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Abstract

Wall models reduce the computational cost of large eddy simulations
(LES) by modeling the near-wall energetic scales and enable the appli-
cation of LES to complex flow configurations of engineering interest.
However, most wall models assume that the boundary layer is fully
turbulent, at equilibrium, and attached. Such models have also been suc-
cessfully applied to turbulent boundary layers under moderated adverse
pressure gradients. When the adverse pressure gradient becomes too
strong, and the boundary layer separates, equilibrium wall models are
no longer applicable. In this work, the relations between the instan-
taneous wall shear stress, velocity field, and pressure gradients are
evaluated using space-time correlations for the purpose of analyzing
the near-wall physics in different flow configurations. These correlations
are extracted from two wall-resolved LES: a channel flow at a friction
Reynolds number Reτ of 950 and the two-dimensional periodic hill at
a bulk Reynolds number Reb of 10595. This analysis highlights that no
instantaneous and local correlation is observed in the vicinity of the
separation. The domain of high correlation appears to be shifted down-
stream. This study of the near-wall physics is a step for developing a
data-driven wall model applied to separated flows and, in particular,
selecting suitable input parameters for the training of neural networks.
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1 Introduction

In off-design conditions, the flow inside turbomachinery components is domi-
nated by complex features, which are outside the range of reliability of RANS
turbulence models. It is, therefore, desirable to perform high-resolution sim-
ulations with much fewer modeling assumptions. LES is a valuable tool for
the numerical prediction of the physics of transitional and turbulent flows
in more realistic configurations than Direct Numerical Simulations (DNS).
Nonetheless, wall-resolved LES (wrLES) methods, where the wall-nearest grid
point is within the viscous sublayer, remain prohibitively expensive at high
Reynolds numbers typical of most turbomachinery passages. In wall-modeled
LES (wmLES), the wall-nearest region is coarsened to reduce the computa-
tional cost, which moves the first grid point away from the viscous sublayer.
The effect of the unresolved near-wall physics is then usually represented by
a shear stress boundary condition computed from a wall model that depends
on flow quantities inside the computational domain.

The first attempt to apply a wall model was made by Deardoff [15], who
simulated a channel at an infinite Reynolds number. A few years later, Schu-
mann [40], while working on channel flows at finite Reynolds numbers, defined
conditions that directly link the velocity in the core to the wall shear stress
components. In his approximated boundary condition, the mean stress was set
equal to the given pressure gradient. Grötzbach [23] rather considered the loga-
rithmic law from which the mean stress was computed iteratively. He extended
Schumann’s boundary condition to flow configurations where the pressure gra-
dient was not known a priori. By requiring the wall shear stress to be correlated
to the instantaneous velocity, Piomelli et al. [34] introduced a downstream
displacement ∆s to their model, called the shifted boundary conditions. This
enhancement was based on the inclination of elongated structures near the
wall studied by Rajagopalan and Antonia [37]. Piomelli et al. [34] also pro-
posed the ejection model based on the observation that the high-velocity fluid
motion towards or away from the wall occurring during sweep-eject events
significantly affects the wall stress.

To overcome the assumption that the logarithmic law-of-the-wall holds in
the mean, Mason and Callen [31] extensively worked on the enforcement of
the logarithmic law locally and instantaneously while imposing the alignment
of the wall shear stress with the outer horizontal velocity. They reported that
the validity of this assumption depended on the size of the averaging volume.
Werner and Wengle [47] used a power law to compute the local stress. The
work of Hoffmann and Benocci [24] and Wang [46] was based on the inte-
gration of the boundary layer equations coupled with an algebraic turbulent
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model. Nicoud et al. [33] pointed out that most models performed poorly at
high-Reynolds numbers, even in channel flows. They overcame this issue by
applying a suboptimal control theory to force the outer LES towards a desired
mean velocity profile. Although this method was expensive, it generated tables
of correlations between the outer velocity and wall stress that accounted for
numerical and SGS errors. They finally derived from linear stochastic esti-
mation (LSE) a wall model that gave encouraging results up to Reτ 20,000.
Abel et al. [1] generalized Schumann’s model, Piomelli et al.’s model, the
ejection model, and the gradient model by using generalized additive models
(GAM) and nonlinear, nonparametric regression. The authors analyzed the
near-wall physics and discovered a strong influence of the pressure gradient in
the viscous sublayer.

For complex, unsteady, and non-equilibrium flow features, including sec-
ondary flows and massive separation, most of the above methods fail because
they rely on the laws of the wall valid for attached flows at moderate pressure
gradients. These models do not account for pressure gradients and other effects
relevant to separation. The Two-Layer Model (TLM) initially proposed by
Balaras et al. [2] was a first zonal approach developed to tackle more complex
flows. Although the TLM was applied to the numerical simulation of square
ducts, rotating channels, and backward-facing steps, to name but a few, the
method still suffers from two problems: the log-layer mismatch and the resolved
Reynolds stresses inflow. Another zonal approach is the Detached Eddy Sim-
ulation (DES) which applies RANS calculations in attached boundary layer
regions and LES calculations in separated flows. Such a method was initially
proposed by Spalart et al. [39]. The concept of artificial viscosity was also used
in the work of Breuer et al. [6]. They claimed that a simple model of the artifi-
cial viscosity can be used if an appropriate definition of the relative thickness
of the viscous sublayer is obtained. They compared their analytical model with
different variations of Werner-Wengle’s model on the two-dimensional periodic
hill at Reb = 10595 and got encouraging results. More recently, Cadieux et
al. [8] addressed the separation problem using an integral wall model for LES
with additional non-equilibrium terms. They managed to obtain an analyti-
cally tractable integral formulation and successfully applied it to a flat plate
subjected to an adverse pressure gradient. The work of Krank et al. [28] con-
sists of the enrichment of the Discontinuous Galerkin (DG) solution using a
turbulent boundary layer velocity profile model. This approach was success-
fully applied to channel and periodic hill flows. Although much progress has
been achieved in this field, most existing equilibrium wall models [4, 36] are
still not able to predict flow separations and reattachments.

The current research aims at exploiting the approximation capabilities of
deep neural networks (DNNs), described first by Hornik [25], to establish a
more general model for the complex relationship between instantaneous flow
fields, geometrical parameters, and wall shear stress using DNS or wrLES
databases. More recently, the scientific community has used Machine Learning
(ML) and Deep Learning (DL) techniques to address various challenges in fluid
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dynamics, flow control, and optimization with (experimental and/or numeri-
cal) data [7, 16]. A first application of DNN to wall modeling is presented in
the work of [48], which incorporates a priori physical knowledge into the model
input to enhance the extrapolation capabilities at higher Reynolds numbers.
Zhou et al. [49] target the turbulence separation by working on the periodic
hill. Although they obtained satisfactory a priori results, the a posteriori val-
idation completely fails in predicting the mean velocity profile on the nominal
geometry at Re = 10595. Lozano-Duran [29] hypothesized that any complex
flow can be decomposed as a non-linear combination of simpler flows, called
building-block flows. In their work, a wall-flux-based wall model for LES using
a self-critical machine-learning approach was successfully trained on DNS data
(e.g., flow over a flat plate, in a channel, in a turbulent duct, or separated flow
at various Reynolds numbers). However, the application of the model to the
NASA Juncture Flow fails to correctly predict the separation. This failure is
attributed to a lack of training data.

