
Fast Bayesian inference using Laplace approximations
in nonparametric double additive location-scale models

with right- and interval-censored data

Philippe Lambert

Institut de Recherche en Sciences Sociales (IRSS), Méthodes Quantitatives en Sciences Sociales,
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Abstract

Penalized B-splines are commonly used in additive models to describe smooth
changes in a response with quantitative covariates. This is usually done through the
conditional mean in the exponential family using generalized additive models with
an indirect impact on other conditional moments. Another common strategy is to
focus on several low-order conditional moments, leaving the full conditional distri-
bution unspecified. Alternatively, a multi-parameter distribution could be assumed
for the response with several of its parameters jointly regressed on covariates using
additive expressions. The latter proposal for a right- or interval-censored continu-
ous response with a highly flexible and smooth nonparametric density is considered.
The focus is on location-scale models with additive terms in the conditional mean
and standard deviation. Starting from recent results in the Bayesian framework,
a fast converging algorithm is proposed to select penalty parameters from their
marginal posteriors. It is based on Laplace approximations of the conditional pos-
terior of the spline parameters. Simulations suggest that the estimators obtained in
this way have excellent frequentist properties and superior e�ciencies compared to
approaches with a working Gaussian assumption. The methodology is illustrated
by the analysis of right- and interval-censored income data.

Keywords: Location-scale model ; Dispersion model; Imprecise data ;
Interval-censoring ; P-splines ; Laplace approximation ; Constrained density
estimation.

1. Introduction

Additive models are flexible alternatives to the classical linear regression model
to describe in a flexible way the e↵ect of quantitative covariates on various aspects
of a response distribution. Early proposals focussed on the conditional mean with
limited assumptions on the conditional distribution of the response (Breiman and
Friedman, 1985). That idea was used to extend generalized linear models (GLM,
Nelder and Wedderburn, 1972) and the analysis of nonnormal data (such as counts
or proportions) in the framework of the exponential family of distributions: addi-
tive terms enter the GLM linear predictor (connecting covariates to a pre-specified
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function of the conditional mean) for a fixed value of the dispersion parameter,
yielding generalized additive models (GAM) (Hastie and Tibshirani, 1986, 1990),
see R-packages mgcv (Wood, 2017) and blapsr (Gressani and Lambert, 2021) for
an implementation in a frequentist or fully Bayesian framework, respectively. Fur-
ther extensions are possible by enabling covariates to also a↵ect other aspects of
the response distribution such as dispersion, skewness and kurtosis, see Lambert
and Lindsey (1999) for early work on this with the four parameters of the stable
distribution simultaneously modelled and Rigby and Stasinopoulos (2005) for an ex-
tension to a large choice of parametric distributions implemented in the R package
gamlss. Lee et al. (2006, Chap. 11) and Gijbels and Prosdocimi (2012) considered
joint additive models for location and dispersion within, respectively, the exponen-
tial and the double-exponential families of distributions, while Croux et al. (2012)
relied on a (robustified) extended quasi-likelihood method.

The focus will be on double additive models for the conditional mean and stan-
dard deviation in location-scale models with a nonparametric error distribution.
The response will be assumed continuous and possibly subject to right or interval-
censoring. Nonparametric inference from censored data in location-scale models
has been investigated by many authors, see e.g. Fan and Gijbels (1994) for early
work using local polynomials and Heuchenne and Van Keilegom (2010) with the
references therein for some more recent work. These methods typically focus on the
estimation of the conditional location and can only handle the estimation of the
smooth e↵ects of a very limited number of covariates. Additive models based on
P-splines (Eilers and Marx, 1996; Marx and Eilers, 1998; Lang and Brezger, 2004;
Gressani and Lambert, 2021) are preferred here for their excellent properties (Eilers
and Marx, 2010) and the possibility to handle a large number of additive terms.
They are used to specify the joint e↵ect of covariates on location and dispersion in
the framework of the location-scale model, see Section 2. A nonparametric error
distribution with an underlying smooth hazard function and fixed moments will
be assumed for the standardized error term, see Section 2.5. In the absence of
right-censoring, a location-scale model with a small number of additive terms and
a quartile-constrained error density (instead of the hazard here) was considered in
Lambert (2013) to analyse interval-censored data, with inference relying on a numer-
ically demanding MCMC algorithm. It is shown how Laplace approximations to the
conditional posterior of spline parameters can be combined to bring fast and reliable
estimation of the linear and additive terms in the location and dispersion models,
and provide a smooth estimate of the underlying error hazard function under mo-
ment constraints. These approximations are the cornerstones in the derivation of
the marginal posteriors for the penalty parameters and smoothness selection, see
Sections 2.4 and 2.5.5. The resulting estimation procedures are motivated using
Bayesian arguments and shown to own excellent frequentist properties, see Section
3 and Appendix B. They are extremely fast and can handle a large number of
additive terms within a few seconds even with pure R code. The methodology is
illustrated in Section 4 with the analysis of right- and interval-censored income data
in a survey. Section 5 closes the paper with a discussion and research perspectives.

2. Additive location-scale model

Consider a vector (Y, z,x) where Y is a univariate continuous response, z a
p�vector of categorical covariates, and x a J�vector of quantitative covariates.
The response could be subject to right-censoring, in which case one only observes
(T,�), where T = min{Y,C}, � = I(Y  C) and C denotes the right-censoring
value that we shall assume independent of Y given the covariates. The response
could also be interval-censored, meaning that it is only known to lie within an
interval (Y L

, Y
U ).
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Such settings are common not only in survival analysis when studying the time
elapsed between a clearly defined time origin and an event of interest, but also in
surveys when the respondent reports a quantitative response by pointing an interval
or a semi-interval in the partition of the variable support.

A location-scale model is considered to describe the distribution of the response
conditionally on the covariates,

Y = µ(z,x) + �(z,x)" , (1)

where µ(z,x) denotes the conditional location, �(z,x) the conditional dispersion,
and " an error term independent of z and x assumed to have fixed first and second
order moments. One could for example assume that E(") = 0 and V(") = 1. The
latter conditions lead to the interpretation of µ(z,x) and �(z,x) as the conditional
mean and standard deviation, respectively. Other constraints are possible such as in
Lambert (2013) where " was assumed to have a zero median and a unit interquantile
range, implying that µ(z,x) and �(z,x) had to be interpreted as the conditional
median and interquantile range.

Assume that independent copies (yi, zi,xi) (i = 1, . . . , n) are observed on n units
with the possibility of right or interval-censoring on yi as described above. Additive
models for the conditional location and dispersion of the response are specified,

�
µ(zi,xi)

�n
i=1

=

0

@�0 +
pX

k=1

�kzik +
JX

j=1

f
µ
j (xij)

1

A
n

i=1

= Z��� +
JX

j=1

fµj , (2)

�
log �(zi,xi)

�n
i=1

=

0

@�0 +
pX

k=1

�kzik +
JX

j=1

f
�
j (xij)

1

A
n

i=1

= Z��� +
JX

j=1

f�j , (3)

where fµ
j (·) and f

�
j (·) denote smooth additive terms quantifying the e↵ect of the jth

quantitative covariate on the conditional mean and dispersion, fµj =
�
f
µ
j (xij)

�n
i=1

and f�j =
�
f
�
j (xij)

�n
i=1

their values over units stacked in vectors, Z the n⇥ (1 + p)
design matrix with a column of 1’s for the intercept and one column per ad-
ditional categorical covariate. Now consider a basis of (L + 1) cubic B-splines
{s⇤j`(·)}

