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1 Modeling of UV-visible spectra

The absorbance A(ω) at pulsation ω of any system can be derived from its linear susceptibility χ(ω):

A(ω) =
ωℓ

c
√
ϵr ln 10

Imχ(ω). (S1)

In the case of a colloidal suspension of QDs, ϵr = 78.5 is the relative permittivity of the solvent (water)
and ℓ = 1 cm the optical path-length through the cuvette. As derived from quantum mechanics, the
susceptibility of QDs reads:

χ(ω) = − N

ℏε0

∑
ν

p2ν

(
1

ω − ων + ıγν
− 1

ω + ων + ıγν

)
, (S2)

where ν labels the individual eigenstates of QDs: pν are the transition dipole moments, ων the eigenen-
ergies and γν the damping factors. The parameter N is the QD concentration (m−3). The eigenenergies
ων = ων(R) depend on the QD radius R, which follows a Gaussian distribution. Hence:

A(ω) =
ωℓ

c
√
ϵr ln 10

N

ℏε0

∑
ν

p2ν

∫ +∞

0

dR
γν

(ω − ων(R))2 + γ2
ν

exp

[
− 1

2

(
R−⟨R⟩

δR

)2]
δR

√
2π

, (S3)

where ⟨R⟩ is the mean radius and δR the standard deviation. As shown in section 3, the lifetimes of the
QD eigenstates range from 20 to 50 ns. This corresponds to an homogeneous spectral width of 10−5 nm,
quite smaller than the spectral bandwidth of the whole QD population. We can thus consider that
γν → 0 (the damping constant is the inverse of the lifetime). At the scale of absorption and emission
spectra, each QD of radius R contributes as a Dirac delta function:

lim
γν→0+

1

π

γν
(ω − ων(R))2 + γ2

ν

= δ(ω − ων(R)). (S4)

As a result, the absorbance can be written:

A(ω) =
ωℓ

c ln 10

N

ℏε0
1

δR

√
π

2ϵr

∑
ν

p2ν
Gν(ω)

exp

[
−1

2

(
Rν(ω)− ⟨R⟩

δR

)2
]
, (S5)

with:

Rν(ω) =
−ην +

√
η2ν + 4(ℏω − Eg)κν

2(ℏων − Eg)
and Gν(ω) =

2κν

ℏR3
ν(ω)

− ην
ℏR2

ν(ω)
. (S6)

Here we used the dispersion relation:

ℏων(R) = Eg +
κν

R2
− ην

R
, (S7)

where Eg = 1.61 eV is the CdTe bandgap, κν/R
2 the confinement energy in state ν, arising from the

quantum confinement theory for electron/hole pairs, and ην/R the Coulomb energy between the electron
and the hole of the pair in state ν. To fit the data, we considered the first six states from ν = 1 to
ν = 6, for which κν and ην are known [2, 1]. The resulting fitting parameters are given by the following
table:

QD1 QD2 QD3 QD4

⟨R⟩ (nm) 1.98 2.26 2.49 3.24
δR/⟨R⟩ (1) 0.0627 0.0756 0.0935 0.245

p1 (D) 5.42 5.87 7.74 7.19
p2 (D) 2.56 2.19 0.0732 0.0723
p3 (D) 3.29 3.62 3.90 1.40
p4 (D) 5.25 5.05 6.77 0.104
p5 (D) 5.68 0.890 0.0256 4.39
p6 (D) 5.96 9.66 9.55 8.17
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2 Dynamics of aggregation

Hereafter we present the photographs of the four QD samples acquired every 5 minutes over one hour,
as from the addition of APTES into the QD solutions (1 cm × 5 mm cuvettes). The colors are not
artificial, but recorded thanks to a Color Sensor provided by ThorLabs (see ‘Methods’). The four sets
of photographs correspond to the four samples QD1, QD2, QD3 and QD4, respectively.
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3 Fluorescence lifetimes

Figure S1 gives the fluorescence decays of the four QD samples (without addition of APTES). Their
fitting with a double exponential function:

If (t) = bkgnd +A1 e
−t/τ1 +A2 e

−t/τ2 , (S8)

enables us to compute the mean lifetimes τf :

τf =
τ1A1 + τ2A2

A1 +A2
. (S9)

The results range from 23 to 47 ns, i.e. τf ∼ 30 ns. This time can be seen as the coherence time of
the QD emission light, thus related to the homogeneous bandwidth dλ of individual QDs (independent
from the size dispersion):

dλ =
λ2
f

cτf
∼ (600 nm)2

3 · 108 m/s× 30 ns
∼ 10−5 nm. (S10)

The heterogeneous bandwidth due to size dispersion is δλ ∼ 30 nm. Hence:

dλ ≪ δλ, (S11)

so we can consider that QDs individually contribute to the absorption and emission spectra as Dirac
delta functions, infinitely narrow.