For the development of wall models for separated flows using deep neural
networks, the future model should have the following specifications: (a) local,
(b) small (i.e., a small number of parameters for fast inference), and (c) gen-
eralizable. The former is crucial to generate a model that depends neither on
geometry nor on global quantities. To enforce (b), feature selection is applied
to reduce the problem dimensionality and remove irrelevant and redundant
features from the dataset. As Piomelli et al. [34] argued, a wall shear stress
correlated with the instantaneous velocity is desirable. This statement is even
more relevant when training deep neural networks for which the input/output
labels should be highly correlated. To ensure the dimensionality reduction and
to find highly correlated input/output labels, a space-time correlation analy-
sis between the instantaneous wall shear stress τw and flow variables (e.g., v
and ∇p) measured in the nearby volume is performed. This paper is therefore
dedicated to the investigation of the near-wall physics of different flow con-
figurations. One of the first attempts to detect properties of large structures
in fully developed turbulence is the work of Rajagopalan and Antonia [37]
in which they analyzed space-time correlations between the wall shear stress
and the velocity fluctuations. They examined the wall-normal evolution of the
correlations and observed the inclination of large structures that had inspired
Piomelli et al. [34] for their shifted approximated boundary condition. A few
years later, Colella et al. [13] performed similar measurements in a channel flow
and conclude that the angle of inclination of the large convected structures
depends on the Reynolds number. It is known that the modeling of wall turbu-
lence is still a major concern. The Attached Eddy Model of Townsend [43–45]
has proven to be highly effective in the prediction of velocity statistics. It
also provides a framework for interpreting the energy-containing scales at high
Reynolds numbers [30]. In the analysis of near-wall physics, the focus is on
turbulence in the presence of a wall. The wall imposes an inhomogeneous
direction responsible for additional complexities such as scale separations, and
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significant anisotropy, to name a few. The work of McKoen [32] reviews cer-
tain aspects of the interpretation and treatment of mechanisms of turbulence
maintenance in wall turbulence for parallel flows with canonical boundary con-
ditions. Dawson and McKoen [14] focused on the identification of pertinent
structures in turbulent wall-bounded flows. The method was explicitly tested
on a turbulent boundary layer and both laminar and turbulent channel flows.
The work of Cheng et al. [12] is also dedicated to the analysis of near-wall
physics by detecting high and low-speed structures of the streamwise wall-shear
fluctuations using a two-dimensional clustering methodology. These structures
were classified into positive and negative families (PFs and NFs) motivated
by the presence of nonlinear interactions and energy transfer between inner
and outer scales. Indeed their work emphasizes several asymmetries between
PFs and NFs. They conclude that NFs are actively connected to the attached
eddies that populate the logarithmic region.

The analysis of near-wall physics done in the works cited above is mainly
performed for equilibrium flows such as flat plate and turbulent channel flows.
In our approach, we target equilibrium and non-equilibrium conditions with
two test cases: (i) a turbulent channel flow at a friction Reynolds number (Reτ )
of 950 and (ii) the well-known two-dimensional periodic hill, at bulk Reynolds
number (Reb) of 10595. Out of these two test cases, three distinct configura-
tions of increasing complexity are defined: (i) the solid wall of the channel,
(ii) the upper wall of the periodic hill, and (iii) the lower wall of the periodic
hill. The channel flow is a common geometry for which the wall models have
been successfully applied. Concerning (ii), the flow is also turbulent, attached,
and at equilibrium. However, it is subjected to a moderate pressure gradi-
ent that modifies the mean wall shear stress. Finally, the third configuration
presents a massive separation on a curved geometry. Using these three config-
urations, the impact of these complexities (i.e., curved wall, moderate pressure
gradient, and separation) is carefully analyzed using space-time correlations.
Based on these test cases, space-time correlations between the velocity, pres-
sure gradients, and the wall shear stress in the wall-normal direction but also
in the streamwise and spanwise directions are evaluated.

The remainder of this paper is structured as follows. In Section 2, the
methods adopted in this work are described. The space-time correlations are
presented in Section 3 and 4 for the channel and periodic hill test case,
respectively. Conclusions are finally drawn in Section 5.

2 Method

The two types of correlations considered in this work to perform feature selec-
tion are presented in Section 2.1. The numerical method used to perform a
wrLES of the channel and the two-dimensional periodic hill is also briefly
explained in Section 2.2.
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2.1 Space-time correlations

Although turbulent flows appear highly disorganized and are unpredictable
in their exact behavior, they are described by deterministic equations and
often have statistically stationary solutions. Consequently, any turbulent flow
quantity can be decomposed into means and fluctuations in space and time. To
further characterize the flow behavior and define the input of our data-driven
wall model, relations between the velocity, the pressure gradient, and the wall
shear stress are sought in space and time. The correlations are first measured
on a well-known geometry: the turbulent channel flow. The analysis is then
extended to a more complex configuration: the two-dimensional periodic hill.
The latter is subdivided into an upper and lower solid wall. The upper wall is
exposed to the pressure gradient generated by the free shear layer, while the
lower wall is subjected to separation and reattachment.

As a first step, the correlation coefficient is computed. This coefficient
is a single number that condensates the strength of dependence. The most
popular correlation coefficient is the classical Pearson correlation (see [17]).
It measures the strength of linear dependencies between random variables.
Although the independence between two random variables implies a zero corre-
lation, the reverse implication is false. Alternative correlation coefficients have
been proposed to avoid this drawback. Among those alternatives, the distance
correlation coefficient, proposed by Székely et al. [41], is considered.

The Pearson correlation can be extended to handle time delay δt and
space shift δξ (see Figure 9) as follows,

R(δt, δξ) =
⟨u(x+ (δξ)êξ, t0 + δt)τw(x, t0)⟩√

⟨u2(x, t0)⟩
√

⟨τ2w(x, t0)⟩
, (1)

where x is (ξ, η, z) (as defined in Figure 9) and ξ̂ is the unit vector in the ξ-
direction. u and τw are the fluctuations of tangential velocity and wall shear
stress taken in the wall parallel direction, respectively. The operator ⟨·⟩ stands
for time and spanwise average. Note that the forcing term is extracted from
the pressure gradients. From now, the velocity (or pressure gradients) will refer
to the spatial variations of the temporal fluctuations of the velocity (or the
spatial variations of the temporal fluctuations of pressure gradient).

Distance correlation. A similar exercise is performed for the sample
distance correlation to account for space shift and time delay. Assuming that
X = u(x+ δξ, t0+ δt), Y = τw(x, t0) and two realizations of size n, the sample
distance covariance measured at (δξ, δt) is defined as

dCor(X,Y ) =
dCov(X,Y )√

dVar2(X) dVar2(Y )
, (2)



Springer Nature 2021 LATEX template

Space-time correlations for the 2D periodic hill 7

where dCov(X,Y ) is the distance covariance between X and Y computed as

D2
n(X,Y ) =

1

n2

n∑
j=1

n∑
k=1

Aj,kBj,k . (3)

In this last expression, Aj,k and Bj,k are two matrices of size n×n where Aj,k

is computed as Aj,k := aj,k − aj. − a.k + a.. where aj. is the jth row mean,
a.k is the kth column mean and a.. is the grand mean of the distance matrix.
The distance matrix of X is defined as aj,k = ∥Xj −Xk∥, j, k = 1, 2, · · · , n
where ∥.∥ denotes the Euclidean norm. The same applies to Y to form the
matrices bj,k and Bj,k. Finally, the sample distance variance is defined as:
dVar2(X) := D2

n(X,X) = 1
n2

∑
k,l A

2
k,l. The brute force algorithm to compute

the distance correlation is O(n2). The O (n log(n)) algorithm, proposed in [11],
has been implemented.

