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Abstract: PARP inhibitors, such as rucaparib, have been well characterized in metastatic castration-
resistant prostate cancer (mCRPC) associated with BRCA alterations, and the clinical activity of these
agents has also been evaluated in patients with mCRPC associated with alterations in other non-
BRCA DNA damage repair (DDR) genes, including RAD51B. There is likely a differential sensitivity
to PARP inhibition based on the specific DDR gene altered, but research in this area is limited
because of the low frequency of alterations in these genes. Here, we describe a mCRPC patient with
a truncating rearrangement of RAD51B who had a radiographic and PSA response when treated
with the PARP inhibitor rucaparib within the TRITON2 trial. We investigated the patients’ response
parameters, circulating tumor DNA (ctDNA) fraction and tumor genomics longitudinally, using
next-generation sequencing (NGS) of tissue and plasma. ctDNA fraction correlates with radiographic
and PSA response and is lower during times of response. NGS did not reveal any potential genomic
mechanism of acquired drug resistance. This case shows evidence for rucaparib activity in a rare
patient with mCRPC and a RAD51B truncation.
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1. Introduction

DNA repair is mediated by various proteins such as the poly(adenosine diphosphate
[ADP]-ribose) polymerase (PARP) enzymes, which are crucial for single-strand DNA
break repair, and by BRCA1, BRCA2, and RAD51, which are involved in homologous
recombination repair (HRR) [1–3]. In tumor cells with impaired HRR (e.g., through gene
alteration), the enzymatic inhibition of PARP proteins results in the accumulation of DNA
damage and cell death through an interaction known as synthetic lethality [4–6].

Rucaparib is a PARP inhibitor approved in the United States for the treatment of pa-
tients with deleterious BRCA1 or BRCA2 (BRCA) mutation-associated metastatic castration-
resistant prostate cancer (mCRPC) who have been treated with androgen receptor-directed
therapy and a taxane-based chemotherapy [7]. The accelerated approval of rucaparib as
a treatment for patients with mCRPC was based on the efficacy results from TRITON2
(NCT02952534), an international, multicenter phase II study of rucaparib in patients with
mCRPC and homologous recombination repair deficiency (HRD) [8].

In addition to evaluating patients with a BRCA alteration, TRITON2 investigated
rucaparib treatment in a smaller cohort of patients with mCRPC and with a non-BRCA
DNA damage repair (DDR) gene alteration [9], including RAD51B, one of the RAD51
paralogs involved in the HRR pathway [3,10]. Deleterious alterations of RAD51B in prostate
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cancer are rare and estimated to be present in roughly 0.56% of patients [11]. Here, we
report a case study of a patient with mCRPC and a RAD51B rearrangement, which is of
particular interest because data from patients with RAD51B alterations who were treated
with a PARP inhibitor are limited due to the low prevalence.

2. Case Report

In April 2006, a 63-year-old man, a former smoker with no family history of cancer, was
diagnosed with cT2 N0 M0 prostate cancer. The patient received a radical prostatectomy,
and the pathology report classified the tumor as pT3a Nx adenocarcinoma with a Gleason
score of 7 (3 + 4).

In May 2014, the patient was prescribed a short-course bicalutamide and started
long-term triptorelin as an androgen deprivation therapy (ADT) for bone and lymph node
metastases (Figure 1A). In February 2016, the confirmed diagnosis of mCRPC led to the
addition of abiraterone to ADT. With this regimen, the patient had a best response of stable
disease; however, the treatment was stopped in October 2017 (after 87 weeks of treatment)
due to a rise in prostate-specific antigen (PSA) values (doubling time of 2 months), with
confirmed progression in bone and lymph nodes. Docetaxel was initiated in November
2017, and the patient achieved a confirmed partial response per Response Evaluation
Criteria In Solid Tumors, version 1.1 (RECIST), as well as a PSA decrease >50%. Treatment
was discontinued in May 2018 (23 weeks, 8 cycles), and PSA values began to rise within
8 weeks, followed by pain that required palliative radiation (1 × 8 Gy) for a spinal cord
compression in late July 2018. Nodal and bone disease progression was confirmed in
August 2018 (Figure 2A).

