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ABSTRACT

Researchers often face the lack of data on large operational net-
works to understand how they are used, how they behave, and
sometimes how they fail. This data is crucial to drive the evolu-
tion of Internet protocols and develop techniques such as traffic
engineering, DDoS detection and mitigation. Companies that have
access to measurements from operational networks and services
leverage this data to improve the availability, speed, and resilience
of their Internet services. Unfortunately, the availability of large
datasets, especially collected regularly over a long period of time,
is a daunting task that remains scarce in the literature.

We tackle this problem by releasing a dataset collected over
roughly two years of observations of a major cloud company (OVH).
Our dataset, called OVH Weather dataset, represents the evolution
of more than 180 routers, 1,100 internal links, 500 external links,
and their load percentages in the backbone network over time. Our
dataset has a high density with snapshots taken every five minutes,
totaling more than 500,000 files. In this paper, we also illustrate how
our dataset could be used to study the backbone networks evolution.
Finally, our dataset opens several exciting research questions that
we make available to the research community.

CCS CONCEPTS

• Networks→ Network measurement; Data center networks.

KEYWORDS

Cloud infrastructure, Network topology, Dataset
ACM Reference Format:

Maxime Piraux, Louis Navarre, Nicolas Rybowski, Olivier Bonaventure,
and Benoit Donnet. 2022. Revealing the Evolution of a Cloud Provider
Through its Network Weather Map. In ACM Internet Measurement Confer-
ence (IMC ’22), October 25–27, 2022, Nice, France. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3517745.3561462

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IMC ’22, October 25–27, 2022, Nice, France
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9259-4/22/10. . . $15.00
https://doi.org/10.1145/3517745.3561462

1 INTRODUCTION

Network researchers often design new tools, techniques, and pro-
tocols that are eventually deployed in real networks. To evaluate
their proposals, researchers need to use data such as network topol-
ogy, traffic distribution, and router configuration. While such data
is collected and archived by most network operators, it is rarely
made available to researchers. Fortunately, over the years, network
operators and the research community have collected and released
public datasets.

These datasets have enabled significant advances in the field and
some have been widely used. Using packet traces, researchers have
shown that Internet traffic could not be modeled using Poisson pro-
cesses [21, 31]. Some researchers continue to collect packet traces
that are used by many different studies [9, 42]. Various network
topology maps [20, 28, 38] can be used by researchers when test-
ing routing protocols. Traffic engineering techniques can be tested
using synthetic [16] and real traffic matrices [46]. Measurement
platforms such as Ripe Atlas [40], PlanetLab [39], or M-Lab [14, 17]
enable researchers to perform active measurements from many
different locations. Finally, regular traceroute campaigns [10, 40]
provide information about interface- and router-level topology [12].

Despite these datasets, researchers rarely have access to data
on operational networks. Abilene/Internet2 was an exception with
the Abilene observatory, but this is a research backbone differing
from commercial networks. Furthermore, some existing datasets
have limitations. For example, while traceroute-based tools can
extract the topology of a network [23], the inferred topology does
not perfectly match the real one [41]. Given the limited number
of publicly available traffic matrices [46], most traffic engineering
studies rely on synthetic traffic matrices [16, 45].

Fortunately, some network operators expose information about
their network by providing BGP feeds on Routeviews or Ripe RIS,
or by installing Looking Glass servers. Some also expose their full
network topology and the load of their links using software such
as PHP Weathermap [1]. This open-source software uses SNMP
to collect link load information, typically every five minutes, and
exposes through an interactive website a network map. However,
the raw data is not released and users only have access to the image
produced by PHP Weathermap. In this work, we collect, analyze and
release SVG images produced by the OVH Network Weathermap.
OVH is a French cloud provider with more than 300,000 servers
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spread in 32 datacenters and a world-wide network of more than
180 routers with a total egress capacity of more than 20 Tbps.

This paper makes three contributions. First, we show that the
OVH Network Weathermap can be used to automatically extract
the topology and the link load levels of a large network from
its SVG images. Second, we release our dataset, called the OVH
Weather dataset, consisting of the original data collected from the
OVH Network Weathermap over almost two years with snapshots
taken every five minutes, the associated processed files, process-
ing scripts, and wrapper scripts. This dataset is available at https:
//weathermapdataset.info.ucl.ac.be/. Finally, we briefly an-
alyze the dataset and its main characteristics to illustrate how the
data can be leveraged for future research.

