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Abstract

Global warming, melting ice sheet, sea levels rise, natural disasters - these are

words and sentences that we have heard a lot in recent years. In a changing world,

studying the poles and their conservation is very important. However, it is often

hard to obtain high-resolution data on this vast and distant continent.

Thanks to the Copernicus space program providing free and open-access to high-

quality data, this master thesis aims to show the complementarity between Sentinel-

1 images and Modèle Atmosphérique régional (MAR) data over Antarctica. This

study is conducted over Roi Baudouin Ice Shelf.

The complementarity between the two datasets is established by a quantitative,

temporal and spatial comparison of the amplitude information of the radar signal

and several variables modelled by MAR. To archive it, mosaics of Sentinel images

had to be created to cover a larger area and to allow a comparison of same-day

interpolated data.

Obtained results are quite promising. Comparisons show very strong spatial cor-

relations between MAR variables representing melt and the backscatter coefficient

recorded by the satellite. Although temporal and quantitative analyses also give

great results, there are still questions in some areas of the platform that do not

behave in the same way as the rest.

This thesis, therefore, opens up many possibilities in research by showing that

most of the time, the results match but in some cases, it is more subtle. Certain

questions thus remain open, arousing curiosity but also prospects of complimentary

use of radar satellites and climate models.
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Résumé

Réchauffement climatique, fonte des glaciers, hausse du niveau de la mer, catastro-

phes naturelles, ce sont autant de mots et d’expressions que l’on entend beaucoup

ces dernières années. Dans un monde en plein changement, l’étude des pôles et

leur conservation n’en est que plus important. Or, il est souvent difficile d’obtenir

des données à haute résolution sur ce vaste et lointain continent.

Grâce au programme spatial Copernicus qui donne un accès libre et gratuit à

des images satellites de hautes qualités, le but de ce mémoire est de montrer la

complémentarité entre les images radar Sentinel-1 et les données du Modèle At-

mosphérique Régional (MAR) au niveau de l’Antarctique. Cette étude est menée

au niveau de plateforme de glace du Roi Baudouin.

La complémentarité entre les deux jeux donnés est établie par une comparaison

quantitative, temporel et spatiale entre l’information d’amplitude du signal radar

et différentes variables modélisées par MAR. Pour ce faire, un mosäıquage des im-

ages Sentinel a dû être réalisé afin de couvrir une plus grande zone et permettre

une comparaison des données interpolées au même jour.

Les résultats obtenus sont assez prometteurs. Les comparaisons montrent de très

fortes corrélations spatiales entre les variables MAR représentant la fonte et les

coefficients de rétrodiffusion enregistrés par le satellite. Et même si les analyses

temporelles et quantitatives donnent aussi de bons résultats, il reste des interroga-

tions dans certaines zones de la plateforme qui ne se comportent pas de la même

façon.

Ce mémoire ouvre donc de nombreuses possibilités de recherche en montrant que

la plupart du temps, les résultats concordent mais que dans certains cas, ils sont

plus subtils. Certaines questions restent donc ouvertes attisant la curiosité mais

aussi la perspective d’une utilisation complémentaire des satellites radar et des

modèles climatiques.
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Chapter 1

Introduction

Snow and ice melt are increasing in the polar region and this made sea level rise for

the last few years (Scambos et al., 2013; The IMBIE team et al., 2018). Even more

problematic, this phenomenon is ongoing and could increase with global warming

(Gilbert & Kittel, 2021; The IMBIE team et al., 2018). Exploring the regions

where the ice is melting is a difficult task due to the remoteness and the size of the

continent as well as the weather. To simplify the life of many scientists, numerous

ways of remotely observing those places have been developed (Nagler et al., 2015;

Baghdadi et al., 2000; Nagler & Rott, 2000). At the University of Liège, SPHERES

laboratory is working with the predictive ”modèle atmosphérique régional” (MAR)

model to do so. However, nothing is perfect and the model cannot be used to study

ice melt with extreme precision. Firstly because small input errors can result in

larger output errors. Secondly, results are provided with a kilometric resolution,

which is larger than the resolution satellites can archive nowadays. With the

spatial activity development and the launch of more and more satellites, remote

sensing began to be one of the techniques used to monitor polar regions (Nagler et

al., 2015; Nagler & Rott, 2000; Nagler et al., 2016; Fettweis et al., 2006, 2011; Shah

et al., 2019; Lievens et al., 2019). It began with passive satellites as they were the

most commonly used and the firsts to provide commercial products. (Parkinson,

2001; Gloersen et al., 1993)

But then, the rise of active remote sensing satellites begins, especially with the

Earth observation program from the European Union, Copernicus, allowing to

dispose of near-daily radar images with a resolution of the order of 10 metres in

open access with the Sentinel constellation (ESA, 2019). Because the active radar

satellite output is sensitive to water content, it can be used to detect melt in

images (see sub-section 2.3.2). Having a high-resolution technique to monitor the

climate in remote places could enable an enhancement for the predictive models
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and a better understanding of the mechanisms taking place there.

1.1 Objectives

By working in cooperation with the SPHERES Laboratory from Uliege and the

Signal Processing Laboratory from Liege Space Centre, this master thesis has

the objective to compare MAR’s modellisations with the observations made by

Sentinel-1 satellites. The comparison will be made using three methods: quanti-

tatively, temporally, and spatially.

By analysing them, it is possible to understand the differences that exist between

the modellisations and the observations made from space. Using Sentinnel-1, satel-

lites images can be seen as a free, high-quality and resolution, open-access resource

to be used in conjunction with models to improve the results of both sides.

Such comparisons have already been made but, most of the time, with passive

satellites (Parkinson, 2001; Lievens et al., 2019; Fettweis et al., 2011, 2006; Glo-

ersen et al., 1993). As presented further in this paper, it is active satellites that are

used. Active remote sensing techniques have advantages with relation to passives

ones. Those advantages could be relevant in several situations and help in the

research sector.

This master thesis aims to use as much as possible free and open-access materials.

Satellites images used are free to access and images processing and visualising are

made with open-source softwares.

This master thesis is in collaboration with two laboratories that are not from the

geomatic unit. It enabled to work with peoples already actives in the research field

and get an idea of how this environment functions and may help to prepare for a

possible PhD application.

In order to fulfil the objectives, the present work is divided as follow. The next part

describes the area the analysis is conducted on. Chapter 2 is a short summary

of the different aspects needed to understand the experiment as well as a state

of the previously conducted similar works. Chapter 3 explains the workflow and

methodology applied. Chapter 4 is the description of the data used. The treat-

ment and the processing of the images are explained in Chapter 5, while Chapter

6 is dedicated to the comparisons.
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1.2 Region of Interest

The region studied in this case is the King Baudouin ice shelf (Or Roi Baudouin ice

shelf (RBIS)) and its surroundings, in the Dronning Maud Land, East of Antarctica

(fig 1.2). The region is +- 700 km by 135 km, for an ice cover area of approxi-

mately 70.000 km². The real area studied for each image depends on the image

availability and can change between two dates.

An ice shelf is a platform of ice, hundreds of meters in height, that floats on the

water. The ice comes from the ice sheet that has flowed into the sea (fig 1.1). If

ice shelves may appear insignificant in comparison to the ice sheet, it is just the

opposite. Ice shelves exercise a buttressing effect on the glacier from which the

ice comes (Dupont & Alley, 2006; Reese et al., 2018). It prevents the ice from

passively flows into the ocean due to gravity. Nonetheless, ice shelf should not be

confused with sea ice as ice shelf is directly coming from the ice sheet and can be

hundreds of meters thick when sea ice comes from the seawater freezing on several

meters.

Figure 1.1: Schematic of an ice shelf (Davies, 2020; modified). Ice shelf is the ice
coming from the ice cap but floating on the water. Here the schematic does not respect
scale, the tongue of ice can be hundred kilometres long for a much smaller high. The
separation between ice cap and ice shelf is chosen at the grounding line, the line where
ice leaves the ground to float.

With two principal flux of ice (Rignot et al., 2017), divided by the Derwael ice

rise (rising ground that blocks the movement of ice), RBIS is not one of the most

active ice shelf (Rignot et al., 2013). It makes the comparison easier. Episodes

of icebergs calving or fracturing would disrupt the study. Same for fast melt and
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refreezing that would not be detected by satellite due to image availability. This

is one of the reasons why this zone has been chosen as well as the fact that the ice

shelf has already been studied numerous times.

The far south of the zone is a steep slope leading to inland territories. The slope

is source of katabatic winds creating surface ablation and possible melt resulting

in sub-glacial lakes (Lenaerts et al., 2016). Ablation taking place in the zone also

causes blue-ice to be at the surface in three locations in the studied area (fig 5.10).

Blue ice is old, blue-coloured, clean glacier ice that covers less than 2% of the

Antarctica ice sheet. With a lower albedo, blue ice tends to enhance melt rates.

The presence of blue ice permits bringing to the fore the different behaviours of

ice in the zone.

At the start of the work, it was planned to create a complete algorithm over RBIS

and applying it to a larger zone afterwards. Some complications and delays made

the larger-scale analysis impossible as part of this work.

Figure 1.2: Presentation of the studied zone. The area of interest, RBIS, is located in
East Antarctica. Parts of Prince Harald and Borchgrevink ice shelves are also included
in the area as well as the Derwael ice rise and the Riiser-Larsenhalvøya ice ridge. The
starting area has a surface of 66 000km², 2 times bigger than Belgium.
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Chapter 2

State of the Art

As discussed in the previous parts, this paper’s main objective is to compare the

melt detected in specific satellite’s images and the melt modelled by MAR. How-

ever, to complete this objective, several aspects of glaciology and remote sensing

have to be studied to understand the viability and relevance of this work. The

link between satellite imagery systems acquiring images of hundreds of kilometres

square and ice melt, sometimes not even visible bare eye, is not blatant. That

is why the problem is approached by three sides: ice melt, MAR and SAR. The

following section explains the three problematics, in varying degrees of detail, de-

pending on the needs of the analysis.

2.1 Ice Melt

Fill a cup with water, add ice cubes until the water is at the edge of the cup. Let

the cubes melt. The water did not spill. This phenomenon is due to the change in

density of the water when it freezes (Bartels-Rausch et al., 2012). When freezing

occurs, there is a change in the molecular and crystalline structure that makes the

water taking more space. The density is then lowered and if the ice melts, the

underwater zone occupied by the ice will be replaced with liquid water. Due to

this physical particularity, the melting of ice shelves does not directly participate

in sea level rising. As stated before and as shown in fig 1.1, ice from the ice shelf

floats on water.

Meltwater from ice shelves not participating in sea-level rise does not mean losing

ice shelves is not a problem. As explained before, with the buttressing effect, ice

shelf act as an anchor for the ice sheet by stopping it from flowing, leaving lands

and melting in the ocean (Dupont & Alley, 2006; Reese et al., 2018). However, even

if in opposition to Greenland, Antarctica ice sheet surface mass balance (SMB, i.e.
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the result of the difference between the ablation and accumulation process over the

ice sheet) should increases because of snowfall enhancement due to atmospheric

warming (Lenaerts et al., 2019; Shepherd & Wingham, 2007; Kittel, 2021), melt-

water tends to destabilise ice shelves. As explained in Banwell and Macayeal, this

is due to the water percolating into the firn (multilayer, compressed snow with a

density lower than 830 kg/m³ (Lenaerts et al., 2019)), creating ponds and lakes in

the ice shelf. After several years, ponds will create tension at the bottom of the

ice shelf, which may result in break-ups.

Even more, observations show that ice shelves tend to melt and get thinner during

the several past years (Reese et al., 2018; Banwell & Macayeal, 2015; Rignot et

al., 2013; Paolo et al., 2015; Rignot et al., 2008). It is thus a growing problem:

retroactive phenomena can occur. Ice shelf breaking cause more melt, causing sea

level to rise, which cause the atmosphere to warm, which cause the ice to melt

and so forth (Scambos et al., 2004). Some models also show an increase in surface

melt and runoff with future warming (Gilbert & Kittel, 2021).

If Antarctica ice cap would melt entirely, estimations made with the Data Eleva-

tion Model (DEM) ”Bedmap2” suggests a rising of the sea level for about 58m

(P. Fretwell et al., 2013) but there is a lot of uncertainties when talking about

the mass balance of ice sheets (Shepherd & Wingham, 2007; Rignot et al., 2008;

Gilbert & Kittel, 2021). By rising, the sea can cause multiple problems: the de-

struction of coastal habitats and inland habitats for high rise, more dangerous

hurricanes and typhoons, and other disasters. Already, people are forced to mi-

grate to get in a safer place and millions of people are threatened by the sea level

change (Nuñez, 2019; Stern, 2007). Global warming is not only about sea level

rising, it is a much more global and long term problem. With the temperature rise

comes repercussion on water and food supplies, health problems and much more

(Stern, 2007).

If warming has repercussion on human through environmental problems, some ani-

mals also directly suffer from the melt as it destructs their natural habitat. For the

Northern ice caps, the polar bear may be the most emblematic animal to represents

this problem (Ferguson et al., 2000). When for Antarctica, it may be penguins.

The studied zone was discovered to be a large host zone for Emperor penguin as

in 2009, almost 5 per cent of Antarctica’s population of Emperor penguin was

observed there within two colonies (P. T. Fretwell et al., 2012). Those two marine

colonies, near the Princess Ragnhild coast and the Riiser-Larsen Peninsula, have

also been pinpointed as two Important Bird Areas, respectively number ANT114

and ANT115 (C. M. Harris et al., 2015). With the destruction and the properties
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changes in their habitat, a 1°C warming could cause 10% of land species to face

extinction. For a 3°C warming this number goes up to 50% (Stern, 2007).

The melt study with satellite in this paper is the liquid water formed by surface

ice and snow melting (see explanation in subsection 2.3). But in reality, ice shelves

melt in multiple ways. For example, basalt melting is another way for ice shelves

to melt (Walker et al., 2008; Reese et al., 2018; Pritchard et al., 2012). However,

as the grounding line is several hundred meters under the surface (as seen in fig

1.1), it is more difficult to study this melt with spaceborne sensors. Other types

of vehicles are used to navigate under the cap of ice (Price et al., 2008).

RBIS being an ice shelf in East Antarctica, it is less probable to see important

variations through the years as several studies show less mass balance in East than

in West (Lenaerts et al., 2019; Thomas et al., 2004; Paolo et al., 2015; The IMBIE

team et al., 2018; Shepherd & Wingham, 2007).

