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Abstract.  
Ear density in the field, i.e. the number of ears per square meter, is one of the yield components 
of wheat and therefore a variable of high agronomic interest. Its traditional measurement 
necessitates laborious human observations in the field or destructive sampling. In recent years, 
deep learning based on RGB images has been identified as a low-cost, robust and high-
throughput alternative to measure this variable. However, most of the studies were limited to the 
computer challenge of counting the ears in the images, without aiming to convert those counts 
into ear density. The aim of this study was to propose a method for automatic measurement of 
ear density, but also to evaluate the potential impact of the sun on the measurement.  

A same zone of a wheat plot has been imaged by two nadir RGB cameras all over the daily course 
of the sun, this repeated at flowering, watery ripe, medium milk and hard dough development 
stages. The bounding boxes of the ears in the images were detected using the YOLOv5 deep 
learning model, trained on rich existing wheat ear datasets. The shifts between the same 
elements observed in the images from the two cameras were exploited to compute the image 
footprint by stereovision. The ear count divided by the image footprint yielded the ear density. To 
investigate the effect of the sun, a solar spectrum was recorded thanks to a spectrometer at the 
time of each image acquisition.  

The F1 scores of ear bounding box detection at flowering, watery ripe, medium milk and hard 
dough were respectively 0.87, 0.92, 0.92 and 0.85. At watery ripe and medium milk, the measured 
ear density was robust during the day and between the two dates. At hard dough stage, increases 
of sunlight irradiance correlated with decreases of the number of ears detected by deep learning, 
but also with decreases of the number of ears labeled by humans. This demonstrates that, in 
some conditions, the wheat ear detection performance indicators based on labeled ear may be 
misleading regarding the capacity of the machine vision to measure the real ear density.  
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1. Introduction 
The number of wheat ears per square meter, called the ear density, is one of the yield components 
and therefore a variable of high agronomic interest. Its traditional measurement necessitates 
laborious and possibly biased human observations in the field or destructive sampling. There is 
thus a high interest to develop high throughput, objective and automatic ear density measurement 
methods. From 1995 to 2018, sparse attempts were made, most of the time relying on computer 
vision and classic image analysis (Chopinet and Cointault 2006; Cointault et al. 2012; Germain et 
al. 1995; Zhu et al. 2016). None of those methods was validated in a robust way: in all the 
conditions and for several varieties. The variability of natural light and wheat development stage 
were especially pointed out as causing ear detection issues (Fernandez-Gallego et al. 2018).  
The situation changed in 2018 with a first study exploiting deep learning to detect the wheat ears 
in field conditions (Hasan et al. 2018). Deep learning was advanced as a promising tool to develop 
robust ear detection methods from RGB images. Swiftly, it became a booming research topic and 
many studies proposed deep learning ear counting solutions (Cao et al. 2020; Lu and Cao 2020; 
Madec et al. 2019; Xiong et al. 2019; Xu et al. 2020; Y. Yang et al. 2019). This enthusiasm 
increased further thanks to the release of open access international datasets (David et al. 2020, 
2021), allowing everyone to train and evaluate deep learning algorithms to detect the wheat ears 
(Ayalew et al. 2020; Fourati et al. 2021; Gong et al. 2020; Li et al. 2021; Ma et al. 2020; Wang et 
al. 2021; Wu et al. 2020; B. Yang et al. 2021). It became a popular challenge for computer 
scientists. Many of these studies relied solely on the existing datasets instead of setting field 
experiments. Although great ear counting performances are now possible, it leaves a number of 
unsolved issues regarding the ear density measurement.  
Firstly, few studies tackled the conversion of the ear count in an image to an actual ear density in 
the field, which is the measure of agronomic interest. The task is not trivial. It necessitates an 
automatic determination of the image footprint at ear height, accounting that this height may vary. 
A possibility is to position a target of known dimensions in the image (Sadeghi-Tehran et al. 2019), 
but it limits the throughput of the acquisitions and reduces the visible canopy area. Another track 
was to use a Light Detection And Ranging (LiDAR) device to measure the ear height (Madec et 
al. 2019). LiDAR devices are however still expensive, require some scanning time and need to 
come in addition to the RGB camera.  
Secondly, to our knowledge, no study investigated the effect of lighting conditions on the ear 
density measurement. Most of the studies claimed the robustness of the method because the ear 
detection algorithms achieved good performances in all the conditions when evaluated based on 
image labels drawn by human operators. A hypothesis is however that such ear detection 
performance indicators may be misleading. If direct sunlight induces a shadow that hides an ear 
for both the human image annotator and the deep learning model, no error will be detected but 
the real ear density will be underestimated (Madec et al. 2019).  
To achieve a low-cost automatic measurement of ear density without the need of a reference 
target, Dandrifosse et al. (2022) proposed to add a second RGB camera so that the image 
footprint could be measured by stereovision. This second study aims to investigate the effect of 
varying sunlight on the measurement. 