The remainder of this paper is organized as follows. Section 3
positions this work with respect to the state of the art. Section 4
describes how weather maps were collected and processed into a
format enabling their analysis. Section 5 illustrates how our dataset
can be used to study the evolution of CDN backbone networks. Fi-
nally, Section 6 concludes this paper by discussing how researchers
could leverage the OVHWeather dataset for their own research.

2 ETHICS

Thiswork does not raise any ethical issues. First, the data is collected
from a public web site offering several web pages without any
restriction or text notice. We collect and archive the data in the
purpose of scientific research and education. We believe making
this data available in our dataset does not violate the rights of the
copyright owner. Second, the data does not identify users of the
network. It lists the links between routers and physical peerings,
along with their relative level of usage expressed in percentage.
No IP addresses nor flow-level information are available. When
processing the data, we do not make any effort in identifying users
of the network. We believe the level of aggregation of the data as
disclosed by the copyright owner is already sufficient to prevent
any ethical issue. We contacted OVH after this work and presented
our results to them.

3 RELATEDWORK

During the past twenty years, efforts have been made by the re-
search community to collect and share datasets. First, Internet
topology data has attracted a lot of interest [12]. At the IP in-
terface level, data can be collected through traceroute measure-
ments [7, 10, 26, 35] or through multicast probing [26] towards the
Internet but also towards specific ISPs [38]. Reverse DNS queries
can also reveal information on the growth and change in ISPs net-
works [15]. Sometimes, ISP maps can be directly collected from
the operators’ published information [20]. IP interfaces can then
be aggregated at the router level through the alias resolution pro-
cess [18, 19, 24, 43]. Autonomous System (AS) level data can also be
gathered through publicly available BGP information [32, 44, 47].

Those topologies have been used for, e.g., modeling the Inter-
net [12, 30], understanding peering [22], conducting relevant traffic
engineering (e.g., the REPETITA framework [16]) or as ground truth
for alias resolution (e.g., Sherry et al. [36]). Rocketfuel topologies
are now outdated [25] and the Zoo dataset [20] is more than 10
years old.

Second, traffic traces have also been shared such as Internet
traffic traces (e.g., CAIDA’s Telescope [42], or MAWI data [9]),
traffic matrices (e.g., GEANT [46] or Abilene [49]), operator traffic
traces (e.g., SDNLib [28]), datacenter traffic (e.g., [6]), or evenmobile
devices traffic (combining physical, network, transport-layer and
geographical data [37]). Operator traffic traces may be used, for
instance, to compare design models and algorithms. Internet-wide
data is mainly used for security analysis, such as studies on DDoS
attacks [27].

More recently, cloud infrastructure data has been shared. For
instance, the Alibaba workload [8], AWS Reserved Instance Market-
place (RIM) data [5], or Facebook traffic patterns [34] are datasets
available from major cloud companies. Finally, datasets have been
published for evaluating the performance of virtualized network
functions (VNFs) [33].

Most of those datasets provide a single snapshot as they consist
of data that is collected once and shared with the community. This
is different from the data presented in this paper as we provide
a longitudinal dataset, with snapshots taken every five minutes
during a period spanning almost two years.

4 DATASET COLLECTION AND PROCESSING

The OVH Network Weathermap. The OVH Network Weath-
ermap [3] is a website made available by OVH to the public for
more than fifteen years. Archived pages show early versions of the
website in which several graphs representing the company network
status are available. These pages reported the OVH network inter-
nal routers and links, the physical peering links, and the links loads
in percentage. By navigating through the archived pages, one can
glance at the evolution of this company network at a very coarse
level of detail in time.