Ice melting in Antarctica remains a challenge as there are not a lot of ground sam-

ples available (Lenaerts et al., 2019). Expeditions are expensive and automatic

weather stations still need to be collected and are distributed with a large distance

on the continent. This lack of ground truth and ways to confirm the analysis is

a problem for the verification of the thresholds used during this study. Data ac-

cessibility is one of the main reason why satellites are used to monitor the poles.

They provide a lot of information and enable studying the zone more easily.

2.2 Modèle Atmoshérique Régional

2.2.1 Atmospheric Model

The atmospheric regional model is used to model and simulate diverse climate

variables (e.g. quantity of rain, surface melt, wind speed and others). Often used

to study polar regions, it has been applied over Greenland (Fettweis et al., 2006,

2011; Fettweis, 2007) and Antarctica (Kittel et al., 2018, 2021; Gilbert & Kittel,

2021; Kittel et al., 2021; Amory et al., 2020). The base of the model is primitive

equations described in Gallée and Schayes (1994).

The model includes a microphysics module for the clouds (Gallée, 1995) and the

radiative transfer scheme is adapted from (Morcrette, 2002).

As explained in Amory et al. (2020), MAR topography is derived from Bedmap2

DEM (P. Fretwell et al., 2013), at a 1km resolution. Amory et al. also stipulate

that MAR is driven by the 6 hourly ERA5 reanalysis fields (Hersbach et al., 2020).

This means that the model’s variables are forced at its lateral boundaries (pressure,

specific humidity, temperature and wind speed), at the top of the troposphere
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(temperature and wind speed) and at the ocean surface (sea ice concentration and

sea surface temperature). The latest updates of version 3.11 used are described in

(Kittel et al., 2021). The model is referenced as ”MAR” hereafter.

2.2.2 Surface Model

The model explained right above is the atmospheric part of MAR. The model is also

coupled with a surface model: SISVAT (Soil-Ice-Snow-Vegetation-Atmosphere-

Transfer). This link allows handling the exchanges between surface and atmo-

sphere and at the same time, keeping the energy balance. The model also has a

layer’s representation for snow and ice (Gallée et al., 2001; Lefebre et al., 2003).

SISVAT allows describing the layers of snow and ice with different attributes as

water content, temperature or grain size. In this study, only the layers making

the first meter of depth were used. In the case of precipitation or deposit, if the

maximum number of snow layer has already been reached, a new layer is formed

at the surface through the aggregation of internal layers. It means that two layers

can merge in the case they present similar properties. The different layers of snow

and ice interact with each other as well as with the atmosphere. Hydrological and

thermodynamic calculus are used to model heat and water transfer. Melt, run-

off and meltwater refreezing and accumulation can be derived from water mass

conservation (Parotto, 2019).

2.3 Remote Sensing

2.3.1 Spaceborne Remote Sensing

In general, the name remote sensing is used to define the action of collecting data

and monitoring the physical properties of a body from a distance (USGS, 2020).

Hereafter, remote sensing is used to talk about the monitoring of the Earth from

satellites equipped with different sensors.

Satellite’s observations bring several advantages compared to in-situ observations.

But they also can have some disadvantages. When the time resolution is generally

greater (images are available almost all the time during the year for several years),

the spatial resolution of the sensor cannot permit the study of a small punctual

event or a deep underground event. However, satellite’s observations, because they

cover a large zone (see section 4.2), allow studying a larger area that cannot be

covered on foot during the same time.

To monitor the Earth, satellites orbit it. The orbit is an ellipse with a low eccen-
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tricity, the Earth being one of the focal points. The closest point to the Earth is

named the perigee and the further, the peak. The orbits are categorised by their

altitude or their inclination. The inclination is the angle formed by the equatorial

plane and the orbital plane. The orbit is said direct when the angle is smaller than

90°, the rotation of the satellite is in the same rotational direction when projected

on the equatorial plane. In opposition, when the angle is between 90° and 180°,
the orbit is said retrograde, meaning that when projected in the equatorial plane,

the orbit rotation is opposed to the Earth’s one. When the angle is close to 90°,
the satellites fly near the poles. We then talk about polar orbit.

Concerning their height, there are three main orbits, depending on the mission,

the constellation and the time resolution needed.

The closest to the Earth is the low earth orbit, with an altitude of approximately

1.000 km. This orbit allows reaching a revolution period of one or two hours.

Gravity depends on the altitude and speed depends on gravity. So the speed of

the spacecraft orbiting the Earth at a certain altitude can then be approximated

by:

v =

√
g ·Re
R

(2.1)

With g, the universal constant of gravity, Re the radius of the Earth and R, Re

increased by the altitude of the orbit.

The further orbit is the geostationary orbit. Given the altitude of 35.786 km and

because of equation (2.1), it allows the satellite to turn around the Earth at the

same speed as the Earth rotates, assuming one sidereal day lasting for 86164 sec.

Such satellites stay above the same point all the time of their mission. However,

to achieve such an orbit, the satellite needs to be in the equatorial plane, making

the observation of the poles impossible.

Between the two previous orbits is the medium earth orbit. With an altitude

ranging from 1.500 to 35.000km, this orbit is often chosen for GNSS satellites

because the farthest from the Earth, the more places it is visible from.

It is possible for a satellite to pass over a point on the Earth at almost the same

time for each passage. This type of orbit is called ”sun-synchronous” (Boain, 2004).

It allows to keep the same condition of illumination on the scene and permits a

better comparison of two images (Tychon, 2019).

When talking about satellite remote sensing, we make the distinction between two

different families of imagery depending on the signal’s source used. On one hand,

there is the passive one and on the other hand, the active one (fig 2.1). Both have

already been used in order to observe the evolution of ice (The IMBIE team et al.,
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2018; Lenaerts et al., 2019; Paolo et al., 2015; Shepherd & Wingham, 2007; Rignot

et al., 2008; Baghdadi et al., 2000; Nagler & Rott, 2000; Nagler et al., 2015, 2016;

Mahmud et al., 2020; Ramjan et al., 2018; Johnson et al., 2020; Buchelt et al.,

2021).

2.3.2 Active Satellite Imagery

This section is explaining the basic principle of active satellites using synthetic-

aperture technology. They are called SAR (synthetic-aperture radar) to be distin-

guished from the other radars. The information presented hereupon is a summary

of university hearings (Tychon, 2019; Glaude, 2018), online-classes (EO College,

2020, 2021), and a journal article (Moreira et al., 2013).

Principle

As explained before, the main difference between active and passive is the source

of the signal used. Passive satellites observed the Earth and record the quantity of

Sun’s energy the object on the Earth reflects in different wavelengths. Whereas, as

its name implies, SAR is basically a RADAR. It means that the satellite transmits

high-frequency electromagnetic pulses and records the backscattered echo. Not

Figure 2.1: Difference between active and passive satellites. The left image shows how
an active satellite works. It emits a signal that interacts with the ground and registers
the part of the signal that comes back to the sensor. The right one shows the functioning
of a passive one. Passive satellites do not emit a signal. They record the quantity of
energy reflected or emitted by the ground. Most of the time, this energy is provided by
the Sun.

being dependant on other parties to send a signal to listen to is an advantage. By

sending its signal, compared to passive satellites, SAR can make observations dur-

ing day and night. Even if this does not seem to be important in our regions, the

higher the latitude (or the lower), the longer the night in winter. In Antarctica,

this results in a night of several days or even months, making the passive imagery
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almost impossible during winter.

Another advantage SAR has upon passive satellite is the frequency range used.

When passive sensors mostly use visible and infrared frequency (wavelength in the

order of a µm), SAR emits microwave frequency pulses (between 1 to 40 GHz).

The frequency range is divided into several bands (fig 2.2). The most commonly

used are L, S, C, X. There is no link between the name of the band and its wave-

length. By working at such a high frequency, most of the time, radar satellites are

free from atmospheric effects and clouds in the image as they penetrate through

them.

Figure 2.2: Frequency range from various applications. The frequency range of elec-
tromagnetic wave is very large. It can go from a few kHz to 300GHz. Usually, frequency
range used in radar satellites ranges from 1GHz to 40GHz, corresponding to wavelengths
of approximately 30cm and 0,7mm. To distinguish the frequency used by a satellite, the
frequency range is divided into several bands of smaller range. A commonly uses band
to observe the Earth is the C band, with a wavelength of about 5cm.

Because waves interact with objects bigger or of the size of their wavelength,

depending on the band used, the signal emitted by radar satellites can penetrate

through vegetation and soil. This way, the greater the band, the more penetration.

However, care must be taken that humidity conditions also affect this property.

The presence of effects caused by water will be discussed later in the section.

The acquisition geometry is a bit unique (fig 2.3). Like other satellites, radar

satellite flies following the azimuth direction and its projection on the surface is

called the nadir. Nevertheless, SAR broadly measures the time between the pulse

emission and the return of that pulse. The range represents that time and is the

distance between the sensor and the illuminated area. It is then impossible for
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the radar to be directed under the pod, otherwise, it would confuse its left and

right. The satellite, therefore, moves looking at one side. The length between the

closest illuminated point and the farthest is the swath. Swath and azimuth define

the coordinate system of the image: azimuth = Y and range = X.

Figure 2.3: Schematic of a radar satellite acquisition geometry. A satellite flies along
the azimuth direction, aiming the Earth in the range direction. The projected position
of the fly direction is the ground track and the direction of the satellite’s projection on
the ground is the nadir. Swath is the length in which the data are recorded.

To create an image scene, SAR needs to transform many pulses reflected by ev-

ery single target of that scene and received by the antenna. The processing can

be considered as a two-dimensional operation: the range focusing and the az-

imuth focusing. For the range compression, the signal is multiplied by a complex

conjugate of the spectrum of the transmitted chirp in the frequency domain. It

is almost equivalent to a convolution in time domain but with less computation

load. The result is information on the distance between the sensor and the point

on the ground. The azimuth compression follows the same reasoning but following

a function of the range. After this processing, SAR images are called ”Single Look

Complex”, the images containing amplitude and phase information.

The resolution of such images is variable regarding range or azimuth (fig 2.4).

When talking of resolution, resolution and pixel size should not be confused. Res-

olution is the smallest distance between two points that can be detected separately.

Pixel size is the distance between two pixel’s centre in the image, being the sam-

pling in the signal. The slant-range resolution is the simplest of the two resolutions.
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As seen in fig 2.4, it can be easily approximated by:

δr =
c · τ

2cos(θ)
(2.2)

With c the speed of light, τ the duration of the pulse and θ the complement of

the incidence angle i. i Being variable for the same scene (its value increases

with distance from the sensor), the range resolution is variable inside the scene.

Causing some geometrical distortions that can be corrected. In more precise terms,

Figure 2.4: Range and azimuth resolutions. The left schematic represents the ex-
planation for the range resolution. For two objects to be distinguished, they have to
be distant for more than δr or else they will participate in the same backscatter. The
incidence angle, i, varies inside the swath, making δr varying too. The right schematic is
an example for understand the azimuth resolution without the synthetic aperture tech-
nology. For two objects to be distinguished, they have not to be inside the same beam.
As for the range, the azimuth resolution decreases with range because beamwidth grows
with range.

because SAR does not really use simple pulses but use frequency-modulated pulses

waveforms, the concept of bandwidth is used. The amplitude of the pulse is

constant during the time of the pulse but the frequency is variable over time. The

ratio between this frequency and time give the chirp rate. Chirp rate, kr, is the

base of the definition of a bandwidth:

Br = kr · τ (2.3)

The range resolution then becomes:

δr =
c

2Br

(2.4)

For a fixed time emission, the bigger the chirp rate, the bigger the bandwidth, the

lower the resolution.

If the range resolution is quite simple and the characteristics of the wave used allow
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reaching resolution of a few dozen meters, azimuth resolution is more complicated.

To differentiate two different objects, they should not be in the same beamwidth

(fig 2.4). Beamwidth (angular diameter of the beam) can be approximated by the

ratio of the wavelength used and the length of the antenna:

Φr =
λ

da
(2.5)

And assuming a range distance r0 from the antenna to a ground point, the azimuth

resolution is:

δa =
λ

da
= Φr · r0 (2.6)

Azimuth resolution has been a major drawback for active airborne and spaceborne

systems. Following equation (2.6), to obtain a resolution of several meters when

flying thousands of metres (or kilometres for satellites) and using micro-wave, the

size needed for the antenna is gigantic and not convenient. This limitation was

overcome by two new majors techniques developed during the fifties and sixties.

The first one is called the Doppler beam sharpening. The second one, using the

principle of the first, is the technique SAR has its name based on: the synthetic

aperture (SA, fig 2.5). SA aims to create a longer, synthetic, antenna from the

physical antenna (Cutrona et al., 1961).

To form the antenna, all the pulses in which an object is visible is used and are

treated all at once. By adding all those together, a kilometre-long antenna is ar-

tificially created from a physical antenna of a few metres long. During the time

an echo from an object can be listen to by the SAR, the position of the object is

reached by using the first technique, Doppler beam sharpening (Wiley, 1985).

To find the position of the object, not only the amplitude of the echo is examined,

the frequency is used too. According to the Doppler effect, if a relative movement

exists between a transmitter and a receptor, the receptor will receive the trans-

mitted wave with a higher frequency if the two objects get closer or with a lower

one if they get distant. This phenomenon is exactly what happens with the echo.

SAR is in motion with respect to the backscattering object and perceives the echo

with a different frequency for each pulse. By applying this technique, the beam

is sharpened (less broad) and δa reaches a resolution of a dozen metres as for δr.

However, SA leads to interesting conclusions. The length of SA is given by:

Lsa = Φr · r0 =
λ · r0
da

(2.7)
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Figure 2.5: Synthetic aperture radar technique. Synthetic aperture (SA) technique
consists in the creation of an artificially longer antenna. It is constructed for a ground
object from all the acquisitions in which the element is visible. The technique is used
with Doppler beam sharpening to enhance the azimuth resolution, limiting factor of the
radar imagery.

By combining equations (2.6) and (2.7):

δa = Φsa · r0 =
λ · r0
2Lsa

=
da
2

(2.8)

To get a better azimuth resolution, equations (2.6) required a longer antenna but

equations (2.8) says the opposite. The paradox is solved by thinking that a smaller

antenna can distinguish an object for longer since its beam will be larger, resulting

in a longer SA. It is important to note that both resolution do not depend on the

distance to the ground, allowing the use a satellite. Nonetheless, sensor still needs

to be able to catch an echo that is not too noisy, thus the signal have to be strong

or the sensor to be close to the Earth.