2. Material and methods 

2.1 In field data acquisition 
Images were recorded during the 2021 season in a plot located in the Hesbaye area, Belgium 
(50° 33’ 50.7’’ N and 4° 41’ 57.3’’ E) on homogeneous silty soil and a temperate climate. The plot 
was sown with winter wheat (Triticum aestivum L., variety ‘KWS Dorset’) on November 13th, 2020 
with a density of 400 grains/m². It was fertilized at BBCH stages 28, 30 and 39 (Meier 2001) with 
27% ammonium nitrate: 60 kgN/ha at each input. The previous crop was winter wheat.  
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The idea to test the effect of the sun was to record data time series of the same wheat canopy 
zone during entire days. The position of the acquisition platform did not change during the day, 
but it changed between the dates, especially because the studied canopy area had been 
damaged. The platform, made of light metal profiles, was designed to capture nadir frames of 
wheat. At all the acquisition dates, two RGB cameras were placed around 1.5 m above the ears. 
They were screwed on a cantilever beam to avoid shadows of the structure in the images.  
The RGB cameras were GO-5000C-USB (JAI A/S, Copenhagen, Denmark), equipped with a 
CMOS sensor of 2560 × 2048 pixels and a LM16HC objective (Kowa GmbH, Düsseldorf, 
Germany). Their dynamic range was 60 dB. The focal length was 16 mm and the aperture was 
set to f/4.0. The two cameras were spaced from 50 mm. Their optical axes were theoretically 
parallel but small deviations were possible due to mechanical imperfections. The cameras were 
geometrically calibrated using 25 images of a 10 × 7 chessboard of 26 mm squares. The 
calibration provided the distortion coefficients, the intrinsic camera parameters and the extrinsic 
parameters linking the two cameras. The average error for the camera pair was 0.4 pixels.  
Images were captured on June 10th, June 23rd, July 1st and July 22nd, corresponding respectively 
to flowering (BBCH 65), watery ripe (BBCH 71), medium milk (BBCH 75) and hard dough 
(BBCH87) stages. The acquisitions were performed between 9 a.m. and 5 p.m. Every quarter of 
an hour, two images were captured at an interval of 20 s. The images were recorded using a color 
depth of 12 bits per pixel but reduced to 8 bits per pixel for this study. To prevent saturation, a 
custom auto-exposure algorithm was designed. A dichotomous search was performed to find the 
highest exposure time for which no saturation was detected. The two limits of the search were 
the exposure time computed by the manufacturer algorithm and this time divided by five. 
The sunlight spectrum was measured at the time of each image acquisition by a Avaspec-
ULS2048 spectrometer (Avantes, Apeldoorn, Netherlands) equipped with a cosine corrector. Its 
signal-to-noise ratio was 200:1. The incident light was acquired using a 16-bit resolution. Each 
recorded spectrum was the average of three consecutive measurements. It was corrected for 
dark noise and non-linearity of pixel response to exposure time. Thanks to the factory calibration, 
digital values were converted to irradiance data. Each spectrum was integrated in the range of 
the cameras, from 485 to 910 nm, to obtain the irradiance value expressed in W/m².  
Each acquisition of images and their associated solar spectrum took only a few seconds. It 
corresponded to the time necessary to average the spectra and ensure a proper exposure time 
for the cameras.   

2.2 Ear bounding box detection 
2.2.1 Image pre-processing and labeling 

At each acquisition date, two images were captured every quarter of an hour, called the first and 
the second images. To create the training set, five images were randomly selected at each date 
among the first images. To create the validation set, all the second images were selected. The 
pre-process of the selected images was performed in two steps. Firstly, each image of 2560 × 
2048 pixels was divided into four sub-images of 1280 × 1024 pixels. Secondly, each sub-image 
was resized to 1024 × 1024 pixels. That way, they were in the square format required by the deep 
learning algorithm and the ear had a size similar to those in the Global Wheat Head Dataset V2 
(GWHDv2) (David et al. 2021), also used to train the model. After the pre-process, the sub-images 
were labeled using the LabelImg tool (https://github.com/tzutalin/labelImg).  
2.2.2 Training of YOLOv5 model 