L+1
`=1 associated to equally spaced knots on the range (xmin

j , x
max
j ) of values

for xj . They are recentered for identification purposes in the additive model using

sj`(·) = s
⇤
j`(·) � 1

xmax
j �xmin

j

R xmax
j

xmin
j

s
⇤
j`(u)du (` = 1, . . . , L). Then, the additive terms

in the conditional location and dispersion models can be approximated using linear

combinations of these (recentered) B-splines, fµj =
⇣PL

`=1 sj`(xij)✓
µ
`j

⌘n

i=1
= Sj✓✓✓

µ
j ,

f�j =
⇣PL

`=1 sj`(xij)✓�`j

⌘n

i=1
= Sj✓✓✓

�
j , where [Sj ]i` = sj`(xij),

�
✓✓✓
µ
j

�
`
= ✓

µ
`j and

�
✓✓✓
�
j

�
`
= ✓

�
`j . Hence, using vectorial notations, the expressions for the conditional lo-

cation and dispersion in (2) and (3) can be rewritten as
�
µi = µ(zi,xi)

�n
i=1

= X   µ,�
�i = �(zi,xi)

�n
i=1

= exp
�
X   �

�
with design matrix X = [Z,S1, . . . ,SJ ] = [Z,S] 2

IRn⇥q; matrices of spline parameters (with one column per additive term) ⇥µ =
[✓✓✓µ1 , . . . ,✓✓✓

µ
J ], ⇥

� = [✓✓✓�1 , . . . ,✓✓✓
�
J ] in IRL⇥J ; vectors of (stacked) regression parameters

   
µ =

�
���, vec(⇥µ)

�
,    � =

�
���, vec(⇥�)

�
in IRq, where q = (1 + p + JL). Di↵erent

subsets of covariates could be selected for the location and dispersion submodels.
With p1 (resp. p2) covariates and a B-spline basis of size L1 (resp.L2) for each of the
J1 (resp. J2) additive terms in the location (resp. dispersion) model, we would end
up with design matrices X µ = [Zµ

,Sµ] 2 IRn⇥q1 (resp.X � = [Z�
,S�] 2 IRn⇥q2)

with q1 = (1 + p1 + J1L1) (resp. q2 = (1 + p2 + J2L2)) such that
�
µi

�n
i=1

= X µ
   

µ
,�

�i

�n
i=1

= exp
�
X �

   
�
�
.
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2.1. Penalized log-likelihood for the joint regression model

Estimation of the regression parameters and of the additive terms (for given
penalty parameters) can be made using penalized likelihood. Denote by D the
available data (including covariates) and by f✏(· ;���) (resp.S✏(· ;���)) the conditional
density (resp. survival function) of the standardized error term ✏ in (1) with a pos-
sible dependence on a set of parameters ���. The contribution `i = `i(   µ

,   
�
,���;D)

of unit i to the log-likelihood `(   µ
,   

�
,���;D) =

P
i `i will depend on the censoring

status of the observed response yi:

– Uncensored yi = ti: then, the corresponding standardized error term ei is equal
to ri = (yi � µi)/�i with log-likelihood contribution `i = � log �i + log f✏(ri).

– Right-censored at yi > ti: then, the corresponding standardized error term is
ei > ri = (ti � µi)/�i with log-likelihood contribution `i = logS✏(ri).

– Interval-censored with yi 2 (yLi , y
R
i ): then, the log-likelihood contribution is

`i = log
�
S(rLi )� S(rRi )

�
as ei 2 (rLi , r

R
i ) where r

L
i = (yLi � µi)/�i and r

R
i =

(yRi � µi)/�i.

Smoothness of the additive terms can be tuned by penalizing changes in di↵erences
of neighbour spline parameters (Eilers and Marx, 1996, 2010; Marx and Eilers,
1998). In a frequentist framework, this can be done by adding one penalty (to
the log-likelihood) per additive term. When penalizing second-order di↵erences in
the location model, the penalty for the jth additive term (j = 1, . . . , J1) becomes

�
µ
j

PL1�2
`=1 {(✓µ`+2,j � ✓

µ
`+1,j) � (✓µ`+1,j � ✓

µ
`,j)}2 = �

µ
j

P
`

�
Dµ

✓✓✓
µ
j

�2
`
= ✓✓✓

µ
j
>
(�µjP

µ)✓✓✓µj ,

where Dµ denotes the corresponding di↵erence matrix and Pµ = (Dµ)>Dµ the
associated penalty matrix. At the limit, as �µj ! +1, the estimated second-
order di↵erences will tend to zero, forcing the estimate of the function f

µ
j (xj) to

be linear. Similar penalties with penalty parameters ��j can be defined for each
additive term in the dispersion model. Other penalty orders or penalty matrices
could be preferred.

2.2. Bayesian specification

In a Bayesian framework, similar penalties arise through the specification of
conditional priors for the spline parameters (Lang and Brezger, 2004), yielding for
the jth additive terms in the location and dispersion models,

p(✓✓✓µj |�
µ
j ) / exp

✓
�1

2
✓✓✓
µ
j
>
(�µjP

µ)✓✓✓µj

◆
; p(✓✓✓�j |��j ) / exp

✓
�1

2
✓✓✓
�
j
>(��jP

�)✓✓✓�j

◆
.

Assuming joint Normal priors for the intercepts and the regression parameters as-

sociated to the other covariates z, ��� ⇠ N
⇣
b̃, (Qµ)�1

⌘
, ��� ⇠ N

⇣
d̃, (Q�)�1

⌘
, the

joint priors for the regression and spline parameters in    µ and    � induce Gaussian
Markov random fields (GMRF) (Rue and Held, 2005) as they can be written as

p(   µ|���µ) / exp

✓
�1

2
(   µ � b)>Kµ

�(   
µ � b)

◆
;

p(   �|����) / exp

✓
�1

2
(   � � d)>K�

�(   
� � d)

◆
,

where b = (b̃,0J1L1), Kµ
� = diag

�
Qµ

,Pµ
�

�
, Pµ

� = ⇤⇤⇤µ ⌦ Pµ, [⇤⇤⇤µ]jj0 = �jj0�
µ
j ,

d = (d̃,0J2L2), K
�
� = diag

�
Q�

,P�
�

�
, P�

� = ⇤⇤⇤� ⌦ P� and [⇤⇤⇤�]jj0 = �jj0�
�
j . Then

the joint posterior for the parameters is

p(   µ
,   

�
,���

µ
,���

�
,���|D) / L(   µ

,   
�
,���;D) p(   µ|���µ) p(   �|����) p(���µ) p(����) p(���).
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2.3. Estimation of    
µ
and    

�

The estimation of the regression parameters    = (   µ
,   

�) 2 IRq1+q2 will be
made iteratively and conditionally on the error density f✏(· ;���) and the penalty
parameters ��� = (���µ,����) 2 IRJ1+J2

+ . It is based on their joint conditional posterior:

p(   |���,���,D) / L(   µ
,   

�
,���;D) p(   µ|���µ) p(   �|����). (4)

The conditional posterior mode  ̂  � for    given ��� and ��� is computed using a Newton-
Raphson (N-R) algorithm built upon the gradient U� and the Hessian H� of the
log of (4),

U� =

✓
Uµ

�
U�

�

◆
; H� =

2

4
Hµµ

� Hµ�
�

H�µ
� H��

�

3

5 ,

with closed form expressions for these quantities given in Appendix A. It leads
to Algorithm 1 for the estimation of the regression parameters    µ and    

�. At
convergence, after a few iterations, one obtains the conditional posterior mode  ̂  �

with negative inverse Hessian ⌃� = (�H�( ̂  �))
�1, yielding the following Laplace

approximation to the conditional posterior of    : (   |���,���,D) ⇠̇ N
⇣
 ̂  �,⌃�

⌘
. Correc-

tions to the so-obtained point estimates for the regression parameters could be made
using the same type of arguments as with restricted maximum likelihood (REML)
in the frequentist literature, see Jørgensen and Knudsen (2004) for some details in
the framework of dispersion models. In our context, we explored the extraction of
point estimates for    � using an approximation to its marginal posterior,

p(   �|���,���,D) =
p(   µ

,   
�|���,���,D)

p(   µ|   �,���,���,D)
=

p( ̂  
µ

�,   
�|���,���,D)

p( ̂  
µ

�|   �,���,���,D)

/̇ L( ̂  
µ

�,   
�
,���;D) p(   �|����)

���Hµµ
�

���1/2
.