Figure S1: Fluorescence decays of colloidal QD samples QD1, QD2, QD3 and QD4.
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4 Derivations of homo-FRET efficiency and redshift amplitude

4.1 Homo-FRET efficiency FT

The normalized emission spectrum of a given monodisperse QD population follows a Gaussian distribu-
tion centered at the mean emission wavelength λf :

Î0(λ) = Ae
−
(

λ−λf
δλ

)2

, A =
1

δλ
√
π
. (S12)

The probability density P (λ) for a donor QD emitting at λ to transfer its energy to another QD reads:

P (λ) =
1

α
Î0(λ) Î0(λ+∆S). (S13)

where α (nm−1) is a normalization factor defined as:∫ +∞

−∞
dλ P (λ)

∣∣∣
∆S=0

= 1. (S14)

Indeed, P (λ) must be theoretically maximum when the Stokes shift is zero (the matching condition
between donors and acceptors is instantaneously fulfilled as QDs emit at the same wavelength they
absorb). Hence:

α =

∫ +∞

−∞
dλ Î20 (λ) =

1

π δλ

∫ +∞

−∞
dξ e−2ξ2 . (S15)

From Eq. (S12):

P (λ) =
A2

α
e
−2
(

λ−λf
δλ

)2

e−2
(λ−λf )∆S

δλ2 e
−
(

∆S
δλ

)2

. (S16)

Summing over the whole QD population, the homo-FRET efficiency is defined by:

FT =

∫ +∞

−∞
dλP (λ). (S17)

Given Eq. (S16), we split the integral on both sides of the centroid λf :

FT =

∫ λf

−∞
dλP (λ) +

∫ +∞

λf

dλP (λ), (S18)

and perform the changes of variable x = λf − λ and y = λ− λf , respectively:

FT =
A2

α
e
−
(

∆S
δλ

)2
(∫ 0

+∞
(−dx) e−2( x

δλ )
2

e2
x∆S
δλ2 +

∫ +∞

0

dy e−2( y
δλ )

2

e−2
y∆S
δλ2

)
(S19)

=
A2

α
e
−
(

∆S
δλ

)2 ∫ +∞

0

dy e−2( y
δλ )

2 (
e2

y∆S
δλ2 + e−2

y∆S
δλ2

)
(S20)

= 2
A2

α
e
−
(

∆S
δλ

)2 ∫ +∞

0

dy e−2( y
δλ )

2

cosh

(
2
y∆S

δλ2

)
(S21)

= J(∆S , δλ) e
−
(

∆S
δλ

)2

, (S22)

with:

J(∆S , δλ) = 2
A2

α

∫ +∞

0

dy e−2( y
δλ )

2

cosh

(
2
y∆S

δλ2

)
. (S23)

We now perform the change of variable ξ = y/δλ:

J(∆S , δλ) = 2
A2

α

∫ +∞

0

δλdξ e−2ξ2 cosh

(
2
∆S

δλ
ξ

)
. (S24)

As the hyperbolic cosine is an even function, we eventually get:

J(∆S , δλ) =
A2δλ

α

∫ +∞

−∞
dξ e−2ξ2 cosh

(
2
∆S

δλ
ξ

)
. (S25)
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From Eqs. (S12) and (S15):

A2δλ

α
=

(∫ +∞

−∞
dξ e−2ξ2

)−1

, (S26)

and then J(∆S , δλ) = J(∆S

δλ ) only depends on the ratio between the Stokes shift and the emission
bandwidth. Eventually, we obtain:

FT = J(∆S

δλ ) e
−
(

∆S
δλ

)2

, (S27)

with:

J(x) =

∫ +∞
−∞ dξ e−2ξ2 cosh (2ξx)∫ +∞

−∞ dξ e−2ξ2
. (S28)

As a probability, FT admits 1 as its upper value. The function x 7→ J(x) e−2x2

is maximum at x = 0,
and this is logical: on a physical point of view, the homo-FRET efficiency is expected to be maximum
and equal to 1 when ∆S = 0 or δλ = +∞. Besides, J(∆S

δλ ) is the mean value of cosh
(
2∆S

δλ ξ
)
with

respect to the statistical weight of the squared Gaussian function ξ 7→ (e−ξ2)2. Such a distribution is
consistent with a statistics of paired objects: here, donor/acceptor QD-QD couples. Defining the pair
correlation average operator:

⟨f(ξ)⟩ξ =

∫ +∞
−∞ dξ e−2ξ2 f(ξ)∫ +∞

−∞ dξ e−2ξ2
, (S29)

we can simply write:

FT = ⟨cosh
(
2∆S

δλ ξ
)
⟩ξ e

−
(

∆S
δλ

)2

. (S30)

As discussed in the main text of the article, J(x) = ⟨cosh (2xξ)⟩ξ quantifies the differentiation between
donor and acceptor QDs.

