Sec. 2.1.

In practical calculations, solving Eq. (5) is exceptionally challenging because of the last
term of the right-hand side, which is non-local in time [103]. This problem can be solved

1At finite temperature the relation between the environment correlation function and the spectral density
reads: α(t) = 1

π

∫∞
0

dω J(ω)
[

coth (βω
2

) cos (ωt) − i sin (ωt)
]
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Initialize state |Ψ(t)⟩ = |ψ(t)⟩fer ⊗ |0⟩phon
Initialize colored noise z̃∗j (t)

Time evolve |Ψ(t+ δt)⟩ =
e−iHeff(t)δt |Ψ(t)⟩

Compute physical state
|ψ(t+ δt)⟩ = |0⟩ ⟨0| |Ψ(t+ δt)⟩

Normalize |Ψ(t+ δt)⟩ →
|Ψ(t+δt)⟩√

⟨ψ(t+δt)||ψ(t+δt)⟩

Compute observables:

⟨Ô⟩t+δt = ⟨ψ(t+δt)|Ô|ψ(t+δt)⟩
⟨ψ(t+δt)|ψ(t+δt)⟩

Compute ⟨L̂†
j⟩t =

⟨ψ(t)|L̂†
j |ψ(t)⟩

⟨ψ(t)|ψ(t)⟩

Update noise:
z̃∗j (t) → z̃∗j (t + δt)

Update Hamiltonian:
Ĥeff(t) → Ĥeff(t + δt)

|Ψ(t)⟩ ← |Ψ(t+ δt)⟩

Ĥeff(t)← Ĥeff(t+ δt)

Observables Hamiltonian update

Figure 10: Algorithmic sketch of the hierarchy of pure states method.

efficiently by the hiearchy of pure states HOPS method [93,99], where one defines:

|ψ(1,j)(t)〉 = Dj(t) |ψ(t)〉 ≡
∫ t

0
ds α∗j (t− s)

δ |ψ(t)〉
δz∗j (s)

(27)

which is labelled first auxiliary state relative to site j. One then defines the k-th auxiliary
state in a recursive manner:

|ψ(k,j)(t)〉 = [Dj(t)]
k |ψ(t)〉 . (28)

In Fig. 10 we sketch the HOPS algorithm. As discussed in App. B.1, at least for the model
considered in this work, it is highly important to rescale the auxiliary states in the following
way inspired by [94]:

|ψ(k,j)(t)〉 → 1√
αj(0)kk!

|ψ(k,j)(t)〉 . (29)

With Eqs. (27) and (29), we can replace Eq. (5) by a hierarchy of equations. Following [93],
it is convenient to define a state on the combined fermionic and bosonic Hilbert space as:

|Ψ(t)〉 =

kmax∑

k=1

Ck(t) |ψ(k)(t)〉 ⊗ |k〉bos , (30)

where |k〉bos ≡ ⊗j |k〉bos
j labels the bosonic mode corresponding to the k-th auxiliary state,

Ck(t) is a time-dependent coefficient and kmax is the local bosonic Hilbert space dimension.
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The hierarchy then takes the form of a simple Schrödinger equation for the state on the
combined fermionic and bosonic Hilbert space:

∂t |Ψ(t)〉 = −iĤQ
eff |Ψ(t)〉 , (31)

where the effective, non-hermitian Hamiltonian now reads [93,99]:

Ĥeff = Ĥs +
∑

j

i
(
z̃∗j (t)gL̂j − (κ+ iω)K̂j + gL̂j ⊗ K̂

1/2
j b̂†j − g

(
L̂†j − 〈L̂

†
j〉t
)
⊗ b̂jK̂

1/2
j

)
. (32)

Here, K̂j is the bosonic number operator acting on site j and b̂†j , b̂j are the so-called bare
creation and annihilation operator, respectively, acting on the bosonic modes as:

b̂† |k〉 = |k + 1〉
b̂ |k〉 = |k − 1〉 . (33)

The colored noise is modified as:

z̃∗j (t) = z∗j (t) + g

∫ t

0
ds α∗j (t− s)〈L̂†j〉s .

Eq. (31) is linearized by computing the non-linear term 〈L̂†j〉t with |ψ(t− δt)〉, which is a
reasonable approximation as long as the timestep δt is small. For computing the electronic
observables, at each timestep, the whole state needs to be projected onto the physical state:

|Ψ(t)〉 → |ψ(t)〉 = |0〉bos 〈0|bos |Ψ(t)〉 , (34)

where |0〉bos ≡ ⊗j |0〉bos
j is the bosonic vacuum. In practice, the Schrödinger equation Eq. (31)

is propagated in time by using the initial condition |Ψ(t = 0)〉 = |ψ(0)(t = 0)〉 ⊗ |0〉bos, where
all the auxiliary states are set to zero and are then populated as time evolves. In principle,
kmax is infinite, but the populations of high-k auxiliary states typically remains small, allowing
for a truncation of the hierarchy. In Sec. 2.3 and App. C.2 we will discuss how the newly-
introduced PP method allows for an optimal and automated selection of kmax.
The restriction of the environment correlation function α(t) being a complex exponential can
be lifted by noting that complex exponentials form a complete orthonormal set on L2, and
thus we can approximate