It reduces the bias in the estimation of the intercept �0 with a growing impact
when information gets scarce such as with small sample sizes or large censoring
rates. However, we will not explore it further here, as our interest lies mainly in
estimating the e↵ects of covariates.

Algorithm 1: Estimation of    µ and    � (for given ��� and ���)

Input: Penalty parameters ��� and standardized error distribution
parameters ���

Output:  ̂  � (for given ��� and ���) ; Dr: the set of standardized residuals ri
(potentially right-censored or interval-censored (rLi , r

R
i )).

repeat
1. Set µi  � µ(zµi ,x

µ
i ;   

µ
�) and �i  � �(z�i ,x�

i ;   
�
�) for 1  i  n.

2. Set ri  � (yi � µi)/�i if yi observed or right-censored ; set
r
L
i  � (yLi � µi)/�i and r

R
i  � (yRi � µi)/�i if yi interval-censored.

3. Recompute vectors !!!µ, !!!�, wµµ, w��
,wµ� and set matrices

Wµµ  � diag(wµµ), W��  � diag(w��), Wµ�  � diag(wµ�) using
(A.3) and (A.4).
4. Evaluate U� and H� using (A.1) and (A.2).
5. Update    �  �    � �H�1

� U� with step-halving if found necessary
from the monitoring of p(   |���,���, D).

until ||U�||1 < ✏;
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2.4. Selection of the penalty parameters ���
µ
and ���

�

Starting from the joint posterior for the model parameters, we have (with an
implicit dependence on the standardized error distribution and its parameter(s) ���)
the following identity for the marginal posterior of ���:

p(���|D) =
p(   ,���|D)

p(   |���,D)
. (5)

Given the conditional GMRF prior for    , see Section 2.2, we conclude that the con-
ditional posterior in the denominator is approximately Gaussian (Rue and Martino,

2009). Using a Laplace approximation, we obtain (   |���,D) ⇠̇ N
⇣
 ̂  �,⌃�

⌘
, where

 ̂  � denotes the conditional posterior mode of    (obtained using Algorithm 1) and
variance-covariance matrix

⌃� =


�Hµµ

� �Hµ�
�

�H�µ
� �H��

�

��1

, (6)

with submatrix expressions given in (A.2), (A.3), (A.4), see also Tierney and Kadane
(1986) for general arguments for such an approximation to the marginal posterior

of ���. Evaluating the RHS of (5) at  ̂  � with the preceding Laplace approximation
substituted in the denominator, we approximate p(���|D) by

p̃(���|D) / p( ̂  �,���|D)
��⌃�1

�

���1/2
. (7)

Wood and Fasiolo (2017, Section 4) obtained a similar starting expression to build
their proposal for the selection of penalty parameters in an additive regression
model with a parametric error distribution. In a full Bayesian approach, Gres-
sani and Lambert (2018) also followed that strategy in cure survival models where
splines were used to specify the baseline hazard function for susceptible subjects. It
was further explored in the exponential family with generalized additive models in
Gressani and Lambert (2021) and the associated R package blapsr available from
the o�cial R repository.

A direct maximization of (7) provides the desired point selection for ���. We have
also investigated an iterative two-step strategy alternating the update of ���µ and ����

to select a value denoted �̂�� for ���. Dropping the cross-derivatives between  µ and
 
� in the expression for ⌃�1

� in (6) yields the approximations

p̃(���µ|����,D) / p( ̂  �,���|D)
��X µ>WµµX µ +Kµ

�

���1/2
;

p̃(����|���µ,D) / p( ̂  �,���|D)
��X �>W��X � +K�

�

���1/2
,

(8)

with Wµµ and W�� given in Appendix A. Dropping the µ or � superscript and
letting

M = S>WS � S>WZ(Z>WZ+Q)�1Z>WS, (9)

each determinant in (8) can be rewritten as
��X>WX +K�

�� =
��Z>WZ+Q

�� ��M+P�

��,

where only the last factor directly depends on the penalty parameters ���. Combined
with (8) and taking �µj ⇠ G

�
1, bµ = 10�4

�
, we conclude that

log p̃(���µ|����,D) =̇ log p( ̂  �,���|D)� 1

2
log

��Mµ +Pµ
�

�� (10)

= `( ̂  �;D) +
J1X

j=1

⇢
L1 � ⇢(Pµ)

2
log �µj �

✓
b
µ +

1

2
(✓̂✓✓

µ

j�)
>Pµ

✓̂✓✓
µ

j�

◆
�
µ
j

�

� 1

2
log

��Mµ +Pµ
�

�� .
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The indirect dependence of the log-likelihood and of Mµ on �µ (through  ̂  � and
Wµµ) will be ignored during the computation of the gradient U�µ

and Hessian H�µ

as (non reported) numerical simulations suggest that this dependence is moderate.
The simulation study in Section 3 also reports satisfactory estimates for the additive
terms in the considered settings. Practically, in an iterative maximization of (10)

using the N-R algorithm, we fix `( ̂  �;D) and Mµ at their values ˘̀ and M̆µ at the
beginning of the iteration, and compute the gradient and Hessian of

log p̆(���µ|����,D) = ˘̀+
J1X

j=1

⇢
L1 � ⇢(Pµ)

2
log �µj �

✓
b
µ +

1

2
(✓̂✓✓

µ

j�)
>Pµ

✓̂✓✓
µ

j�

◆
�
µ
j

�

� 1

2
log

��M̆µ +Pµ
�

�� .

Let R̆µ
j = R̆µ

j (���
µ) =

�
M̆µ +Pµ

�

��1 �
(111j111>j )⌦Pµ

�
for j = 1, . . . , J1 where 111j

denotes the jth unit vector. Then, using results on the derivative of determinants
and after some algebra, on can show that

�
Ŭ�µ�

j
=
@ log p̆(���µ|����,D)

@�
µ
j

=
L1 � ⇢(Pµ)

2�µj
�
✓
b
µ +

1

2
(✓̂✓✓

µ

j�)
>Pµ

✓̂✓✓
µ

j�

◆
� 1

2
tr
⇣
R̆µ

j

⌘
,

�[H̆�µ

]jk = �@
2 log p̆(���µ|����,D)

@�
µ
j @�

µ
k

=
L1 � ⇢(Pµ)

2(�µj )
2 �jk �

1

2
tr
⇣
R̆µ

j R̆
µ
k

⌘
.

(11)

Similar expressions can be obtained for (����|���µ,D) by switching the role of µ and
� as superscripts, giving Ŭ��

and H̆��

. Define ⌫⌫⌫µ 2 IRJ1 and ⌫⌫⌫
� 2 IRJ2 such

that ���µ = �
µ
min + exp(⌫⌫⌫µ) and ���� = �

�
min + exp(⌫⌫⌫�) with �

µ
min and �

�
mindenoting

the smallest desirable values for the penalty parameter of an additive term. Then,
using the chain rule, one can show that the gradient and Hessian for functions

g(⌫⌫⌫µ) = log p̃(���µ|����,D) ; g(⌫⌫⌫�) = log p̃(����|���µ,D) , (12)

are given by

(Ŭ⌫⇣

)j = exp(⌫⇣j )(Ŭ
�⇣

)j ,

(H̆⌫⇣

)jk = exp(⌫⇣j + ⌫
⇣
k)(H̆

�⇣

)jk + �jk exp(⌫
⇣
j )(Ŭ

�⇣

)j ,

(13)

where ⇣ 2 {µ,�}, 1  j, k  J1 for ⌫⌫⌫µ and 1  j, k  J2 for ⌫⌫⌫�. In the two-
step strategy mentioned above and detailed in Algorithm 2, the penalty parameters
are selected to maximize each function in (12) in an iterative procedure involving

Newton-Raphson algorithms, yielding at convergence �̂��
µ
, �̂��

�
and  ̂  � for a given

value of ���.