2.2 Simulations details

Two different test cases the turbulent channel flow (Section 3.1) and the two-
dimensional periodic hill (Section 4.1) are simulated with the code Argo-DG,
which is a high-order Discontinuous Galerkin (DG) flow solver, developed at
Cenaero, that solves the compressible Navier-Stokes equations. This solver,
developed during the thesis of K. Hillewaert [27], implements the Discontinuous
Galerkin method, with the symmetric interior penalty method (SIP). The code
can handle large cases thanks to the high scalability of the DG method. It
uses a hybrid parallelism based on message passing interface (MPI), and open
multi-processing (OpenMP). DG methods (DGM) are a particular class of
the Galerkin finite element method (FEM) where the shape functions (e.g.,
Lagrange polynomials of order p) defined in each element are not required to
be continuous across the interfaces. This feature leads to a compact and local
set of discretized equations on the element. Although this discretization is the
key to the high scalability of the overall method, it needs to be stabilized with
consistent penalty terms on the element interfaces. For this purpose, a Riemann
solver is used for the convective terms, while diffusive terms are controlled by
the SIP method. Regarding time discretization, an implicit method is selected
because it allows a larger time step than the time-explicit method for which the
time step is drastically constrained by the CFL condition. At each time step,
a non-linear problem resulting from the implicit integration is solved through
a Newton/GMRES method, preconditioned with elementwise block-Jacobi.

In terms of turbulence modeling, Argo-DG relies on the implicit LES
(ILES) approach, for which the numerical dissipation of the underlying high-
order DG scheme spectrally acts similarly to the explicit sub-grid scale models
traditionally used in classical LES methods [10].
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2.3 Parameters

The Pearson and distance correlations presented above are computed for a
channel flow at Reτ = 950 and the two solid walls of a periodic hill at
Reb = 10, 595 in Section 4. The objective is to detect high correlations between
the wall shear stress and volume fields (e.g., velocity, pressure gradients).
Correlations in the streamwise (or spanwise periodic) wall-parallel direction
generate two important parameters for the development of a data-driven wall
model: a time delay δt and a space shift δξ (or δz, respectively). These
parameters are scaled differently for the channel flow and the periodic hill.

• For the channel flow (Section 3), the scaling is the known wall unit normal-
ization, assimilated to the subscript +, using the viscosity ν and the friction
velocity uτ defined as uτ =

√
τw/ρ, where τw is the mean wall shear stress

and ρ is the density.
• For the periodic hill (Section 4), the scaling uses a length scale h (i.e., the
hill height) and a velocity scale ub (i.e., the bulk velocity).

Table 1 lists all the possible correlations. Among all these correlations, only
significant correlations are examined in this work.

Table 1: List of all combinations of correlations between velocity (or pressure
gradients) and wall shear stress.

Wall shear stress Velocity Pressure gradients

uξ uη uz
∂p
∂ξ

∂p
∂η

∂p
∂z

τw,ξ U0T0 U1T0 U2T0 P0T0 P1T0 P2T0
τw,z U0T2 U1T2 U2T2 P0T2 P1T2 P2T2

To make a fair comparison between the channel flow and the periodic hill,
correlations map in space (δξ) and time (δt) are computed. Unless otherwise
stated, contours at 85% are drawn as thin black lines to highlight a domain of
high correlation, noted D. In the presence of anti-correlations, white dashed
lines are drawn instead. These contours are defined as:

C(f(δt, δξ)) = αmax (|f(δt, δξ)|) , (4)

where α = 0.85 and,

f(δt, δξ) =

{
R(δt, δξ) for Pearson correlation.

D(δt, δξ) for Distance correlation.

Sections 3 and 4 are organized as follows. Firstly, the flow statistics are
well described and fairly compared with available literature. Secondly, Pearson
and distance correlations are presented and analyzed for relevant combinations
between the velocity field (or pressure gradients) and the wall shear stress.
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Three types of space-time correlations are evaluated: (i) the space corresponds
to a displacement δξ in the streamwise wall-parallel direction ξ, (ii) the space
corresponds to a displacement δz in the spanwise wall-parallel direction z
and (iii) the space corresponds to a given distance from the wall in the wall-
normal direction. These correlations are used to select inputs to implement a
data-driven wall model and better understand the flow physics near separation.

3 Channel at Reτ = 950

It is well-known that existing wall models work well on channel flow because it
is fully turbulent, attached, and at equilibrium. In these wall models [23, 40],
the prediction of the wall shear stress is performed with the velocity taken
above the point where τw is required, except in the work of Piomelli et al. [34]
where the velocity is taken downstream along a given structure. Therefore, as
a preliminary consideration, it is expected that the correlations will show a
slight space-time lag which may depend on the height at which the correlation
is assessed.
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(a) Mean velocity profile u+ in wall units
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(d) Velocity RMS profiles in wall units

Fig. 1: Standard flow statistics of the channel flow at Reτ = 950, compared
to the results of Hoyas et al. [26]
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3.1 Flow statistics

The geometry of the channel flow test case is periodic and homogeneous in the
streamwise and spanwise directions. The flow is enclosed between two solid
walls separated by a distance 2δ [26]. The computational domain sizes are
Lx/δ = 2π and Lz/δ = π. The flow is driven by a uniform pressure gradi-
ent. The Mach number is set to a low value (M = 0.1) for a fair comparison
with the incompressible flow references. The simulation is performed with a
mesh resolution comparable to a wrLES: ∆x+ ≃ 90 and ∆z+ ≃ 46, where
the superscript + denotes the wall unit normalization. The Lagrange polyno-
mial order p is set to 3 which gives an effective resolution of ∆x+ ≃ 30 and
∆z+ ≃ 15. Close to the wall, the effective resolution is set such that ∆y+ ≃ 1.
After evacuating the numerical transient, the statistics have been accumulated
for approximately 13, 870 t+, where t+ is defined as t u2

τ/ν. It corresponds to
45.8 flow-through time (tc), defined as t ub/Lx, where ub is the bulk velocity.
The implicit integration scheme is there to overcome the restrictive acoustics-
induced CFL condition in the near-wall region, where a y+ = 1 is asked to
perform a good wall-resolved LES. However, the convective CFL number was
kept at about 0.3 to ensure that turbulence-related time structures are prop-
erly resolved by the time discretization. Figure 1 shows the standard statistical
data on the channel. The mean velocity profile in wall units is almost per-
fectly superimposed on the reference [26] (in gray). One can also notice a good
agreement of u+ in the near-wall region (Figure 1a). Examining the covari-
ance between u and v (Figure 1b), the straight line, typical of wall-bounded
flows, is recovered. The two curves slightly go apart as y+ increases due to a
small difference in Reτ . The profile obtained with Argo-DG (in black) crosses
the horizontal axis at y+ ≃ 957.0. Regarding the rms velocity profiles, a fair
agreement with reference [26] is obtained in the near-wall region (Figure 1d)
while at the center of the channel, the fluctuations u′+ are lower than the ref-
erence data. The two other RMS profiles are, on their own, well predicted at
the channel center (Figure 1c).