In September 2018, the patient was enrolled in the TRITON2 study based on results
from genomic testing with the FoundationOne next-generation sequencing (NGS) assay
(Foundation Medicine, Cambridge, MA, USA) [12], which detected the presence of a
truncating RAD51B rearrangement in an archival tumor tissue biopsy obtained at the time
of diagnosis (June 2006; Table 1). The rearrangement was a fusion with ACTN1 resulting in
the deletion of exons 3 through 11 of RAD51B, which has a total of 11 exons. In addition,
a pathogenic TMPRSS2-ERG fusion and a deleterious RB1 rearrangement were detected.
NGS of a plasma sample collected prior to rucaparib treatment using the FoundationOne
Liquid CDx assay [13] detected the presence of additional somatic pathogenic alterations,
among them 2 TP53 mutations (Table 1, Table S1).

Table 1. Summary Of Longitudinal Genomic Testing.

Time Point Sample Type Assay ctDNA
Fraction

RAD51B/ACTN1
Rearrangement

TMPRSS2-ERG
Fusion TP53 Y220C

Archival Tissue FoundationOne NA Detected Detected Not detected

Pre-treatment Plasma FoundationOne
Liquid 15.5% Detected Detected Detected

Pre-treatment Plasma Guardant Omni 10.3% Detected Detected Detected

On-treatment
Week 60 Plasma Guardant Omni 1.3% Not Detected Not Detected Detected

On-treatment
Week 80 Plasma Guardant Omni 2.1% Not Detected Not Detected Detected

Post-progression
Week 106 Plasma Guardant Omni 9.6% Detected Detected Detected

Abbreviations: AF, allelic fraction; ctDNA, circulating tumor DNA.

No other potential drivers of the disease were identified, and all detected alterations
were confirmed to be of somatic origin using the Color Hereditary Cancer Test [14].

The patient started rucaparib at the recommended dose of 600 mg twice daily, but
hematologic toxicity, particularly anemia, led to several treatment interruptions with
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subsequent dose reductions to 200 mg twice daily; the patient ultimately received rucaparib
for 107 weeks (Figure 1A). At the start of TRITON2, the patient had more than 10 bone-
associated lesions and multiple soft-tissue lesions in the left shoulder, left scapula, and left
axillary and latero aortic lymph nodes. Treatment with rucaparib resulted in a confirmed
partial response per modified RECIST and/or Prostate Cancer Clinical Trials Working
Group 3 criteria (maximum of 81% decrease in target lesion diameters; Figures 1B and 2A)
lasting 80 weeks (December 2018 to July 2020), with no confirmed progression in the bone.
The patient also had a confirmed PSA response (≥50% decrease from baseline confirmed
by a second measurement ≥3 weeks later) (Figure 1B) lasting 64 weeks (October 2018
to January 2020) with a maximum decrease from the baseline of 99%. In comparison,
15 of 27 TRITON2 patients with a BRCA mutation and a radiographic response had a
duration of response ≥6 months, and the median time to PSA progression was 28 weeks
in all TRITON2 BRCA-mutated patients [8]. The patient discontinued due to clinical
disease progression at new sites in the left subclavicular and para-aortic areas in September
2020 (Figure 2B). Following discontinuation of rucaparib treatment, the patient received
enzalutamide 160 mg every day from September 2020 until December 2020 and died in
February 2021.
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Figure 1. (A) The clinical course of the patient, and (B) the evolution of PSA and tumor measurements
per RECIST with rucaparib. mCRPC, metastatic castration-resistant prostate cancer; mPC, metastatic
prostate cancer; NGS, next-generation sequencing; PC, prostate cancer; PSA, prostate-specific antigen;
RECIST, Response Evaluation Criteria In Solid Tumors, version 1.1; rPD, radiological progressive
disease; rPR, radiological partial response.
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best response (week 60 of rucaparib treatment) of nodal metastases and lytic bone metastases at the
target lesions. (B) Scans at the time of best response (week 60 of rucaparib treatment) compared with
scans after radiographic progression.

