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Abstract

Mutations and deletions in the gene or upstream of the gene encoding the

POU3F4 transcription factor cause X‐linked progressive deafness DFNX2 and

additional neurodevelopmental disorders in humans. Hearing loss can be

purely sensorineural or mixed, that is, with both conductive and sensorineural

components. Affected males show anatomical abnormalities of the inner ear,

which are jointly defined as incomplete partition type III. Current approaches

to improve hearing and speech skills of DFNX2 patients do not seem to be

fully effective. Owing to inner ear malformations, cochlear implantation is

surgically difficult and may predispose towards severe complications. Even in

cases where implantation is safely performed, hearing and speech outcomes

remain highly variable among patients. Mouse models for DFNX2 deafness

revealed that sensorineural loss could arise from a dysfunction of spiral

ligament fibrocytes in the lateral wall of the cochlea, which leads to reduced

endocochlear potential. Highly positive endocochlear potential is critical for

sensory hair cell mechanotransduction and hearing. In this context, here, we

propose to develop a therapeutic approach in male Pou3f4−/y mice based on an

adeno‐associated viral (AAV) vector‐mediated gene transfer in cochlear spiral

ligament fibrocytes. Among a broad range of AAV vectors, AAV7 was found to

show a strong tropism for the spiral ligament. Thus, we suggest that an AAV7‐
mediated delivery of Pou3f4 complementary DNA in the spiral ligament of

Pou3f4−/y mice could represent an attractive strategy to prevent fibrocyte

degeneration and to restore normal cochlear functions and properties,

including a positive endocochlear potential, before hearing loss progresses to

profound deafness.
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1 | INTRODUCTION

Congenital deafness is the most prevalent sensory
disability. About 1–3 in 1000 children are affected at
birth or during early childhood by profound hearing loss,
which is defined as prelingual deafness, with 50% of all
cases having a genetic origin.1 Most of them are inherited
in an autosomal recessive manner; however, other types
of inheritance also occur, including the X‐linked type
related to six loci (DFNX1‐6) and five genes (PRPS1,
POU3F4, SMPX, AIFM1, COL4A6). About 1%–5% of
nonsyndromic hearing loss is likely to be caused by a
disease gene on the X chromosome (1/50,000 births).2,3

In 1971, Nance et al.4 first reported X‐linked mixed
deafness with congenital fixation of the stapes and
perilymphatic gusher. Mutations in the POU3F4 gene
were first described in 1995 after its localization to the X
chromosome in 1988 (Xq21 band).5,6 To date, over 80
deafness‐causative mutations in the coding sequence of
POU3F4 have been identified in some 20 countries,
including missense, nonsense, deletion, frameshift, and
extension mutations (Figure 1).6–46 Moreover, deletions
of the entire gene as well as deletions, paracentric
inversions, and duplications upstream of the gene
(containing the putative regulatory elements of POU3F4
transcription) were also reported.12,13,24,47–52 X‐linked
deafness type 2 (DFNX2, locus Xq21.1), caused by
POU3F4 mutations, accounts for nearly 50% of all cases
of X‐linked hearing loss. Although most cases are

inherited from the carrier mother, a significant propor-
tion (up to 20% in Eastern Asia) of POU3F4 mutations
also occur de novo.9,12,17,24,27,33,34,36,40,47,48 Jang et al.24

recently observed a significantly higher de novo occur-
rence of large genomic deletions within the DFNX2 locus
in Korean patients than that of point mutations in the
POU3F4 gene. The relatively high frequency of de novo
mutations is one reason for the rather high incidence of
sporadic cases of X‐linked deafness DFNX2, meaning
that it is not always possible to predict POU3F4 variants
from a family history. Affected males present heteroge-
neous forms of deafness. Hearing loss can be purely
sensorineural or mixed (±50% for both types), that is,
with both conductive and sensorineural components,
with a variable age of onset and rapid progression to
severe hearing loss of all tones in the first decade. DFNX2
patients show anatomical abnormalities on computerized
tomography of the temporal bone. Bilateral malforma-
tions of the vestibule, enlarged internal auditory canal
and vestibular aqueduct, cochlear hypoplasia, and
absence of modiolus (i.e., the central bony axis of the
cochlea) are jointly defined as incomplete partition type
III (Figure 2).53 The lack of bony modiolus results in a
fistulous connection between the lateral end of the
internal auditory canal and the basal turn of the
cochlea.52–56 A congenital stapedial footplate fixation
compromising the ossicular chain mobility in the middle
ear is responsible for the conductive component of
hearing loss.4,56,57 Moreover, Saylisoy et al.58 recently