3.2 Pearson and distance correlations in the streamwise
direction

All correlations for the channel are calculated at a wall-normal distance of
y+ ≃ 100, which is still close enough to the wall to feel its interaction but large
enough to be in the logarithmic layer. Note that the streamwise direction is
homogeneous, which allows the averaging of multiple realizations of the corre-
lations in such a direction to accelerate the convergence of the statistics. For a
channel flow, the most significant correlations are U0T0 and U1T0 (as defined
in Table 1). Moreover, no correlation has been found between the velocity field
and the spanwise wall-shear stress. Besides, no relation has been found between
the pressure gradients and the wall shear stress at the considered wall-normal
distance. This observation is coherent with the work of Abel et al. [1] who only
found a correlation between the pressure gradient and the wall shear stress in
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the viscous sublayer. This correlation quickly decreases with the increase of the
wall distance. Hence, it is the velocity field that triggers the wall shear stress.

(a) Pearson correlation U0T0 (b) Pearson correlation U1T0

(c) Distance correlation U0T0 (d) Distance correlation U1T0

Fig. 2: Space-time correlations in the streamwise direction evaluated on the
channel at Reτ = 950 at a wall-normal distance of y+ = 100, the local averaged
streamwise velocity u+ is drawn in dotted line

Correlation U0T0

The correlation U0T0 for a zero displacement is shifted over −30δt+ in time.
It corresponds to a normalized downstream displacement of approximately 450
which is coherent with experimental results that gives δξ+ = |y+|cot(13◦) ≃
433 for large distance from the wall [35]. It aligns with the mean streamwise
velocity u+, which corresponds to the local convection velocity (see Figure 2a).
The distance correlation, displayed in Figure 2c, reveals a similar domain of
high correlation D. Its amplitude indicates a non-linear relation between uξ

and τw,ξ. We can conclude that: if local information is used, a time delay needs
to be accounted for uξ. Similarly, if instantaneous information is only used,
a space shift needs to be considered due to the streamwise convection of the
near-wall structures.

Correlation U1T0

In Figure 2b, the relation between τw,ξ and uη is anti-correlated: When the
wall-normal velocity increases, the wall shear stress will tend to decrease, and
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thus the friction is reduced. This observation is coherent with flow ejections
that tend to decrease the wall shear stress as explained in [34] in their ejection
model. The distance correlation, exposed in Figure 2d, indicates a similar D as
the Pearson correlation but with a positive value of 16% because this correla-
tion is based on a measurement of a distance in the L1-norm (Equation 2) and
therefore can only take a positive value. D is shifted the same way as U0T0,
and similar wall models’ best practices are drawn.

Wall-normal evolution of U0T0

Figure 3a shows the wall-normal evolution of U0T0 without any streamwise
displacement (i.e., δξ = 0). The two variables are highly correlated at δt+ =
0 close to the wall (at the beginning of the buffer layer). With increasing
distance from the wall, the correlation between the fluctuations decreases, and
the correlation peak is shifted in δt < 0. According to Colella et Keith [13],
this increase in time delay as moving away from the wall implies the existence
of an angle of inclination of structures convected along the wall. The decrease
in amplitude is due to the decay in these convected structures.
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Fig. 3: Evolution of the time correlation (for δξ = 0) as going away from the
solid wall (a) in wall units and (b) in % of the hill height h

3.2.1 Pearson correlations in the spanwise direction

As for the streamwise correlations, U0T0 and U1T0 are the only significant
correlations observed. Cross correlations as U2T0, U0T2, and U1T2 are not
visible at y+ = 100 but appear at lower y+ values (not shown here). They are
symmetric around δz = 0 with two lobes (one positive and one negative) of
similar amplitude as those observed for the periodic hill in Section 4 (see the
right-most graph in Figure 20).
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(a) Pearson correlation U0T0 (b) Pearson correlation U1T0

Fig. 4: Space-time correlations in the spanwise direction evaluation on the
channel at Reτ = 950 for a wall-normal distance of y+ = 100

Correlations U0T0 and U1T0

Since there is neither a skewed boundary layer nor a spanwise pressure gradient
in a channel flow, the spanwise wall shear stress τw,z is zero on average. Due
to this observation, the domain of high correlation D in the spanwise direction
is narrow and symmetric. Indeed, the correlation map of U0T0 (see Figure 4a)
is spread over only about twenty wall units and is symmetric with respect to
δ+z = 0. The domain of high correlation D is aligned with δz/h = 0 due to the
absence of convection along this direction. Nonetheless, the correlation peak
is shifted in δt+ < 0 for y+ = 100. For U1T0 (see Figure 4b), this time delay
and the spreading along the z-direction are similar. As for the streamwise
correlation U1T0, Pearson correlation also measures an anti-correlation.

3.2.2 Correlations on the channel: conclusion

As a final remark, the wall shear stress is strongly dependent on the stream-
wise velocity while the wall-normal velocity has a reverse impact on τw,ξ as
explained by ejection effects. All correlations, in both streamwise and spanwise
directions, show a time delay when moving away from the wall: The correlation
peak is shifted in δt+ < 0. The mean velocity that convects structures across
the domain increases with distance from the wall. This phenomenon promotes
the inclination of structures as explained by Colella and Keith [13] and ear-
lier by Rajagopalan and Antonia [37]. To compensate for this convection, and
thus the spatial displacement of the structures along the wall, a time delay
is identified in the correlations. Otherwise, if no time delay is considered, a
space displacement is pinpointed. Both δt and δξ are related to the local mean
velocity, as shown in Figure 5. According to this observation, the wall model
can remain local if a short time delay is considered. This procedure holds if
the numerical time step of the wall model δtwmLES is visible in regards to the
delay measured in these correlations. Otherwise, a downstream shift can be
considered as in the shifted boundary condition model of Piomelli et al. [34].
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Fig. 5: Explanation of the inclination of the correlations and the time delay
experienced when moving away from the wall

4 Two-dimensional periodic hill at
Reb = 10, 595

This section is organized the same way as Section 3. Nonetheless, the analysis
of the periodic hill is divided between the upper wall (Section 4.2) having a
behavior similar to that of a channel wall, except that it is subjected to a
moderate pressure gradient, and the lower wall (Section 4.3) characterized by
a massive separation followed by a reattachment on the flat bottom part of
the wall.