There are 3 base modes for SAR to record images: strip map, scanSAR and spot-

light. Strip map is the standard model. The pattern is fixed to one swath resulting

in a single continuous strip. The scanSAR mode is used when a wider swath is

required. The antenna elevation is variable, allowing the creation of multiple sub-

swath. Each sub-swath is illuminated by pulses but with a shorter time than

in strip mode. ScanSAR has a larger swath wide but worst azimuth resolution

than in strip map. Spotlight mode is used when a better azimuth resolution is
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needed. The antenna is fixed to a certain point on the ground, resulting in a

longer synthetic aperture time, giving a better resolution. Consequently, a SAR’s

path operating in spotlight mode is not a continuous image but rather individ-

ual images all along the path. It is possible to swap between each mode but the

change is not instantaneous. During the time required for the switch, data cannot

be recorded. With Sentinel-1, scanSAR is enhanced in TOPSAR. The resolution

and coverage of scanSAR are kept but with less noise. To do so, the SAR beam

is tilted in range to swap between the sub-swath but also in the azimuth direction

to avoid scalloping. Images resulting from TOPSAR are IW and EW images.

Images Distortions

The acquisition geometry and the method of acquisition itself can causes image

distortions. The most commons are shadows, layovers and foreshortenings. The

shadow effect (fig 2.6) is almost the same as the effect clouds can have in passively

recorded images. Either with passive or actives techniques, to have a returned

signal, you need the energy to reach the ground. In certain geometries, a part of

the scene can hide another. By obstructing the beam no illumination will reach

ground and the corresponding range will appear black in the image.

Figure 2.6: Shadow effect. When there is an obstacle between the sensor and a
ground zone, no signal can pass through. SAR images are based on the record of the
backscatter of this signal. Thus is no signal reach the ground, nothing is recorded and
the corresponding range will appear black in the image.

To understand the two distortions presented hereafter, it is to remember that the

X axe for SAR images represents the range between the sensor and the ground.

In some cases, the top of an object and the bottom of it are almost at the same

range. The two extremities are then displayed closer than they should. The object
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looks compressed or the slope is steeper. This effect is called the foreshortening

effect (fig 2.7).

Figure 2.7: Foreshortening effect. The effect of foreshortening is affecting topography.
The pixel is placed on the range axe with report to its distance to the sensor. If two
points are at the almost same range, they will be represented next to each other in
the image even if more distance separates them in reality. The element affected by
foreshortening will look shorter/compressed.

Layover is a case of extreme foreshortening. The top of the object is detected

before the bottom. When looking in the image, the object looks to be laying on

the ground. In fig 2.8, the layover is illustrated by an image of the Eiffel tower.

Because the echo of the top of the tower is received first, the tower appears tilted,

laying over the Seine.

Figure 2.8: Layover effect. Layover is a special case of foreshortening. Top of a
tall elements of the scene is closer to the sensor than the bottom. Following the rule
that image is constructed in range with the distance, the top appears first in the sensor
direction. The right image illustrates layover with the Eiffel tower that seems to be
laying on the side.
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Observable

As explained before, RADAR observes the backscattered part of the energy emit-

ted. But all surfaces do not scatter in the same way. Here we describe the principle

observed scattering (fig 2.9).

1. Including a large spectrum of scattering mechanism is the surface scattering.

The beam is directed to the ground and a part of the energy comes back to the

sensor, the rest is scattered in all directions. The way the wave is scattered

depends on ground properties such as roughness, humidity or sloppiness,

and emitter properties as wavelength or polarisation. These influences will

be discussed later. Surface scattering occurs on non-vegetated grounds for

example.

2. Specular reflection is what could be called ”mirror effect”. The major part of

the power is reflected with the opposite incidence angle. Almost no energy is

recorded in that case. Specular reflection occurs with a smooth surface (for

the wavelength). Given calm water and a large area covered in concrete al-

most no backscatter occurs. Sometimes, specular reflection can cause double

bounce. It occurs when two surfaces favourable to specular reflection form

a 90° angle. The signal bounces on a surface then on the second one, before

being redirected to the satellite. Buildings and tree trunks are likely to pro-

duce double bounce. Pixels where double bounce happens, appear brighter

because a lot of the energy travels back to the sensor. Specular reflection

can be seen as a particular case of surface scattering where the energy is

scattered in one direction.

3. The last type of reflection discussed here is the volume scattering. When a

radar wave penetrates a heterogeneous medium, the signal bounces on every

ground target. The resulting scatter is uniform in every direction. Such

scatter occurs with vegetation or fresh dry snow.

The energy backscattered by the ground can be calculated from the energy emitted

by the antenna. The relation between the two is linear, which means that the

backscattered energy is proportional to the emitted energy. The equation that

links the two is called the radar equation. It can be written and explained in

different ways. Here the presentation of the equation follows the course ”Principes

fondamentaux de la rétrodiffusion radar” from EO college (EO College, 2021).

Er =
Es ·G2 · λ2 · (σ0 · A)

(4π)3 · (c · t)4
(2.9)
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Figure 2.9: Types of backscattering. Image a) represents surface scattering. The
energy is emitted towards the ground and the backscatter occurs in every direction. The
intensity depends on ground and wave properties. b) Is volume scattering. It happens
with heterogeneous media such as foliage or dry snow. c) Is a typical case of specular
reflection, almost no signal come back to the sensor. d) Represents double bounce, two
perpendicular surfaces causing specular reflection to send the majority of the signal back
to the sensor.

Some parts of the equation are more complex than others, but they form the most

important equation for SAR imagery.

Es is the energy emitted for a pulse. This factor is decreasing by a factor of 4πR2

because the energy is distributed as a sphere doing a round trip to the Earth. This

decrease is taken into account with (c · t)4 as the radius of a sphere = c · t/2. The

diminution of Es explains why SAR mainly used low Earth orbit. Deeper orbits

would not allow having an echo powerful enough to have clear information on the

target.

G is the gain of the antenna. The variable is used to take into account that the

antenna does not emit and receive in the same way for all the directions. Square

value means the gain is the same for emission and reception.

λ is the wavelength. The choice of λ is very important because, as explained after,

it has a relative influence on σ0.
λ2

4π
is used in the equation to link G to the effective

antenna surface at the reception.
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A is a surface term. It can be considered as the size of a pixel or the size of the

zone illuminated by the antenna.

σ0 is the backscatter coefficient. It translates the ratio of the energy scattered

back to the antenna and the energy reaching the ground. It is independent of

the surface as it is normalised by the apparent surface. Commonly, σ0 is given in

decibel as a lot of the collected data are clustered in the low values but some can

have much higher values. σ0 is the only variable of this equation varying with the

target properties. The local characteristics influencing σ0 are the roughness, the

topography and the humidity.

The roughness has to be considered with the λ used as the interaction of the wave

with the ground depends on the geometry of the soil and the wavelength. There

are several methods to calculate the roughness. Rayleigh criterion states that soil

is considered as rough if:

h >
λ

8
· cos(Θ) (2.10)

With Θ the incidence angle and h the mean quadratic height. A smooth sur-

face will be more likely to cause specular reflection and in the process, a small

backscatter coefficient. In the opposite ways, a rough surface tends to create sur-

face scattering and scatters the energy back to the radar.

Topography will influence σ0 at the cm-scale and at the kilometre-scale. Indeed,

as seen in the part dedicated to the geometrical distortion, topography tends to

create distortions and shadows that disrupt the images. But topography also plays

a role in the roughness. Incidence angle is present in equation (2.10). A steeper

slope will appear less rough and will tend to create specular reflection, leading to

higher σ0.

The last parameter is moisture. In reality, it is not the humidity that influences

the echo, it is the water content through the change in dielectric constant. The

dielectric constant changes the electric characteristic of the surface and thus en-

hances its capability to reflect the radar signal. When water is in a medium, it will

change its conductivity and increases its permittivity. Yet, permittivity charac-

terises the interactions between the electric field of the electromagnetic wave and

the molecule constituting the medium. When permittivity increases, σ0 increases

too. The explanation comes from the Frenel law: when an electromagnetic wave

runs through a medium, the ratio of the reflected field and the incident field is

equal to the ratio of indexes (the transformation between field and power is a

square root). In the case of SAR, the indexes in the ratio are the dielectric con-

stants. It is demonstrated that when the medium is wet, this ratio increases and

thus, to keep the equality, the reflected power too.

25



σ0 is the most used coefficient resulting from the calibration of the images but it

is not the only one. β0 and γ0 are also two other coefficients that can be used.

The difference between them is related to the area used during the calibration (see

fig 2.10). γ0 is a coefficient created to remove the effect of topography by using

the local incident angle and making a comparison of images coming from different

orbits or tracks possible (Small, 2011).

Figure 2.10: Construction of σ0, β0 and γ0 (Small, 2011) The 3 surfaces (Aσ, Aβ
and Aγ0) are the surfaces used to normalise the backscattered energy and create the
corresponding coefficient.

After understanding what is displayed in a SAR image, the analysis of the data

is still to be done carefully. Active imagery tends to present a great variability

between neighbours pixels. This effect of ”salt and pepper” is called speckle (fig

2.11). It is caused by the resulting echos created by targets inside the same pixel.

The interference is possible because the SAR signal is coherent, it is stable in

phase. Then the targets answer inside a pixel can be added together. The sum

of the contributions can be very variable between two pixels next to each other

as they can randomly be constructive or destructive. Because its mathematical

expectancy is null, the speckle effect can be mitigated by two principal means:

Spatial and temporal filtering. For example, the multi-looking technique consists

of taking the mean of some images of the same scene but taken from different

angles. Convolution windows can also be used to mitigate speckle. The bigger the

window, the smoother the images but the more loss of information.
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Figure 2.11: Speckle effect in a forest in Gabon. The two graphs represent how
constructive and destructive contributions can gave different results.

Polarisation

Polarisation is the direction of the electric field of the electromagnetic wave. Be-

cause SAR emits its proper wave, the polarisation of the emitted and the received

wave can be chosen. With SAR, it is linear polarisation that is used. There are

four ways of using it:

• HH: emitted and received waves are in horizontal polarisation.

• VV: emitted and received waves are in vertical polarisation.

• HV: horizontal polarisation for emitted wave, vertical for the received ones.

• VH: vertical polarisation for emitted wave, horizontal for the received ones.

HH and VV are called parallel polarisations, HV and VH, crossed polarisations.

Polarisation is frequently used to segment and classify elements. Anthropologi-

cal elements tend not to depolarise the electromagnetic wave but vegetation does.

Because the depolarised wave is always a fraction of the original, crossed polar-

isation has a lower mean power. The structure of the target will influence the

backscattered energy as horizontal structures will react more with H polarisa-

tion and verticals with V. Ratios of polarisation are used to create discriminatory

thresholds to create classifications.

The explanations provided here only take into account the amplitude’s part of
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the complex signal that is the radar signal. Numerous SAR applications use the

phase’s part. Interferometry is using the difference in phase from several images

taken from different positions to study topography or movements. Because inter-

ferometry is not used for the master thesis, it will not be developed.

2.4 Melt Detection with SAR

The classification of SAR images is based on the scattering mechanism occurring.

Dry snow produces volume scattering and relatively higher σ0. Meltwater will in-

crease the permittivity of the medium and consequently increase the backscattered

power. But it will also make the medium smoother, resulting in a mirror effect and

thus a very low σ0 in the image. In the fig 2.12 the effect is clearly illustrated on

the ice shelf. The northern part of the ice shelf gets darker between the two dates.

Several ways of creating a discriminant value for SAR images have been developed

(Nagler & Rott, 2000; Nagler et al., 2016; Liang et al., 2021; Buchelt et al., 2021;

Koskinen et al., 1997). Most of the time, it is not a threshold on σ0 that is used

but a threshold with an index. Depending on the area of the analysis (Greenland,

sea ice, Antarctica, ...) the construction of the index and the values of it change.

For example, Winebrennernelson et al. (1994) used a flat threshold of -14 dB to

study melt in sea ice. Nagler and Rott used a ratio between the images and a

reference image of -3 dB (logarithm of a ratio is the difference of the logarithm) in

2000 and a -2dB for the same ratio but weighted proportionally to the polarisation

and incidence angle in 2016. Lievens, coordinator of the C-SNOW project at the

KU Leuven university, also used a ratio between HV and HH σ0 in 2019 to study

the state of the snowpack (Lievens et al., 2019).

During the redaction of the thesis, two articles on the subject have been published.

The first article (Buchelt et al., 2021), used an adaptive threshold in space and

time but not in the form of a ratio. The start of the melt season is defined by the

lowest backscatter of the season and the study continues until the end of the melt

season. As this work is based on the observation of melt, we do not go further. The

article states that the optimal threshold differs between the years and the polari-

sation. The optimal and global way to detect melt would be using a threshold of

4dB, with HV polarisation. Some assumptions had to be made in this case. First,

4dB is a lot more than the -2 and -3 from Nagler (Nagler & Rott, 2000; Nagler

et al., 2016) and the paper references threshold of 2 and 3 for the two precedent

Nagler’s papers cited. The value is thus certainly -4dB. Second, it seems like it is

γ0 that is used in the article. Thus, it cannot be followed as calibrating images
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Figure 2.12: Effect of melt water on SAR σ0. The top picture shows values of σ0 just
before the melt season. The ice shelf appear bright, because the values are high. The
bottom one is during melt. The northern part of the ice shelf appear darker, σ0 have
drop with the presence of liquid water.

in γ0 was too time-consuming and understood late in development. The second

paper (Liang et al., 2021) is much more interesting as it is focused on mosaicking

Sentinel-1 images over Antarctica and detecting melt in it. The common point

with the other papers is that the threshold is based on a ratio. However, the ratio

is not really formed with a fixed referenced image. The paper is based on the

fact that there is not a lot of events that could cause the backscatter coefficient

to change between two dates in Antarctica. Either the change comes from a vari-

ation in the geometry acquisition or from in-situ characteristics. Summer images
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are then normalised with regard to an image from the same orbit, same time of

acquisition but in winter when there is no melt. If changes have occurred, the

cause is probably melting snow. This type of ”co-orbit normalisation” could have

been used in this master thesis as it is quite simple to implement, as far as the

data are available. Such reasoning allows to clean the images from the darker zone

in altitude or would have allowed to better understand what happens in the lake’s

zones that have a constant low backscatter (see further). In the end, the threshold

used in Liang et al. (2021) is -2.66 dB for σ0 images in HH polarisation.