The deep learning model for the ear bounding box detection was YOLOv5 (DOI: 
10.5281/zenodo.3908559), the last born from the YOLO family (Redmon et al. 2016). The method 
to decide the final bounding box of an ear among all the box propositions was the weighted boxes 
fusion approach (Solovyev et al. 2021). The model was built by transfer learning: the 2021 training 
data (Section 2.1) were added to the model developed by Dandrifosse et al. (2022). This model 
was already trained on the GWHDv2, that is an international dataset with a wide diversity of ears, 
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and on a dataset acquired by the same cameras as in this study but on other varieties. The 
addition of 2021 images aimed to be sure that the model was trained for the studied variety. That 
way, the effect of the sun could be investigated in optimal training conditions.  
2.2.3 Validation of bounding box detection 

The performances of the bounding box detection were evaluated on the 2021 labeled validation 
data (Section 2.1). The predictions of the model were compared with the labels to obtain a number 
of true positives, false positives and false negatives. A true positive (TP) is an ear that was 
correctly detected, a false positive (FP) is the detection of an ear that is not an ear, and a false 
negative (FN) is an ear that was not detected by the model but should have been. However, in 
that kind of object detection task, it is rare that the detected box perfectly matches the labeled 
box. The definition of a correct or incorrect detection was based the Intersection over Union (IoU), 
i.e. the ratio between the area formed by the overlap of the detected box and the labeled box and 
the area formed by the set of the two boxes. The TP, FP and FN were determined by choosing 
an IoU threshold of 0.5. This value is the standard to evaluate a detection model. Moreover, it 
was pointed out as the optimal choice by Madec et al. (2019). From the TP, FP and FN, several 
other meaningful and widely-used indicators were built. The precision (Equation 1) is the fraction 
of correct detections among all the detections. The recall (Equation 2) is the fraction of correct 
detections among all the ears that should have been detected. The accuracy (Equation 3) is a 
well-known performance metric. Its general formula contains the true negatives (TN) but in such 
object detection tasks, there is no TN. The F1 score (Equation 4) is the harmonic mean of 
precision and recall, which gives a robust model performance assessment.  

  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = !"
!"#$"

  (1) 

  𝑅𝑒𝑐𝑎𝑙𝑙 = !"
!"#$%

  (2) 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = !"#!%
!"#!%#$"#$%

	  (3) 

 𝐹1	𝑠𝑐𝑜𝑟𝑒 = 2	 "&'()*)+,∗.'(/00
"&'()*)+,#.'(/00

      (4) 

Another indicator is the Average Precision (AP), which corresponds to the area under the 
precision-recall curve (PRC) (Equation 5). This curve is obtained by plotting the precision versus 
the recall for several confidence levels of the network prediction. The PRC represents the 
influence of this confidence level on the relation between precision and recall. 

 𝐴𝑃@𝛼 = ∫ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑅𝑒𝑐𝑎𝑙𝑙)	𝑑𝑅𝑒𝑐𝑎𝑙𝑙%
&  (5) 

where 𝛼 is the IoU threshold for which precision and recall are determined, and 𝑑𝑅𝑒𝑐𝑎𝑙𝑙 is the 
differential of the recall. By averaging the AP obtained for each class of the object detection 
task, the mean average precision (mAP) is obtained (Equation 6). However, for this work, there 
was only one class, so the AP was identical to the mAP. 

  𝑚𝐴𝑃@𝛼 = %
'
	∑ 𝐴𝑃('

()%   (6) 