FIGURE 1 Schematic representation of POU3F4 and localization of pathogenic variants. bNLS, bipartite nuclear localization signal; LP,
likely pathogenic; mNLS, monopartite nuclear localization signal; POUHD, POU‐homeodomain; POUS, POU‐specific domain.
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suggested that irregular contours of inner ear structures
and hypomineralized areas at the otic capsule should be
considered as additional criteria for incomplete partition
type III. The main inner ear malformations found in
DFNX2 patients were recently reviewed by Hong et al.59

Female carriers of a POU3F4 mutation may show no or
late‐onset hearing loss.31,52,60,61

2 | POU3F4 ‐RELATED HEARING
LOSS IS ASSOCIATED WITH
NEURODEVELOPMENTAL
DISORDERS

DFNX2 deafness was originally considered as a nonsyn-
dromic hearing loss.2,3 However, further observations of
DFNX2 patients revealed additional disorders such as
motor and cognitive developmental delays, mental
retardation, autism spectrum disorders, learning
disabilities, hyperactivity and attention deficit
disorders, and oppositional‐provocative behav-
iors.9,12,19,33,38,39,42,47,50,52,61–67 Recently, an explorative
study was carried out focusing on neurodevelopmental
symptoms in 10 children with incomplete partition type
III. Smeds et al. reported an atypical outcome with poor
speech recognition, executive functioning deficits,
delayed or impaired language development, and atypical
lexical‐semantic and pragmatic skills.38,67 Moreover,
parents reported mental ill‐health issues with
hyperactivity–inattention (restlessness, difficulty concen-
trating, and a lack of ability to think things out before
acting). Overall, these observations suggest that POU3F4‐
related hearing loss could be considered as part of a

neurodevelopmental syndrome that affects the whole
child's development as well as hearing. For this reason,
Smeds et al.38 consider that an extensive and consistent
multidisciplinary team approach is required to treat co‐
occurring neurodevelopmental disorders during child-
hood to support overall rehabilitation. In this context, it
is worthwhile to mention that a potential association
between X‐linked deafness DFNX2 and the presence of
hypothalamic malformation, called hamartoma, has been
recently reported.63,68–71 Hypothalamic hamartoma is a
rare congenital glioneuronal anomaly that can mimic a
hypothalamic mass on imaging, without any change in
size or spread in the follow‐up. These observations
suggest that only about 20% of DFNX2 patients would
have normal hypothalamic anatomy.71 Clinically, hypo-
thalamic hamartomas are associated with developmental
delay, endocrine dysfunction, precocious puberty, gelas-
tic seizures, attention deficit with hyperactivity disorder,
conduct and oppositional defiance disorder, rage, and
aggression behavior.72,73 Over half of children with
hypothalamic hamartoma show symptoms of psychiatric
comorbidity.72 Thus, it is reasonable to assume that some
of the neuropsychiatric disorders associated with DFNX2
deafness could have originated from this hypothalamic
malformation. However, it should be mentioned that
behavioral disorders and hyperactivity could also be a
consequence of vestibular deficiency. According to a
fairly recent study, the severity of vestibular dysfunction
associated with hearing loss is a determinant of comorbid
hyperactivity or anxiety.74 Vestibular symptoms are
common in DFNX2 patients.8,42,47,75,76 They have been
associated with delayed developmental motor mile-
stones, hypotonia and incoordination in early

FIGURE 2 DFNX2 patients develop malformations of the inner ear. Schematic comparison between normal (left panel) and DFNX2
(right panel) inner ear anatomy. In DFNX2 patients, malformations of the vestibule, enlarged internal auditory canal and vestibular
aqueduct, cochlear hypoplasia, and absence of modiolus (*) are jointly defined as incomplete partition type III. The lack of bony modiolus
results in a fistulous connection between the lateral end of the internal auditory canal and the basal turn of the cochlea (**). The otic capsule
(dark gray) appears to be hypomineralized and thinner compared with normal anatomy. M, modiolus.
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childhood,27,38,39,42,47,52,65,66 and with dystaxia and pos-
tural disorders later in life.8,76