Today, the OVH Network Weathermap contains additional map
images with a greater number of routers and links as its network
infrastructure has greatly expanded. We observed increments in
time between two map updates and posit that they are updated
every five minutes. When a map is updated, the most recent snap-
shot is replaced with the updated one. The website only keeps past
snapshots of the day at a granularity of one hour. We discern two
kinds of maps: (i) maps of the core network infrastructure within
a given OVH datacenter and which do not contain peering links;
(ii) maps of the backbone network. There exists four of these latter
maps: Europe, which has historically been the largest network in-
frastructure, World, North America, and Asia Pacific. The World
weather map only contains intercontinental links between routers
of the other maps. Combining the different maps together yields a
global overview of the network. The OVH Weather dataset focuses
on the backbone weather maps.

Figure 1 represents a small part of the Europemap to illustrate the
elements composing a weather map. An OVH router is represented
by a white box and a lower case name, such as fra-fr5-pb6-nc5.
A physical peering is represented by a white box and an upper
case name, such as ARELION on the right-hand corner. Two meeting
arrows represent a bidirectional link. The fra-fr5-pb6-nc5 router
has several links towards different physical peerings. Each arrow
also reports the link load in its direction, explicitly with a percentage
and implicitly through its color. In our example, the two horizontal
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Figure 1: Part of the Europe map showing one OVH router,

several peerings, associated network links, and links loads.

Network Map

OVH Internal External

routers links links

Europe 113 744 265
World 16 76 0
North America 60 407 214
Asia Pacific 23 96 39
Total 181 1,186 518

Table 1: Summary of the routers, internal links, and external

links on Sept 12, 2022.
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Figure 2: Collected data time frame by network weather map.

arrows in the top right corner represent a link between the OVH
router and the ARELION peering which is used at 42% (resp. 9%)
of its egress (resp. ingress) capacity from the OVH perspective. A
disabled link is represented with a load level of 0 %. Each link is also
labeled in both directions (for instance, the aforementioned link has
the label #1 in both directions). As depicted in Figure 1, several par-
allel links can connect two routers (e.g., between fra-fr5pb6-nc5
and OMANTEL). Some parallel links, such as the ones connecting the
VODAFONE peering, can have non-unique labels. OVH routers can
also be connected together, as illustrated by the arrows pointing
west of the fra-fr5-pb6-nc5 router, eventually reaching other
routers outside the scope of our example.

Table 1 illustrates the OVH network size with the number of
elements in the four weather maps on the 12th of September 2022.
The Europe map represents the largest network infrastructure. The
World map does not contain peering links as it connects interconti-
nental routers. The North America map is the second largest map,
with approximately half the size of the Europe map. The Asia Pa-
cific map is the smallest map. The total takes into account routers
appearing simultaneously in several maps.
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Figure 3: Distribution of distance in time between data files

by network weather map.

Collecting the dataset.We started collecting the maps of the
OVH Network Weathermap in July 2020 by downloading them
every five minutes. Figure 2 illustrates the time frame spanned
by the data we collected. For each map, segments cover the time
for which snapshots are available every five minutes. The Europe
map is the most available map in our dataset. The World, North
America, and Asia Pacific maps were collected between July and
September 2020 and after October 2021. When looking closely at
Figure 2, one can observe discontinuities. To better understand the
gaps that exist within our dataset, Figure 3 reports the distribution
of time intervals between consecutive snapshots of the maps. For
the Europe map, more than 99.8% of the snapshots are available
at the highest resolution of five minutes. For the three other maps,
the resolution can be coarser less than 10% of the time but in a
very large amount of cases the gap is not larger than ten minutes,
corresponding to one missing snapshot. In May 2022, we identified
and fixed an operational issue impacting the data collection. As less
short gaps appear in Figure 2 past this point, the fix improved our
data collection.

Processing the dataset. On the OVH Network Weathermap,
maps are available as SVG files, i.e., vector images based on XML,
which can be processed by scripts to extract information. However,
these files pose a challenge as the SVG tags representing elements
of the map, i.e., routers, links, labels, and usage percentages, are not
all hierarchically organized. Instead, the SVG file lists the elements
of the map in a flat manner with coordinates positioning them in
the 2D image space. Thus, from a tag representing a link label, one
has to find back the link it belongs to. Then, the link has to be
associated to the routers it connects.

To achieve this, we developed a Python script to extract the
routers, their links, labels, and links loads from an SVG file and to
output this information in a YAML file. The script leverages the
geometric objects, their order in the file and their placements in
the 2D image space to find back their relationships.