4.2 Asymptotic behavior of FT

When x → +∞, the hyperbolic cosine behaves like an exponential:

cosh(2ξx) =
e2ξx + e−2ξx

2
∼ e2|ξ|x

2
. (S31)

From Eq. (S30):

FT =
1

2
⟨e2|ξ|x⟩ξ e−x2

. (S32)

Given the square of its argument, the factor e−x2

tends to zero faster than ⟨e2|ξ|x⟩ξ tends to the infinity.
As a result, FT → 0 when x → +∞.

4.3 Redshift amplitude ∆λ

The process of homo-FRET lies on the spectral overlap between donor emission and acceptor absorption.
It occurs only if the QDs are close enough to each other. This is why we add APTES to aggregate them
into clusters. The associated transfer of energy, from small to large wavelengths, thus leads to a redshift
of the emission band of the QD population.

Phenomenologically, this redshift is similar to that observed when we increase the QD concentration
within a colloidal suspension. In this case, QDs are not aggregated and not coupled to each other, so
they cannot achieve homo-FRET. However, given their high concentration, inner filter effects (IFEs)
come into play. Each QD still emits light but significantly absorbs the light of the others. It is a
purely collective phenomenon of self-absorption, at the scale of the whole QD population, relying on the
spectral overlap between absorption and emission [3].

Given Eq. (S13), homo-FRET can be formally described as a statistical phenomenon involving the
effective overlap between absorption A(λ) and emission spectra I0(λ) of the whole QD population in
an analogous way than IFEs, as far as ∆S ≳ δλ, i.e. A(λ) ≈ I0(λ+∆S) over the spectral range of the
overlap (see Figure S2). For these reasons, here we propose to, first, calculate the redshift due to inner
filter effects (IFEs) and, second, extrapolate the result to the formally similar case of homo-FRET.
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Figure S2: Principle of the approximation A(λ) ≈ I0(λ+∆S) when ∆S ≳ δλ over the spectral range of
the overlap. When ∆S < δλ, the deviation between A(λ) and I0(λ+∆S) is too important.

From our previous study about IFEs [3], the fluorescence intensity F (λ) of a QD population at
concentration N is related to the fluorescence intensity F0(λ) at concentration N0 < N through:

F (λ) = F0(λ)
N

N0
e−(N−N0)(σ(λex)+σ(λ))ℓ, (S33)

where σ is the absorption cross-section, λex the excitation wavelength, and ℓ the optical path-length
(i.e. the size of the cuvette). The redshift bewteen the two spectra F (λ) and F0(λ) can be deduced
from the position λf of the maximum of emission, defined as:

∂F

∂λ
(λf ) = 0, (S34)

that is, from Eq. (S33):
∂F0

∂λ
(λf ) = (N −N0)ℓ F0(λf )

∂σ

∂λ
(λf ). (S35)

Given the Gaussian distribution of the fluorescence intensity:

F0(λ) = f0 e
−
(

λ−λ
(0)
f

δλ

)2

, (S36)

and that ∂σ
∂λ is approximately constant over the spectral range [λ

(0)
f ,λf ], we get from Eqs. (S35-S36):

∆λ = λf − λ
(0)
f = −δλ2

2
(N −N0)ℓ

∂σ

∂λ
(λ

(0)
f ). (S37)

In the case of IFEs, we find that a decreasing σ(λ) leads to a redshift, while an increasing σ(λ) leads
to a blueshift, as expected. The amplitude of the redshift ∆λ is also driven by the increasing of the
concentration, encoded by N − N0. In other words, the data of (N − N0) and σ(λ) determine the
strength of the IFEs-related redshift. To observe such a redshift, two conditions must be fulfilled:

(C1) :
∂σ

∂λ
(λ

(0)
f ) < 0 and (C2) : N > N0.