αj(t− t′) ≈
P∑

p=1

gpe
−κp|t−t′|−iωp(t−t′) , (35)

for any square-integrable function with arbitrary precision by increasing P . The decompo-
sition can be obtained, for instance, with the Laplace-Pade method [163], yielding a set of
parameters ωp, gp and κp. In this work, we will deal with the case P = 1, corresponding to the
case of a Lorentzian spectral density. For a presentation of the conceptually straightforward
generalization to P > 1 we refer to Ref. [94, 103].
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Figure 11: Improved stability of HOPS with auxiliary states transformed according to
Eq. (29). Many phononic modes get populated in the strongly non-Markovian regime (right
figure). With the original HOPS formulation, in such a case, the norm of the auxiliary states
becomes very large and renders the method very unstable when computing observables with
the normalized physical state (left figure). The calculations were performed for 20 sites and
averaged over 100 trajectories with g = J and κ = 0.1 J . All other parameters are analog to
Figs. 13 and 14.

B.1 Improved stability for highly excited baths

For all the HOPS calculations on the dissipative Hubbard-Holstein model, we have rescaled
the auxiliary states according to Eq. (29). This reduces the norm of the auxiliary states
and prevents numerical errors arising from the normalization of the physical state that is
performed at each time step when computing the observables. In Fig. 11 we see that for a
strong electron-phonon coupling g = 1, and a weak dissipation κ = 0.1, the HOPS method
without a rescaling of the auxiliary states breaks down completely when 13 bosonic modes
are populated. In contrast, as shown in Fig. 15, with the new definition of the auxiliary states
HOPS can deal with up to 55 occupied bosonic modes. We want to point out that this is not
an MPS-related issue, as we encountered it also for exact diagonalization (ED) calculations.

C Method Benchmarks

Simulating the complicated interplay between electronic and dissipative, phononic degrees of
freedom requires a careful understanding of the limitations of the used methods. Even though
HOPS, as well as QJ, are well-established tools for the description of open quantum systems,
here we combine these methods with a tensor-network representation that comes along with its
own approximations. Additionally, we must consider the truncation in the enlarged phononic
Hilbert space generated by the PP mapping Sec. 2.3. It is therefore essential to understand the
effect of the additional numerical approximations, particularly if we can control the numerical
precision within each method by tuning typical control parameters such as the bond dimension
or the discarded weight [23,40]. A practical consequence of the method benchmark presented
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ĉ 1

,↑
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Figure 12: Comparing HOPS and QJ to the exact master equation (ME). All ME results
were computed with ED for a system composed of two fermionic and two phononic sites. For
all plots, the Hamiltonian parameters were chosen to be U = J , ω = 2 J , and 500 trajectories
and a time step dt = 0.005 J−1 were used. The dissipation strength κ was fixed to 0.1 J for
the two upper plots and to 4 J for the two lower plots. For all analyzed parameters, the linear
and the non-linear method present at most very small differences. Both HOPS and QJ agree
very well with the exact ME results, except for the case of intermediate and strong dissipation
and large electron-phonon coupling (κ = 1, 4 J , g = J) where QJ exhibits deviations at later
times t > 2 J−1.

in the following is that even though both methods require similar numerical resources, their
numerical accuracies complement each other with respect to the dissipation strength and
electron-phonon coupling. Therefore, given a physical realization of some model parameters,
our benchmark yields a comprehensive picture of which method is to be used for an optimal
numerical outcome.

C.1 Exact diagonalization and matrix-product states

Analyzing the ground state of Eq. (11) already makes for a numerically involved problem.
Thus, faithfully simulating the dynamics following a global quantum quench in the presence
of dissipation, we are equipped with a reasonable benchmark system. Here, we prepare the
system in a product state between the electronic and phononic system corresponding to a
highly excited state of Eq. (11). As a key feature, in the post-quench dynamics, a poten-
tially significant occupation of the bosonic, local degrees of freedom can occur, driven by
the excess energy of the electronic system. The latter competes with the effect of dissipa-
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tion. Considering large phonon frequencies ω ∼ O(1), the relaxation separates into distinct
time-scales. Therefore, describing the dynamics of the overall system requires a large local
Hilbert space dimension ∼ 10− 60 for the bosonic system. Capturing these competing effects
correctly is one of the most important points in practice, whereas any small, uncontrolled
approximation already modifies the short-time dynamics of correlation functions drastically.
Note that quenching from a product state, a large amount of energy is transferred into the
system. In that sense, our analysis refers to an extreme test case. In practice, for near-equi-
librium quenches, we expect both methods to perform reasonably also in the regime, which
is complementary to the optimal one described in the following.