(a) Unstructured 3D-extruded mesh, used for the simulation of the two-dimensional
periodic hill at Reb = 10, 595

(b) Averaged grid refinements (∆x+,∆y+,∆z+) in wall units computed from the
averaged wall shear stress

Fig. 6: Mesh information
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4.1 Flow statistics

This flow consists of a bi-periodic flow between two walls with a streamwise
constriction. It combines carefully chosen characteristics resulting in flow sep-
aration, recirculation, and reattachment. The first hill is located at x/h = 0
and the second at x/h = 9. The streamwise periodicity is hence fixed to
Lx/h = 9. The spanwise periodicity is fixed to Lz/h = 4.50. The flow is driven
by a constant pressure gradient whose magnitude is controlled to match the
bulk Reynolds number, defined as Reb = ubh

ν , using the procedure proposed
by Benocci and Pinelli [3], where small modifications have been introduced
by Carton de Wiart [9] to account for compressibility. This test case is part
of the ERCOFTAC KB Wiki, and has been extensively studied both numer-
ically, e.g. see [5, 22], and experimentally by Song and Eaton [38]. We refer
to Fröhlich et al. [21] for the description of the 3D extruded geometry and a
detailed discussion of the flow behavior. The flow has been simulated for a bulk
Mach number Mb = 0.1, and statistical data have been accumulated over more
than 38 flow-through times, after evacuating the numerical transient during 45
flow-through times. The mesh (Figure 6a) is composed of 445,005 hexahedra.
In the near-wall regions (up and down walls, where a no-slip wall boundary
condition is imposed), representing 10% of the hill height, the mesh is struc-
tured with a geometry progression to impose a size of the first cell at the wall
corresponding to y+ = 1 (see Figure 6b). The averaged grid refinements in the
streamwise and spanwise direction, in wall units, are 5 and 10, respectively.
The rest of the mesh is unstructured with a refinement region located near
the separation and in the free shear layer. The simulation is performed with
Lagrangian interpolants of order p = 3, to give a total of 28,480,320 degrees of
freedom. Considering the bulk velocity ub, the spatial resolution of the mesh
near the separation, the polynomial order of the DG method, and the imposed
time step, the convective CFL is also maintained at about 0.3, which ensures
that turbulence-related time structures are properly resolved for computing
the space-time correlations.

Fig. 7: Friction coefficient Cf measured on the bottom surface of the periodic
hill at Reb = 10, 595, compared to [22, 42]
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The averaged results are compared to [5, 22]. Examining the mean veloc-
ity profiles and the Reynolds stresses, a good agreement with respect to the
references is observed (see Figure 8). Figure 7 depicts the friction coefficient
defined as u2

τ/(0.5ρu
2
b). A good match is noted with the results obtained by [22]

at M = 0.1. A precursory separation is visible at x/h ≃ 0, explained by a
high-pressure gradient region that emerges downstream of a low-pressure area
located at x/h ≃ 8.75. This tiny separation is hence visible at the hilltop due
to these high-pressure gradients. Such region produces eddies of high kinetic
energy that are convected downstream and affect the separation process on the
curve wall [6]. The main separation appears at x/h ≃ 0.2. Around x/h ≃ 2.0,
the flow decelerates and then re-accelerates due to the change in curvature.
We notice that the deceleration/acceleration process is slightly shifted for the
dash-dotted Cf curve in Figure 7. At the windward base of the hill, [22] pre-
dicts a small separation before x/h = 7.0. These two discrepancies with [22]
are probably due to the geometric definition of the lower wall and, more
precisely, the connection between the bottom flat part and the hill. The reat-
tachment location is well captured. The recovery region goes from x/h ≃ 4.2
to x/h ≃ 7.0, with a secondary recirculation bubble at x/h ≃ 7.2, followed by
a strong acceleration while ascending.

0 1 2 3 4 5 6 7 8 9
u/ub

0.0
0.5
1.0
1.5
2.0
2.5
3.0

y/
h

Argo-DG, Refined Mesh, M=0.1 Breuer et al. (2009) X. Gloerflt and P. Cinnella, M=0.1

(a) Averaged velocity

0 1 2 3 4 5 6 7 8 9
u′u′/u2

b

0.0
0.5
1.0
1.5
2.0
2.5
3.0

y/
h

Argo-DG, Refined Mesh, M=0.1 Breuer et al. (2009) X. Gloerflt and P. Cinnella, M=0.1

(b) Reynolds stress component

Fig. 8: Flow statistics of the periodic hill at Reb = 10, 595, compared to [5, 22]
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4.2 Analysis of space-time correlations on the top wall of
the periodic hill

The upper wall of the periodic hill geometry is comparable to a channel wall,
in that respect that it does not feature any curvature. However, the streamwise
direction is not homogeneous due to the strong fluctuations of the pressure
gradient generated by the complex dynamics occurring on the lower solid wall
(i.e., separation, reattachment, unsteady free shear layer, recirculation bubble,
turbulence recycling due to the periodicity assumption).

The correlations are illustrated for three distinct regions: the separation
S, the reattachment R, and the converging region C (see blue diamonds in
Figure 9). All correlations are computed at a given wall-normal distance of
10% of the hill height h, for both the upper and lower wall. In terms of y+, this
height corresponds to a value between 20 and 40 for x/h ∈ [0, 8] and 100 along
the converging part, for the lower wall. For the upper wall, such a wall-normal
height corresponds to values between 50 to 70. Instead of using the Cartesian
coordinates to describe this geometry, the curvilinear coordinates are selected.
This coordinate system, for the lower wall, is defined in Figure 9. Each field is
projected on the local frame of reference defined by the geometry.

Separation

ReattachmentProbe locations

ξ⨀
z

ηSp at (x/h≃0.0≃

Rt at (x/h≃4.2≃

Cwd at (x/h≃8.5≃

Fig. 9: Probe positions at a given wall-normal height (η/h ≃ 0.1) (upper and
lower wall) and location of the observation points along the lower wall (red
square) and the upper wall (blue diamond)

4.2.1 Streamwise Pearson and distance correlations

Among all streamwise correlations between the velocity field and τw, only
U0T0, U1T0, and U2T2 are discussed, whereas for the pressure gradients,
only the ”aligned” correlations P0T0 and P2T2. Since these correlations are
similar in shape and amplitude for the three selected positions, they are pre-
sented for the separation location only. However, the amplitude is different at
reattachment, with a decrease in magnitude of 10 to 20%.
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(a) Pearson correlation

(b) Distance correlation

Fig. 10: Space-time correlation (a): U0T0, (b): U1T0, and (c): U2T2 in the
streamwise direction evaluated at x/h ≃ 0 on the upper solid wall of the
periodic hill at Reb = 10, 595

Correlations U0T0, U1T0, and U2T2

Figure 10a (Figure 10b, respectively) shows the Pearson (distance, respec-
tively) correlations U0T0, U1T0, and U2T2 (from left to right) at the
separation only. The amplitude for the three Pearson correlations is close to
0.23. For the distance correlation, U1T0 and U2T2 have approximately the
same amplitude, whereas U0T0 has a higher amplitude meaning a different
probabilistic distribution. The domain of high correlation D is similar for both
types of correlations. In the three cases, the correlation aligns with the mean
streamwise velocity u/ub (white dotted line) and is shifted by −0.5δt ub/h.
The correlation U2T2 spreads over 2.5 time units in the upper right quadrant
(Figure 10ac). This part of the domain cannot be used in the development of
a wall model due to causality. Indeed, this part designates the impact of τw,z

on uz, while the left quadrant indicates the reverse relation: the impact of uz

on τw,z. One can deduce that uz is very sensitive to τw,z. A wrong prediction
of τw,z can impact the spanwise velocity over 3 space units downstream.