Our script operates in two steps. First, it extracts the relevant
information from the SVG file and finds out some of their relation-
ships based on the SVG tags orderings. Algorithm 1 describes this
process. It iterates over SVG tags and inspects their class and tag
type to determine whether they represent a router, a part of a link,
or a link label. For a router or a physical peering, the coordinates of
its white box and its name are extracted (Lines 7–8). Two successive
polygon SVG tags represent the two arrows of a bidirectional link.
They are parsed sequentially and their coordinates are extracted
(Lines 9–13). The two load levels follow the two arrows in an SVG
file and are parsed sequentially (Lines 14–15). At this stage, the link
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Algorithm 1 SVG parsing to objects

1: 𝑙𝑖𝑛𝑘𝑠 ←
()

2: 𝑟𝑜𝑢𝑡𝑒𝑟𝑠 ←
()

3: 𝑙𝑎𝑏𝑒𝑙𝑠 ←
()

4: 𝑙𝑖𝑛𝑘 ← 𝑛𝑖𝑙 ⊲ Temporary variable when parsing a link
5: 𝑙𝑎𝑏𝑒𝑙 ← 𝑛𝑖𝑙 ⊲ Temporary variable when parsing a label
6: for each 𝑒𝑙𝑒𝑚 ∈ 𝑠𝑣𝑔 do

7: if 𝑒𝑙𝑒𝑚.𝑐𝑙𝑎𝑠𝑠 starts with object then ⊲ Router
8: 𝑟𝑜𝑢𝑡𝑒𝑟𝑠.𝑎𝑑𝑑 (𝑒𝑙𝑒𝑚)
9: else if 𝑒𝑙𝑒𝑚.𝑡𝑎𝑔 is polygon then ⊲ Link arrow
10: if 𝑙𝑖𝑛𝑘 is 𝑛𝑖𝑙 then ⊲ First arrow of the link
11: 𝑙𝑖𝑛𝑘 ← 𝑒𝑙𝑒𝑚.𝑐𝑜𝑜𝑟𝑑𝑠

12: else ⊲ Second arrow of the link
13: 𝑙𝑖𝑛𝑘.𝑒𝑥𝑡𝑒𝑛𝑑 (𝑒𝑙𝑒𝑚.𝑐𝑜𝑜𝑟𝑑𝑠)
14: else if 𝑒𝑙𝑒𝑚.𝑐𝑙𝑎𝑠𝑠 is labellink then ⊲ Load (%)
15: 𝑙𝑖𝑛𝑘.𝑙𝑜𝑎𝑑𝑠.𝑎𝑑𝑑 (𝑒𝑙𝑒𝑚.𝑡𝑒𝑥𝑡)
16: if |𝑙𝑖𝑛𝑘.𝑙𝑜𝑎𝑑𝑠 | = 2 then
17: 𝑙𝑖𝑛𝑘𝑠.𝑎𝑑𝑑 (𝑙𝑖𝑛𝑘) ⊲ Link is complete
18: 𝑙𝑖𝑛𝑘 ← 𝑛𝑖𝑙

19: else if 𝑒𝑙𝑒𝑚.𝑐𝑙𝑎𝑠𝑠 is node then ⊲ Label
20: if 𝑒𝑙𝑒𝑚.𝑡𝑎𝑔 is rect then ⊲ Label box
21: 𝑙𝑎𝑏𝑒𝑙 ← 𝑒𝑙𝑒𝑚

22: else if 𝑒𝑙𝑒𝑚.𝑡𝑎𝑔 is text then ⊲ Label text
23: 𝑙𝑎𝑏𝑒𝑙 .𝑡𝑒𝑥𝑡 ← 𝑒𝑙𝑒𝑚.𝑡𝑒𝑥𝑡

24: 𝑙𝑎𝑏𝑒𝑙𝑠 .𝑎𝑑𝑑 (𝑙𝑎𝑏𝑒𝑙) ⊲ Label is complete

is added to the extracted information (Lines 16–18). Link labels are
also parsed sequentially in two steps, with first their white boxes
(Lines 20–21) and then their text (Lines 22–23). At completion, Al-
gorithm 1 outputs an extracted list of routers, a list of links, and of
link labels.