Comparison with exact diagonalization. The dynamics of the smallest meaningful Hub-
bard-Holstein model, composed of two electrons and two phonons, can be described by the
exact Lindblad master equation (Eq. (2)) via ED. 2This is used as an exact reference to assess
the precision and the computational complexity of the HOPS and the QJ methods before
turning to large systems. We fix U = J and ω = 2 J , and study the performance of the HOPS
and the QJ methods as a function of the electron-phonon coupling g and the dissipation
strength κ. The dependence on the dissipation strength is particularly interesting because, in
principle, the two methods are complementary: for HOPS, the environment becomes Marko-
vian and thus trivial for κ → ∞, whereas for QJ, the non-unitary part of the dynamics for
the enlarged system becomes irrelevant in the limit κ → 0. We initialize the time-evolution
with the Neel state for the fermions and the vacuum for the phonons:

|Ψ〉init = |↑〉fer

1 |↓〉fer

2 |0〉bos

1 |0〉bos

2

and perform a global quench both in the electronic and in the phononic system. We pick the
number of spin-up fermions on site one: 〈n̂↑1〉, and the pairing correlation between the two

fermionic sites: 〈ĉ†0,↑ ĉ
†
0,↓ ĉ1,↓ ĉ1,↑〉, as a single-site and two-site observable, respectively. We

choose to compare the two methods for very weak (κ = 0.1 J), intermediate (κ = J) and very
strong (κ = 4J) dissipation at the medium and strong electron-phonon couplings g = 0.5 J
and g = J .

Our results are summarized in Fig. 12. In general we observe excellent agreement for both
HOPS and QJ with ME at short times t ≤ 2 J−1. The only notable deviation appears at
larger simulation times in the QJ results for the two-site observable, in the case of strong
electron-phonon coupling g = 1J and medium or strong dissipation κ ≥ 1J . We believe that
using a modified version of QJ, or significantly decreasing the timestep and increasing the
number of trajectories, would improve the agreement with the exact result. However, with
MPS methods, using an excessively small timestep can lead to an accumulation of truncation
errors and should be avoided. Therefore, we suggest that, at least for a quench from a
product state, HOPS should be preferred over QJ in the parameter regime mentioned above.
In App. D, we show that both the linear and the non-linear version of the homodyne detection
unravelling do not yield accurate results for this model.

2Note that due to the large local Hilbert space dimension required for the phonons, already the exact
treatment of the two-electron + two phonon-case is non-trivial. For instance, the total Hilbert space dimension
for the density matrix for two electrons and two phonons modelled by a 10-level harmonic oscillator is ∼ 2.6·106.
For some MPS calculation, we included up to 60 phononic states, which would correspond to a total Hilbert
space dimension of ∼ 3.3 · 109 for a two-site system.
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Figure 13: Spin-density correlations 〈Ŝz20 Ŝ
z
20+j〉 calculated using HOPS and QJ for a system

with L = 40 sites at half-filling, quenched from a Neel state with two different values of g
(columns) and three different values of κ (rows). The two methods agree very well, even for
long-range correlations. Only small deviations between HOPS and QJ are found for large
electron-phonon coupling g = J and intermediate and strong dissipation κ = 1 J, 4 J . We
chose a timestep δt = 0.005 J−1 for QJ and δt = 0.01 J−1 for HOPS, since the latter method
has shown to be less sensitive on the timestep.

Comparison beyond exact diagonalization. We proceed with the comparison by con-
sidering the same parameters as in Fig. 12 but increase the system size to L = 40. Such system
sizes are far beyond reach for ED methods, as well as density operator based time-evolution
schemes, in particular when considering a large number of phononic modes (here ≤ 40) per
site, too. In order to ensure numerical convergence, throughout the benchmark calculations,
we varied all relevant parameters. Table 1 displays the settings we found to produce faith-
ful and converged results. In particular, we fix the maximally allowed bond dimension to
mmax = 6000 and choose a time step δt = 0.01 J−1 for HOPS and δt = 0.005 J−1 for QJ and
a discarded weight of δ = 10−10. The maximally allowed hierarchy depth kmax (for HOPS)
and local Hilbert space dimension of the phonons bmax (for QJ) are set to kmax = bmax = 40.
We find that these values are sufficient to describe the dynamics, and correspondingly, the
actually exploited local dimensions never reach their respective upper limit. Since the ini-
tial state is a product state, we start the time-evolution with the global Krylov method and
then switch to the two-site time-dependent variational principle (2TDVP) method. Here, at
least ∼ 50 Krylov time-evolution steps with otherwise identical numerical configuration are
required in order to obtain converged results.
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Figure 14: Charge-density correlations 〈n̂f20 n̂
f
20+j〉 calculated with HOPS and QJ for the

same quench as the one in Fig. 13. A disagreement is observed at later times and long
distances. In the upper-left panel, at each time, we have added a dotted line that represents
the case without dissipation, i.e. a simple Schrödinger evolution with the Hubbard-Holstein
Hamiltonian. This indicates that the long-range correlations in case of very weak dissipation
are better described by QJ than by HOPS.