3 | CURRENT STRATEGIES TO
TREAT HEARING LOSS IN DFNX2
PATIENTS

Current approaches to improve hearing and speech skills
of DFNX2 patients do not seem to be fully effective.
Stapes surgery (stapedectomy) performed to correct the
conductive loss often results in perilymphatic gusher and
leakage of cerebrospinal fluid, which can cause dizziness
and worsen hearing loss.4,57,77 Therefore, stapes surgery
is contraindicated for DFNX2 patients. In addition,
owing to inner ear malformations observed in most
DFNX2 patients, cochlear implantation is surgically
difficult and may predispose towards severe complica-
tions.78–82 Because of incomplete separation between the
basal turn of the cochlea and the fundus of the internal
auditory canal, cochlear implantation may result in
electrode insertion into the internal auditory canal
without auditory stimulation and risk of facial nerve
injury.78,81,82 Moreover, even in cases where implanta-
tion is safely performed, hearing outcome is highly
variable among patients. A recent article reviewed the
outcomes after cochlear implantation in patients with
DFNX2 deafness.83 In most studies, cochlear implanta-
tion led to significant improvements in audiometric
thresholds and speech recognition compared to pre-
operative performance.12,62,82,84–88 However, several
authors report that auditory perception and language
development remain globally limited in DFNX2 patients
with cochlear implantation.11,14,22,28,33,38,39,67,89–91 This
seems to be particularly true when hearing and speech
capabilities are compared with those of cochlear implant
recipients without inner ear malformations. In this sense,
Smeds et al. reported that very few DFNX2 children with
cochlear implantation develop an age‐appropriate ex-
pressive language level and are rated to have adequate
speech intellegibility.38,67 Some studies also highlight the
possibility that the benefits of implantation may decline
over time (i.e., as the patient grows old).11,14 Choi et al.14

reported poorer auditory perception scores in DFNX2
patients 2 years after implantation relative to age‐
matched cochlear implant recipients without inner ear
malformations. Interestingly, this difference was particu-
larly evident in patients harboring large deletions or
truncations of POU3F4, suggesting that POU3F4 muta-
tion characteristics may aid in treatment selection and
cochlear implantation outcome prediction. Tian et al.91

recently reported hearing outcomes in 14 patients with
incomplete partition type III and compared them to a

control group with normal cochlea anatomy. Auditory
thresholds were similar between groups; however, those
with inner ear malformation showed poorer consonant
recognition 1 year after implantation. In contrast,
Alballaa et al.62 reported stable audiological outcome
3 years after implantation of patients with incomplete
partition type III. Speech recognition scores were lower
than average scores for control patients, but without
statistical significance.

4 | POU3F4 ‐DEFICIENT MICE
SHOW PROGRESSIVE HEARING
LOSS AND REDUCED
ENDOCOCHLEAR POTENTIAL

The first mouse models for X‐linked deafness DFNX2
were generated in the late 1990s.83,92,93 At the functional
level, loss of Pou3f4 affects middle‐ear sound conduction
in mutant animals.94 From an anatomical point of view,
Pou3f4‐deficient mice recapitulate the main inner ear
defects observed in DFNX2 patients, such as cochlear
hypoplasia and absence of modiolus (Figure 3, right
panel), malformations of the temporal bone, the stapes,
and the vestibule. These mice show signs of behavioral
abnormalities that result from dysfunctions in both the
auditory and vestibular systems, including vertical head
bobbing, changes in gait, and hearing loss.93 Hearing
requires the conversion of sound‐induced vibrations into
electrochemical signals by mechanosensory hair cells.
Sensory transduction in the cochlea depends on fluid
movements that deflect the hair bundles located at the
apex of mechanosensitive hair cells. Hair cell mechan-
oreceptors rely on ionic gradients, which allow the
passive flow of K+ into cells. These electromechanical
gradients are achieved by an unusually high K+

concentration [K+] and a positive potential of the
endolymph contained in the cochlear duct, that is, one
of the three major fluid spaces of the cochlea, with the
adjacent scalae vestibuli and tympani. Both the high [K+]
(150mM) and the positive endocochlear potential (EP,
+80–90mV) are generated by the stria vascularis in the
lateral wall of the cochlear duct. The ion composition of
the endolymph resembles intracellular fluid, whereas
that of the perilymph, which is contained in scalae
vestibuli and tympani, corresponds to usual extracellular
fluids (with ±5mM [K+]). Electrophysiological analyses
revealed that Pou3f4−/y male and Pou3f4−/− female mice
show progressive hearing loss leading to profound
deafness at three months of age, as well as a marked
reduction in endocochlear potential.92,95 Pou3f4/POU3F4
is a member of the family of POU‐domain (Pit1‐Oct1/2‐
unc86) transcription factors with two recognized
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domains: a POU‐specific domain (POUS, between amino
acids 186 and 260) and a POU‐homeodomain (POUHD,
between amino acids 278 and 337), both of which have a
helix–turn–helix pattern and determine DNA specificity
and binding.96,97 POU3F4 was initially predicted to
contain three nuclear localization signals (NLS), with
one within the POUS and two within the POUHD.