30



Chapter 3

Methodology

As explained in the state of the art, using satellites to observe the melt is quite

common nowadays. However, using SAR on a larger scale in Antarctica has only

been done very recently in Liang et al.(2021). The subject stays quite interesting

as it is still a challenge for the programming part as well as for the analysis part.

Even more, because the subject links two disciplines, working alone turns out to

be almost impossible. Collaboration is needed to create innovations and from

innovations comes advancements. By linking glaciology and space sciences, this

master thesis tries to contribute to the collective work that prevention and warning

on global warming are. It can be by showing each disciple what they could bring

to each other and the complementarity of the data. To archive this, the thesis

will try to answer 3 questions: How large the differences between the

melt quantity provided by the two product are? Where are located the

differences? When are they occurring ?

In order to obtain the desired results, several steps are required. The first of them

is choosing the data that will be used. Some data are more relevant to use than

others. For example, as explained before, polarisation can have an impact on SAR

data. Once the data is chosen, it needs to be treated. SAR and MAR data do

not follow the same structure. One can be seen as a cube of data containing all

the necessary information, the other is an assembly of spare data. The structure

of the data is a barrier to a simple comparison. You cannot compare things that

are not comparable. Transformations need to be applied to match SAR and MAR

together. The match needed is in both spatial and temporal dimensions. The

solution to this problem has been to create a mosaic with SAR images. The

mosaic allows to interpolate SAR data’s time to MAR data’s time and to merge

the information of images of multiple days together.

Once all data are correctly georeferenced, a threshold has to be considered for melt
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in SAR. The assumption used is that water in the firn will change its properties.

By adding liquid water to a surface that causes volume scattering, it will turn it

into a mirror for the waves. Resulting in a lower echo. Such a simple hypothesis

makes that noise and other effects can influence SAR to detect melt when there is

not. The choice of the threshold can be made in different manners. Here the choice

is purely made on previous studies. After all the previous steps, it is possible to

compare the data. The comparison is focused on time series and spatial variability.

Spatial variability can be studied through maps or index like the Moran index. A

lot of precautions had to be taken before a clear and strong comparison. As it

has just been said, external events can interact with one of the two data and

make them incomparable. In order not to impute miss observations or problems

in modelling, critical zones can be masked out of the analysis and explanations of

the differences will be discussed when proved to be relevant. Uncertainties bring

assumptions and hypothesis that will not be resolved in this work but open the

subject to reflection.
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Chapter 4

Data Presentation

4.1 MAR

MAR data is composed of NetCDF files. NetCDF is a common format used in

climatology for the exchange of data. It can be seen as a documented multidimen-

sional data cube. Two of the dimensions are the X and Y coordinate and another

one is the time. Each file contains one of the six variables to be studied. Those

variables have similar image size, pixel size and time resolution (see table 4.1).

The variables are:

1. WA1: WA1 is the liquid water content of snow layers. The file is divided

into ten bounds/layers of snow representing the first meter of depth. The

boundaries are: 0cm, 5cm, 10cm, 20cm, 30cm, 40cm, 50cm, 65cm, 80cm

and 1m. WA1 can be compared with SAR thanks to the ability of radar

frequency to penetrate the soil.

2. RO1: Not a variable representing liquid water, RO1 is the snow density.

Divided into the same layers as WA1, it is not used to be compared directly

to SAR data. It is used to create a variable that represents the relative

quantity of water in the snowpack together with WA1.

3. ME: ME variable is the melt variable. As SAR have strong interactions with

liquid water, this variable should be the one that correlates the best with

SAR in standardised conditions because melt is supposed to be the major

source of water in the snowpack. Further testing will show that it not as

simple as it seems.

4. RU: This variable represents the surface runoff. Runoff contains both runoffs

caused by melt and by rainwater. SAR backscatter should change with both
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of them but it is not the rain that is studied here.

5. SMB: The surface mass balance is linked with ablation phenomena and thus

may be correlated with the radar cross-section. SMB is calculated as the

thickness change of the snowpack. It can be approximated by the sum of all

the processes that cause accumulation or ablation.

6. SU: Sublimation is the passage from solid-state to gas without passing by

the liquid phase. If it is the liquid water that is detected with SAR, for

the sublimation process to occur, snow needs heat as it is an endothermic

reaction. If there is heat, there may be some melting too.

Variable Unit Image size Pixel size Frequency

WA1 kg/kg 750 · 720 km 5 · 5 km 1/day
RO1 kg/m³ 750 · 720 km 5 · 5 km 1/day
ME kg/m²/day 750 · 720 km 5 · 5 km 1/day
RU kg/m²/day 750 · 720 km 5 · 5 km 1/day

SMB kg/m²/day 750 · 720 km 5 · 5 km 1/day
SU kg/m²/day 750 · 720 km 5 · 5 km 1/day

Table 4.1: Mar data used.

Figure 4.1: Cartography of the MAR variable ME at the date of 2018-11-24.

Multiple variables were provided but they are the only ones being compared with

SAR. SAR detects waters and the variables WA1 and ME are perfectly fitting.
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Other variables as AL2 (Surface Albedo) could have been taken into account but

could not be included in the analysis to stay in the time and length allowed for

the thesis.

Available images are centred on the Roi Baudouin ice shelf, once a day since 1st

January 2015 until 31st December 2020. The value is a daily mean estimated at

noon. Fig 4.1 and 4.2 represent example of ME and WA data for one day.

Figure 4.2: Cartography of the MAR variable WA1 at the date of 2018-11-24.

4.2 SAR

SAR images (fig 4.3) used are data from the Sentinel-1 mission. It refers to a con-

stellation of two polar satellites. Sentinel-1 is the first mission the European Space

Agency (ESA) is developing for the Copernicus initiative (ESA, 2019). Copernicus

brings a paradigm shift in the use of space data. The program aims to provide,

free, open-access and high-quality data (Copernicus, 2019). The two satellites con-

stituting the constellation (S1A and S1B) work on the C band, allowing night and

day imagery. With an orbit of 693 km, a revisiting time of 12 days and a near-polar

sun-synchronous orbit, the S1A and S1B allows having images on a zone every 6

days. The first satellite, S1A, has been launched in April 2014 for a seven years

mission. S1B has been launched two years later. In polar regions, polarisation is

set on HH + HV or HH and the Interferometric Wide swath (IW) and Extra Wide

swath (EW) mode are the two predefined modes of acquisition (ESA, 2019). In
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general, the local time of passage of the descendant node is around 6 PM.

The data are retrieved from the Alaska Satellite Facility (ASF, 2021). To have

the 6 days revisit time of S1A and S1B and not only the 12 days revisit of S1A,

the analysis starts in 2016 and not in 2015 even if the data has been processed

for 2015. in the end, 1417 images were used to conduct the analysis. They are

described in the complementary material document (see section 8.1). Multiple

paths are used to recreate an image of the MAR’s data size. Indeed, the coverage

of data collected for the paths are different and, to have as much data as possible,

they are all taken into account. Still, SAR is the limiting factor comparison wise.

MAR output resolution time can be set but SAR has physical limitations. Even

if all the data possible is used, some dates show a lack of images resulting in holes

within the comparison. Nevertheless, the spatial resolution and pixel size are a

lot greater than for MAR. Mostly GRDH and GRDM products are used for this

analysis. Such images have a pixel size of 10 by 10m and 40 by 40m respectively

(table 4.2).

Polarisation Coefficient Swath mode Pixel size Frequency

HH σ0(dB) IW and EW 10 · 10m and 40 · 40m 1/6 days
HV σ0(dB) IW and EW 10 · 10m and 40 · 40m 1/6 days

Table 4.2: Type of SAR data used for the analysis.

Figure 4.3: SAR image from path 88 after processing.
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Figure 4.4: SAR image from path 88 without any processing.
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Chapter 5

Data Treatment

The data treatment section is about the transformation of original data to readable

raster data. The processing is completely different for the two types of images as

the one for MAR is hand-made on Python and the one for SAR is made with the

ESA SNAP software.

Another goal of the pre-treatment is to obtain georeferenced images with the same

pixel size. Pixel size is fixed to 5000m because it is the MAR’s basic one. However,

as seen before, SAR technology can provide resolution up to 10m and resampling

MAR to a greater resolution and downgrading SAR much less could have been an

option to benefit from it. Limiting factor as processing time and RAM needed for

the computation made the choice of a 5km resolution a fast first approach that

does not take full advantages of the SAR potential.

5.1 MAR

MAR data is provided in NetCDF format. Working with .nc format obligates to

learn new data’s structure that is not usual in basic programming.

The Python script pre-treating M.A.R. is named Extract MAR (see complemen-

tary material, 2.1). The algorithm simply checks for every .nc files in a specified

directory and create a .tif image for each time value of each file found.

5.1.1 Data Extraction

After several tests with different libraries, Xarray seems to be the best fitting one

to read and extract data by opening the file as an array. The choice is mainly

based on habits to work with data array rather than with dataset and dimension

as NETCDF4 library does.
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Because all NetCDF files do not have the same structure, it is not possible to

automatically select the right variable. But provided NetCDF files are built with

the same structure. It allows defining the first attribute as the studied variable.

Thereafter, the data cube is read day by day and the values of the variable for

each day is extracted before projecting the data. Slicing the data cube day by day

allows working with one dimension in less, which is conceptually more simple.

For a given day, the array storing the variable is distinct according to the studied

variable. That is to say, if a variable has layers, the array will be composed of three

dimensions (latitude, longitude, value by layer) when it is only two for classical

data. In order to recreate a simple 2D map from the 3D array, a weighted mean

value of the layers is created by weighting values with the corresponding layer

thickness.

5.1.2 Data Projection

Projecting MAR data has been one of the most challenging parts of the work for

two reasons. First, as said before, working with NetCDF is not usual and second,

because there is not a lot of libraries that help creating geographically referenced

images from scratch.

Most of the libraries tend to only work with already projected images and only

apply basic operations on them such as clipping or resampling. Another problem

that had to be solved was the projection of the data. The .nc is defined with

bounding coordinates and posting so each variable is given for every coordinate.

However, those coordinates are local coordinates given relatively to the image’s

centre. Without knowing the centre’s coordinates, it is impossible to project (x,y)

to longitude and latitude. The only way found to do so was taking the right

coordinates from another file with the same extent and copying them into the

studied NetCDF file.

Once the (x,y) coordinates are copied, they are projected in longitude and latitude

using the Pyproj library. The projection used is the Antarctic Polar stereographic

projection (EPSG: 3031) as the studied area is in Antarctica, conventional WGS84

(EPSG: 4326) would not be convenient with all the deformations occurring near

the poles. Using Gdal, by providing the proper metadata file, it is possible to

create directly the .tiff files projected with the exact coordinates and the values

from the NetCDF file.

To confirm the data projection, they are visualised in Qgis, within the Quantarctica

project (Matsuoka et al., 2021). Some examples of images created are visible in

the previous part.
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A frame of No data is created around the data as the output raster is a square

but the values are tilted inside. To create this mask, the nearest neighbours (NN)

method is used. For each pixel of the new grid, its coordinates are inverted to

get the old pixel corresponding. It allows to keep No data in the form of No

data and not transforming them into 0 when interpolating the mask coordinates.

However, the interpolation method used to get values for the new image is linear

interpolation. Using linear interpolation rather than NN allows mitigating the

deformations caused by the projection. Linear interpolation will also render a

smoother image. Interpolation is made by inverting the new coordinates of a

pixel to its position in the old system. The value is then calculated by two linear

interpolations between the neighbour pixels (fig 5.1). Cubic interpolation has been

ruled out of the projection because it causes spike effects at the margin of the ice

shelf or near batches of melt.

Figure 5.1: Example of linear interpolation. A first interpolation is made between c
and c+1 in both rows. Then a second interpolation is made between r and r+1 but with
the new values found.

The processing of MAR data files is pretty quick. To create images for one vari-

able, one image a day, from 2015 to 2020 (2192 images) the treatment lasts for

approximately 420 seconds.

5.1.3 Melt Binary Classification

Speaking of melt with the MAR variables is a bit of language abuse. Only ME

represents melt, other variables are somehow a by-product of liquid water. But,
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in order to compare SAR and MAR, some values need to be used as thresholds to

permit discretization. For SMB, it seems natural that a threshold on the variable

values have a less impact-full meaning as the change in surface mass can be caused

by one of the other variables composing SMB than melt. Same for RU as the

variable results of a complex interaction between several variables.

For the ME variable, a threshold of 0,1 mm/day is used. Firstly because the linear

interpolation use to create the image can cause small values where there should

not be. Secondly, because a really small quantity of water does not cause enough

change in reflection to be seen in the SAR image.

For the last two variables, RO1 and WA1, a pixel is considered as melt if:

0, 1 · (0, 1 ·RO1[k = 1 : 10@ave] ·WA1[k = 1 : 10@ave]) > 0, 1% (5.1)

With k the snow layer’s number. The equation, outcome of a discussion with Mr

Fettweis, simply stipulates that melt is considered when the water content of the

first meter is superior to 0,1%. However, working with an averaged layer can be

problematic. If by using C band, SAR products can penetrate through the first

meter of soil, it is only possible when the snow is dry. If the first layer contains

enough water, there will be no penetration and σ0 will be low. But that does not

mean that the average on the first meter will be greater than 0,1%. It is then a

sensible analysis that as to be made, a lot of considerations have to be taken.

5.2 SAR

For MAR, the major data transformation was the projection of the data. For

SAR, the treatment begins earlier in the processing chain. Some more steps have

to be applied. Some as speckle filtering are typical to radar imagery, others as

under-sampling are more commons. As opposed to MAR pre-processing, SAR

pre-processing is more time and resource consuming. Simply when comparing the

size of the data before the process: MAR = 6 files, 3 Go; SAR = 1582 files, 537

Go. 1582 files do not mean 1582 images as some files have HH and HV polarisation

in them. The quantity and size of data have been a problem for the processing. In

order to complete the processing of an image from the beginning to the end, more

than 16 Go of RAM were needed. Because the process would take a few minutes

by images and the computer used has 32 Giga of RAM, it was not possible to

process multiple data at the same time. During the treatment, memory swap (use

of virtual memory instead of physical) occurred two or three times, forcing to stop

the ongoing process.
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Time is a key factor for the choice made. Because I did not have permanent access

to the computer at the CSL, it was easier to run a script that compiles in one or

two days so it was possible to run another one during the next visit. 3 days were

necessary to complete the processing of the 1582 images. It is a one-time process

but it had to be done a second time because an error in the calibration graph

builder (see next part) caused the majority of the images to be empty. The zone

was also restricted to RBIS because of the processing. To cover RBIS, 1582 files

are used. To cover the Dronning Maud Land, as discussed in the first instance, it

would take more than 13000 images. It was not possible to store them with the

storage capacity allocated to the project. Even more, it would have taken weeks

to do the processing.