Algorithm 2 Object attribution

1: for each 𝑙𝑖𝑛𝑘 ∈ 𝑙𝑖𝑛𝑘𝑠 do
2: 𝑙𝑖𝑛𝑒𝑙𝑖𝑛𝑘 ← 𝑙𝑖𝑛𝑒 (𝑙𝑖𝑛𝑘)
3: 𝑟∩𝑙𝑖𝑛𝑘 ←

(
𝑟 |𝑟 .𝑐𝑜𝑜𝑟𝑑𝑠 ∩ 𝑙𝑖𝑛𝑒𝑙𝑖𝑛𝑘 , 𝑟 ∈ 𝑟𝑜𝑢𝑡𝑒𝑟𝑠

)
4: 𝑙∩𝑙𝑖𝑛𝑘 ←

(
𝑙 |𝑙 .𝑐𝑜𝑜𝑟𝑑𝑠 ∩ 𝑙𝑖𝑛𝑒𝑙𝑖𝑛𝑘 , 𝑙 ∈ 𝑙𝑎𝑏𝑒𝑙𝑠

)
5: for each 𝑒𝑛𝑑 ∈ 𝑙𝑖𝑛𝑘.𝑒𝑛𝑑𝑠 do
6: Sort lists by distance to this end of 𝑙𝑖𝑛𝑘
7: 𝑒𝑛𝑑.𝑟𝑜𝑢𝑡𝑒𝑟 ← 𝑓 𝑖𝑟𝑠𝑡 (𝑟∩𝑙𝑖𝑛𝑘 ) ⊲ Connect 𝑙𝑖𝑛𝑘 end
8: 𝑒𝑛𝑑.𝑙𝑎𝑏𝑒𝑙 ← 𝑓 𝑖𝑟𝑠𝑡 (𝑙∩𝑙𝑖𝑛𝑘 ) ⊲ Attribute its label
9: 𝑙𝑎𝑏𝑒𝑙𝑠 ← 𝑙𝑎𝑏𝑒𝑙𝑠 \

(
𝑒𝑛𝑑.𝑙𝑎𝑏𝑒𝑙

)
⊲ Remove the label

Algorithm 2 then finds the relationship between elements of
the three lists by leveraging the shape and placement of their SVG
tags in the 2D image space. For each link, it first computes the
straight line in the 2D space represented by a link with the middle
coordinates of the basis of the two arrows of the link (Line 2). Then,
it computes the lists of routers (Line 3) and link labels (Line 4)
intersecting this line. For each of the two ends of a link, the lists
are sorted in increasing distance to the end (Line 6). The end is
connected to its closest router (Line 7) and is attributed the closest
link label (Line 8). At completion, Algorithm 2 has associated all
link labels, links, and routers. As a final step, these associations are
formatted in a YAML file.

Network Map

SVGs YAMLs

# Files Size (GiB) # Files Size (GiB)
Europe 214,426 161.39 214,340 20.16
World 111,459 6.22 111,431 0.83
North America 107,088 50.64 107,024 6.23
Asia Pacific 109,076 9.67 109,024 1.24
Total 542,049 227.93 541,819 28.46

Table 2: Summary of the collected and processed files in our

dataset on Sept 12, 2022.

Parsing sanity checks. We added tests when extracting the
topology information from the SVG files. We first ensure that each
link load lies within [0, 100]. We also verify that each link is con-
structed from two arrows. The most critical part of processing is
the object attribution. For instance, a router may be attributed to
several links but a given label belongs to a unique link end. To that
end, we first assert that the distance between the link end and its
label is below a defined threshold (i.e., a few pixels). Second, when
we attribute the label to its link end, we remove the label from the
labels set (Line 9 in Algorithm 2) to ensure that labels get assigned
to a link only once. Upon completion, we ensure that each router
is attributed at least one link. The scripts report an error when a
link is not connected to two (distinct) routers.