Our comparisons aim to determine the model parameter regimes in which QJ and HOPS
are capable of describing the many-body post-quench dynamics. Since the dynamics are
characterized by the spreading of correlations on different time scales, in the following, we
concentrate on our results for the dynamics of spin-density and charge-density correlation
functions w.r.t. the central site. However, we note that during our investigations, both
methods performed equally well when describing on-site observables. As shown in Fig. 13,
the spin-density correlations agree very well for the two methods. However, for the charge-
density correlations displayed in Fig. 14 we find deviations in the long-distance behavior for
very weak dissipation. An additional shoulder characterizes them in the tail of the correlation
functions at times t > 1 J−1, occurring in the dynamics obtained from HOPS. This shoulder
corresponds to an increased spreading of density correlations in the HOPS result, compared
to QJ 3. In order to clarify which method yields more reliable results in this regime, we
performed a comparison to the quench dynamics in the absence of dissipation. As shown in
the upper-left panel of Fig. 14 by the dotted curves, we find that QJ smoothly connects to
the non-dissipative case. We take this observation as an indicator that QJ is more precise in
the case of small dissipation strengths.

3We have checked that halving the timestep of HOPS does not improve the results.
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d-surface
Figs. 15 and 16

QJ and HOPS
Figs. 13, 14 and 17

double
occupations

Fig. 5b

bipolaron
metallicity
Figs. 6 and 7

δ 10−10 10−10 10−10 10−10

mmax 6000 6000 500 2000
dmax 60 40 40 40
sites 10 40 20 20
|Q| 5 200 50 200

Table 1: Summary of the most relevant simulation parameters: the max. allowed discarded
weight δ, the max. allowed MPS bond dimension mmax, the max. allowed local dimension
dmax, and the overall number of trajectories |Q|.
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Figure 15: Left: hierarchy dept kmax for HOPS as a function of g and κ. Right: local physical
dimension of the phonons bmax for QJ g and κ. Center: difference between kmax and bmax.
The truncation is determined automatically via the PP method by fixing a discarded weight
δ = 10−10. For all calculations, the model parameters were Nsites = 10, U = J , and ω = 2 J
and time-evolution has been performed until Tmax = 2 J−1. We computed 10 trajectories for
each point. For the six points marked by a sphere, a convergence analysis of an observable is
described in Fig. 16 and in the main text. Note that at very large g and very small κ (i.e.,
the scattered top left area in the left figure), HOPS collapses, a finding which we discuss in
the main text.

C.2 Numerical complexity and stability

From a practical point of view, it is important to clarify if the methods are numerically feasible
in the identified optimal parameter regimes. Here, we start by comparing the hierarchy
depth kmax ≡ dmax for HOPS with the local Hilbert space dimension of the phonons bmax ≡
dmax for QJ for different values of g and κ. Using 2TDVP as time-evolution method, the
numerically most costly operations scale as O(m3

maxd
2
maxδmax) and O(m2

maxd
3
maxδ

2
max). In case

of considerably large local dimensions dmax > 10, the latter operations become dominant and
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the applicability of QJ and HOPS depends on their required local Hilbert space dimensions.
In Fig. 15 we show the evolution of dmax = kmax,bmax required to ensure an overall dis-

carded weight δ = 10−10 throughout the time-evolution. Note that the PP-truncation scheme
generically truncates the required local dimension so that the shown results already consti-
tute the optimal number of local basis states that need to be kept. Interestingly, we find that
despite being conceptually very different, each method’s required local Hilbert space dimen-
sions kmax (left plot) and bmax (right plot), display a strikingly similar dependence on g and
κ, throughout the whole analyzed parameter space. A broad connection between these two
quantities is discussed for another model in Ref. [164]. The shape of the surfaces drawn by
kmax and bmax confirms our previous observation that in the case of strong electron-phonon
coupling and weak dissipation, many highly-excited phononic modes are populated that can
not escape due to dissipation, and thus large Hilbert space dimensions are required. Note that
for HOPS the top-left corner of the kmax surface is missing. This is due to the fact that for a
few extreme cases of very strong electron-phonon coupling and very weak dissipation, HOPS
becomes numerically unstable because the norm of the auxiliary states grows very large. In
App. B.1 we show that, at least for the dissipative Hubbard-Holstein model, this instability
for the HOPS method is much more severe when the original definition of the auxiliary states
is adopted instead of the modified one of Eq. (29). We thus find that the numerical costs are
equivalent for both methods when enforcing a certain discarded weight.