Correlations P0T0 and P2T2

Figure 11 shows the Pearson and distance correlations for P0T0 and P2T2
in the vicinity of the reattachment point. This location is preferred for illus-
tration as it has the highest correlation value for P0T0. Regarding P2T2, the
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amplitude of the correlations barely varied from one location to another, indi-
cating a weak variation of the spanwise pressure gradient. This observation is
also drawn for the distance correlation P2T2. For both P0T0 and P2T2 corre-
lations, the Pearson correlations features an anti-correlation around 15%. The
distance correlation indicates the existence of a non-linear relationship between
the two variables. Note, however, that the magnitude is different, revealing
distinct distributions, whereas Pearson suggests only a weak correlation. The
domain D is much more limited than the one obtained for the correlation with
the velocity field. It aligns well with the local mean velocity. Nonetheless, this
domain is also slightly shifted downstream (δξ > 0) or in the same manner, it
observes a time delay; both the time delay and space displacement are negli-
gible here. Hence, one can conclude that instantaneous and local information
are enough to characterize the relation between the pressure gradients and the
corresponding shear stresses. One notices furthermore that the correlations
show some oscillations; these are only observed in the streamwise, not in the
spanwise direction as shown in Section 4.2.2.

Fig. 11: Space-time correlations P0T0 and P2T2 in the streamwise direction
evaluated at x/h ≃ 4.2 on the upper wall of the periodic hill at Reb = 10, 595

4.2.2 Spanwise Pearson correlations

The periodic hill presents a massive separation at x/h ≃ 0.19 on the bottom
wall. The turbulent free shear layer reattaches on the flat bottom surface at
x/h ≃ 4.21. At this point, hairpin vortices appear. This phenomenon is three-
dimensional, may impact the upper wall, and is quantified with space-time
correlations. Five different non-negligible correlations with the velocity field
are detected: U0T0, U1T0, U0T2, U1T2, and U2T2. For the three regions (see
Figure 9), the correlations are similar in shape and amplitude, except for the
reattachment where a drop of 30% and 50% is measured in the amplitude of the
correlation U1T0 and U2T2, respectively. For this reason, only correlations in
the vicinity of the separation region are provided for the sake of brevity. More-
over, distance correlations with the velocity field are not presented because
they give a similar domain D with relevant magnitude evaluated between 15%
to 30%. Correlations U0T0 and U1T0 (Figure 12a and 12b) are similar to
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those detected in the channel. At the height of 0.1/h, compared to the channel,
three other correlations are observed: U1T0, U0T2, and U2T2. The two cross-
correlations appear as two distinct lobes, one negative and one positive, of
equal amplitude, arranged symmetrically around the horizontal axis. Finally,
the correlation U2T2 is the most remarkable. It has a wide spread in space
and time with a non-negligible maximum amplitude of 26%.

Fig. 12: Space-time correlations U0T0, U1T0, U0T2, U1T2, and U2T2 (from
left to right) in the spanwise direction evaluated at x/h ≃ 9.0 along the upper
wall of the periodic hill at Reb = 10, 595

Correlations with pressure gradients are also analyzed in the spanwise
direction, and only two correlations are relevant: P1T2 and P2T2 (not pre-
sented here for the sake of brevity and clarity). However, their domain D is
so narrow that instantaneous and local information are perfectly relevant to
characterize their relationship with the spanwise wall shear stress.

4.2.3 Correlations on the upper wall: conclusion

Although this wall is subject to pressure fluctuations generated by the bottom
wall, correlations with the velocity field in the streamwise direction lead to a
similar conclusion as for the channel: the peak of high correlation is shifted in
δt < 0 (as emphasized in Figure 3b). If no time delay is considered, a space shift
should be taken into account as performed in the shifted boundary condition
model of Piomelli et al. [34], as already stated for the channel case.

More correlations with the velocity field are detected in the spanwise direc-
tion. Similar cross-correlations were also detected on the channel at lower y+

values. As a result of the homogeneity of the spanwise direction, the domain of
high correlation D is always symmetric around the horizontal axis, as expected.
One correlation shows a greater extension of the domain D in the spanwise
direction, suggesting an increase in the spanwise stencil used for wall models.
This statement is true, if and only if the wall model discretization (δz)wmLES

is smaller than the spanwise displacement measured with the correlations.
Even though no correlation with the pressure gradient is found for the

channel, they are observed for the upper wall of the periodic hill. Due to the
massive separation appearing on the bottom wall, the pressure gradient has an
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impact on the upper wall. Nonetheless, these correlations are origin-centered
and narrow compared to correlations with the velocity field. Hence, instanta-
neous and local information seems sufficient to characterize the relation with
the pressure gradient.

4.3 Correlations on the bottom wall of the periodic hill

The shape of the periodic hill leads to separation and reattachment from the
curved boundary (see Figure 6). Due to the geometry, the correlation has to
be sought at different x-region along the bottom wall. Hence, as for the upper
wall, distinct regions are targeted: (i) in the vicinity of the separation, (ii)
after the reattachment, and (iii) on the convex windward wall of the next hill.
These different regions are shown in red in Figure 9. The two first red dots, on
the left, are respectively located before and after the averaged separation. The
third point is located in the recirculation bubble, while the fourth dot is set
just after the averaged reattachment point. The last red square is positioned
on the convex windward wall of the next hill, where the flow is subjected to
strong acceleration.

4.3.1 Streamwise Pearson and distance correlations

The correlations in the streamwise direction are observed at only three loca-
tions: (Sp), (Rt), and (Cwd), stating for separation, reattachment and convex
windward wall of the next hill, respectively. These three locations correspond
to the first red square (starting from the left), the fourth red square, and the
last red square in Figure 9, x/h ≃ 0, 4.2, 8.0, respectively. Three significant
correlations with the velocity field are detected: U0T0, U1T0, and U2T2.

Correlation U0T0

For one location (see Figure 13), both the Pearson and the distance correla-
tions present the same domain of high correlation D but with slightly different
amplitude, indicating a non-linear relation between uξ and τw,ξ. Near the sep-
aration, the correlations are shifted in the positive δξ/h. It means that the
separation drives the wall shear stress at x/h ≃ 0. One also observes a correla-
tion in the lower left quadrant, implying an impact of the wall curvature located
at x/h ≃ 8.5 on the wall shear stress at x/h ≃ 0. Although the Pearson correla-
tion illustrates an anti-correlation in this lower left quadrant, its magnitude is
five times smaller, indicating that the relationship is less strong. However, the
distance correlation indicates similar amplitude levels for both domains. One
may conclude to take both upstream and downstream information to charac-
terize the relation between uξ and τw,ξ near separation. None of the lobes align
with the local mean velocity. This observation contrasts with our intuition, and
more importantly with previous results. The one at δξ/h = 0.5 aligns with the
horizontal, thus with a zero convection velocity, coherent with the separation
phenomenon, whereas the one at δξ/h = −0.5 aligns with the mean velocity
measured on the convex windward wall of the next hill. For (Rt) and (Cwd),
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(a) Pearson correlation U0T0

(b) Distance correlation U0T0

Fig. 13: Space-time correlation U0T0 in the streamwise direction evaluated
at x/h ≃ 0, 4.2, 8.0 (from left to right, corresponding to Sp, Rt, and Cwd)
along the lower solid wall of the periodic hill at Reb = 10, 595, white dotted
line corresponds to uξ/ub at a wall-normal distance of 0.1h

the correlations realign with the local mean velocity. As the velocity increases,
the shape of the correlation stretches. Along the convex windward wall of the
next hill, the correlation is shifted in δt ub/h > 0. In this area, it is τw,ξ that
impacts uξ, probably due to the curvature effect.