5.2.1 Image Pre-Processing

Image pre-processing is the core of the use of SAR images. The chain of processes

that is applied to the images is the same for all the images, as well as for the

properties of the processing tools. To simplify the operations, a graph is used (fig

5.2).

Figure 5.2: Graph builder used to process downloaded SAR images.

The first step is to read the image to process it. The read operation is used to

open the files. In original data, orbit metadata are generally not accurate and

can be refined. The second step is thus the use of the ”Apply-orbit-file” function.

More accurate positions and velocity vectors are provided to update the abstracted

metadata of the product. All images do not necessarily have a correction to apply.

A special input parameter prevents the calibration to stop if there is no file to

apply.

The third step is calibration. Snap Help Toolbox informs us on what is done by

the function. Uncalibrated images are sufficient for qualitative use but not for

quantitative. Indeed, basic SAR image processing does not include radiometric

corrections. Without the radiometric corrections, it is not possible to relate the

value of a pixel to the radar backscatter of the scene. To simplify the sentence,
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it gives a physical meaning to the values recorded by the sensor. The calibration

step is also mandatory when measurements of different orbits are used together.

The result of the calibration chosen here is σ0 but it is possible to obtain γ0 or

β0. However, the processing to obtain γ0 takes more time and was dismissed. It

is also possible to transform β0 into γ0 with the terrain flattening operation. The

operation is supposed to make the analysis free from topographic effects. The

assumption that the ice shelf is flat enough not to have strong topographic effects

allows saving some time by using σ0 directly. A graph that creates data with γ0

has still been made and is shown in fig 5.3.

Figure 5.3: Graph builder used to create γ0 images from downloaded SAR data. Not
all the images were processed with this graph as it took too much time.

After calibrating the data, a necessary step for SAR data is speckle filtering. The

filtering has the purpose to render a smoother image as explained before (see

section 2.3.2). A Lee sigma filter type (Lee et al., 2009) is used with the basic

parameters: 1 looks, a 7 · 7 window, 0,9 σ and a 3 by 3 target window. To reduce

the speckle effect, the value attributed to the pixel by the filter is the average

value of the neighbours whose value is within +- 2Xσ (standard deviation) of the

tested pixel value. The step right after the filter is a simple transformation of the

image value into decibels. Swapping linear values to logarithm has the advantage

of better describing the small values and bringing the high values together. It is

often used in SAR imagery to normalise the value distribution as linear images

have a lot of small values and a long tail of higher values.

The last tool used before the creation of the transformed image includes two pro-

cesses. Terrain correction, or Range Doppler Terrain Correction Operator, corrects

the product from the geometrical distortions discussed in the state of the art (Small

& Schubert, 2008). The geometrical distortions corrected can come from the to-

pography or the acquisition geometry, as data not directly under the nadir of the

sensor is distorted because the pulse has a length. To correct the image and cor-

rectly project the pixels on the ellipse, a DEM is required. Usually, SNAP have

an automatic DEM download option but it is not accessible in Antarctica, the
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software has no terrain model available there. Even if MAR topography is based

on the ”Bedmap2” DEM, the terrain correction is made with a model from the

TanDEM-X mission. The choice made is purely made with report to the resolution

of the DEM. TanDEM-X DEM has a 90m pixel size when the other DEM available

have a kilometre pixel size.

At the same time, new pixel size is defined during the process. The pixel size is

defined to match with MAR data. The resampling method used is bilinear inter-

polation. By going to a 5km resolution from 10m, a lot of information is lost and

bilinear interpolation allows to take more of the values into account when calcu-

lating the new ones. In the first approach, resampling was implemented before

the terrain correction to reduce the processing time. However, in certain cases,

the data resulting from the processing chain would be filled with 0. There was no

clear information on why it would do it so it was removed from the chain. In the

end, a corrected, resampled and masked over the sea image is produced.

After this last step, the output image is renamed and registered. After the pro-

cessing, the storage size of the images is greatly reduced. The diminution from

500 Go to 150 Mo is explained by the change in pixel size.

As there is a lot of images to be processed, it is not the desktop application from

SNAP that is used but the engine. It means that it is not the application that is

used to process the images but directly the macro-commands. The graph builder

is a .XML files so it is possible to change its content. By using a .sh files, it is

possible to change the directory for the input files as well as for the output files.

Looping automatically on all the files rather than doing it by hand is then possi-

ble. Without this possibility, it would have been almost impossible to process that

much data alone.

5.2.2 Mosaicking

As there is not a single SAR image that covers the entire continent, data are

combined to create larger images. Combining the images also allows to interpolates

the values to a certain date, at a certain hour. The creation of the mosaic is

hand-made on python, using a few libraries to extract the data from the layers.

The script Grid Creation contains the definition of a class named gridding (see

complementary material, 2.3). The creation of the mosaic is based on this class.

Another advantage of mosaicking the SAR images is that it allows a perfect co-

registration with the MAR data. Indeed, the coordinates of the new pixels are

based on the MAR’s ones.

The principle behind the mosaic is quite simple but has taken a long time before
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resulting in acceptable data quality. At first, a grid of point is created with Qgis on

the zone the images have to be merged (fig 5.4). Then a first date is fixed and the

images 12 days before that date and 12 days after are used to create a new image,

interpolated in time (fig 5.5). The grid is created with Qgis only to have directly

a visual representation of it and matching perfectly with the MAR data but it

could have been done in Python too. The main library used to work in Python,

Figure 5.4: Point of the grid used to create the mosaic. Points are separated by 5km
to keep the resolution. That is to say that a point is created in the middle of each pixel
of a MAR data image.

as for a lot of scripts, is NumPy (C. R. Harris et al., 2020). Data extraction is

made with the rasterstats library. The main objective of the script was to have a

program that can work with provided tiff. This was made so even if MAR needed

to be merged it can be done easily. That is why the functions used are as general

as possible.

The script that needs to be run to create the mosaic (fig 5.6) is ”Creation of

Mosaic” (see complementary material, 2.4). The use of a second script to create

the images is needed for being able to have the process in a separate file. As

explained the script do the exact same action (so there is a loop) for every six

days from the start date until it reaches the last image or a specified last date. In

order not to create the grid object for each date, it is a dictionary that is created

and substituted to the grid’s one. The research for the values of the 12 previous

and next dates is poorly optimised. The value of each grid point for each day is

stored in the dictionary. This means that each point of the grid is registered even
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Figure 5.5: Time interpolation. For each point of the grid (fig 5.4), a new value is
interpolated between all the images available for the interpolation. The figure tries to
represent the axe the interpolation is made along, time.

if it is No data or a lot outside the studied area. Even more, by switching to the

other date, the dictionary is reset and days that have already been analysed are

erased and need to be analysed again. Those problems could have been prevented

by clipping the SHP that represents the grid or just selecting the points that fall in

the studied area (with the plumb line algorithm for example) and by only erasing

the days that are not in the new interval and analysing the new days.

Once the data for the twenty-four days have been read, an algorithm performing

binary search selects the first day before the date of the created mosaic and the

one right after. If there are no images in the 12 previous or next days, it is the

two closest images to the mosaic date that are selected for extrapolation. The two

values and their timestamps are used to interpolate the value for the mosaic. As

it is a pixel-wise analysis, the values of the neighbours are not taken into account,

resulting in visible boundaries. The interpolation is made so the value of the

mosaic is given for noon as the MAR data is. However, all the SAR images of

RBIS are acquired near 6 PM. The daily variation is then not represented in the
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Figure 5.6: Image created with the mosaic script. The figure represents the mosaic
created in the form of a map. Most of the errors are located in the sea that is removed
later in the process.

data and a significant variation can be overseen (fig 5.7). However, the day cycle

in the poles is less important and could be insignificant. It is a linear interpolation

and not a quadratic or cubic. The used ”iterp1d” function from the Scipy library

only required two values for the interpolation when the other need at least three.

This condition is not always fulfilled.

Created images have some problems that have not completely been solved:

1. There are holes in the images.

2. Boundaries are not smooth all the time.

3. There are some erratic pixels.

The first problem comes from data availability. A value is interpolated only if

there are at least two images in the twenty-four days interval. Then some pixels

only have one value and are not interpolated. Creating the mosaic on the same day

path 59 or 88 is acquired could allow having an image over the ice shelf. Using this

value as backup values could work. This solution is only useful for this situation

and has been modified by having the mosaic date just between the date of path

59 and 88. The number of holes and missing values in the images is quite too

big. After some researches, it seems like there was a computer problem making

the communication between the machine downloading the SAR data and the data

provider discontinuous. Images are then missing from the analysis because they
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Figure 5.7: Day cycle. Linear interpolation is often performed between two acquisi-
tions at the same hour. When interpolating the value at noon, an hypothetical daily
variation can be overseen. Having MAR data at 18h, time of SAR acquisition could have
help mitigating the potential error.

were not downloaded. This discovery was made late and only partially corrected

by downloading path 88 and 59 from another computer. For the second problem,

the function calculating the new values is not the same at all places as the images

data varies upon the area. It causes batches of values of different order in the

same images. To reduce the difference between the clusters of different values, a

convolution window could be used to mitigate the boundaries. It was not used as,

most of the time, the ice shelf values are often interpolated between two images

that do not cut it. The erratic pixels are caused by side effects. Pixels at the edge

of the base images may have unrealistic values. When it is a 10m by 10m pixel

in a hundred-kilometre size image, it is not visible. During the under-sampling,

some of those pixels stayed. Not to take them into account, a pixel value is not

taken into the interpolation if its value is greater than 20 dB or lower than -30

dB. However, it happens that a pixel has a value just under that threshold and is

taken into account for the interpolation or worst, for extrapolation. Convolution

windows or using the neighbourhood during the processing could eliminate them.

The problems are illustrated in the images in fig 5.8.
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Figure 5.8: Different types of error that can be seen in mosaics. Image a) is the most
visible error, the lack of data. When there are holes in SAR image, the comparison cannot
be processed. More clear in other location than on the ice shelf, figure b) represents a
boundary between two images composing the mosaic. The change in σ0 can affect the
repatriation of melt. By setting the date of the mosaic between the acquisition of path
88 and 59, there are only a few visible boundaries on the ice shelf. c) Is the most common
error, erratic pixels. Most of the time, they are caused by wrong values at the hedges of
original SAR data.
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By under-sampling and interpolating the values, some effects are mitigated. Speckle,

orbit and topography effects are reduced. Making some hypothesis less sensitive.

Despite the measures taken, 3 images present irregularities that make them unus-

able. The images are for 2016/06/23, 2017/03/26 and 2017/04/01. Usually, the

erratic pixels and the extrapolation problem are in the water or near the coast.

However, for the three dates stated, there are too many problems inside the ice

shelf to use them.

As explained before, the scripts are not optimised. A total of more than 30 hours

is needed to create all the mosaics. Starting from first January 2016 to the last

day of 2020, 521 images in tiff format are created. In the 521 images, 304 are with

HH polarisation and 217 with HV. The difference comes from the fact that HV

polarisation was available only since mid-2017. The images can be found in an

annexe document.

5.2.3 Melt Binary Classification

After a long time of questioning and reading the literature, the choice of using a

value of -2.6 dB as a threshold has been made. There was no external data to

calibrate the melt with and ”co-orbit normalisation” was understood too late to

apply it. It is a quite simple but time and resource-consuming algorithm. For the

normalisation to be efficient, it would have to be made on the not under-sampled

data. Doing it after the creation of the mosaic is less impactful as there already has

generalisation of the situation (interpolation, orbit mixing, and so forth). Choos-

ing to interpolate SAR data to the time of MAR data may not have been the right

way of managing the data. The mosaic and the interpolation of SAR σ0 was in the

first intention to create a SAR image that could cover the whole Dronning Maud

Land. As there would have been the obligation to combine images from more than

one orbit and day, the creation of the mosaic has a sense. Here, path 88 offers an

image of the RBIS with 6 days revisit-time since the end of 2016. Using the only

path 88 could have permitted the analysis on RBIS by taking MAR output at the

time and date of the SAR images rather than doing the opposite.

Anyway, the goal is still to provide ways to compare SAR and MAR so the pro-

cessing of the data is made as it would be done for a larger zone. The -2.6 value

is chosen relatively close to value in Liang et al. (2021) but rounded to the lower

value to be closer to the mean of -2 and -3 proposed by Nagler and Rott (2000

and 2016). The use of a basic σ0 instead of a ration is not too problematic as the

value of σ0 on the ice shelf during summer is often included in [-1;1] dB as seen in

fig 5.9. The threshold should be low enough not to cause false positives.
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Figure 5.9: Evolution of SAR σ0 during the studied period. The left graph is the
evolution of the coefficient inside a smaller section of the ice shelf (figure 6.3). The second
is the mean value of the ice shelf. Outside the melt season, there are small variations
caused by the use of several orbits but the value stays close to 0.

In fig 5.6, most of the image appear in black. The low backscatter coefficient does

not imply melt in all the scene. Indeed, the assumptions made are only valid on

the ice shelf as there is no image normalisation. The -2.6 threshold is used to

describe a decrease in backscattering for a zone that present positive or near 0

σ0 in summer. But an object can have a low backscatter coefficient for another

reason than the presence of water. In this manner, from a certain altitude and if

the temperature is low enough, the surface is made of dry snow. The particle size

of that snow is much smaller than the wavelength of the C-band used by Sentinel-

1. The electromagnetic wave passes through it and exhibits a low backscattering

coefficient (Liang et al., 2021). In contrast, if the ice shelf has higher σ0, it is

because melt and freeze occur depending on the season. The refreezing generates

a large amount of ice with larger crystals. The size of these crystals matches

with C-band, resulting in more scattering (Liang et al., 2021). Other zones with

constantly low σ0 are the three blue ice-covered areas on the ice shelf, just before

the hillslope. Two hypotheses are made upon the low σ0 there. The first is based

on the information brings by Lenaerts et al.(2016). The sites are full of sub-glacial

lakes. The presence of lakes can support the low backscatter as they act the same

as liquid water. The ”co-orbit normalisation” could prove this hypothesis. If it

is perennial water, more meltwater would not give a significantly lower σ0. The

second hypothesis is based on the reunited data from the Quantarctica project.