where 𝑛 is the number of classes in the object detection problem. 
Two mAP metrics were computed: the mAP@0.5 and the mAP@0.5:0.75. The mAP@0.5 is the 
AP with an IoU threshold of 0.5. The mAP@0.5:0.75 is the average of AP values for thresholds 
ranging from 0.5 to 0.75 with a step of 0.05. One interest of calculating so many indicators is to 
increase the capacity to compare on a common ground the performances with other studies.  
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2.3 Ear segmentation and count 
The addition of the numbers of bounding boxes in the sub-images did not provide the number of 
ears in the full image. Indeed, some ears were cut at the junction of sub-images and parts of those 
ears appeared in several sub-images. To account for those ears, it was necessary to locate them 
at the pixel scale instead of the bounding box scale.  
The state-of-the-art DeepMAC (Deep Mask-heads Above CenterNet) neural network model 
(Birodkar et al. 2022) was used to segment the ears in the bounding boxes. This approach did 
not require manual construction of training masks, which is a difficult and time-consuming work. 
Thanks to the strong generalization ability of the pre-trained DeepMAC model, no specific training 
was needed. Ear masks were generated for each square sub-image. Then, the four sub-masks 
associated with an image were transformed back to the original sub-image size of 1280 × 1024 
pixels and brought together to form a mask of 2560 × 2048 pixels, which is the format of the 
original RGB image. The ears cut at the sub-image junctions were reconstituted when assembling 
the sub-masks. However, the parts of such cut ears sometimes did not match to the pixel, 
especially when the mask predicted by DeepMAC did not reach the edge of the image. To solve 
this problem, pixels lying in a 10-pixel range between two ear pixels from either side of a junction 
were considered as belonging to the ear mask (Fig 1).  
The difference between the sum of the objects in the sub-masks and in the full mask provided the 
number of excess ear parts. This number was subtracted to the sum of the bounding boxes in the 
four sub-images to compute the number of ears in the full image. 

 
Fig 1. Pipeline of sub-image treatment. The process is illustrated for a zone crossed by a sub-image delimitation line. For 
the steps illustrated in the dotted rectangle, the size of the sub-images is slightly different because they had been resized 

to a square format. Figure taken from Dandrifosse et al. (2022). 

2.4 Image footprint and ear density 
The ear density, expressed in ears per square meter, was computed as the ratio of the number 
of ears in the image to the footprint of the image at ear height. That footprint was obtained by 
Equation 7:  

 𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡	𝑒𝑎𝑟𝑠 = 4	(𝑧 + 0.05)* tan C+$,-
*
D tan C-$,-

*
D      (7) 

where 𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡	𝑒𝑎𝑟𝑠 (m²) is the footprint at ear height, 𝐻𝐹𝑂𝑉 (°) is the horizontal field of view 
of the camera, 𝑉𝐹𝑂𝑉 (°) is the vertical field of view of the camera and 𝑧 (m) is the distance 
between the camera and the tops of the ears. That distance was automatically measured by 
stereovision, exploiting the shift between the images from the two RGB cameras. Detailed 
explanations on the stereovision process can be found in Dandrifosse et al. (2020). For this study, 
the stereovision functions came from the OpenCV-Python library (version 4.5.3.56) (Bradski and 
Kaehler 2008). Based on the geometrical calibration of the camera pair, the left and right images 
were rectified. To accelerate the matching and improve the performances, they were binned from 
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2560 × 2048 pixels to 1280 × 1024 pixels. The stereo matching was then performed by the Semi-
Global Block Matching algorithm (Hirschmüller 2007) parametrized with a block size of 5. Post-
filtering used a uniqueness value of 10, a speckle range of 4 and a speckle window size of 50. 
That matching step yielded for each pixel a disparity value or a value indicating that reliable 
disparity could not be computed. A second round of post-filtering relied on the Weighted Least 
Squares (WLS) filter (Min et al. 2014) from OpenCV-Python to smooth the disparity map and fill 
the gaps, helped by the content of the RGB image. For the last step of the stereovision process, 
disparity values were converted to depth values, knowing the focal length and the distance 
between the cameras. By subtracting the depth values to the camera height, it was also possible 
to compute a height map (Fig 2). The ear mask from the segmentation step (Section 2.3) was 
applied on the depth map obtained by stereovision to produce a map of ear depths. As the ears 
were vertical most of the time, it was considered that the depth points were located at the tops of 
the ears. The distance 𝑧 in Equation 7 was the median of ear depths. It was increased by 0.05 m 
to account for the size of the ears, and thus estimate the image footprint in the middle of the ear 
layer. 

 
Fig 2. Wheat height map. The scene was imaged at watery ripe stage. The figure shows a) the RGB image, B) the height 

map and C) the color scale. The dark blue zones, at 0 on the scale, corresponded either to soil or to plant pixels for which 
the height could not be computed or interpolated through the WLS method.  
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3. Results and discussion 

3.1 Ear bounding box detection 
The performances of ear bounding box detection for each acquisition date are presented in Table 
1 and some illustrations are provided in Fig 3. As expected, the detection was better at watery 
ripe and medium milk development stages. The ears were more difficult to detect at flowering 
stage because they were lower in the canopy and looked more like leaves, and at hard dough 
stage because they were bent from the weight of the grains and overlapped. Overall, ear detection 
performances are considered good. However, the training data contained, among others, images 
of the same scene as the validation images. It was expected near perfect performances, and yet 
there were still a number of false positives and false negatives.  