In the case of homo-FRET, the total concentration of the QDs does not change (N = N0), so we
must find a substitute for condition (C2). As discussed in the main text of the article, the homo-FRET
is efficient if the QD population is polarized in terms of donors and acceptors. We easily understand that
the homo-FRET-related redshift is all the more important that small QDs are only donors and do not
emit light anymore (at small wavelengths), while large QDs are only acceptors and emit more light (at
large wavelengths). Such a donor/acceptor polarization of the QD population is quantized by function
J(x), Eq. (S28). Under these considerations, condition (C2) may be substituted by a condition over J(x)
(with x = ∆S

δλ ), in such a manner that the contribution of (N −N0)ℓ σ(λ) to the IFEs-related redshift is
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replaced by an effective dimensionless cross-section σ̂ proportional to the absorption cross-section σ(λ)
and function J(x). Henceforth, the new condition reads:

(C2′) : σ̂(λ) ∝ J(x)σ(λ).

so that Eq. (S37) is formally written:

∆λ = −δλ2

2

∂σ̂

∂λ
(λ

(0)
f ), (S38)

quantifying the strength of the IFEs-like redshift observed through homo-FRET.
The contribution of the absorption spectrum to its spectral overlap with the emission band can be

reduced to the first absorption band corresponding to the first local maximum of absorption centered
at λa (as far as ∆S ≳ δλ, Figure S2). It is then possible to consider σ̂(λ) as a Gaussian distribution of
the absorption wavelengths, whose amplitude satisfies condition (C2′):

σ̂(λ) = J(x) e−(
λ−λa

δλ )
2

=⇒ ∂σ̂

∂λ
= −2

λ− λa

δλ2
J(x) e−(

λ−λa
δλ )

2

. (S39)

It is worth noting that, given the factor −2(λ−λa) in Eq. (S39), condition (C1) directly flows from the
hypothesis of a Gaussian cross-section. At this stage, all is thus consistent.

As a consequence, Eq. (S38) translates into:

∆λ = (λ
(0)
f − λa) J(x) e

−
(

λ
(0)
f

−λa

δλ

)2

. (S40)

The difference between λ
(0)
f and λa is nothing but the Stokes shift ∆S = λ

(0)
f −λa, so we eventually get:

∆λ = ∆S J(∆S

δλ )e
−
(

∆S
δλ

)2

= ∆S × FT , (S41)

which corresponds to Eq. (9) in the main text.

kD
rkD

nr

γ*D γ*A

kT = 1
τ∘

D ( R0
r )

6

kqkA
r kA

nr

UV excitation

resonant energy transfer

Donor QD Acceptor QD

internal 
conversion

internal 
conversion

kq

Figure S3: Model of the relaxation pathways considered to account for the processes of homo-FRET
and molecular quenching. γ∗ depicts the stocking rates of the donor/acceptor QDs (number of photons
absorbed by unit time). kr and knr are the radiative and non-radiative decay rates (before aggregation),
and kq encodes the existence of an additional dissipative coupling between QDs and APTES (after
aggregation).
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5 Rate equations of QD-QD FRET

5.1 Hypothesis of a FRET-related quenching

We consider a couple of QDs able to perform FRET as depicted in Figure S3, without additional source
of quenching nor dissipative coupling (i.e. kq = 0). Before addition of APTES (i.e. kT = 0), the rate
equations driving the fluorescence intensities I◦D/A of the two QDs read:

dI◦D
dt

= γ∗
D − (kDr + kDnr)I

◦
D and

dI◦A
dt

= γ∗
A − (kAr + kAnr)I

◦
A. (S42)

After aggregation, the addition of the FRET process gives:

dID
dt

= γ∗
D − (kDr + kDnr + kT )ID and

dIA
dt

= γ∗
A + kT ID − (kAr + kAnr)IA. (S43)

In steady-state regime, all the derivatives vanish and we obtain:

ID =
I◦D

1 + kT τ◦D
and IA = I◦A +

kT τ
◦
A

1 + kT τ◦D
I◦D, (S44)

with:

τ◦D/A =
1

k
D/A
r + k

D/A
nr

and kT =
1

τ◦D

(
R0

r

)6

, (S45)

and:
I◦D = γ∗

Dτ◦D and I◦A = γ∗
Aτ

◦
A. (S46)

Hence, the total fluorescence intensity after addition of APTES is given by:

F = ID + IA =
1 + kT τ

◦
A

1 + kT τ◦D
I◦D + I◦A. (S47)

We notice that F is poorly sensitive to the ratio between the quantum yields of the partners, i.e. the
ratio between τ◦D and τ◦A. In the ideal case of a QD-QD distance r = R0:

F =
1

2

(
1 +

τ◦A
τ◦D

)
I◦D + I◦A, (S48)

and we see that a quenching of Q ∼ 50% is strictly impossible (we should have
τ◦
A

τ◦
D

< 0).