29

However, a recent reanalysis of the sequence using two
prediction programs (cNLS Mapper98 and NLStrada-
mus99) revealed only one monopartite NLS with high
confidence between amino acids 275 and 284
(275QGRKRKKRTS284) within the POUHD. If bipartite,
the NLS would be most likely located between amino
acids 277 and 303. In either case, the POUHD, rather than
POUS, would be critical for nuclear localization
(Figure 1). POU superfamily genes are involved in cell
proliferation and differentiation during organogenesis.97

Little is known about how POU3F4 mutations induce
hearing loss, except that some of them induce subcellular
mislocalization of the protein,15,29,34 while others lead to
the production of a truncated protein,7,11,13,15,22,23,28,29,40

or they may affect the structure of the protein and impair
DNA binding ability.7,15,19,29,30 In other cases, deletions
upstream of POU3F4 that remove noncoding cis‐
regulatory elements are likely to affect gene expres-
sion.51,100 In the cochlea, Pou3f4 is expressed in several
structures derived from the otic mesenchyme, including
the temporal bone, the spiral ligament, and the spiral
limbus. In contrast, no expression was detected neither
in the cochlear sensory epithelium nor in the stria
vascularis (Figure 4, left panel).101,102 Directly flanking
the stria vascularis, the fibrocytes of the spiral ligament

(SLFs) are believed to ensure the continuous recycling of
K+ released by the sensory hair cells. A prominent
feature of Pou3f4‐deficient mice is the severe alteration of
SLFs, especially those that are located beyond the stria
vascularis (undermentioned “suprastrial”) and that
directly border the scala vestibuli. These suprastrial SLFs
have a markedly reduced cytoplasmic volume, and the
extracellular matrix is extremely sparse (Figure 3, right
panel).92,93,95,103,104 Such histologic features are reminis-
cent of a spiral ligament degeneration pattern.105 SLF
activity is critical for the generation and maintenance of
the endocochlear potential.106–108 Some physiological
observations suggest that endolymphatic K+ is derived
from the perilymph contained in scalae tympani and
vestibuli.109 In the suprastrial region, SLFs probably
resorb K+ from the scala vestibuli and then transfer it to
the stria vascularis via gap junction channels for return
to endolymph by way of Na+–K+–ATPase activity. Thus,
the marked decrease in endocochlear potential measured
in Pou3f4‐deficient mice as well as the progressive nature
of the deafness are likely to be due to the presumed
degeneration of suprastrial SLFs.

It is worth noting here that Pou3f4 has been shown to
promote axon guidance and survival of primary auditory
neurons.110,111 As a consequence, Pou3f4−/y mice show
reduced afferent innervation of the inner hair cells.111

However, given the marked decrease in endocochlear
potential, only 30% loss of afferent synapses is likely not a
major component of the sensorineural loss in Pou3f4−/y

mice. Indeed, a previous study has shown that 50% loss of
inner hair cell afferent synapses can occur without
affecting hearing thresholds.112

FIGURE 3 Pou3f4‐deficient mice show cochlear hypoplasia and altered spiral ligament fibrocytes. Schematic comparison between wild‐
type (left panel) and Pou3f4‐deficient (right panel) cochleae. Pou3f4‐deficient mice show shorter cochlea (*), absence of modiolus (**), and a
severe alteration of spiral ligament fibrocytes (SLFs), especially of those located in the upper portion of the spiral ligament, beyond the stria
vascularis (flanking the spiral ligament, in red). In wild‐type mice, SLFs are coupled to each other via gap junction channels (inset in the left
panel). In Pou3f4‐deficient mice, suprastrial SLFs have a markedly reduced cytoplasmic volume, and the extracellular matrix is extremely
sparse (inset in the right panel). CD, cochlear duct; GJCs, gap junction channels; M, modiolus; PANs, primary auditory neurons; SL, spiral
ligament; ST, scala tympani; SV, scala vestibuli.
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5 | A GENE THERAPY ‐BASED
APPROACH TO RESCUE THE
SENSORINEURAL LOSS IN
POU3F4 ‐DEFICIENT MICE