The longitudinal genomic profile of the patient was assessed through genomic testing
with the GuardantOMNI assay (Guardant Health, Redwood City, CA, USA) [15] of plasma
samples collected at the start of treatment (September 2018 [week 1]), at the nadir of
response (October 2019 [week 60]), after a rise in PSA following the confirmed response
(March 2020 [week 80]), and following progression (September 2020 [week 108]) to further
explore the genomic landscape. The RAD51B truncation was found in the archival tumor
sample obtained at the time of initial diagnosis, in the plasma obtained prior to rucaparib
treatment, and in the plasma after progression; however, the on-treatment plasma samples
taken around the time of best response contained less than 2% of cell-free tumor DNA,
and the RAD51B rearrangement was not detected due to the low (<10%) tumor fraction.
The tumor fraction of all plasma samples was low and ranged from 1.3% at the time of the
best radiographic response to 10.3% at the time of treatment (Table 1). In the progression
sample, no secondary alterations of RAD51B or other apparent mechanisms of reversion
were detected.

3. Discussion

While rucaparib and other PARP inhibitors have been perhaps best characterized in
mCRPC associated with BRCA alterations, the clinical activity of these agents has been
evaluated in patients with mCRPC associated with alterations in other non-BRCA DDR
genes, including RAD51B [16]. In the phase III PROfound study (NCT02987543), while
median progression-free survival was significantly longer with olaparib versus control
agents in men with mCRPC who had alterations in BRCA or ATM (7.4 vs. 3.6 months;
hazard ratio, 0.34 [95% CI, 0.25–0.47]; n = 245), more modest effects were seen in the
subgroup of patients with alterations in other DDR genes (4.8 vs. 3.3 months; hazard ratio,
0.88; n = 142) [16]. There is likely a differential sensitivity to PARP inhibition based on
the specific DDR gene altered, but research in this area is hindered by the low frequency
of these alterations: among the genomically selected PROfound patients, only 7 had an
alteration in RAD51B, including one in the olaparib group with a co-occurring alteration
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in ATM and another in the control group with a co-occurring alteration in BRCA2. For
patients who had a truncation RAD51B rearrangement without a co-occurring DDR gene
alteration (n = 5), the median imaging-based progression-free survival was 10.9 months in
the olaparib group (n = 4) and 1.8 months in the control group (n = 1) [16].

In the TRITON2 patient described here, we hypothesize the tumor response to ruca-
parib was likely driven by HRD caused by the truncating rearrangement of RAD51B. The
RAD51B truncation was found in the archival tumor sample obtained at the time of initial
diagnosis and in the plasma obtained prior to and post rucaparib treatment; however, the
on-treatment plasma samples at time of response contained very little circulating tumor
DNA, and the RAD51B rearrangement could not be detected. The tumor fraction of all
plasma samples was low, and all plasma samples had reduced sensitivity for deletion call-
ing. Therefore, the possibility of another undetected disease driver, such as homozygous
BRCA loss, cannot definitively be ruled out.

Treatment with rucaparib resulted in radiographic and PSA responses, and following
a dose reduction to mitigate adverse events, a continuation of treatment with rucaparib
200 mg twice daily allowed for the maintenance of the radiological response for over 1
year. The patient eventually developed new lesions in the left subclavicular and para-aortic
areas. However, enlargement was not witnessed in the target lesions of the left axillary
lymph nodes that were present at the start of rucaparib treatment, suggesting that the new
lesions may have potentially been due to the emergence of new cancer clones. While the
NGS analysis of postprogression plasma did not reveal any reversion mechanism or new
genomic clones, in the absence of NGS data from these new lesions, it is not possible to
confirm or reject this hypothesis.

In summary, this case shows evidence for rucaparib activity in the sole patient with a
genomic alteration of RAD51B enrolled in TRITON2, adding further data to suggest that
patients with mCRPC and alterations in DDR genes besides BRCA1 or BRCA2 may also
experience clinical benefits from treatment with a PARP inhibitor.
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