2.5. Nonparametric pivotal density

2.5.1. Density specification

Besides classical parametric choices for the distribution of the standardized error
term ✏, nonparametric forms could be preferred. Here, we propose to specify that
distribution through the associated hazard h✏(·) function using a linear combination

of K B-splines, log h✏(r) =
PK

k=1 bk(r)�k, where {bk(·) : k = 1, . . . ,K} denotes a
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Algorithm 2: Selection of ��� and estimation of    � (for given ���)

Input: Spline parameters ��� specifying the standardized error density ;
data D with a location-scale model specified in (2) and (3).

Output: Selected ��� and estimated  ̂  � (for given ���) ; the resulting
standardized residuals Dr.

repeat

Compute  ̂  � and Dr using Algorithm 1 for given ��� and ���

Set ˘̀ � `( ̂  �;D) using Sect. 2.1 and update M̆µ, M̆� using (9)
repeat

Evaluate Ŭ⌫µ

and H̆⌫µ

using (11) & (13)
⌫⌫⌫
µ  � ⌫⌫⌫µ � (H̆⌫µ

)�1Ŭ⌫µ

���
µ  � �µmin + exp(⌫⌫⌫µ)

until ||Ŭ⌫µ ||1 < ✏;
repeat

Evaluate Ŭ⌫�

and H̆⌫�

using (11) & (13)
⌫⌫⌫
�  � ⌫⌫⌫� � (H̆⌫�

)�1Ŭ⌫�

���
�  � ��min + exp(⌫⌫⌫�)

until ||Ŭ⌫� ||1 < ✏;
until convergence;

large B-spline basis associated to an equidistant grid of knots on the support of
the distribution. Given the constraints E(") = 0 and V(") = 1, one can practically
assume (using Chebyshev’s theorem) that (most of) the probability mass is on
compact support (rmin, rmax) (= (�6, 6), say). Our approach is to some extent
connected to the proposal made by Cai et al. (2002) with a (truncated) linear spline
basis in a mixed model framework. We go further here by considering interval-
censored data and moment constraints for the underlying density function. Note
that starting from the hazard function to estimate the underlying distribution does
not imply that the variable must be positive. The only requirement is the selection
of a (conservative) lower bound for the support of the standardized error term. A
spline approximation to the log-density could also be considered (Eilers and Marx,
1996; Kooperberg and Stone, 1991; Lambert and Eilers, 2009; Lambert, 2011), but a
construct based on the hazard function turns out to be analytically more convenient
to handle censored data, see below.

2.5.2. Density estimation from i.i.d. right-censored data

We now detail how we propose to estimate the spline coe�cients ��� in the frame-
work of Bayesian P-splines from potentially right- or even interval-censored data
gathered in Dr.

Denote by {Jj = [aj�1, aj)}Jj=1 a partition of (rmin, rmax) into a very large

number J of bins of equal width � with midpoints {uj}Jj=1. Given a random sample
of n i.i.d. observations ri (i = 1, . . . , n) for a potentially right-censored (coded by
di = 0 and 1 otherwise) variable ", let kj =

Pn
i=1 kij and nj =

Pn
i=1 nij with

kij = (ri 2 Jj) (di = 1) and nij = (ri � aj�1) = (ri 2 [s�jJs). The
log-likelihood for the estimation of the spline parameters ��� = (�1, . . . ,�K) from
right-censored data can be written as

`(���|Dr) =
nX

i=1

�
di log h✏(ri)�H✏(ri)

 
⇡

JX

j=1

(kj log hj � njhj�) , (14)
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with hj = h✏(uj) = exp{
PK

k=1 bk(uj)�k} where the approximation in (14) comes
from data binning and quadrature to approximate the cumulative hazard function.
Following Eilers and Marx (1996), we penalize rth order di↵erences of successive
spline parameters, yielding the penalized log-likelihood, `p(���|⌧,Dr) = `(���|Dr) �
⌧
2�
��
>P���, with penalty matrix P of rank (K � r). Given the expressions for the

gradient and Hessian,

U⌧ (���) =
@`p

@���
= B>(k� nh�)� ⌧P��� ; (15)

�H⌧ (���) = �
@
2
`p

@���@���>
= B>diag(nh�)B+ ⌧P, (16)

where [B]jk = bk(uj), k = (kj)Jj=1, n = (nj)Jj=1, h = (hj)Jj=1, one can use the
(fast converging) Newton-Raphson procedure to obtain spline parameter estimates
for a given value of the penalty parameter ⌧ , with at each iteration, ���  � ��� ��
H⌧ (���)

��1
U⌧ (���), yielding �̂��⌧ at convergence.

2.5.3. Inclusion of interval-censored data

The contribution of interval-censored units to kj and nj can also be included
and reevaluated at every iteration of the preceding Newton-Raphson procedure.
Denote the hazard and density estimates from the previous iteration by h̃✏(·) and
f̃✏(·) = h̃✏(·) exp(�H̃✏(·)), and let ⇡̃j =

R
Jj

f̃✏(r)dr ⇡ f̃✏(uj)�. Consider an interval-

censored observation ri 2 (rLi , r
R
i ) and let Gi = {j : Jj \ (rLi , r

R
i ) 6= ;}. Then,

the contribution of unit i to the previously defined kj and nj are given by kij =

⇡̃j/
P

s2Gi
⇡̃s (j 2 Gi) and nij = (j < minGi) +

PmaxGi

s=j ⇡̃s/
P

s2Gi
⇡̃s (j 2 Gi),

respectively. At convergence, the procedure in Section 2.5.2 with, now, interval-
censored data entering the computation of kj and nj will provide an estimate �̂��⌧ of
the spline parameters ��� for given ⌧ and, hence, of the density estimate underlying
the potentially right- or interval-censored observations.

2.5.4. Density estimation with moment constraints

Constraints on the mean and variance of the underlying distribution can also
be enforced. More generally, consider a set of (potentially) nonlinear constraints
Fs(���) = fs (s = 1, . . . , S) shortly denoted vectorially by FFF (���) = f . At every
iteration of the preceding Newton-Raphson procedure, we suggest to linearize each
constraint using a first-order Taylor expansion about the current estimate �̃�� of

the spline parameters, F̃s(���) = Fs(�̃��) + ṽ>
s (��� � �̃��) with ṽs = @Fs(�̃��)

@��� . Hence,

letting Ṽ = [ṽ1, . . . , ṽS ]> 2 IRS⇥K , a linearized version of the constraints is Ṽ��� =
c̃ with c̃ = Ṽ�̃��+ (f �FFF (�̃��)). The estimation of the spline parameters under these
linearized constraints can be made using the Lagrangian

G(���,!!!) = `p(���|⌧,Dr)�!!!>(Ṽ���� c̃), (17)

with Lagrange multipliers !!!. Practically, at every iteration of a Newton-Raphson
procedure, the preceding values (�̃��, !̃!!) of the spline parameters and Lagrange mul-
tipliers are updated using

✓
�̃��

!̃!!

◆
 �

✓
�̃��

!̃!!

◆
�

2

4
@2`p(�̃��|⌧,Dr)

@���@���> �Ṽ>

�Ṽ 0

3

5
�10

@
@`p(�̃��|⌧,Dr)

@��� � Ṽ>
!̃!!

�Ṽ�̃��+ c̃

1

A , (18)

with partial derivatives of the penalized log-likelihood given in (15) and (16).
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Now consider specific constraints on the spline parameters based on the first
two moments (S = 2) of the density, remembering that f(uj) = hj exp(�Hj) (and
letting �! 0+):

E(✏) = µ✏ = 0, F1(���) =
JX

j=1

ujhj exp(�Hj)� = 0 = f1 ;

V(✏) = �
2
✏ = 1, F2(���) =

JX

j=1

u
2
jhj exp(�Hj)�� F1(���)

2 = 1 = f2 .