When performing a time-evolution, one is typically interested in the convergence of some
specific observables and not in the approximation quality of the wave function controlled by
the discarded weight. Therefore, we pick six representative parameter points marked by circles
in Fig. 15 and studied the convergence of the nearest-neighbor pairing correlation function:

Cpa,dmax
nn =

1

L− 1

L−1∑

j=1

〈ĉ†j,↑ ĉ
†
j,↓ ĉj+1,↓ ĉj+1,↑〉 . (36)

We calculated its dependency on the maximally allowed local dimension, compared to a

reference value Ĉ
pa,kmax

nn which was obtained fixing the discarded weight only and using the
values of kmax, bmax extracted from Fig. 15:

Err(j) =
∣∣∣
(

Cpa,dmax
nn − Cpa,dmaxj

nn

)
/Cpa,dmax

nn

∣∣∣ . (37)

Here, for both methods, we varied j ∈ {1/4, 1/2, 3/4}, reducing the maximally allowed local
dimension up to a quarter of the optimal value. In Fig. 16, we show the obtained convergence
for the different fractions j indicated by the different line styles. We observe that most of
the time, the HOPS curves lay below the QJ curves, i.e., they exhibit less sensitivity on
truncating the local Hilbert space dimension. Noting that in HOPS, the bosonic degrees of
freedom represent auxiliary states with no direct physical meaning, it is reasonable to expect
it to be somewhat less sensitive on truncations in the bosonic Hilbert space than QJ.

Aside from the local dimension, we also analyzed the bond dimension mmax, which is
of particular importance when using the PP mapping, as it also controls the approximation
quality of the phonon 1RDMs (c.f. Sec. 2.3). The results are displayed in Fig. 17 for the
same model parameters as for the benchmark calculation shown in Figs. 13 and 14. Sim-
ilarly to the local dimensions, the required bond dimensions decrease when the dissipation
strength increases. Notably, we find that for all six analyzed (g, κ), QJ features a smaller
bond dimension than HOPS when enforcing a constant discarded weight. We investigated
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Figure 16: Convergence of nearest neighbor pairing correlation Eq. (36) in the local Hilbert
space dimension jdmax. The chosen six parameter sets (g, κ) are indicated in Fig. 15. At each
time step, the relative error between a reference time evolution performed with the optimal
local dimension dmax is evaluated. All the model and time evolution parameters are analog
to Fig. 15. Note that more than one trajectory is used only to avoid the risk of picking a
particularly favorable or unfavorable combination of random numbers, but the error analysis
here is not concerned with the statistical averaging performed for pure state methods.
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Figure 17: Bond dimension for QJ and HOPS during time evolution after the global quenches,
specified in the caption of Fig. 13.

the possible origins of this surprising observation. One possible reason may be buried in the
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fact that whenever a jump occurs, e.g., an annihilator is applied on a phononic site, the bond
dimension drops significantly because a large portion of the local Hilbert space is projected
out. Moreover, it has been shown recently that repeated measurements reduce the support of
lattice sites, on which correlations can spread significantly [42, 140] and thereby also reduce
entanglement growth. Since in QJ the probability for a jump to happen is mainly controlled
by the dissipation strength, we would expect considerably smaller bond dimensions to hap-
pen if κ is large, as observed in the right panel of Fig. 17. Furthermore, for small dissipation
strengths and large electron-phonon interactions, we also observed a significant increase in the
required local dimension of HOPS. Since in the PP mapping, the required local dimension is
directly connected to the decay of the phonon 1RDM diagonal elements, HOPS seems to have
the tendency to create more substantial fluctuations in the phonon system in this parameter
regime and thereby increases the overall bond dimension. However, deciding whether the
overall trend displayed in Fig. 17 is a peculiar feature of the analyzed systems or a general
feature is beyond the scope of this work.

D Quantum State Diffusion

D.1 Linear and non-linear homodyne detection

An alternative unraveling of the Lindblad master equation Eq. (2) is given by the so-called
linear homodyne detection (lHD) [69]. Similarly to HOPS, the stochastic part is represented
by a random noise term contained in the effective Hamiltonian. For each trajectory Q, the
time-evolution is generated by the non-hermitian Hamiltonian ( [165]) :

ĤQ
eff = Ĥs + i

∑

l

[
Zl(t)D̂l −

Cl
2
D̂†l D̂l

]
, (38)

where Ĥs is the system Hamiltonian, D̂l are the Lindblad operators, and Zl(t) is a random
number drawn from a real-valued Gaussian distribution with mean zero and standard devi-
ation σ given by the square root of the coupling parameter Cl divided by the time step δt.
To show the equivalence between the Lindblad evolution and lHD method, we time-evolve a
state |Ψ(t)〉 to first order with the effective Hamiltonian of Eq. (38), considering the case of
only one Lindblad operator for clarity:

|Ψ(t+ δt)〉 =
[
1 + δt

(
− iĤs + D̂Z(t)− C

2
D̂†D̂

)]
|Ψ(t)〉 . (39)