The OVHWeather dataset. Table 2 summarizes the data col-
lected and processed up to the 12th of September 2022. For each
map, the number of files and their total size for each file type is
provided. Almost all the SVG files were processed by our script
to produce YAML files, leaving less than a hundred files per map
unprocessed. There are several causes for being unable to process
them. First, we observed some SVG files to be invalid, e.g., with
malformed attribute values. The reasons for these errors are not
known. Second, some SVG files are lacking elements, such as OVH
routers, resulting in a failure to find intersections for a given link.
We may posit that these files are produced when the OVH Network
Weathermap lacks status information for some part of the company
infrastructure due to an error unrelated to the network status.

5 DATASET ANALYSIS

In this section, we analyze the Europe map in our dataset to illus-
trate the diversity of the behaviors it contains and how it can be
used to study the evolution of backbone networks. We first report
the evolution of the network infrastructure. Then, we study its
links loads to show how the network is provisioned and used, as
well as the effectiveness of traffic engineering techniques used by
OVH to spread the traffic load over parallel links. Finally, we study
the effect of a link upgrade in the backbone network. Except when
stated otherwise, all Figures are produced with all the data available
for the Europe map.

Network architecture evolution. Figure 4 illustrates the net-
work infrastructure of the Europe map. First, Figure 4a reports the
evolution of the number of OVH routers. Over the data collected,
the OVH network has marginally grown but several changes can
be observed. Over the course of August 2020 to September 2020, ten
routers were added to the Europe map. Four routers were removed
shortly after this increase. Four more routers were removed from
the map in June 2021. A short decrease can be observed in August
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Figure 4: Network infrastructure of the Europe map.

2021. These events of increase then decrease could be attributed to
upgrades of the network infrastructure in amake-before-break man-
ner, while decrease then increase could indicate forced maintenance
events and failures forcing OVH to temporarily remove routers
from its infrastructure.

Second, Figure 4b presents the evolution of the number of links.
It discerns internal from external links to better highlight changes
in the OVH backbone network from changes with its peerings. We
can observe that the number of external links gradually increased
over time. As a cloud provider, OVH relies on peerings to offer its
services to the Internet. Increasing the number of links to other
networks improves its services availability and resilience. The num-
ber of internal links in the OVH network also increased over time,
but the increases mostly occurred by steps. For instance, in No-
vember 2021, an important event of increase can be observed. This
difference could be explained by the way link increases are planned,
e.g., new peering links could be added separately while core net-
work upgrades happen in a more coordinate manner. Future work
could use router names to identify the spread of these variations in
the network, e.g., to find whether some parts of the network are
growing faster than others.

Finally, Figure 4c presents the complementary cumulative distri-
bution function of the node degree of the OVH routers computed
as the number of links connected to a given router, including all
parallels links. More than 20% of the OVH routers on the Europe
map are connected with a single link. As the map does not con-
tain all connections of a given router outside the OVH backbone
network, for instance to other routers in a particular datacenter,
these routers appear as isolated nodes on the map. We can also
observe that the OVH backbone network has an important number
of routers connected with several links, e.g., more than 20% of
the OVH routers have more than 20 links. The network topology
thus presents path diversity among the core routers, which can be
leveraged for instance by traffic flowing between datacenters.

Links loads. Figure 5 represents the links loads in the Europe
map. First, we study the evolution of the distribution of links loads
over hours of the day in Figure 5a. The links loads are extracted
from all files of the Europe map and grouped into hours of day.
The Figure 5a reports the median load value in orange, the 25th
and 75th percentile in green and whiskers indicate the 1st and 99th
percentile. We can make two observations. First, the median load

value follows a sinusoidal form over the day, reaching its lowest
point between 2 and 4 a.m. and its highest point between 7 and 9
p.m., following a typical day cycle. Second, when the network is
more loaded, the variance of the distribution of loads increases.

Then, Figure 5b represents the distribution of links loads from
the data on the Europe map. We observe that 75 % of the loads are
below 33 % and very few loads exceed 60 %. It shows that the OVH
network has an excess capacity, which can be used to accommodate
maintenance without impacting the volume of traffic transiting
through the OVH network, and that congestion inside the network
happens occasionally. Furthermore, links loads of external links
are on average lower than OVH internal links loads. This could be
explained by the excess capacity being more important for external
rather than internal links. While we observed that external links
are constantly added to the Europe map, we posit that the time
to decide and implement a link upgrade is higher with external
than internal links, requiring OVH to provision capacity more
significantly. Further, as OVH is a cloud provider, it cannot directly
control the traffic originating from its network, requiring again
careful planning of its network capacity.