Even if there is a little shift, the 3 zones match with batches of blue ice (Hui et al.,

2014) (fig 5.10). Characteristics of blue ice could provide fewer interactions with

the radar signal. It stays an assumption as it is not verified in the course of this

work.
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Figure 5.10: Location of blue ice according to Hui et al.(2014). Even if there is a
small shift with the 3 clusters of lower values of σ0, the location of both seems to match
well.

5.3 Time Series

There are two types of time series that are built to study the evolution during time.

They are constructed in the same way but with two different scripts. The first one

is the simplest of the two and is created with the script Creation of Time-Series 1

(see complementary material, 2.7). The graph illustrates the variation of σ0 and

a MAR variable (fig 5.11). The values to be represented can either be the mean

values of the image, the mean value of a zone or the value of a selected point.

For SAR imagery, following the evolution of a single point is not always the best

choice to summarise the evolution during time. Indeed, even if a filter is used,

speckle can cause values to show undesired variations. This type of time series is

used to compare the evolution without the influence of a threshold. To create it,

every point of the defined zone is sampled and a mean value is calculated.

The second type of graph is a bit more complex. It represents the evolution of the

percentage of the image that is covered by melt (fig 5.12). The script Creation

of Time-Series 2 (see complementary material, 2.8) uses the comparison images

to create the graphs. The construction of these images is explained in the next

part. The script loops on each pixel of the image or the defined zone and counts

how many pixels are under the SAR threshold and how many are over the MAR

threshold. The count is divided by the total numbers of pixels. As some images

are missing data, the values can be abnormally high or low. Unlike the previous
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time series, this one is strongly influenced by the threshold choice.

Figure 5.11: Evolution graph of SAR σ0 and MAR ME.

In some graph, the line representing data is cut. There are two reasons for this.

SAR data depends on the availability of the image, no image equals no mosaic

equals no data for a date or a short period. But it can also come from the images

removed from the analysis because they have too many problems with the inter-

polation.

5.4 Spatial Analysis

In geography a principle is often used: everything is related but closer objects tend

to be more related than remote ones. In general, the concept of spatial autocor-

relation is put forward to demonstrate the hypothesis. The term spatial expresses

the consideration of the neighbourhood and autocorrelation the correlation of the

variable with itself (Goodchild, 1986). To study the spatial distribution of the

phenomenon, maps and indexes are used. Comparison maps were the first to be

made. They were used to study the evolution 6 days by 6 days and have an easier

visual interpretation. With one image every 6 days, for 4 years, with 5 variables to

compare, there are 1525 maps only for HH polarisation. It was possible to create

short videos of the maps to better study the time variation.
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Figure 5.12: Evolution graph of the detected melt and modelled melt.

Comparison maps (fig 5.13) are created through the ”Creation of Comparison

Maps data” script (see complementary material, 2.5). SAR and MAR data have

been perfectly co-registered and the grid used to sample the value is exactly the

same. Keeping the values that are outside the mosaic as well as No-data allows

an easier treatment in this part. The zip function in Python allows parallel itera-

tions on multiple data tables. As each value of the grid will be iterate, there is no

need to keep the ID of the point tested: ID = index of the iteration, making the

re-projection of the data easier.

A pixel-wise comparison is made between SAR and MAR. Depending on the value

of SAR and MAR, 4 cases represent by 4 qualitative outputs can be identified:

• SAR => thSAR and MAR <= thMAR: No melt/liquid water is detected in

both pixel

• SAR < thSAR and MAR > thMAR: Melt/liquid water is detected in both

pixel

• SAR => thSAR and MAR > thMAR: Melt/liquid water is only detected by

MAR

• SAR < thSAR and MAR >= thMAR: Melt/liquid water is only detected by

SAR
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Figure 5.13: Example of a comparison map created. The variable compared are SAR
σ0 and MAR ME.

In practice, values of either 0,1,3 or 4 are assigned to pixels, depending on which of

the four cases they fall in. The output raster is thus filled with those four values.

The establishment of the maps was not done by hand as it would have taken hours

and hours. The python console integrated into Qgis allowed the creation of all

maps. The implementation of the script (Creation of Comparison Maps in Qgis,

see complementary material, 2.6) was laborious. The class and methods from the

PyQgis library are a bit hard to handle for a new user. To reduce the time spend

on the script and accelerate the implementation, some short-cuts are taken. The

layout is predefined in a template (.qpt) and only the title and the raster to be

represented are changed with the script. Style files (.qml) are used to give the

right colours to the base map and raster. The raster’s style file can be seen as a

look-up table in which the 0,1,3 and 4 values are linked to the qualitative meaning

as well as a colour palette for the graphic representation.

Two other types of maps are created on the same pattern: a first representing the

correlation between σ0 and the MAR variable, a second representing probabilities.

The correlation coefficient, based and the covariance, evaluates how two variables

simultaneously evolve. The coefficient is ranging from -1 to 1, the closest to the

units, the strongest the correlation. A negative coefficient is expected as when melt

quantity grows, backscatter decreases. For the probabilities, two are calculated:

the probability of having SAR and MAR giving the same information for the pixel

and the probability of melt being modelled by MAR, knowing SAR has detected
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melt. The probabilities are simply computed following probabilities rules with

data being the sum of all observations during the studied period. The probability

of both pixels giving the same information is:

P (x) =
#0&1

#days
(5.2)

The probability for MAR modelling melt knowing SAR detects it is:

P (MAR|SAR) =
P (MAR ∩ SAR)

P (SAR)
(5.3)

This type of conditional probability is used to express the link between SAR and

MAR. A high probability will states that when SAR has detected water, there is a

great chance that MAR will have too. However, high probability does not confirm

that they are perfectly linked. As if MAR always models melting, P(MAR ∩ SAR)

will be higher but does not mean that it corresponds well with SAR.

In the same way as comparison maps, they are constructed by looping on each

pixel values but by calculating an index over the years and not for every day. The

choice of thresholds also influences the values and can change the result and the

interpretation that is made out of it. The three maps are constructed with the

script Creation of the Spatial Analysis Data (see complementary material, 2.9).

The compilation time is a bit long as for the previously explained comparison

script. The timing is explained by the number of loops that are used when they

could have been simple linear operations.

The statistical significance of the spatial variation of the variable is demonstrated

with two well known indexes: Moran’s I and local Morans’s I (LISA: Local Indi-

cator for spatial association). Moran’s I compares a local spatial covariance with

the global variance of the same variable (Goodchild, 1986):

I =
n
∑n
i

∑n
j wi,j(xi − x)(xj − x)

W
∑n
i (xi − x)2

(5.4)

The formula is inspired by the correlation’s one but the ratio is weighted. The

weight W is a matrix taking the topology into account. There are two main ways of

considering contiguity for the matrix: rook and queen (fig 5.14). Rook contiguity

simply means neighbour by one side when Queen is by one point. Different orders

of contiguity can also be used. The order of contiguity means the order of the

neighbours to take into account. Direct neighbours = first order, neighbours of

first order of first-order neighbours = second order and so forth.
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The value of I can be either positive or negative. A positive I is a witness of similar

Figure 5.14: Schematics of the two types of contiguity. Left is rook and right is queen.
Pixels in blue are the pixel the neighbourhood is defined, green is for neighbours of first
order and yellow for the second order.

values being close to each other and negative when they tend to be dissimilar. A

zero value is a synonym of independents and randomly arranged values. Moran’s I

statistical significance is tested by permuting randomly the values of the entities.

If the same Moran’s I is found regardless of the position of the values, the absence

of spatial autocorrelation is retained. On the opposite, if the value is found only

in that case, spatial autocorrelation is concluded as significant.

LISA index is no more than the calculus of the I but for one entity instead of the

I for all of them. The formula is thus similar:

Ii =
n(xi − x)

∑n
j wi,j(xj − x)∑n

j (xj − x)2
(5.5)

In other words, the sum of the Ii divided by the number of entity is equal to the

global Moran’s I. The advantage of LISA is that it can be mapped and shows

where the strongest and lowest autocorrelation occur.

Together with the index, the Moran scatterplot represents the autocorrelation.

The plot consists of four quadrants separated by X and Y axes. The X axe is the

standardised value of the pixel ( (x−x)
σ

) and Y the mean standardised value of the

neighbourhoods. The interpretation of the scatterplot is done by looking at the

quadrant of each point or by the linear regression line. For the first (third) quad-

rant, X and Y positive (negative) are synonymous with positive autocorrelation

(high (low) value entity in the middle of high (low) values). Entities located in

the first quadrant are called ”high-high” and ”low-low” when in the third. For

the second (fourth) quadrant, X negative (positive) and Y positive (negative), for
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their part, are synonymous with negative autocorrelation ( (low (high) value en-

tity in the middle of low (high) values). The slope of the linear regression line is

proportional to the Moran’s I.

The processing of Moran is not completely automated in a script. An open-source

software, Geoda, is used to create the weight matrix and perform the Moran’s I.

However, the software required a shapefile and the data is in a raster form. Once

again, Qgis is used to vectorize the data in the form of a shapefile. Defining the

neighbourhood of a point through boundaries may prove to be impossible as a

point is in 0D. It is then a distance threshold that is used if the data is recorded

as points.
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Chapter 6

Comparison

Being able to compare the two sets of data is the results of a complex road. SAR

images and MAR needed different treatments and approaches. This normalisation

step took more time than expected due to multiple reasons as a lack of knowledge

that needed to be caught up or the quantity of data. Following the advice of

the people helping me, Quentin Glaude, Charles Amory and Christoph Kittel, it

has been decided to apply a mask on the zone studied for the two time series in

graph form. As explained before, there are some zones that present particularities

concerning the radar backscatter. The zone was then limited to 400m of altitude

(as temperature get lower in altitude, there should not have melt there) and even

reduce to the ice shelf limit given in the Quantarctica project.

Figure 6.1: Area used to create the comparison maps. The area is limited to all land
under 400m of altitude.
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The first cut to 400m is kept to create the maps as the slopes do not interfere with

the visual analysis. The second lowering was necessary for the graphs as MAR

and SAR do not give the same information outside the melt season. This effect

is still visible in the evolution of the percent of melt detected by SAR through

the constant plateau in winter. With the same explanation, the three places with

blue-ice and lakes were also excluded from the temporal analysis. The problems

generated by a σ0 lower than the SAR threshold during all the year could have

been corrected by the normalisation proposed by Liang et al.(2021) but it would

have taken too much time. Another solution applied to override the more complex

boundaries between the physical elements was to restrain the analysis to a smaller

region inside the shelf.

Figure 6.2: Masked area. This area is used to create the time series. The differences
with the area in figure 6.1 are that the area is limited to the ice shelves and the three
parts containing lakes are removed.
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To answer the questions of when, where and how many differences, the MAR

variables are directly compared to SAR. However, the analysis is focused on the

ME variable as well as the melt index built with WA1 and RO1 (referenced by

”WR” hereafter) as they are the products characterising melt. Still, all the tools

for comparison are presented in annexes 8.3.

Figure 6.3: Zone used to study variation over the ice shelf. The region is used to try
mitigating side effects at the boundaries of the physical elements as slopes or coastline.
It has been chosen randomly inside the ice shelf.

6.1 Temporal

Temporal variations are studied with the two time series graphs created (fig 5.2

and 5.3). By plotting the percent of the image covered by melt, it is also possible

to try quantifying the differences between SAR and MAR. Analysing the graphs

is not very accurate if done alone. To complement the analysis, external data as

the comparisons maps and the base images are used too. Some generalisations are

made in the text. The melt season starting at the end of year X and finishing at

the beginning of year X+1 is called year X+1 for example. The SAR data, as well

as σ0, are also referenced by ”SAR” when there cannot have confusion.

SMB

The first variable to be analysed is the surface mass balance. The choice to keep
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SMB as a part of the analysis was based on the hypothesis that when melt oc-

curs, the mass balance is negative and positive else. However, the reality is more

complex. There is a lot of other components influencing SMB and a simultaneous

variation is not visible in figure 6.4. Nonetheless, when strong episodes of melt

Figure 6.4: Evolution of σ0 and SMB. SAR σ0 values are represented in blue and
MAR SMB in red. There is no clear correlation between the two variables in this graph
made in the restricted zone on the ice shelf. Lower σ0 does not correspond with lower
SMB and higher SMB does not correspond with higher σ0. The only observation to be
made is that when there is a lower σ0, SMB tends to be small.

happen in SAR, SMB is quite low. It is also to note that negative values do not

correspond with the surface melt detected by SAR. Two main possibilities can ex-

plain the difference between SAR σ0 and MAR SMB. First, SMB image could have

wrong values. The NetCDF file containing the SMB values was divided into two

bounds informed as depth. The first layer, supposed to be the first meter of depth,

is the one used. As there was neither confirmation nor denial of this information

being the one to be the most relevant, it is the one presented. The second possi-

bility, more realistic, is simply that surface melt does not have a strong impact on

SMB. As explained previously, SMB is calculated as the sum of all the processes

that cause accumulation or ablation. These events could have no influence on σ0
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but a strong one on SMB. For example, strong katabatic winds occurring at the

bottom of the slope leading inland have an impact as an ablation process but are

not visible throughout the radar backscattering coefficient. Same for the accumu-

lation process, snowflakes are smaller than the 5cm C band wavelength and thus

do not cause backscatter.

ME

ME variable is the closest variable of what is detected during melt binary classifi-

cation of SAR images. The link between the two variables is visible in figure 6.5.

For the four complete melt seasons that can be seen on the graph, the increase in

ME corresponds with a decline of σ0. This observation makes perfect sense as ex-

plained multiple time before, the presence of liquid water in the snowpack results

in a diminution of the backscatter coefficient recorder by SAR’s sensor. Two other

observations can be made regarding the graph (fig 6.5). First, The quantity of

melt does not seem to be correlated with the σ0 value. No matter the quantity of

melt modelled, σ0 reaches almost the same value of -15/-20 dB. This observation

Figure 6.5: Evolution of MAR ME and SAR σ0. The variation of the two variables
seems correlated, low σ0 corresponds to high ME as expected. A gap of a few weeks can
be seen between the rise of ME and the decline of σ0. The time gap can be explained
by the freeze/thaw cycle that is not perceived by SAR. SAR σ0 reaches -15/-20 dB no
matter the quantity of melt modelled.
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may confirm that the threshold choice for SAR does not have an impact that will

change the conclusion of this work. The drastic change in σ0 can be either because

the change in scattering is more binary than continuous or because the images

were taken when there is already a lot of liquid water in the snowpack. The last

explanation corresponds with the second observation. There is a recurring pattern

that appears on the graph: MAR models melt 6 to 12 days before the decrease

in σ0. Once again, there are two hypotheses for this pattern, one regarding SAR

and one regarding MAR. Either a certain quantity of water is needed for volume

scattering to turn into specular reflection or MAR tends to model melt too soon.