Correlation U1T0

The first thing one can notice is the smaller domain of dependence compared
to U0T0 at each location. As for the channel, the Pearson correlation indicates
an anti-correlation between uη and τw,ξ, still explained by ejection events.
Near the separation, the domain of dependence appears to be divided (see
Figure 14) into two sub-domains: (a) one at δξ/h = 0.5 (like U0T0), and (b)
one centered on the origin. This (a) sub-domain is less visible on the distance
correlation because it has a lower amplitude compared to the (b) sub-domain
magnitude. This (b) sub-domain aligns with the local mean velocity while (a)
aligns with the horizontal. For (Rt) and (Cwd), both the Pearson and the
distance correlations indicate similar shapes, oriented according to the local
mean velocity. The correlations are shifted in δξ/h < 0.
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(a) Pearson correlation U1T0

(b) Distance correlation U1T0

Fig. 14: Space-time correlation U1T0 in the streamwise direction evaluated
at x/h ≃ 0, 4.2, 8.0 (from left to right, corresponding to Sp, Rt, and Cwd)
along the lower solid wall of the periodic hill at Reb = 10, 595, white dotted
line corresponds to uξ/ub at a wall-normal distance of 10% of the hill height

Correlation U2T2

As for U0T0 and U1T0, the correlation U2T2 (see Figure 15), in the separation
vicinity, also appears in two sub-domains: one is located at δξub/h = 0.5 and
one is located on the lower right quadrant. The Pearson and the distance
correlations do not capture the same way this second sub-domain, probably due
to a slight statistical convergence issue in capturing this phenomenon. Due to
causality, this second sub-domain will be discarded. However, it explains that
the uz on the convex windward wall of the next hill (δξ/h = −1) is impacted
by τw,z near separation over a longer period. Regarding (Rt) and (Cwd), the
correlations do not align with the local mean velocity. They are more tilted,
indicating higher convection of the correlated structures.

Correlation P0T0

Near the separation, in Figure 16, the domain D of P0T0 appears fragmented,
the same way it was for the streamwise correlation for the pressure gradient on
the upper wall (see Figure 11). The fragmented domain visible in the lower-left
quadrant in the distance correlation is possibly an image of the impact of the
pressure gradient on the precursor separation appearing at x/h ≃ 0, explained
in [6]. While the Pearson correlation indicates a weak anti-correlation, the
distance correlation pinpoints a higher value of 21%, indicating a non-linear
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(a) Pearson correlation U2T2

(b) Distance correlation U2T2

Fig. 15: Space-time correlation U2T2 in the streamwise direction, evaluated
at x/h ≃ 0, 4.2, 8.0 (from left to right, corresponding to Sp, Rt, and Cwd)
along the lower solid wall of the periodic hill at Reb = 10, 595, white dotted
line corresponds to uξ/ub at a wall-normal distance of 10% of the hill height

relationship between ∂p/∂ξ and τw,ξ. Notice that an increase in the streamwise
pressure gradient tends to reduce τw,ξ and hence promotes the separation, as
expected. This observation is true at each location (Sp, Rt, and Cwd). The
correlation aligns with the local mean velocity, except at the separation. At
the separation, the correlation aligns with a lower velocity, illustrating the
deceleration induced by the separation. The effect of the pressure gradient on
τw,ξ is even more pronounced when the boundary layer is accelerated on the
convex windward wall of the next hill with a value of 30%.

Correlation P1T0

A comparable analysis can be drawn for P1T0 except at the reattachment
where no clear domain of dependence has been detected (see Figure 17). In the
vicinity of the separation, the domain of dependence also appears fragmented.
It is linked to the oscillatory behavior of the pressure gradient in the stream-
wise direction, near separation. The distance correlation seems less sensitive to
oscillation and detects a correlation shifted in δt > 0. Another lobe is detected
in the lower left quadrant, as for the correlation U0T0 and can also explain
the precursor separation [6]. In the convex windward wall of the next hill, a
positive correlation is observed in contrast to the anti-correlation detected for
P0T0. Both the Pearson and the distance correlations are shifted in δξ > 0.
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In the vicinity of the separation, the correlation aligns with a lower velocity as
for P0T0. Along the convex windward wall of the next hill, the Pearson cor-
relation seems to better capture the alignment with the local mean velocity,
while for the distance correlations, the domain D aligns with a lower velocity.

(a) Pearson correlation P0T0

(b) Distance correlation P0T0

Fig. 16: Space-time correlation P0T0 along the streamwise direction, evalu-
ated at x/h ≃ 0, 4.2, 8.0 (from left to right, corresponding to Sp, Rt and Cwd)
along the lower solid wall of the periodic hill at Reb = 10, 595, white dotted
line corresponds to uξ/ub at a wall-normal distance of 0.1h

Fig. 17: Space-time correlation P1T0 along the streamwise direction, evalu-
ated at x/h ≃ 0, 8.0 (from left to right, corresponding to Sp, Rt, and Cwd)
along the lower solid wall of the periodic hill at Reb = 10, 595, white dotted
line corresponds to uξ/ub at a wall-normal distance of 0.1h
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Correlation P2T2

Compared to P0T0 at the separation, the domain of dependence of P2T2
(see Figure 18) is less fragmented and spread over time. For the three regions,
the correlations (Pearson and distance) are centered at the origin and aligned
with the local mean velocity. One can also observe the anti-correlation between
∂p/∂z and τw,z which can be analyzed the same way as P0T0 and is also
coherent with the separation phenomenon in the case of a pressure gradient.

(a) Pearson correlation P2T2

(b) Distance correlation P2T2

Fig. 18: Space-time correlation P2T2 along the streamwise direction evaluated
at x/h ≃ 0, 4.2, 8.0 (from left to right, corresponding to Sp, Rt, and Cwd)
along the lower solid wall of the periodic hill at Reb = 10, 595, white dotted
line corresponds to uξ/ub at a wall-normal distance of 0.1h

4.3.2 Spanwise Pearson correlations

This wall presents, as already stated, a massive separation followed by a reat-
tachment on the flat bottom part at x/h ≃ 4.2. Although the flow is on average
two-dimensional, turbulence and these two phenomena are three-dimensional,
requiring an analysis of spanwise correlations. However, correlations observed
in that direction are not radically different from those observed on the chan-
nel and the upper wall. It can be concluded that the streamwise direction is
the driving direction for these three configurations. A few existing wall mod-
els using instantaneous and local velocity sometimes account for the spanwise
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direction by averaging data along that direction. Nonetheless, they fail to pre-
dict the wall shear stress for such a wall, which reinforces the interest in the
streamwise direction than the spanwise one.

Fig. 19: Pearson space-time correlation U0T0 along the spanwise direction,
measured at five locations (Fig.9) along the bottom wall of the periodic hill at
Reb = 10, 595

Unlike spanwise correlations measured for the upper wall, these correlations
are different in both shape and amplitude for the five regions (see red squares in
Figure 9). Nonetheless, they behave the same way. For the correlations U0T0,
U1T0, and U2T2 (where U0T0 is displayed in Figure 19), the domain of high
correlation D is centered around the horizontal axis and slightly shifted in the
δt < 0. For the correlations U2T0, U0T2, and U1T2, the domain D is split
into two sub-domains, one of negative amplitude and one of positive and equal
amplitude. Only the correlation U2T0 is shown in Figure 20. Note how these
negative and positive sub-domains are inverted in the recirculation bubble. In
contrast to the upper wall, the spanwise extent of the domain D is greater. All
these correlations are, as expected, symmetric about the horizontal axis. Some
of them are not perfectly symmetrical due to a lack of statistical convergence.
We note that the correlations U2T0 reach relatively important values near the
reattachment region (x/h = 4.55) and hill crest (x/h = 8.44).