Let h̃j = h̃✏(uj), H̃j =
P

`j h̃j�, f̃j = h̃j exp(�H̃j) and bjk = bk(uj). Then,

one can show that Ṽ1k = @F1(�̃��)
@�k

=
PJ

j=1 uj f̃j�
⇣
bjk �

P
`j b`kh̃`�

⌘
and Ṽ2k =

@F2(�̃��)
@�k

=
PJ

j=1 u
2
j f̃j�

⇣
bjk �

P
`j b`kh̃`�

⌘
� 2F1(�̃��) Ṽ1k. Combining these last

results with the elements from Sections 2.5.2 and 2.5.3, one can estimate the spline
parameters underlying the hazard and, hence, the density, for given (potentially)
right- or interval-censored data and penalty parameter ⌧ . The following section is
devoted to the selection of ⌧ .

2.5.5. Selection of the penalty parameter ⌧

Given the following priors,

⌧ ⇠ G (1, b) ; p(���|⌧) / ⌧
K�r

2 exp
⇣
�⌧
2
���
>P���

⌘
, (19)

the joint posterior for the spline and the penalty parameters (���, ⌧) are

p(���, ⌧ |D) / exp{`(���|Dr)} p(���|⌧) p(⌧) = exp{`p(���|⌧,Dr)} ⌧
K�r

2 p(⌧). (20)

Using the same arguments as in Section 2.4 for (   |���, D), the conditional poste-
rior for the spline parameters, p(���|⌧, D) / exp{`p(���|⌧,Dr)}, can be shown to be
approximately

(���|⌧,Dr) ⇠̇ N
⇣
�̂��⌧ , ⌃̂⌧

⌘
, (21)

where �̂��⌧ denotes the conditional posterior mode (equal to the penalized MLE of

��� given ⌧ , see Sections 2.5.2 and 2.5.3), ⌃̂�1
⌧ = �H⌧ (�̂��⌧ ) = B>W⌧B + ⌧P, see

(16), with W⌧ = diag(w⌧ ), w⌧ = nĥ⌧� and ĥ⌧ giving the estimated hazard at the

bin midpoints when ��� = �̂��⌧ . Given that the number of observations (k)j in bin
Jj has expected value (w)j = (nh�)j , one might reasonably approximate the last

variance-covariance matrix by ⌃̂�1
⌧ ⇡ B>WB + ⌧P with W = diag(k), thereby

restricting its explicit dependence on ⌧ to the ⌧P term. The marginal posterior for
⌧ is given by

p(⌧ |Dr) =
p(���, ⌧ |Dr)

p(���|⌧,Dr)
/̇ p(�̂��⌧ , ⌧ |Dr) |B>WB+ ⌧P|�1/2

, (22)

with the approximation coming from (21) and the substitution of W⌧ by W.
Now consider a singular value decomposition of penalty matrix, P = U⌥⌥⌥U>,
where U = [U1 U0], U>U = IK , ⌥⌥⌥ = blockdiag(⌥⌥⌥1,0r), with the last r di-
agonal elements of ⌥⌥⌥ = diag(���) being zero. Then, using properties of determi-
nants and defining B̃ = W1/2BU, B̃1 = W1/2BU1, B̃0 = W1/2BU0, M =
B̃>

1 B̃1 � B̃>
1 B̃0(B̃>

0 B̃0)�1B̃>
0 B̃1, one has

|B>WB+ ⌧P| = |B̃>
0 B̃0| |⌥1| ⌧K�r

K�rY

j=1

✓
1 +

nm̃j

⌧

◆
, (23)

10



where fM = 1
n⌥

�1/2
1 M⌥�1/2

1 has eigenvalues {m̃j}K�r
j=1 independent of ⌧ . Combin-

ing (19), (20), (22) and (23), one has

log p(⌧ |Dr) =̇ `p(�̂��⌧ |⌧,Dr) + log p(⌧)� 1

2

K�rX

j=1

log

✓
1 +

nm̃j

⌧

◆

= `(�̂��⌧ |Dr)� ⌧
✓
b+

1

2
�̂��
>
⌧ P�̂��⌧

◆
� 1

2

K�rX

j=1

log

✓
1 +

nm̃j

⌧

◆
, (24)

suggesting Algorithm 3 to select ⌧ .
For example, with a dataset of size n = 1000 including 40% uncensored, 40%

interval-censored and 20% right-censored data, the selection of ⌧ and the estimation
of K = 50 B-spline parameters (an unnecessary very large K used to challenge
Algorithm 3) took 6 iterations and one tenth of a second using pure R code on
a low-end desktop computer. The specified constraints on the values of the first
two moments were perfectly met (up to the numerical tolerance specified by the
user) in this example and when estimating the standardized error distribution in
the location-scale models fitted to the many datasets generated in Section 3 under
di↵erent right- and interval-censoring schemes.

2.6. Algorithm for fitting the NP additive location-scale model

We now have all the necessary ingredients for fitting the nonparametric double
additive location-scale model (NP-DALSM) from possibly right- or even interval-
censored data. Algorithm 4 is iterative and alternates the estimation of the regres-
sion and spline parameters in the location and dispersion submodels (Step 1) with
the estimation of the standardized error density (Step 2). Possible starting values
for that algorithm are obtained by:

– Assuming a Gaussian standardized error distribution ;

– Discarding right-censored data and setting interval-censored ones to their mid-
point value, yielding a reduced response vector ỹyy with an associated design matrix
X̃ µ for the additive location submodel ;

– Setting the elements in penalty vectors ���µ and ���� to a moderately large value
(100, say) ;

– Estimating    µ using penalized LS:    µ  �
⇣
X̃ µ>X̃ µ +Kµ

�

⌘�1
X̃ µ>

ỹyy ;

– Fixing    � to zero, except its first component �0 set to the log of the mean squared
error.

One major advantage of our proposal is the simultaneous update and estimation
of the regression and spline parameters in the additive submodels for location and
dispersion. The penalty parameters tuning the smoothness of the additive terms
are jointly and automatically selected using a Newton-Raphson procedure based on
approximate analytical expressions for the gradient and Hessian of their marginal
posterior. And last but not least, the standardized error distribution is also es-
timated through the underlying (log-)hazard expressed as a linear combination of
(penalized) P-splines with a penalty parameter selected to maximize its marginal
posterior density. The whole procedure is able to handle right- or interval-censored
response data.

Convergence of Algorithm 4 is very fast with the suggested initial conditions.
It is implemented using pure R code in the package DALSM that can be obtained
from the author’s website or from the GitHub repository at https://github.com/
plambertULiege/.
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Algorithm 3: Constrained density estimation (selection of ⌧ and estima-
tion of ��� under constraints FFF (���) = f)

Goal: Smooth estimation of a density distribution f(e) on a compact
support (emin, emax) and modelled as
f(e|���) = h(e|���) exp(�

R e
emin

h(s|���)ds) where
h(e|���) = exp

⇣P
k bk(e)�k

⌘
.

Input: Set of independent data Dr potentially right- or interval-censored ;
the distribution support ; constraints FFF (���) = f .

Output: Penalized estimation �̂��⌧ of ��� following the selection of the
penalty parameter ⌧ .

Principle:
repeat

�̂��⌧  � argmax� p(���|⌧,Dr) under the constraints FFF (���) = f ;

�̂�� � �̂��⌧
⌧  � argmax⌧ p(�̂��, ⌧ |Dr) |B>WB+ ⌧P|�1/2.

until convergence;

Practically:
repeat

1. Given the current estimate for ⌧ , maximize the Lagrangian in (17) by

repeating the Newton-Raphson step in (18) till convergence to �̂��⌧ .
2. Update ⌧ by using the fixed-point method on the partial derivative of
(24) w.r.t. ⌧ set to zero. Specifically:

(a) Set �̂�� � �̂��⌧
(b) repeat

⌧  �
K�rX

j=1

nm̃j

⌧ + nm̃j
/

⇣
2b+ ���

>P���
⌘
.

until convergence;
until convergence;

At convergence, it yields (⌧, �̂�� = �̂��⌧ ) and ĥ(·) = exp
⇣PK

k=1 bk(·)�̂k
⌘
.