To first order in δt (recalling that Z2 is O(δt−1) ), the outer product of Eq. (39) with its
hermitian conjugate reads:

|Ψ(t+ δt)〉 〈Ψ(t+ δt)| = |Ψ(t)〉 〈Ψ(t)|+ δt
(
− iĤs + D̂Z(t)− C

2
D̂†D̂

)
|Ψ(t)〉 〈Ψ(t)|

+ |Ψ(t)〉 〈Ψ(t)| δt
(

+ iĤs + D̂†Z(t)− C

2
D̂†D̂

)

+ δt2Z2(t)D̂ |Ψ(t)〉 〈Ψ(t)| D̂† .
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Figure 18: Comparing the linear and non-linear homodyne detection to the exact ME. All
results were computed with ED for a system composed of two fermionic and two phononic
sites. For all plots, the Hamiltonian parameters were chosen to be U = J , ω = 2 J , and 500
trajectories and a time step dt = 0.005 J−1 were used. The dissipation strength κ was fixed
to κ = 0.1 J for the two upper plots and to κ = 4J for the two lower plots. For all analyzed
parameters, the linear and the non-linear method present at most very small differences. While
both methods agree reasonably well with the exact results for a small dissipation strength,
for strong dissipation, the homodyne detection results deviate strongly from the exact ones,
and the problem becomes more severe for large electron-phonon coupling.

Now, by making use of the mean and the variance of Z, namely E [Z(t)] = 0 and E [Z2(t)] =
C/δt we compute the ensemble average over the projectors:

E [|Ψ(t+ δt)〉 〈Ψ(t+ δt)|] ≡ ρ̂(t+ δt) = ρ̂(t) + δt(−iĤs −
C

2
D̂†D̂)ρ̂(t)

+ ρ̂(t)δt(+iĤs −
C

2
D̂†D̂) + δt2

C

δt
D̂ρ̂(t)D̂†

= ρ̂(t) + δt
(
− i[Ĥs, ρ̂(t)]− C

2
{D̂†D̂, ρ̂(t)}+ CD̂ρ̂(t)D̂†

)
,

which, in the limit δt→ 0, is the Lindblad equation. For the case of the dissipative Hubbard-
Holstein model considered in App. C and Sec. 3, the effective Hamiltonian reads:

ĤQ
eff = ĤHH + i

L∑

j=1

[
Zj(t)âj −

κ

2
â†j âj

]
, (40)
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with the constant coupling being the dissipation strength κ.
In order to try to lower the number of trajectories needed to converge the observables

for this pure-state method, a modification of Eq. (38) called non-linear homodyne detection
(nlHD) can be used ( [165]):

ĤQ
eff = Ĥs + i

L∑

j=1

[
Zj(t)D̂j −

Cj
2
D̂†jD̂j + Cj 〈Ψ(t)| (D̂†j + D̂j) |Ψ(t)〉 D̂j

]
. (41)

Analogously to what is done for HOPS, the non-linear dynamics generated by Hamiltonian
Eq. (41) are linearized by computing the expectation value with the state |Ψ(t− δt)〉, which
is a reasonable approximation as long as the time step δ is small.

We show the ED comparison of both the linear and the non-linear homodyne detection
methods to the ME methods for the same parameters used in Fig. 12. Figure 18 shows that
lHD and nlHD work well for small dissipation but fail to yield correct results both for single-
site and for two-site observables in the case of large dissipation. We thus conclude that the
QJ method is more suitable to be used as a comparison to HOPS.

D.2 Exact factorization of the time-evolution operator

The matrix elements of the non-hermitian part of the effective Hamiltonian can be computed
exactly, both for the linear and the non-linear case. Also, the MPO-representation of the
phononic displacement operator used for the computation in Sec. 3 is obtained in a completely
analogous way. We first consider the linear case Eq. (40), define B̂ ≡∑L

j=1

[
Zl(t)âl − κ

2 â
†
l âl
]

and start by factorizing the exponential of the effective Hamiltonian via a second-order Trotter
decomposition:

e−i(ĤHH+iB̂)δt ≈ eB̂δt/2 · e−iĤHHδt · eB̂δt/2 +O(δt3). (42)

We then focus on calculating the exponential eBδt. Since the terms acting on each site
commute, the expression

e
∑L
j=1

[
Zj(t)âj−κ2 â

†
j âj

]
δt = e

[
Z1(t)â1−κ2 â

†
1â1

]
δt · e

[
Z2(t)â2−κ2 â

†
2â2

]
δt . . . e

[
ZL(t)âL−κ2 â

†
LâL

]
δt

is exact. We consider the expression for one site and drop the site subscript and the explicit
time dependency of Z:

e

[
Zâ−κ

2
â†â
]
δt . (43)

We now want to write this exponential as a product of two exponentials. We use the following
theorem from Ref. [166]: Given two operators X̂ and Ŷ , if [X̂, Ŷ ] = sŶ with s ∈ C, s 6=
2πin, n ∈ N, then eX̂ · eŶ = exp