Finally, the Europe map has an important number of parallel
links. On the 12th of September 2022, OVH routers had in aver-
age 6.58 parallel links. When several network paths are available
between two hosts, traffic engineering techniques such as ECMP
are used to spread the traffic between them. We can compute the
load imbalance for each group of parallel links to evaluate the ef-
fectiveness of these techniques in the OVH network. We compute
the load imbalance as the difference between the maximum and
the minimum load for each directed set of parallel links. We ignore
links with 0% load as they are unused in the network. We also
discount links with 1 % load as we cannot differentiate a low traffic
load value from control traffic only. Then, we remove sets with only
one remaining link.

Figure 5c reports the distribution of the computed imbalances
in the Europe map over the entire observation period for internal
and external links. We assume that all parallel links between two
routers have the same capacity. We can note that more than 60%
of the imbalance values are lower or equal to 1%. This indicates
that the traffic engineering techniques applied are effective in an
important number of cases. Furthermore, external links have in
average a lower imbalance than internal links with more than 90 %
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Figure 5: Links loads in the Europe map.
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of their imbalance values being lower or equal to 2%. This low
imbalance strengthens our hypothesis arguing that all parallel links
have the same capacity.

Link upgrades. The last point that we explore in our dataset
is when links are upgraded. A network operator typically decides
to upgrade a link when its load increases and when technical con-
straints (e.g., routers ports) and cost constraints are met. Our dataset
reveals such updates as abrupt changes in the link load. Figure 6
shows the effects of the addition of a link connecting AMS-IX on the
loads of other links toward this peering. We observe that the new
link was first added (arrow A in Figure 6), but not yet used. Then,
PeeringDB [32] was updated (arrow B in Figure 6) nine days later,
announcing a new link increasing the total capacity from 400Gbps
to 500Gbps. Considering the four existing links before this upgrade,
we can conclude that each link has a capacity of 100Gbps. Finally,
the link was activated two weeks after its addition and traffic was
rapidly spread among all parallel links (arrow C in Figure 6), reduc-
ing the load of each link. The decrease in load observed in our data
matches the added capacity reported in PeeringDB.

6 DISCUSSION

This paper introduces and presents an overview of theOVHWeather
dataset. It did not attempt at analyzing in depth its characteristics
and evolution over almost two years of collected data. Rather, we
have illustrated how the available data could be used and hope for
future research in that direction.

Several network operators, ranging from small ISPs to larger
CDNs, also publish similar maps reporting the status of their net-
work infrastructure. However, many of them provide a rasterised
image of the map, for which the techniques developed in this work
cannot be directly applied. One other French cloud provider, Scale-
way, provides an SVG weather map of its backbone network [4].
While the network size is inferior compared to the one of our
dataset, researchers could compare the collected data to understand
the differences that could exist between the two networks.

A concern regarding any dataset is its validity. As discussed in
Section 4, we have introduced a number of checks to ensure the
correctness of the data extracted from the SVG images. Researchers
could further validate the extracted data and even improve our
algorithm. However, when considering the weather map as a view
on a backbone network, the question of the extent of the network
reported in the map is also important. When reaching to OVH after
this work, they confirmed that the OVH Network Weathermap
contains a very large part of their backbone network.

We argue that a key interest of our dataset is to combine it with
other sources of information that can be undertaken in future works.
For example, using PeeringDB [22] and BGP collectors, one could
observe the evolution of peering links and their congestion [11].
Using traceroute measurements, researchers could correlate the
utilization of MPLS [13, 48] or SRv6 tunnels [29] with the evo-
lution of routing and link loads. Since OVH is a cloud provider,
researchers could also install measurement servers to collect active
measurements and correlate them with the link load in real-time,
BGP events and other sources of information. Finally, OVH also
reports planned maintenance events and the failures happening in
their network in a dedicated website [2]. These events could give
insights on the purpose of some modifications of their network and
on their choices to mitigate failures. This source of information can
then be used to augment our dataset.
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