Algorithm 4: Fitting the nonparametric DALSM model (NP-DALSM)

Goal: Fit of the NP-DALSM model described in (1), (2), (3) given data D.
Input: Data D and DALSM model specification.
Output: Selected ���, estimated regression parameters    � and standardized

error density f✏(·|���).
repeat

1. Select ���, estimate    � and compute Dr using Algorithm 2 with data
D for a given ��� ;
2. Update ��� using Algorithm 3 with data Dr and constraints
F1(���) = E(✏|���) = 0 and F2(���) = V(✏|���) = 1.

until convergence;
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3. Simulation study

An extended simulation study was made to evaluate the performances of the
proposed algorithm to fit the nonparametric additive location-scale model. The
data were simulated with conditional location and dispersion given by, respectively,

µ(zµ,xµ) = (�0 + �1z
µ
1 + �2z

µ
2 ) + f

µ
1 (x

µ
1 ) + f

µ
2 (x

µ
2 ),

log �(z�,x�) = (�0 + �1z
�
1 + �2z

�
2 ) + f

�
1 (x

�
1 ) + f

�
2 (x

�
2 ).

(25)

Di↵erent combinations of sample sizes n (= 1500, 500, 250), right-censoring (RC =
0%, 25%, 50%) rates and interval-censoring (IC = 0%, 25%, 50%) rates were consid-
ered. The standardized error term (with mean 0 and variance 1) in (1) was taken to
have a Normal mixture distribution, ✏ ⇠ .8N

�
�0.414, 0.5382

�
+.2N

�
1.655, 0.6462

�
,

see Fig. B.8. For each of the n units, the pair of covariates (p1 = p2 = 2) with
linear e↵ects in (25) were independently generated from Bernoulli and Normal dis-
tributions, zµ1 , z

�
1 ⇠ Bern(.6) ; z

µ
2 , z

�
2 ⇠ N (0, 1) , with regression parameters ��� =

(1.6, .3, .75), ��� = (�.5,�.03, .01). Two (= J1 = J2) additive terms per regression
submodel were added, fµ

1 (x) = .113� .4
p
x sin(1.2⇡x), fµ

2 (x) = .586� .3(x2+ .3)�1,
f
�
1 (x) = �0.158 + 0.15x + 0.25x2, f�

2 (x) = 12(x � 0.5)3, with x
µ
1 , x

µ
2 , x

�
1 , x

�
1 gen-

erated independently from a uniform distribution on (0, 1), see the solid curves on
Fig. B.6 for a graphical representation. For each of the n units, covariates were first
sampled to define the underlying first and second order (conditional) moments in
(25), yielding µi and �i for the ith unit. The associated uncensored response was
then obtained using yi = µi+�iei with ei sampled from the Normal mixture. Right-
censoring was created randomly and independently of the underlying response and
covariates using an exponential distribution Ci ⇠ Exp(�) with � selected to reach
the desired percentage RC of right-censored responses. The observed response was
then defined as ti = min{yi, ci} with observation indicator �i = I(ci > yi). The
non right-censored data (for which �i = 1) were subsequently interval-censored
with probability IC/(1�RC) with, then, yi only reported to lie in (yLi , y

R
i ) where

y
L
i = yi � 1.5ui�(Y ) and y

R
i = yi + 1.5(1 � ui)�(Y ) with ui ⇠ U(0,1), yielding an

interval of width equal to 1.5 the marginal standard deviation of the response.
The double additive location-scale model (DALSM) was fitted by assuming a

nonparametric (NP) or a Normal (N ) density for the error term. Under the working
Normality hypothesis, the sandwich estimator (White, 1982) was preferred over the
model-based one for the variance-covariance of the regression and spline parameter
estimates. A report on the detailed simulation results can be found in Appendix B.
In summary, our simulation study suggests that the estimation of covariate e↵ects
on location and dispersion can be made with negligible biases even when the sample
size is small (as compared to the number of parameters in the model), and whatever
the nonparametric or Normal assumption made on the error term. But potentially
large e�ciency gains can be made under the NP assumption as compared to an
approach with a working normality hypothesis. These gains tend to decrease with
the amount of right-censoring as it inevitably a↵ects the accuracy of the estimation
of the right tail of the error density in the NP approach. The error density is
properly estimated in the absence of right-censoring even with a rather small sample
size and a large interval-censoring rate. But the combination of a small n and a large
right-censoring rate somehow decrease the quality of the expected reconstruction as
the available information on the right tail of the error distribution becomes sparse
and incomplete. Then, the smallest component in the Normal mixture tends to
be flattened around its mode. Right-censoring also impacts the estimation of the
intercept �0 in the dispersion sub-model with a negative bias growing with the
right-censoring rate whatever the assumption made on the error distribution.

The simulation study was repeated with data generated using the same sub-
models for the location and dispersion parts, but with a normal distribution for the
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error term. The detailed simulation results (available upon request) indicate that
the estimates obtained by fitting the NP-DALSM or N -DALSM models are very
similar with comparable biases and e�ciencies reported for the estimation of covari-
ate e↵ects in the fixed and additive parts, even with a small sample size (n = 250)
or with the largest censoring rates considered. Given the potentially large e�ciency
gains in the non-normal case, this suggests that the NP-DALSM model is a recom-
mendable option for estimating a double additive location-scale model when prior
information on the error distribution is limited.

4. Application

The proposed application involves interval- and right-censored responses. The
data of interest come from the European Social Survey (European Social Survey
Round 8 Data, 2016). We focus on the money available per person in Belgian
households for respondents aged 25-55 when the main source of income comes from
wages or salaries (n = 756). Each person reports the total net monthly income of the
household in one of 10 decile-based intervals: 1:< 1 120 (n1 = 8), 2: [1 120, 1 399]
(n2 = 13), 3: [1 400, 1 719] (n3 = 47), 4: [1 720, 2 099] (n4 = 53), 5: [2 100, 2 519]
(n5 = 82), 6: [2 520, 3 059] (n6 = 121), 7: [3 060, 3 739] (n7 = 167), 8: [3 740, 4 529]
(n8 = 126), 9: [4 530, 5 579] (n9 = 74), 10:� 5 580 euros (n10 = 65).

We model the relationship between disposable income per person (91.4% interval-
censored, 8.6% right-censored) and the availability of (at least) two income (64.2%)
in the household, as well as the age (Age: 41.0 ± 8.83 years) and number of years
of education completed (Educ: 14.9± 3.34 years) by the respondent. This individ-
ualized income is obtained by dividing the household one by the OECD-modified
equivalence scale (Hagenaars et al., 1994), as recommended by the Statistical O�ce
of the European Union (EUROSTAT). The first adult in the household contributes
to 1.0 to that scale, each person aged at least 14 adds .5 to it, while each younger
member brings an extra .3 to the household weight. For example, a respondent aged
31 declaring a household net monthly income in the interval (3 060, 3 740) euros with
a partner aged 34 and 4 children aged 15, 10, 9 and 3 would be associated to an
OECD-modified scale of 2.9 and an interval-censored response of (1 055.2, 1 289.7)
euros (available per person).