{
(X̂ + s

1−e−s Ŷ )
}

. Applied to Eq. (43), this theorem implies

that:

e

[
Zâ−κ

2
â†â
]
δt = e

[
−κ

2
â†â+ s

1−e−s Z̃â
]
δt

= e−
κ
2
â†âδt · eZ̃âδt , (44)

with Z̃ = Z 1−e−s
s , s = κ

2 δt . Finally, the factorized operator reads:

e

[
Zâ−κ

2
â†â
]
δt = e−

κ
2
â†âδt · eZ

1−e−κδt/2
κδt/2

âδt
= e−

κ
2
â†âδt · eZ

1−e−κδt/2
κ/2

â
. (45)

45



SciPost Physics Submission

The operator e
Z 1−e−Kδt/2

κ/2
â

does not conserve the bosonic particle number. The U(1) symmetry
is restored in the PP mapping, by replacing the annihilator â with â ⊗ b̂†, where b̂† is the
balancing operator acting on the bath site. By defining the prefactor as γ(Z) we get:

e−
κ
2
â†âδt · eγ(Z)â⊗b̂† .

We now want to calculate the MPO representation of the dissipative operator: We thus
compute the matrix elements:

〈n, n′| e−κ2 â†âδt · eγ(Z)â⊗b̂† |m,m′〉 = e−
κ
2
nδt

∞∑

l=0

γ(z)l

l!
〈n| âl |m〉 〈n′| (b̂†)l |m′〉 = (46)

e−
κ
2
nδt
∑

l=0

γ(z)l

l!

√
(l + n)!

n!
δtn+l,mδtn′,m′+l =

{
0, n > m

e−
κ
2 nδt

(m−n)!γ(Z)m−n
√

m!
n! δtn′−m′,m−n, otherwise.

(47)

We can rewrite the rank 4-tensor δtn′−m′,m−n as

δtn′−m′,m−n =

d−1∑

a=0

δtn′−m′,aδtm−n,a .

Thus we get the expression:

e−
κ
2
â†âδt · eγ(Z)â⊗b̂† =

∑

n,m,n′,m′,a

e−
κ
2
nδt

(m− n)!
γ(Z)m−n

√
m!

n!
W

(p)n,m
1,a W

(pp)n′,m′

a,1 |n〉 〈m| ⊗ |n′〉 〈m′| ,

(48)
with {

W
(p)n,m
1,a = δtm−n,a

W
(pp)n′,m′

a,1 = W̃
(pp)n′,m′

a,1 = δtn′−m′,a .
(49)

At this point, obtaining the exact factorization of the effective Hamiltonian for the non-linear
homodyne detection is straightforward. We start by defining κ 〈Ψ(t)| (â†j + âj) |Ψ(t)〉 ≡ f ,
considering a single site, dropping the j subscript and writing

e(Z+f)δtâ−κ
2
δtâ†â. (50)

We see that the operator has the same form as 43 with Z+f instead of f . Thus the factorized
operator has the form:

e(Z+f)δtâ−κ
2
δtâ†â = e−

κ
2
â†âδt · e(Z+f) 1−e−κδt/2

κ/2
â
. (51)

The MPO form of this operators is given by Eqs. (48) and (49) with γ(Z) = (Z+f)1−e−κδt/2
κ/2 .

E Physical Motivation for the System-Environment Model

Typical physical systems are immersed in a single global environment. For example, electrons
in a real material are coupled to the atoms in the crystal structure, which vibrate collectively
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through excited phonon modes. In this section, we sketch out the justification and physical
approximations required for mapping a system coupled globally to an environment with a
continuum of energy modes to the toy models that we have considered in this paper, where
we have an effective (independent) mode coupled locally to each site of the lattice, with an
effective correlation function that decays in time.

We begin with a system-environment interaction in the linear form,

ĤInt =
∑

j,k

gj,kL̂j â
†
k + g∗j,kL̂

†
j âk, (52)

where L̂j act on system site j, âk annihilates an excitation in mode k of the environment
and the gj,k are some complex coefficients describing the coupling strength which in general
are k dependent and may also be spatially inhomogeneous. We can then define effective
environment modes,

ˆ̃Bj =
∑

k

g∗j,kâk

ˆ̃B†j =
∑

k

gj,kâ
†
k,

(53)

allowing us to write the interaction Hamiltonian as,

ĤInt =
∑

j

L̂j
ˆ̃B†j + L̂†j

ˆ̃Bj , (54)

which is now of the form of the electron-phonon coupling in the Hubbard-Holstein model con-
sidered in the main text. However, we also need to consider the correlations between different
effective environment modes, which in general will be non-zero and so not independent,

〈 ˆ̃Bj′(t
′) ˆ̃B†j (t)〉 =

∑

k,k′

gj,kg
∗
j′,k′〈âk′(t′)â†k(t)〉

=
∑

k,k′

gj,kg
∗
j′,k′e

−iωkt+iωk′ t′〈âk′ â†k〉

=
∑

k,k′

gj,kg
∗
j′,k′e

−iωkt+iωk′ t′δk,k′

=
∑

k

gj,kg
∗
j′,ke

−iω(t−t′),

(55)

where in the second to last line, we have used the (zero-temperature) relation, 〈âk′ â†k〉 =

δk,k′ , valid if the operators â†k are the eigenmodes of the environment Hamiltonian, i.e. the

environment is a collection of non-interacting bosons ĤE =
∑

k ωkâ
†
kâk.

