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Abstract 

Currently, there is a high interest to integrate data linked to remote sensing and methods from 

the machine learning domain to develop tools helping pastures management. In this context, 

over the past two years, we published models predicting the available compressed sward 

height (CSH) in pasture using Sentinel-1, Sentinel-2, and meteorological data. Those scalable 

models could be the basis of a decision support system (DSS) available for Walloon farmers. 

A platform performing the CSH prediction was developed and this paper aims to provide 

some insights in its prediction capabilities and tackle the challenge of using data acquired at 

different moments in time times. Predictions were made from the beginning of January until 

the end of October 2021 using our most promising published models. After data cleaning, the 

coefficient of variation of CSH predictions, calculated for each studied date (N=35) and 

parcel (N=192,862), ranged from 0 to 986. This extreme variation suggests some prediction 

imperfections. Before the integration of the platform in a DSS, the main task to solve is the 

issue of missing or non-operational S1 or S2 data. Indeed, even if a gap filling method was 

applied, only 62% of potentially exploitable dates were usable.  
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Introduction 

Recently published papers (Shalloo et al., 2018; Shalloo et al., 2021) underline the “work in 

progress” nature of the integration of data linked to remote sensing and methods from the 

machine learning (ML) domain in the ecosystem of tools available for managing pastures. 

Our team developed ML models predicting the compressed sward height (CSH) available on 

pastures from satellite and meteorological data (Nickmilder et al., 2021). To bridge the gap 

between these research models and their potential use by farmers, a platform performing the 

prediction was implemented to be the data provider for a decision support system (DSS). This 

paper aims to provide some insights in the prediction capabilities of this platform and tackle 

the challenge of using data acquired at different moments in the season. 
 

Material and methods 

The models implemented in the prediction platform were the three best performing ones (i.e., 

a cubist, a neural network perceptron (nnet) and a random forest (rf)) based on a previous 

work done by Nickmilder et al. (2021) with a RMSE of CSH estimated from an independent 

validation around 20 mm. Those models use meteorological, Sentinel-1 (S1), and Sentinel-2 

(S2) data to predict CSH. The workflow of the prediction platform is the following. First, the 

platform acquires daily the newly available data and launches the pre-processing when 

needed. Then, it performs a spatial standardisation, realizes the prediction process, and finally 

makes some post-processing if needed. The data treatment was similar to Nickmilder et al. 

(2021). The S1, S2 and meteorological data were acquired in a form that covered the whole 

area of Wallonia (the Southern part of Belgium) and thus all its 194,657 parcels of 

agricultural area with pastures and was collected from mid-January 2021 to the end of 

October 2021. The meteorological data came from the Agromet platform (CRA-W, 2021) and 



were aggregated on daily basis. The S1 data were acquired from the European space agency. 

The S2 data were acquired from the Theia platform under the form of level-2A products. All 

these datasets were resampled on a raster grid with 10m resolution. Each parcel was thus 

constituted of pixels and each time there was S1 and/or S2 data in the pixel, it was considered 

as a record. Some filtering on S2 tiles were made: removal of tile with too much missing 

values/ saturated pixels or cloud coverage (75% threshold each time). 

To deal with missing acquisition, a gap filling method was applied. For every day of the year, 

a check was made to confirm the availability of S2 data. If it was confirmed, the date was 

considered as usable (UD). All the pixels were filled with available data at this UD and the 

incomplete pixels were filled with data acquired the day before and so on until 4 days before 

the UD. Thus a dataset for one UD is in fact a composite dataset gathering S1 and S2 data up 

to 4 days before the actual UD. To assess the relevance of the CSH predictions and the 

reliability of the prediction platform scaling local models to a greater scale (i.e., entire 

Walloon Region), we have studied: the occurrence of concurring data acquisition, the raw 

values, the presence of outliers, and the descriptive statistics for each date and parcel. 
 

Results and discussion 

Theoretically, the S2 satellites have a revisit frequency over Wallonia of 3 to 5 days. 

Considering the worst case scenario of 5 days, we should have at least 58 dates (i.e., 290/5 

days) usable for the period studied. However, even with the application of a gap filling 

methodology, only 35 dates (62%) had enough S2 data of sufficient quality to be further 

processed and 25 of these dates covered the grazing season (April – October). Without the 

gap filling application, only 17 dates would have been considered (29%). On these 35 dates, 

99% (192,866) of the parcels were represented at least once and the total number of records 

was 201,875,534. Unfortunately, there was a huge number of non-usable S2 data. This might 

be due to a combination of edgy position of pixels relatively to the satellite orbits, poor 

weather and out of range/ missing input values. These values cannot deliver reliable 

information. Therefore, a post processing filter was applied after the prediction step to remove 

all the non-finite values. This decreased the predicted set to 92,782,075 records. The data 

distribution of those predictions per model is summarized in Table 1. Some values (less than 

2%) were out of the range of expected CSH values (i.e., [0 mm; 250 mm]). After deletion, the 

dataset was composed of 92,757,937 records. Given that a parcel is composed of several 

pixels, therefore, the estimation of the coefficient of variation of CSH is a measure of its CSH 

heterogeneity. The cubist CSH predictions gave the highest variability, the nnet and rf models 

were more stable although the trends of higher CSH were asynchronous as shown in Figure 1. 

This meant that the models used extracted different part of the information in the dataset and a 

combination of these information must be accounted in the future. The observed null values 

were due to the presence of only one pixel (Table 1). To visualize the evolution of CSH 

throughout the year, the average CSH was calculated for each date (Figure 1). As expected 

due to the response of plants to increasing temperatures, we observed a slight increase during 

the spring (April – June) and then a decrease. However, the sparse data acquisition due to the 

poor weather conditions during the summer blurred the trends. Another point underlined in 

Figure 1 is the sensitivity of the models to cloudiness: for example, the 11th February was 

cloudy with very thin clouds that were not detected as such, and thus decreasing the quality of 

the predictions for this specific date.  
 

Conclusion 

From a technological point of view, the platform is operational and now usable to predict on a 

daily-routine basis the CSH in Wallonia. However, given the low proportion of exactly 

concurring data, we had to implement a time lag tolerance in the platform for its future use in 

a DSS. This means that for each S2 acquisition date, predicted datasets were completed with 



data going back up to four days. This methodology managed to decrease the impact of non-

concurring data in a context of predicting with all the datasets but there is still work to do. 

Indeed, only 62% of dates were exploitable. Hence, the models still need to be improved 

given the occurrence of those quite extreme values. 
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Tables 

 Raw CSH predictions 

(N=92,782,075  ) 
Coefficient of variation per parcel and date 

(N = 92,757,937  ) 
 Cubist Nnet Rf Cubist Nnet Rf 

Minimum 5.39 45.26 25.89 0.00 0.00 0.00 

1% 31.58 45.26 37.25 1.42 0.00 1.22 

1st quartile 47.83 56.23 53.00 6.50 0.00 5.65 

Median 56.68 56.23 60.09 10.21 9.19 9.09 

Mean 62.41 64.74 64.39 12.03 11.40 10.46 

3rd quartile 70.832 62.08 70.92 15.26 17.78 13.85 

99% 145.86 130.64 130.36 41.89 42.18 30.91 

Maximum 331.88 130.64 203.15 906.95 68.65 74.62 

Table 1: Data and coefficient of variation distribution of CSH predictions (in mm) obtained by the three tested 

models on the 192,866 parcels, delivering 92,782,075 records with some extreme associated predictions on the 

35 dates of acquisition. 

 

Figures 
Figure 1: representation of the mean of the parcel’s mean height over each acquisition date. 
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