The nonparametric double additive location-scale model (NP-DALSM) described
in Section 2 with the flexible error density from Section 2.5 was fitted using Algo-
rithm 4: 10 (=L) and 20 (=K) B-splines were taken to model the additive terms and
the log hazard of the error distribution, respectively. The response was rescaled in
thousand euros. The algorithm converged after 5 iterations in less than one second
using the author’s R package DALSM on a low-end desktop computer. Parameter es-

Fixed Location Dispersion
e↵ects �̂ s.e. CI 95% �̂ s.e. CI 95%
Intercept 1.572 0.062 (1.450, 1.695) -0.436 0.086 (-0.604, -0.268)
TwoIncomes 0.252 0.051 (0.152, 0.352) -0.042 0.070 (-0.179, 0.094)

Additive Location Dispersion
terms e.d.f. CI 95% e.d.f. CI 95%
Age 4.2 (2.3, 5.0) 3.3 (1.5, 4.4)
Educ 3.6 (1.8, 4.7) 3.3 (1.5, 4.3)

Table 1: Belgian income data (ESS 2016): fixed e↵ect estimates and e↵ective degrees of freedom
(e.d.f.) (with 95% credible intervals) for the additive terms in the NP-DALSM model with the
income response in thousand euros.
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Figure 1: Belgian income data (ESS 2016): estimated additive terms in the NP-DALSM model
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Figure 2: Belgian income data (ESS 2016): fitted conditional deciles (rescaled in euros) for the
income per person in two-income households.
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timates quantifying the e↵ect of the TwoIncomes binary indicator on the conditional
mean and the log of the standard deviation can be found in Table 1, suggesting an
average increase of 252 euros when the respondent and his/her partner are in paid
work (conditionally on Age and Educ), while the e↵ect on dispersion is not statisti-
cally significant. The e↵ects of Age and Educ on the conditional mean and dispersion
can be visualized on the first and second rows of Fig. 1, respectively, with the cor-
responding estimated additive terms. The amount of money available per person in
the household tends to decrease with age (see f

µ
1 (Age)) between approximately 27

and 37 (most likely due the arrival of children in the family) and to increase after
40 (probably thanks to wage increase with seniority and the departure of children).
The dispersion, reported as the exponential of the additive term, exp(f�

1 (Age)), sig-
nificantly increases with Age with an acceleration over 30. However, the dominant
e↵ect comes from the respondent’s level of education, with a di↵erence of about
1 000 euros (in expected disposable income per person) between a less educated
(6 years) and a highly educated (20 years) respondent, see f

µ
2 (Educ). The e↵ect

on dispersion is also large, see exp(f�
2 (Educ)), with essentially an important con-

trast between less and highly educated respondents, the latter group showing the
largest heterogeneity. Indeed, while most low-skilled people have di�culty finding
employment or are confined to low-paying occupations, a university degree o↵ers a
wide variety of opportunities ranging from a moderately-paid government job to an
executive position in a multinational company in the chemical, pharmaceutical or
financial sectors. The estimated density for the error term can also be seen at the
bottom of Fig. 1, with a right-skewed shape clearly distinguishable from the Gaus-
sian one often explicitly or implicitly assumed when fitting location-scale regression
models. The resulting estimates for the deciles of the income available per person
for varying education levels and ages are pictured on Fig. 2. Interval- and right-
censored data are represented as intervals and dashed semi-intervals, respectively
(with horizontal noise added to untie respondents sharing the same age). The com-
bined nonlinear impacts of age and education discussed earlier on the distribution
of disposable income per person are now clearly visible.

5. Discussion

The proposed nonparametric double additive location-scale model (NP-DALSM)
is a fast and e�cient alternative to parametric location-scale models. Unlike moment-
based estimation approaches such as the generalized method of moments (see e.g.
Wang et al., 2014), it provides a full estimation of the conditional distribution of
the response, that can be used to understand and visualize how it is qualitatively
and quantitatively a↵ected by covariates. The density of the error distribution is
estimated from possibly right- or interval-censored responses under moment con-
straints. The penalty parameters controlling the smoothness of the additive terms
in the location and dispersion submodels are automatically selected using approx-
imations to their marginal posteriors. These are obtained by substituting Laplace
approximations to the conditional posterior of the spline parameters, see Section 2.4.
Simulations suggest that the e↵ects of covariates are properly estimated with negli-
gible biases in the estimation of regression parameters and additive terms. However,
biases during the estimation of the intercept in the dispersion submodel may appear
when right-censoring rates are high, while some additive terms may be excessively
smoothed (as they should be) when information becomes scarce. For example, it
may result from a combination of large right-censoring rates and small sample sizes
(relative to the large number of parameters to be estimated). The simulation study
also suggests that the uncertainties in the estimates are correctly quantified as the
e↵ective coverages of the credible intervals for the parameters measuring the e↵ects
of covariates on location and dispersion are consistent with their nominal values.
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The nonparametric specification with P-splines of (the log-hazard function un-
derlying) the error density can markedly increase the e�ciency of regression param-
eter and additive term estimates over results under a working Normality hypothesis,
while reducing the risk of misleading conclusions following from a misspecified non-
normal parametric error density. While our proposal extends to nonparametric
errors and interval-censored settings some aspects of the remarkable work by Wood
and Fasiolo (2017) or Wood (2017), several issues still need to be studied in that
specific framework. Model validation is one topic, with the presence of interval-
censored data complicating the capacity to diagnose misspecification from partially
observed residuals. Model selection should also be investigated. Obvious starting
solutions would consist in computing information criteria such as AIC and BIC with
the number of parameters replaced by e↵ective dimensions (Komárek et al., 2005).
Uncertainty in the selection of penalty parameters can also be taken into account,
see Wood et al. (2016), Wood (2017, Section 6.11) or Gressani and Lambert (2021)
for additional perspectives. More elaborate procedures for testing the necessity to
include an additive term (in location or dispersion) or to opt for a simpler linear
form could be developed in our framework. From a Bayesian perspective (Rossel and
Rubio, 2019), they should be built using a combination of the conditional posterior
for the spline parameters entering the additive term of interest and the marginal
posterior for the associated penalty parameter. Nonlinear and smooth interactions
between covariates could also be added to the location and dispersion parts in the
same way as Lee and Durbán (2011) and Rodŕıguez-Álvarez et al. (2018) with the
conditional mean in mixed models.
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Appendix A. Closed form expressions for U� and H�

Conditionally on ��� = (���µ,����) and ���, one can obtain the following closed form
expressions for the gradientU� and HessianH� of the log posterior of the regression
parameters    = (   µ

,   
�) in (4):

Uµ
� = Uµ(   µ|���) = @ log p(   |���,���,D)
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and
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(A.2)

with vectors !!!µ
,!!!

� in IRn and diagonal matrices Wµµ = diag(wµµ), W�� =
diag(w��), Wµ� = diag(wµ�) in IRn⇥n defined below. Rewriting the error density
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as f✏(·) = h✏(·) exp[�H✏(·)] where H✏(·) = � logS✏(·) and h✏(·) = f✏(·)/S✏(·), we
obtain the following expressions (depending on the censoring status of the response)
for the aforementioned vectors and matrices:
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where ri = (ti � µi)/�i, hi = h✏(ri), h0
i =

dh✏(ri)
dr , h00

i = d2h✏(ri)
dr2 ;
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where rLi = (yL
i �µi)
�i

, rRi = (yR
i �µi)
�i

, g(r) = h0
✏(r)

h✏(r)
�h✏(r) and m(r) = 1+ rg(r).