Next, we assume that the magnitudes of the coupling coefficients are homogeneous, but
there can be a relative phase factor,

gj,k = gke
−ikja, (56)

where a is the spacing between lattice sites. We then arrive at the expression for the correlation
functions,

〈B̃j′(t′)B̃†j (t)〉 =
∑

k

|gk|2e−ika(j−j′)e−iω(t−t′). (57)
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Following [167], we consider strong lattice confinement so that the eigenstates of the har-
monic oscillator can approximate the localized basis for the fermions. Then, the coupling
coefficients between such fermionic states and a continuous bosonic excitation in the environ-
ment described by a plane wave can be written as:

gα,βk ∝
∫

dzΦα∗(z)Φβ(z)e−ikz, (58)

where Φα(z) is the α-th eigenstate of the harmonic oscillator:

Φα(z) =
1√

2αn!
(πa2)−1/4e

z2

2azHα

(
z

az

)
, (59)

where az =
√

1/mωz and Hα are the Hermite polynomials. Assuming only the ground states
Φ0(z) to be occupied, we can compute the coupling coefficients exactly:

gk = ge−k
2a2/2, (60)

where we have assumed a momentum-independent prefactor g. We now consider a linear
dispersion relation ω = ck and insert the expression for gk into Eq. (57). If ka � 1, then
for j 6= j′, we get a large oscillating component in the sum, which leads to a vanishingly
small correlation. This corresponds to the so-called large wave-vector limit, which is valid if
the characteristic wavelength of excitations in the environment λeff is much smaller than the
spacing between system lattice sites. Approximating the sum with an integral for j = j′ we
obtain:

〈 ˆ̃Bj′(t
′) ˆ̃B†j (t)〉 =

∑

k

|gk|2e−iω(t−t′) ≈
∫ ∞

0
dk |gk|2e−ick(t−t′) ≈

∫ ∞

0
dk g2e−k

2a2−ick(t−t′)

=

√
π

a2
g2e−c

2/4a2(t−t′)2 ≡ α(t− t′).
(61)

In Fig. 19 we approximate the correlation function Eq. (61) via the Laplace-Pade method
[163]. It can be seen that already three complex exponentials suffice to reproduce the corre-
lation function fairly well.
This then allows us to connect our work presented here to a wider variety of more realistic
physical systems. An interesting future research direction would be analyzing what happens
when this small wavelength limit is not satisfied, giving rise to strong correlations between
the different environment modes.
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Figure 19: Bath correlation function Eq. (61) approximated with 1 and with 3 complex
exponentials via the Laplace-Pade method for c = g = a.

F Failure of the Markovian Description of the Dissipative Hub-
bard-Holstein Model

The non-Markovian method outlined in Sec. 2.2 and the Markovian one for the enlarged
physical system (electrons + phonons) discussed in Sec. 2.1 are numerically challenging. Thus,
one could wonder whether a much simpler Markovian master equation for the electronic system
only would suffice to describe the dynamics correctly. Such an equation was derived in [93]
and reads:

∂tρ̂ = −i[Ĥf, ρ̂] + g2
( L∑

j=1

n̂j ρ̂n̂j −
1

2
{(n̂j)2, ρ̂}

)
, (62)

where Ĥf is the Hubbard Hamiltonian, g the electron-phonon coupling and n̂j the number
operator acting on the j−th fermionic site. Note that the Linblad equation 62 has been
derived via the Markovian and the Born (i.e. weak coupling) approximation and is thus not
expected to provide a valid description for large values of the electron-phonon coupling g.
The exact-diagonalization comparison between the master equation for the enlarged system
Eq. (2) and the master equation for the electronic system only Eq. (62), shows that the latter
is not suited for describing the non-Markovian bath that arises when the phonons are traced
out.
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Figure 20: Comparison between a master equation for the ”electron + phonon” system and a
master equation for the electron system only. For all plots, the Hamiltonian parameters were
chosen to be U = J and ω = 2J . The dissipation strength κ was fixed to 0.1 J for the left
plots and 4 J for the right plots. The results obtained with the two methods strongly deviate
from one another, showing that the electron dynamics of the systems considered here cannot
be captured by the naive Lindblad master equation of the form 62.
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