4.3.3 Correlations on the lower wall: conclusion

The major difference compared to streamwise correlations obtained on the
upper wall is the dipole detected in the vicinity of the separation for every
correlation with the velocity field. This behavior is not always reflected in the
correlation with the pressure gradient. All correlations are even more position-
dependent along the bottom wall, while those of the top wall were insensitive to
position, explained by the low impact of the bottom wall on the top one. How-
ever, for attached flows, correlations look like those observed on the channel
flow.

The behavior of the spanwise correlations is comparable to those observed
on the upper wall and those for the channel at lower y+. The correlations also
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Fig. 20: Pearson correlation U2T0 in the spanwise direction, measured at five
locations (Fig.9) along the bottom wall of the periodic hill at Reb = 10, 595

appear in one or two lobes which are symmetric about the horizontal axis,
reflecting the absence of convection in the spanwise direction. However, the
domain of dependence is more widely spread in the spanwise direction, with
significant values up to δz/h ≃ ±1. This observation suggests the interest in
the enlargement of the domain of dependence in the z-direction for wall models
applied to reattachment phenomena. Moreover, a correlation of 30% between
the spanwise velocity and the streamwise wall shear stress indicates 3D effects
and non-negligible coupling in the wall-parallel direction.

5 Conclusion

The present study addresses the analysis of near-wall physics in equilibrium
and non-equilibrium flow conditions. Such an analysis is performed using
space-time correlations. These correlations aim to find functional relations
between volume quantities and the wall shear stress for various configurations,
covering the simple channel flow to separating and reattaching flow. Two types
of correlations (i.e., the Pearson and the distance) have been used to better
understand the physics that develops on each flow configuration.

On a channel flow, the wall shear stress is mainly driven by the streamwise
velocity components and no correlation with the pressure gradient has been
found in the logarithmic layer as also stated by Abel et al. [1]. The obtained
correlations have an elongated elliptical shape that extends over about 200δt+.
To compensate for this delay, a downstream displacement can be considered as
proposed in the work of Piomelli et al. [34] for their shifted boundary condition
model. At lower y+ values (i.e., y+ < 100), significant cross-correlations in the
z-direction are noticed. However, they were no longer relevant at y+ ≥ 100
values except the U0T0 and U2T2. One may conclude that at higher wall-
normal distances, three-dimensional effects generated by the wall are reduced.

Regarding the periodic hill flow, we subdivided the analysis into the upper
and lower wall. On the upper wall, similar correlations compared to those
observed on the channel are obtained. Although the streamwise direction is not
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homogeneous, all detected correlations are found independent of the stream-
wise position, meaning that the lower wall has a minor impact on the upper
one. Unlike the channel, correlations with the pressure gradient are found,
above the reattachment region on the upper wall, in the streamwise and the
spanwise direction, revealing at least an impact on the flow physics of the
lower wall on the upper wall. Major differences are noticed for the lower wall,
where distinct correlations are obtained for the separation, reattachment, and
the convex windward wall of the next hill. The reattachment and converging
regions behave similarly to a channel wall except that correlations are less
spread in time and thicker. More relevant correlations with the pressure gra-
dient are collected as an image of the impact of the pressure gradient on the
separation and reattachment phenomena. Oscillatory behavior is only detected
near separation, whereas on the upper wall it is observed at every streamwise
location. The most interesting behavior is obtained in the vicinity of the sep-
aration. There, the correlation is divided into two sub-domains. One of them
is shifted to δξ > 0, indicating that the formation of the recirculation bub-
ble has a strong (and non-linear) impact on the separation point. The second
sub-domain reveals an anti-correlation located on the convex windward wall
of the next hill on the separation point. In the spanwise direction, despite the
homogeneity of the flow, significant correlations are nevertheless found in some
locations. These correlations look like those obtained on the channel flow at
lower y+ values. However, for the cross-correlations, the change in sign of the
lobes depends on the position along the bottom wall (i.e., inside or outside the
bubble).

Since this work tackles non-equilibrium conditions, the conclusion drawn
may not apply to other flow configurations. However, this study is a pre-
liminary step for the development of a data-driven wall model applied to
the separation phenomenon on the two-dimensional periodic hill. Under these
assumptions, the following rules can be applied. These correlations mainly
provide information on the stencil to be used as inputs for a data-driven wall
model. The stencil refers to the number of streamwise and/or spanwise posi-
tions to consider as well as the time delay to account for. As already stated,
existing wall models accounting for the instantaneous and local velocity pre-
dict correctly the wall shear stress on the channel and the upper wall [19, 20].
Nonetheless, correlations on the channel show that as moving away from the
wall, the domain of high correlation D is shifted in the δt+ < 0. This time delay
is strongly dependent on the wall-normal height at which the information is
sought. It can be argued that there is a wall-normal distance below which this
time delay is invisible (i.e., too small to be of interest to wmLES). Above this
height, a small-time delay (past times) or a space displacement (downstream)
has to be accounted for to correctly capture the high correlation between the
wall shear stress and the velocity. The correlations in the spanwise direction
undergo the same treatment, except that there is no convection along this
direction. Hence only a time delay can improve the model. This delay also
depends on the wall-normal height. A similar conclusion can be drawn for the
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upper wall of the periodic hill, except that the relationship between the volume
fields and the wall shear stress can be enriched if the pressure gradient is con-
sidered. Note that in this case, the spanwise domain may also be expanded due
to the correlation between uz and τw,z that appears as two symmetrical lobes.
On the lower wall, near the reattachment, and on the convex windward wall of
the next hill, almost all correlations in the streamwise direction are shifted in
space and time. The time delay and the space displacement are linked to the
local mean velocity. However, in the vicinity of the separation, the correlations
split into two lobes, and none of them aligns with the local mean velocity. The
lobe shifted in δξ > 0 aligns with the horizontal, indicating the impact of the
recirculation bubble, which can be considered as a dead zone. The other lobe
is shifted in the δξ < 0 and aligns with the local mean velocity measured on
the convex windward wall of the next hill. In these non-equilibrium conditions,
local and instantaneous information may not be enough to characterize a sepa-
rated flow. For this configuration at Reb = 10, 595, a space displacement δξ/h
of 0.5, up and downstream, is required to fully characterize the relationship
with the velocity field. In addition to this streamwise displacement, a spanwise
displacement is also required to capture the two lobes of cross-correlations. If
causality is respected, a displacement δz/h of 0.5 (left and right) is needed. If
the time delay is not considered, the input of the wall model can be seen as a
two-dimensional image of the velocity and pressure gradients.

This work can be extended to other non-equilibrium configuration such
as the Backward Facing Step, for which the flow separates due to a discon-
tinuity in the geometry. It should be also noted that the present work only
covered 3D-extruded configurations. In those configurations, the wall-parallel
directions are well defined (i.e., streamwise and spanwise direction). Moreover,
correlations show how the streamwise direction prevails over the spanwise one;
although the latter can still be important in some configurations. In the case of
more complex 3D configurations presenting skewed boundary layers, the wall-
parallel directions do furthermore not necessarily coincide with the streamwise
and spanwise directions. A future work could be the analysis wall-parallel
space-time correlations of a complex 3D configuration.
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