The first assumption is the privileged one. When snow and ice melt, some water

can percolate deeper in the snowpack and/or refreeze before the satellite passes.

Figure 6.6: Evolution of quantity of meltwater detected by SAR and MAR ME in the
whole studied zone. As for the temporal analysis, MAR has higher values before SAR
but once SAR starts detecting melt, the two are about the same value. In general, the
constant melt detection out of summer in SAR comes from the Prince Harald ice shelf.

The quantitative analysis is more or less the same as the temporal one. Melt mod-

elled by MAR is occurring a week or two before SAR detects melt, the quantity

of melt is greater for MAR before the two get similar (fig 6.6). More visible than

in figure 6.5, especially in the graph representing the evolution in the smaller zone

(fig 6.8), the end of melt season of 2016 and the start of the 2021’s one are dissim-

ilar in SAR and ME. If the explanation of 2021 is certainly the same as why MAR
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models melt before SAR detects. For 2016 the explanation is still to be found in

the availability of data: the mosaics are not full in 2016. It is the reason why

the difference is less clear for the image, with the zone, a few pixels with different

values give a large difference of melt coverage. Figure 6.6 also shows a problem

described in the melt binary classification for SAR, a constant detection of melt,

even during winter. When looking at the comparison map, it is clear that the

majority of constant melting in SAR is coming from the Prince Harald ice shelf

(see fig 6.7). The reason for the lower σ0 there is not determined but the change

does not come from the mosaicking as it is already present in the non-merged im-

ages. A comparison with HV polarisation has also been conducted (fig 6.9). The

Figure 6.7: Comparison map for 2017-06-12. The East part of the map, Prince Harald
ice shelf, appears in yellow, meaning that SAR detects melt but MAR does not model
it.

threshold used for SAR is -5dB in that case. The value is randomly chosen as the

double of the HH threshold but rounded. The comparison is the same as for HH

except that there is more variability in the surface covered in winter for SAR. The

variability is explained by the poor choice of threshold as the lack of HV images.
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Figure 6.8: Evolution of quantity of meltwater detected by SAR and MAR ME in the
limited area. As for the temporal analysis, MAR has higher values before SAR but once
SAR starts detecting melt, the two are about the same value. For 2016 and 2021, SAR
detects no melt in opposition to MAR.

Figure 6.9: Evolution of quantity of meltwater detected by SAR and MAR ME in
the whole studied zone with HV polarisation. The analysis is the same as for HH
polarisation. 66



WR

WR is the other variable that is supposed to represent melt with MAR data, based

on the equation 5.1. The difference between WR and ME is that the variable ME

is the quantity of melt that is produced during the day when WR is built with

WA1, representing the quantity of water in the snowpack. Then the quantity of

water given by WA1 is water that did not refreeze whereas for ME it can be the

case. The variable is built during the creation of the graph or the maps. No files

are containing the values of WR upon the ice shelf, only binary classification of

melt/no melt as comparison raster is created. It was thus not possible to create a

graph representing the evolution in value, only the surface of the modelled melt.

Figure 6.10: Evolution of quantity of meltwater detected by SAR and by WR index
in the whole studied zone. The comparison is a little bit opposed to the comparison
with ME as WR tends to model less melt and later than SAR detects it. In 2016 and
2017, the difference is blatant. In general, the constant melt detection out of summer in
SAR comes from the Prince Harald ice shelf.

The observations made with ME are not valid with WR. Some can argue that

is even the opposite. SAR observes melt before WR is considered as such (fig

6.10). The explanation may come from the inability of SAR to get through liquid

water. If there is water in the top layers, σ0 will be reduced as specular reflection

can occur. As an average value of the first metre of snow and ice is used to
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calculate WA1 and RO1, this does not mean that WR will have a sufficient value

to be above the threshold. The difference with ME can, therefore, explains the

difference in behaviour observed here too. Interestingly, the peaks observed for

ME in early 2016 and 2021 are not present in WR. While it corresponds with SAR

observations for 2021, a smaller melting episode was still observed by SAR in 2016.

When looking at the evolution in the smaller zone (fig 6.11), the same observations

can be made. Again, the SAR’s variation in 2016 and 2018 are likely caused by

the detection of melt on the Prince Harald ice shelf or erratic pixels. Yet, in 2018,

ME have small values when SAR observes a small amount of melt but not WR.

For the quantitative analysis, in the global area, the surface of the melt is slightly

Figure 6.11: Evolution of quantity of meltwater detected by SAR and by WR index
in the limited area. There are fewer differences between SAR and WR in the limited
zone than in the image. The timing and quantity are similar for 2019 and 2020, a bit
shifted for 2018 and 2017. The melting detected by WR is still lower than for SAR.

lower for WR in 2018, 2019 and 2020 (5 to 10%) but in 2016 and 2017, there are

much bigger differences. The melt in 2016 is not modelled with WR and only

half of it in 2017. The differences can come from the choice of the 0,1 value as a

threshold, perhaps SAR detects meltwater before.

By looking at the second graph (fig 6.11), the differences are smaller, in time and

quantity. The same percentage of melt is observed for 2018, 2019 and 2020, nothing

for 2016 and 2021 and fewer for 2017. In 2019 and 2020, the start and the end
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of the melt are the same for the two variables. Nonetheless, in 2017, weeks pass

before SAR and WR both have melt. The last graph represents the comparison

with HV again (fig 6.12). The observations are the same as for HH polarisation:

less melt surface and a bit later in time.

Figure 6.12: Evolution of quantity of meltwater detected by SAR and by WR index
in the whole studied zone with HV polarisation. The analysis is the same as for HH
polarisation.

WA1

In a manner of readability, page layout and for keeping the analysis focused on

the two previous variables, the graphs for the three next ones are move to annexe

8.3.2.

As for WR and ME, WA1 is strongly correlated with σ0. The same pattern as

for ME can be observed: SAR σ0 detects melt after WA1. The time difference

is only visible when looking at the surface covered by melt. Quantity and time

extension of the presence of liquid water on the snowpack is relatively high because

the threshold is set to 0 for this variable. It results in a modelisation of water that

begins before the detection of melt by SAR and finishes after for each melt season.

The explanation can be the same as for ME, either MAR models too soon or

the SAR needs enough water in the top layer to stop volume backscatter. The
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observations made on the whole zone are also applicable to the restricted zone.

The comparison with WA1 is marred by two problems. The first is the empirical

threshold of 0. As soon as a pixel have a value, even the smallest possible, the

pixel is considered as melt. The quantity of melt is thus artificially emphasised

in comparison to the other MAR variables. The second is the definition of WA1

itself. The variable gives the quantity of water present in the snowpack. However,

even if the basic file gives it as per depth layer, the value is averaged and this

information is lost. If the water is only present in-depth, the layers above it still

participate in volume scattering and therefore, a higher σ0 than if the water would

have been in the top layers.

RU

The quantitative and temporal comparison of RU with SAR σ0 is less reliable

and significant with the two graphs used here. Indeed, for some years, most of the

surface runoff occurs in the zones that have been masked before the creation of the

time series (fig 6.13). If the graphs do not provide much information, the location

Figure 6.13: Location of RU in relation to the area of interest. Most of the values
are outside the area studied with the graphs.

should lead to interesting spatial analysis for this variable. It also supports the

fact that some phenomena happen in the masked zone and that they could have
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been seen with SAR, with a satisfactory normalisation. Nonetheless, as for the

precedent variables, either for the global area or the smaller zone, RU seems to

follow the same variation as σ0 but at a smaller scale. The small event recorded

by SAR during the 2018 winter is even represented in RU data.

SU

Once again, low values of σ0 correspond to high values of the MAR variable. The

growth in sublimation is more continuous than the decrease of σ0 but the peaks

correspond with each other. As for WA1, SU covers the images faster than melting

detected with σ0, for a longer time and a shorter intensity. There is some variation

in SU. The variation makes that sometimes during winter, the values are over the

threshold. It results in some images covered totally by values of SU over that

threshold at all time of the year. Outside of the peaks, the relation is less clear.

6.2 Spatial

As explained before, the spatial analysis is made with another open-source soft-

ware: GeoDa. To have a better view of the situation, the zone used is the entire

zone under 400m of altitude. The comparison with SMB is not conducted for two

reasons: first, temporal analysis was not conclusive and second, without a thresh-

old to use, it is not possible to calculate the probabilities described previously.

The data and maps presented shortly after may contain bias. To construct corre-

lation and the two probabilities, every image is taken into account. Days, where

no event is detected, are also taken in the count, resulting in a higher value than if

only the melt season was taken into account for the correlation and the first prob-

ability. The second calculus of probability tries to prevent this bias by only taking

into account the days where SAR detects melt by using a conditional probability

and assuming a dependence between the two variables. The resulting probability

can be interpreted as ”what is the likelihood of MAR modelling melt when SAR

detects it”.

ME

First, it is the correlation of ME with σ0 that is analysed. The expected result is

a negative coefficient as σ0 decreases when melt increases. The observations made

with the comparison maps are flagrant on the correlation map (fig 6.14). The centre

of the ice shelf and the coastline present a relatively high and negative correlation

(between -0,6 and -0,7) whereas slopes and blue ice zones are close to 0. With a
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p-value of 0,0001, the Moran’s I of 0,786, statistically significant, confirms a strong

spatial autocorrelation in the correlation between the two variables. Interestingly,

the spatial autocorrelation conducted with LISA (fig 6.15) shows highly significant

low-low values on the ice shelf but also highly significant high-high values near the

slopes and in altitude at the far south of the zone.

Figure 6.14: Correlation map between SAR σ0 and ME. The major part of the ice
shelf have higher correlation values (-0,6 to -0,7) than areas with slopes (near 0). The
spatial autocorrelation is confirmed by a Moran’s I of 0,786.
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Figure 6.15: Local Moran’s I map (top) and its statistical significance (bottom) for
the correlation map between SAR σ0 and ME. Areas pinpointed in the precedent maps
turn out to be the zones that have the most significant spatial autocorrelation.

The probability of having the same information makes the non-concordance be-

tween σ0 and ME in some zones even more apparent (fig 6.16). On RBIS, there is

a high probability for the two data to deliver the same information (90%) but on

slopes, Prince Harald ice shelf and at the three masked zones, the probability gets

lower (around 20-30%). However, Moran’s I, even if still statistically significant, is

lower with 0,697. Local Moran’s I also shows that the zones described have statis-

tically significant local spatial autocorrelation (fig 6.17). These two short analyses

have permitted us to conclude that concerning ME and σ0, they are mostly similar

and linked on the majority of the ice shelf but there are some zones where it is not

the case.

The last spatial analysis concerning ME is about the probability of having MAR

modelling melt when knowing SAR observes it (fig 6.18). The observations to be

made with this probability are relatively the same as the precedent. However, the

probability is not as smooth. Values behind the ice rise are 10% lower than at

the eastern part of the shelf. Again the variables is spatially autocorrelated (I =

0,775). Despite the differences in the values, LISA (fig 6.19) also displays the same

significant zone of high-high on the ice-shelf and low-low for the zones that are less

likely to have the same values.
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Figure 6.16: Probability map of SAR σ0 and ME corresponding together. The major
part of the ice shelf shows higher probabilities (about 90%) than area with slopes and
blue ice (about 20%). The spatial autocorrelation is confirmed by a Moran’s I of 0,697.

Figure 6.17: Local Moran’s I map (top) and its statistical significance (bottom) for
the probability map of SAR σ0 and ME corresponding together. Areas pinpointed in
the precedent maps turn out to be the zones that have the most significant spatial
autocorrelation. The zones are better separated by this variable.
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Figure 6.18: Probability map of ME modelling melt knowing SAR detects it. The
spatial autocorrelation is confirmed by a Moran’s I of 0,766. The ice shelves East and
West of the zone show smaller probabilities than RBIS.

Figure 6.19: Local Moran’s I map (top) and its statistical significance (bottom) for
the probability map of ME modelling melt knowing SAR detects it. The maps are really
close to the previous LISA (fig 6.17) maps except for the West part.
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WR

As for the temporal analysis, the remaining figures are moved to the annexes

(annexe 8.3.3) in a manner of exhaustiveness and to avoid cluttering the analysis.

For the correlation map, the analysis is the same as for ME, which is logical as

they represent almost the same phenomenon. The almost same values are visible

on the ice shelf, with at 0,8 on the coast, descending to 0,2 in the blue ice zones

and almost 0 on the slopes. Local Moran also gives the same reasoning as for ME.

On the first probability map, the zones are even more distinct with 95% on the

ice and 5% elsewhere. The distinction between the zones is due to WR showing

less melt than the other variables. When ME and WA1 tend to model more water

than SAR detects it, WR is more in line with SAR on the ice shelf but less in the

problematic zones.

The conditional probability is one of the variables with the greater Moran’s I with

I = 0,862. The results are consistent with the previous analysis: it is less likely to

have WR modelling melt when SAR detects it. The values are lower than for the

other variables with 60% near the coast and 40% behind the ice rise. In fact, the

spatial distribution is visible on the map. With WR, the edges of the area are not

likely at all to have melt at the same time as SAR. It can be assumed that it is

because of the lower quantity of melt detected by WR (see the temporal analysis).

WA1

WA1 is even closer to ME than WR. The correlation values are a bit higher than

for ME, ranging from 0,8 to 0,7 on the ice shelf and 0,4 in blue ice and Prince

Harald ice shelf. The Moran’s I is also higher than for ME (0,81). In terms of

the two likelihoods, they both show the same pattern as ME with a gradient from

West to East. With WA1, the probabilities of it giving the same information as

SAR is a bit higher in the 3 pockets before the slope (approximately 5 to 10%

more). But lower in the rest of the area (90% >< 92%). The explanation comes

from the fact that when the melting season come to an end, the melt is thus not

modelled but there is still water in the snowpack for one or two weeks after. This

presence of water after the season is not detected by SAR so it may be located

deeper in the snowpack or there may be only a small amount of water left. For

the second probability, Prince Harald ice shelf as well as the higher ground and

the three pinpointed zones have a lower probability of 20% on average compared

to the rest of the zone.
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Figure 6.20: Comparison map for 2020-02-09 with WA1. There is still a lot water in
the snow pack in numerous place of the ice shelf.

Figure 6.21: Comparison map for 2020-02-09 with ME. There is not a lot of melting
that has been modeled as opposed to WA1.