Table 1. Performances of ear bounding box detection. Dates are expressed in days after sowing (DAS). 
 

DAS Stage TP 
(%) 

 

FP 
(%) 

FN 
(%) 

Precision Recall mAP@ 
0.5 

mAP@ 
0.5:0.75 

Accuracy F1 
score 

209 Flowering 77.0 10.0 13.0 0.89 0.86 0.76 0.74 0.77 0.87 
222 Watery ripe 85.5 8.0 6.5 0.91 0.93 0.85 0.85 0.85 0.92 
230 Medium milk 85.8 7.0 7.2 0.92 0.92 0.85 0.85 0.86 0.92 
251 Hard dough 73.4 9.2 17.4 0.89 0.80 0.72 0.71 0.73 0.85 
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Fig 3. Ear bounding box detection. 
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3.2 Dynamics of measured variables during the day 
The dynamics of the measured variables and the ear detection performance indicators during the 
day are presented in Fig 4 for the four acquisitions dates.  

 
Fig 4. Dynamics of measured variables during the day presented for four development stages of wheat: A) flowering, B) 

watery ripe, C) medium milk and D) hard dough. The dates are expressed in days after sowing (DAS). 

The first measure to examine is the ear density, which is the agronomic variable of interest. At 
watery ripe and medium milk stages, the measure was roughly the same throughout the day. This 
seems to indicate that both development stages are suitable for a robust measurement of ear 
density. At watery ripe, the sky was cloudy all the day, the diffuse light provided the ideal 
conditions for image analysis. At medium milk, the sun showed up in the afternoon but it was 
observed to have no major impact on the ear density measurement, except for the last quarter of 
an hour. At flowering and hard dough, lower ear densities were measured. Those growing stages 
are not suitable to measure ear density using nadir-viewing cameras if the goal is to derive the 
yield component. At flowering, not all the ears had emerged from their sheaths or the canopy, 
they were still green and thin like the leaves. At hard dough, the ears overlapped too much 
because they were bent from the weight of the grains.  
At watery ripe and medium milk, the number of ears measured by deep learning was close to the 
number of ears labeled. An important point is that this was not due to near perfect detection 
performances, but rather to a compensation between the false positives and the false negatives.  
Detecting the ears at hard dough may be of interest to derive information about their morphology 
or the number of spikelets. Nevertheless, the detection at this stage presented some difficulties. 
An interesting observation is the effect of the sun. During the day, when the sun irradiance 
increased, which can be associated with more direct light, the number of ears counted by both 
the algorithm and the human operator decreased. It seems to confirm the hypothesis that ears in 
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the shadow were missed also by the human annotators. This is due to the strong contrasts 
occurring in a wheat canopy under direct sunlight. To avoid pixel saturation on the ears, the auto-
exposure algorithm decreased the exposure time, resulting in dark zones in the canopy. A solution 
to this issue would be to acquire the scene using multiple exposure times, and then reconstruct 
an image with a high dynamic range.  
Considering the estimation of the image footprint at ear height by stereovision, the standard 
deviations at flowering, watery ripe, medium milk and hard dough were respectively 0.018, 0.005, 
0.007 and 0.110 m². The footprint proved to be robust throughout the day for three of the four 
dates investigated. It remains however an open-question: which height in the ear layer should be 
considered to compute the image footprint? And how to identify that height? In this study, it was 
considered the height of the ear tops minus 50 mm. The height of the ear tops was easy to 
measure from nadir images containing erected ears. The distance of 50 mm to account for the 
depth of the ear layer was however arbitrary.  

4. Conclusions 
A method to measure wheat ear density from RGB cameras, combining deep learning and 
stereovision, was studied on the same wheat area throughout full days, at four development 
stages: flowering, watery ripe, medium milk and hard dough. The F1 scores of ear bounding box 
detection were respectively 0.87, 0.92, 0.92 and 0.85. At watery ripe and medium milk, the method 
measured an ear density that was robust throughout the day. At hard dough stage, increases of 
sunlight irradiance correlated with decreases of the number of ears detected by deep learning, 
but also with decreases of the number of ears labeled by humans. This demonstrates that, in 
some conditions, the wheat ear detection performance indicators based on labeled ear may be 
misleading regarding the capacity of the machine vision to measure the real ear density.  
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