Appendix B. Detailed simulation results

The double additive location-scale model (DALSM) was fitted by assuming a
nonparametric (NP) or a Normal (N ) density for the error term with 10 (=L) B-
splines (associated to equidistant knots on the range of each covariate) to reconstruct
each of the additive terms and 20 (=K) B-splines (associated to equidistant knots
on (�6, 6)) to estimate the (log of the hazard function underlying the) nonnormal
standardized error density. Figures B.3, B.4 and B.5 report on the estimation of the
regression parameters ��� and ��� for each of the three sample sizes for the nine possible
combinations of right- and interval-censoring rates. The boxplots inform us on the
(sampling) distribution of the parameter estimates (in grey for NP and white for
N ) over the S = 500 replicates, R.E. indicates the Relative E�ciency (defined as
the ratio of the mean squared errors) under a working normality hypothesis (a value
smaller than 1.0 suggesting than the NP approach is preferable), while E.C. reports
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the E↵ective Coverage of 95% credible intervals (computed as ✓̂ ± 1.96 s.e.(✓)).
Whatever the considered sample size and the (NP or normal) assumption made on
the standardized error distribution, the quantification of covariate e↵ects on loca-
tion and dispersion is made with negligible biases, except for the intercept �0 in
the dispersion part where negative biases arise under right-censoring and tend to
increase with the RC rate. In addition, whatever the sample size and the amount
of censoring, mean squared errors for estimators of covariate e↵ects are (nearly)
always smaller when the error distribution is estimated nonparametrically, suggest-
ing potentially important e�ciency gains under the NP model. These gains tend
to decrease when information gets sparse with decreasing sample sizes or increasing
(interval- or right-) censoring rates. Except for �0 when a bias arises, the e↵ective
coverages of credible intervals are close to their nominal value 95% whatever the
assumption made on the error distribution, suggesting that the standard errors were
properly quantified and that the sampling distributions of the selected parameter
estimators are close to normality.

Report on the estimation of the additive terms can be found in Tables B.2,
B.3 and B.4. Whatever the sample size and censoring rates, the absolute biases
averaged over the covariate support (0, 1) are very small, at the exception of f�

2 (x)
for values of x close to zero or one when the sample size gets small and the right-
censoring rate is large. Then, given the sparse information available, the estimate of
this additive term tends to be oversmoothed. It probably explains part of the bias
reported during the estimation of the intercept �0. This is illustrated in Fig. B.6
and B.7 when the interval-censoring rate is 0% or 50%, respectively, for increasing
right-censoring rates. The wider dark grey envelope (connecting successive intervals
containing 95% of the additive term estimates fµ

j (x) or f
�
j (x) over the S replicates)

also indicate that the working Normality hypothesis for the error term yields less
e�cient estimates than under the NP assumption (with light-grey envelopes). This
is confirmed numerically by the relative e�ciency values reported in the preceding
tables. The e↵ective coverages of 95% credible intervals for fµ

j (x) or f
�
j (x) averaged

over the support (0, 1) of the covariate and the S replicates are close to their nominal
values whatever the sample size and the amount of censoring, except for f�

2 (x) under
heavy right-censoring as, then, the e↵ective coverage can be moderately smaller than
expected.

The estimates of the NP error density (averaged over the S replicates) are given
in Fig. B.8 for di↵erent combinations of right- and interval-censoring rates. What-
ever the sample size and in the absence of right-censoring, the density is very well
estimated with an excellent performance of the selection procedure for the under-
lying smoothness parameter (cf. Section 2.5.5). Large right-censoring rates tend to
have an important negative e↵ect on the quality of the reconstruction as it reduces
the ability to detect or to correctly estimate the position of the second mode of
the standardized error density. Combined with a large interval-censoring rate and
a small sample size, it can even result in a right-skewed unimodal average density
estimate (see the dotted curve at the bottom right of the figure) with the smallest
component in the Normal mixture tending to be flattened around its mode. It con-
tributes to the decreasing (but still existing) e�ciency gains of the NP approach
(over the working normal hypothesis for the error term) in these settings.

References

Breiman, L. and J. H. Friedman (1985). Estimating optimal transformations for
multiple regression and correlation. Journal of the American Statistical Associa-

tion 80 (391), 580–598.

20



Cai, T., R. J. Hyndman, and M. P. Wand (2002). Mixed model-based hazard
estimation. Journal of Computational and Graphical Statistics 11 (4), 784–798.

Croux, C., I. Gijbels, and I. Prosdocimi (2012). Robust estimation of mean and
dispersion functions in extended generalized additive models. Biometrics 68 (1),
31–44.

Eilers, P. H. and B. D. Marx (2010). Splines, knots, and penalties. Wiley Interdis-

ciplinary Reviews: Computational Statistics 2 (6), 637–653.

Eilers, P. H. C. and B. D. Marx (1996). Flexible smoothing with B-splines and
penalties. Statistical Science 11, 89–102.

European Social Survey Round 8 Data (2016). Data file edition 2.1. NSD - Norwe-
gian Centre for Research Data, Norway.

Fan, J. and I. Gijbels (1994). Censored regression: Local linear approximations
and their applications. Journal of the American Statistical Association 89 (426),
560–570.

Gijbels, I. and I. Prosdocimi (2012). Flexible mean and dispersion function esti-
mation in extended generalized additive models. Communications in Statistics -

Theory and Methods 41 (16-17), 3259–3277.

Gressani, O. and P. Lambert (2018). Fast Bayesian inference using Laplace approx-
imations in a flexible promotion time cure model based on P-splines. Computa-

tional Statistics and Data Analysis 124, 151–167.

Gressani, O. and P. Lambert (2021). Laplace approximation for fast Bayesian infer-
ence in generalized additive models based on P-splines. Computational Statistics

and Data Analysis 124. doi:10.1016/j.csda.2020.107088

Hagenaars, A., K. De Vos, and A. Zaidi (1994). Poverty statistics in the late 1980’s:

research based on micro-data. Luxembourg: O�ce for O�cial Publications of the
European Communities.

Hastie, T. and R. Tibshirani (1986). Generalized additive models. Statistical Sci-

ence 1 (3), 297–318.

Hastie, T. J. and R. J. Tibshirani (1990). Generalized Additive Models. London:
Chapman & Hall.

Heuchenne, C. and I. Van Keilegom (2010). Estimation in nonparametric location-
scale regression models with censored data. Annals of the Institute of Statistical

Mathematics 62 (3), 439–463.

Jørgensen, B. and S. J. Knudsen (2004). Parameter orthogonality and bias adjust-
ment for estimating functions. Scandinavian Journal of Statistics 31 (1), 93–114.
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Figure B.3: Simulation study (n = 1500): estimation of the regression parameters in the DALSM
model over S = 500 replicates: boxplot of the point estimates under a nonparametric (grey) or
Normal (white) error term, Relative E�ciency (R.E.) under the working Normality hypothesis,
E↵ective Coverage (E.C.) of 95% credible intervals.
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Figure B.4: Simulation study (n = 500): estimation of the regression parameters in the DALSM
model over S = 500 replicates: boxplot of the point estimates under a nonparametric (grey) or
Normal (white) error term, Relative E�ciency (R.E.) under the working Normality hypothesis,
E↵ective Coverage (E.C.) of 95% credible intervals.
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Figure B.5: Simulation study (n = 250): estimation of the regression parameters in the DALSM
model over S = 500 replicates: boxplot of the point estimates under a nonparametric (grey) or
Normal (white) error term, Relative E�ciency (R.E.) under the working Normality hypothesis,
E↵ective Coverage (E.C.) of 95% credible intervals.
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Figure B.6: Simulation study (n = 500): averaged estimated additive terms (over S = 500
replicates) in the absence of interval-censoring, but for increasing right-censoring rates and by
assuming a NP (dashed line) or a Normal (dotted line) error term. Envelopes (light grey: NP ;
dark grey: Normal) result from consecutive intervals containing 95% of the S estimates for fµ

j (x)

or f�
j (x) with x in (0, 1).
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Figure B.7: Simulation study (n = 500): averaged estimated additive terms (over S = 500
replicates) under a 50% interval-censoring rate combined with increasing right-censoring rates
and by assuming a NP (dashed line) or a Normal (dotted line) error term. Envelopes (light grey:
NP ; dark grey: Normal) result from consecutive intervals containing 95% of the S estimates for
fµ
j (x) or f�

j (x) with x in (0, 1).
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Figure B.8: Simulation study: estimated error densities in the NP-DALSM model (averaged over
the S = 500 replicates) using a NP error term for di↵erent combinations of sample sizes, right-
(RC) and interval-censoring (IC) rates.
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