The second probability map is mostly the same as for ME but with 1 or 2%

of likeliness in more for WA1. To sums up, ME and WA1 are as similar for

quantitative and temporal comparison with SAR as for spatial analysis. They

both show strong spatial autocorrelation and a higher negative correlation in the

ice shelf than on the slopes and lakes.
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RU

RU variable was taken in the analysis because, in a first approach, it looks like

the location of RU during specific years could explain some differences between

SAR and ME (see fig 6.13). However, the spatial analysis is less convincing on this

part (I = 0,5). The correlation map still goes in the direction that was expected

with a greater correlation on the blue ice than in the other zones but the values

are smaller than for the variables modelling melt. Surprisingly, there is a line of

uncorrelated values between the zones at the bottom of the slope and the ice shelf.

The two probability maps should be viewed in parallel as the non-melting period

strongly influences the probability of having the same values. That first probability

(fig 8.27) map has almost the same characteristics as the other maps of that type

because of that fact. Whereas the conditional probability map is more similar to

the correlation map. Even if statistically significant (p-values<0.05), Moran’s I

value is only 0,45 meaning little positive spatial autocorrelation. LISA’s maps also

represent this low spatial evolution with spare batches of significant values. Only

Prince Harald ice shelf is showing strong spatial autocorrelation.

SU

Sublimation is the last variable to be compared with SAR. As noticed during

time-series analysis, SU has a different behaviour than the other variables with

more continuous growth. The continuous growth comparing to the more binary

evolution of SAR σ0 is noticed through the lower correlation values than for the

first three variables studied. Apart from the difference in values, there is not more

to say than what has already been said before.

In the likeliness of having the same information, the values show a South to North

gradient with the exceptions of the 3 problematic zones that have an opposite

gradient. The explanation may be that MAR tends to model more sublimation

in altitude and during all the year. So where SAR detects melt during all year, it

is the same for SU (resulting in high probability). Around those zones, SAR σ0

is not low enough to be considered as melt all the year but the altitude is high

enough to have sublimation. With queen contiguity and two order of neighbours,

the high probabilities do not have a significant local Moran’s I.

With the last map, the differences with the South-West zone are less visible with

LISA.
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6.3 Discussion

The obtained results are promising in term of future developments. There is a

strong correlation between the majority of MAR variables tested and the SAR

backscatter coefficient. Whether it is quantitatively, temporally or spatially, SAR

σ0 and ME, WA1 and WR are very similar a majority of the time. In the three

variables, none is perfectly synchronous with SAR. ME and WA1 have higher

values before SAR detects melt, WA1 exceeds the time σ0 is lower than its threshold

and WR is mostly under the quantity of melt detected. The thresholds chosen for

SAR and MAR can have impacted the analysis but for most of the differences,

there is a physical explanation. For example, MAR can model liquid water for a

longer time in the snowpack without being able to see it with SAR. Water can

percolate in the deeper layers of snow and volume scattering can occur above the

water, causing an increase in σ0 and the loss of the ability to see the water.

Spatial differences can be explained by zones that have a constant σ0 under the

threshold of -2.6 dB. The zones that are problematic are the ice ridge at the West

of the studied zone, the Derwael ice rise, the prince Harald ice shelf and the zones

of lakes and lower albedo referenced in (Lenaerts et al., 2016) (2016). The lower

values may not be caused by the presence of water but could come from physical

properties of the snow/ice as, in altitudes, there is less backscatter because of the

snow particle size. To avoid restricting the analysis, it would have been possible

to use multiple techniques: image calibration with a reference image with no melt,

spatially or temporally varying thresholds, ”co-orbit normalisation” (Liang et al.,

2021) or all other normalisation techniques.

SAR could complement MAR by giving approximately the days when the quantity

of water in the top layers is important and MAR can still models when SAR cannot

see. Also, an interesting purpose of using SAR rather than optic satellite for such

a comparison is that it was possible to conduct the comparison during winter

and being able to monitor if events of melt happen at that time too. Results

are promising and with the technique developed, conducting the experiment on a

larger zone, higher resolution and with some enhancements is totally possible.
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Chapter 7

Conclusion

Comparing SAR and MAR has been a challenge in several ways. First, data were

not in the same format and, even after projecting the two of them in the same

format and coordinate system, perfect co-registration was still needed to perform a

significant comparison. Second, SAR and MAR originate from different horizons.

To understand the differences and variations of each product, knowledge in a lot

of fields like remote sensing, physics, glaciology was necessary.

Thanks to the Copernicus program, the observation of the Earth with space-borne

sensors is made easier and more accessible. The European Space Agency offers the

possibility, for whoever wants to, to get open access to the free and high-resolution

data that are Sentinel-1 images.

After multiple processing and corrections, the analysis of approximately 1500 SAR

images and 6 MAR variables was possible. To conduct the comparison, chosen SAR

images are images with HH polarisation and in which melt is considered in a pixel

when its value is lower than -2.6 dB. The MAR variables used are ME, RU, SU,

SMB and WA1. In complement, an index, WR, was created from WA1 and RO1.

The similarities and complementarity of the two data sources have been studied

quantitatively, temporally and spatially. The co-registration of images was carried

out with the creation of a grid centred on MAR data pixels and a time interpo-

lation between SAR images. The results show a strong correlation between SAR

backscattering coefficient, σ0 and MAR variables representing melt (ME, WA1 and

WR), as well as similar variations in time and quantity over RBIS.

The spatial analysis also highlights some areas where the comparison did not pro-

duce the expected results. Those areas are :

• The Prince Harald ice shelf.

• The slopes bordering the area and the Derwael ice rise.
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• The lakes and the blue ice south of the studied area.

Most of the problems in the above areas can be associated with a non-normalisation

of the SAR images with a reference image containing no melt. The simple threshold

of -2.6 can work in zones where σ0 is higher in non-melting times but not if the

backscatter is already under it all the time.

Nevertheless, this work shows the complementarity and similarities between the

two products and open the subject to more research. Some improvements can be

made. For example, using a better pixel size or a larger region of interest to create

larger and more precise maps of melt by using SAR and MAR together. The pre-

processing of SAR and the choice of the threshold could also be more advanced to

take into account more characteristics of radar imagery as the cross-polarisation.

Scripts used could be optimised to reduce processing time too.

When the differences can be linked to the SAR images normalisation, the variation

of σ0 in the scene can also be due to the physical properties of the snow and

ice in the site. The change in physical properties could be studied with MAR

to understand the variations of SAR. The analysis stayed focused on where the

analysis is satisfactory, to prove that MAR and SAR can corroborate each other

rather than trying to explain the differences. The three areas mentioned above

have been withdrawn from the analysis one after the other without looking for

an explanation. Adding a better understanding of glaciology may improve the

conclusion of this master thesis by adding further explanations for the unresolved

issues.
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Nomenclature

DEM Data Elevation Model

EPSG European Petroleum Survey Group

ESA European Space Agency

LISA Local Indicator for Spatial Association

MAR Regional Atmospheric Model

ME Melt

NN Nearest Neighbors

RBIS Roi Baudouin Ice Shelf

RO1 Snow Density

RU Surface Runoff

SA Synthetic Aperture

SAR Syntactical Aperture Radar

SISV AT Soil-Ice-Snow-Vegetation-Atmosphere-Transfer

SMB Surface Mass Balance

SU Surface Sublimation

WA1 Water Liquid Content

WR WA1 and RO1 Based Index
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Chapter 8

Annexe

8.1 Images

The name of the SAR images used for the comparison can be found in the com-

plementary document available on MatheO, at point 1.

8.2 Code

The codes used for the comparison can be found in the complementary document

available on MaTheo, at point 2.

8.3 Comparison

8.3.1 Comparison Maps

Comparison maps can be found in an annexe document available on MaTheO.
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8.3.2 Times Series

WA1

Figure 8.1: Evolution of MAR WA1 and SAR σ0.

Figure 8.2: Evolution of quantity of liquid water detected by SAR and MAR WA1 in
the whole studied zone.
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Figure 8.3: Evolution of quantity of liquid water detected by SAR and MAR WA1 in
the limited area.

Figure 8.4: Evolution of quantity of liquid water detected by SAR and by MAR WA1
in the whole studied zone with HV polarisation.
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RU

Figure 8.5: Evolution of MAR RU and SAR σ0.

Figure 8.6: Evolution of quantity of liquid water detected by SAR and MAR RU in
the whole studied zone.
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Figure 8.7: Evolution of quantity of liquid water detected by SAR and MAR RU in
the limited area.

Figure 8.8: Evolution of quantity of liquid water detected by SAR and by MAR RU
in the whole studied zone with HV polarisation.
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SU

Figure 8.9: Evolution of MAR SU and SAR σ0.

Figure 8.10: Evolution of quantity of liquid water detected by SAR and MAR SU in
the whole studied zone.
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Figure 8.11: Evolution of quantity of liquid water detected by SAR and MAR SU in
the limited area.

Figure 8.12: Evolution of quantity of liquid water detected by SAR and by MAR SU
in the whole studied zone with HV polarisation.
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8.3.3 Spatial Analysis

WR

Figure 8.13: Correlation map between SAR σ0 and WR.

Figure 8.14: Local Moran’s I map (top) and its statistical significance (bottom) for
the correlation map between SAR σ0 and WR.
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Figure 8.15: Probability map of SAR σ0 and WR corresponding together.

Figure 8.16: Local Moran’s I map (top) and its statistical significance (bottom) for
the probability map of SAR σ0 and WR.
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Figure 8.17: Probability map of WR modelling melt knowing SAR detects it.

Figure 8.18: Local Moran’s I map (top) and its statistical significance (bottom) for
the probability map of WR modelling melt knowing SAR detects it.
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WA1

Figure 8.19: Correlation map between SAR σ0 and WA.

Figure 8.20: Local Moran’s I map (top) and its statistical significance (bottom) for
the correlation map between SAR σ0 and WA1.
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Figure 8.21: Probability map of SAR σ0 and WA1 corresponding together.

Figure 8.22: Local Moran’s I map (top) and its statistical significance (bottom) for
the probability map of SAR σ0 and WA1.
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Figure 8.23: Probability map of WA1 modelling liquid water knowing SAR detects
it.

Figure 8.24: Local Moran’s I map (top) and its statistical significance (bottom) for
the probability map of WA modelling liquid water knowing SAR detects it.
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RU

Figure 8.25: Correlation map between SAR σ0 and RU.

Figure 8.26: Local Moran’s I map (top) and its statistical significance (bottom) for
the correlation map between SAR σ0 and RU.

96



Figure 8.27: Probability map of SAR σ0 and RU corresponding together.

Figure 8.28: Local Moran’s I map (top) and its statistical significance (bottom) for
the probability map of SAR σ0 and RU.
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Figure 8.29: Probability map of RU modelling runoff knowing SAR detects melting.

Figure 8.30: Local Moran’s I map (top) and its statistical significance (bottom) for
the probability map of RU modelling runoff knowing SAR detects melting.
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SU

Figure 8.31: Correlation map between SAR σ0 and SU.

Figure 8.32: Local Moran’s I map (top) and its statistical significance (bottom) for
the correlation map between SAR σ0 and SU.
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Figure 8.33: Probability map of SAR σ0 and SU corresponding together.

Figure 8.34: Local Moran’s I map (top) and its statistical significance (bottom) for
the probability map of SAR σ0 and SU.
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Figure 8.35: Probability map of SU modelling sublimation knowing SAR detects
melting.

Figure 8.36: Local Moran’s I map (top) and its statistical significance (bottom) for
the probability map of SU modelling sublimation knowing SAR detects melting.

101



References

Amory, C., Kittel, C., Le Toumelin, L., Agosta, C., Delhasse, A., Favier, V., &

Fettweis, X. (2020). Performance of MAR (v3.11) in simulating the drifting-

snow climate and surface mass balance of Adelie Land, East Antarctica.

Geoscientific Model Development Discussions , 2020 , 35 p. Retrieved from

https://gmd.copernicus.org/preprints/gmd-2020-368/ doi: 10.5194/

gmd-2020-368

ASF. (2021). ASF Data Search. Alaska Satellite facility (ASF). Retrieved 26 May

2021, from https://search.asf.alaska.edu/#/

Baghdadi, N., Gauthier, Y., Bernier, M., & Fortin, J.-P. (2000). Potential

and limitations of RADARSAT SAR data for wet snow monitoring. IEEE

Transactions on Geoscience and Remote Sensing , 38 (1), 316–320. doi:

10.1109/36.823925

Banwell, A. F., & Macayeal, D. R. (2015). Ice-shelf fracture due to viscoelastic

flexure stress induced by fill/drain cycles of supraglacial lakes. Antarctic

Science, 27 (6), 587–597. doi: 10.1017/S0954102015000292

Bartels-Rausch, T., Bergeron, V., Cartwright, J. H. E., Escribano, R., Finney,

J. L., Grothe, H., . . . Uras-Aytemiz, N. (2012). Ice structures, patterns, and

processes: A view across the icefields. Reviews of Modern Physics , 84 (2),

885–944. doi: 10.1103/RevModPhys.84.885

Boain, R. J. (2004). A-B-Cs of sun-synchronous orbit mission design. In Advances

in the astronautical sciences.

Buchelt, S., Skov, K., & Ullmann, T. (2021). Sentinel-1 time series for map-

ping snow cover and timing of snowmelt in Arctic periglacial environments:

Case study from the Zackenberg Valley, Greenland. The Cryosphere Dis-

cussions , 24 p. Retrieved from https://tc.copernicus.org/preprints/

tc-2021-78/ doi: 10.5194/tc-2021-78
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Retrieved from http://hdl.handle.net/2268/223142

Gloersen, P., Campbell, W. J., Cavalieri, D. J., Comiso, J. C., Parkinson, C. L., &

Zwally, H. J. (1993). Satellite passive microwave observations and analysis of

Arctic and Antarctic sea ice, 1978-1987. Annals of Glaciology , 17 , 149–154.

doi: 10.3189/S0260305500012751

Goodchild, M. F. (1986). Spatial Autocorrelation. Concepts and Techniques in

Modern Geography (CATMOG), 47 .

Harris, C. M., Lorenz, K., Fishpool, L. D. C., Lascelles, B., Cooper, J., Coria,

N. R., . . . Woehler, E. J. (2015). Important Bird Areas in Antarctica

2015. BirdLife International and Environmental Research & Assessment

Ltd., Cambridge.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P.,

Cournapeau, D., . . . Oliphant, T. E. (2020). Array programming with

NumPy. Nature, 585 , 357–362. doi: 10.1038/s41586-020-2649-2

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater,
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