As mentioned above, current therapeutic approaches to
improve hearing and speech skills of DFNX2 patients still
remain a major challenge and these strategies do not
seem to be fully effective. In this context, here, we
propose to develop a therapeutic approach in male
Pou3f4−/y mice based on a viral vector‐mediated gene
transfer in cochlear SLFs. Adeno‐associated virus (AAV)
is an effective nonpathogenic in vivo gene‐transfer vector
that can be used for treating hearing loss in mouse
models of human genetic deafness.113–116 Many AAV
serotypes have been engineered to improve their
transduction to distinct cell types in the cochlea. Very
few examples exist of gene therapy experiments to
correct inner ear malformations in mouse models of
human deafness. A notable exception is the case of
Pendred syndrome. Mutations of SLC26A4, which
encodes pendrin, cause hearing loss associated with
enlargement of the vestibular aqueduct. Kim et al.117

have shown that a local injection of rAAV2/1‐Slc26a4‐
tGFP prevents the abnormal enlargement of the scala
media/cochlear duct in Slc26a4‐deficient mice. In any
case, the viral vector should be chosen to achieve the best
match possible with the gene expression profile. Current
knowledge suggests that, among a broad range of AAVs,
AAV7 appears to be the vector that best matches with
Pou3f4 expression in the cochlea. AAV7 especially shows
a strong tropism for the entire spiral ligament and for the

spiral limbus, whereas this vector minimally transduces
the inner and outer sensory hair cells (Figure 4).118,119

This point is critical to avoid any potentially deleterious
effect of an ectopic expression of Pou3f4. Thus, an AAV7‐
mediated delivery of Pou3f4 complementary DNA
(cDNA) in the spiral ligament of Pou3f4−/y mice
represents an attractive strategy to prevent SLF degener-
ation and to restore normal cochlear functions before
hearing loss progresses to profound deafness. Intraco-
chlear viral transduction of AAV7‐Pou3f4‐EGFP con-
struct should be performed in 3‐day‐old Pou3f4−/y mice,
that is, as early as possible and before the presumed
degeneration of SLFs begins in these animals (Figure 5,
left panel). Owing to malformations affecting the inner
ear of Pou3f4−/y mice, different delivery routes could be
tested to achieve the best transduction efficiency of
cochlear SLFs. The most usual and successful way of
delivering vectors or drugs to the inner ear is an
intracochlear approach, via the round window mem-
brane. Another attractive option might be to consider
direct administration into the scala media compartment
via cochleostomy. In the present case, gene therapy is not
expected to reverse Pou3f4‐related inner ear malforma-
tions. Rather, the main objectives should be to examine
whether Pou3f4 cDNA transfer in the spiral ligament of
Pou3f4−/y mice restores long‐term cochlear functions
assessed by auditory brainstem responses and measure-
ment of endocochlear potential. Wild‐type, AAV7‐
Pou3f4‐transduced Pou3f4−/y, and nontransduced
Pou3f4−/y animals should be tested and compared from
the age of 21 days (Figure 5, right panel). As mentioned
above, cochlear implantation in DFNX2 patients still

FIGURE 4 The tropism of the AAV7 vector in the cochlea matches with Pou3f4 expression in the spiral limbus and the spiral ligament.
Comparison between Pou3f4 expression (in blue, on the left panel) and AAV7 tropism (in green, on the right panel) in the cochlea. Pou3f4 is
mostly expressed in the spiral limbus, otic mesenchyme, tympanic border cells, spiral ligament, and otic capsule. AAV7 mostly transduces
the fibrocytes of the spiral limbus and the spiral ligament. CD, cochlear duct; OC, otic capsule; OM, otic mesenchyme; SLig., spiral ligament;
SLim., spiral limbus; STym., scala tympani; SV, stria vascularis; SVes., scala vestibuli; TBCs, tympanic border cells.
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remains a challenge and may predispose towards
postoperative complications. Even in cases where
implantation is safely performed, long‐term outcomes
of hearing and speech rehabilitation remain uncertain
and highly variable among patients. For all these reasons,
such a gene therapy protocol could represent an excellent
complementary approach to rescue the sensorineural
component of the hearing loss. If it works, this original
strategy could represent a new hope for improving the
quality of life of DFNX2 children and their families.
Beyond the potential beneficial effect for DFNX2
patients, this innovative therapeutic approach should
represent a major breakthrough that could open up
attractive prospects for the treatment of a broad range of
SLF pathologies. Several of them have been recently
reviewed and discussed by Furness107 and Peeleman
et al.108
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