More importantly, Eq. (S44) shows that the intensity of the acceptor is necessarily enhanced. At
the macroscopic scale of a whole QD population, this would translate into a systematic enhancement of
the ‘red side’ of the global emission band (associated to predominantly acceptor QDs), which is not the
case for samples QD1 and QD2. Even if we assume cascade energy transfers (when ∆S ≪ δλ), it is not
possible to explain quenching factors Q ∼ 50%. For interested readers, this point is discussed in details
in section 5.4.

5.2 Necessity of an external source of quenching

We now assume that the aggregation induced by APTES gives rise to a new non-radiative relaxation
path for both the donor and the acceptor, encoded by the rate constant kq (Figure S3). The rate
equations read:

dID
dt

= γ∗
D − (kDr + kDnr + kT + kq)ID and

dIA
dt

= γ∗
A + kT ID − (kAr + kAnr + kq)IA. (S49)

In steady-state regime, we get:

ID =
I◦D

1 + (kT + kq)τ◦D
and IA =

I◦A
1 + kqτ◦A

+
kT I

◦
D

(kq + 1/τ◦A)[1 + (kT + kq)τ◦D]
. (S50)

In other words:
IA
I◦A

=
1

1 + kqτ◦A

(
1 +

γ∗
D

γ∗
A

· kT τ
◦
D

1 + (kq + kT )τ◦D

)
. (S51)

This corresponds to Eq. (11) in the manuscript, with the approximation γ∗
D = γ∗

A. Of course, we retrieve
the fact that IA is necessarily enhanced when kq = 0. Interestingly, the ratio IA/I

◦
A does not depend on

τ◦A when kq = 0. It means that any discrepancy between the QYs of the donor and the acceptor does
not affect the enhancement factor of the acceptor QD, unless we do consider an additional dissipative
coupling with the medium or a non-FRET mechanism (i.e. kq ̸= 0).
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5.3 Condition over kq

In order to account for the possibility of a quenching affecting acceptor QDs, we must determine the
values of kq satisfying:

IA
I◦A

< 1. (S52)

From Eq. (S51), this is equivalent to the inequation:

τ◦Dk2q + (1 + kT τ
◦
D)kq −

γ∗
Dτ◦D
γ∗
Aτ

◦
A

kT > 0. (S53)

The corresponding positive root is given by:

kmin
q =

−(1 + kT τ
◦
D) +

√
(1 + kT τ◦D)2 + 4

γ∗
D(τ◦

D)2

γ∗
Aτ◦

A
kT

2τ◦D
. (S54)

Assuming a QD-QD distance r close to the theoretical Förster radius R0 (since FRET occurs):

r = R0 + ϵR0, with ϵ ≪ 1. (S55)

Hence:

kT τ
◦
D =

(
R0

r

)6

=

(
1

1 + ϵ

)6

≈ (1− 6ϵ) (S56)

By performing the Taylor expansion of Eq. (S54) with respect to ϵ, we find:

kmin
q

kT
≈

(√
1 +

γ∗
Dτ◦D
γ∗
Aτ

◦
A

− 1

)
(1 + 3ϵ). (S57)

As a first approximation, all the QDs individually get the same propensity to absorb the UV excitation
light (i.e. γ∗

D ∼ γ∗
A) and exhibit fluorescence lifetimes of the same order of magnitude (i.e. τ◦D ∼ τ◦A), so

that:
kmin
q ∼ 0.4 kT . (S58)

Henceforth, it is possible to account for a quenching of the acceptor QDs if kq > kmin
q ∼ 0.4kT . The

fact that the condition over the quenching rate constant reduces to kq ≳ kT clearly means that the
quenching mechanism must be uncorrelated to a FRET-related process.

5.4 Discussion about cascade energy transfers

To further examine the hypothesis of a FRET-related quenching mechanism, we discuss here the as-
sumption of a decreasing of the effective QD population quantum yield from cascade energy transfers.
Without considering a new source of non-radiative decay, this hypothesis leads to the increasing of the
emission intensity of the QDs involved in the end of the cascade, despite their intrinsic quantum yield.
Indeed, if any QD transfers its energy to a partner by FRET, the energy remains within the system
(i.e. the QD population) until, first, it is emitted by another partner or, second, it is dissipated into the
medium with the same probability than if the energy had been absorbed from a direct light excitation.
As a result, there would still be a region of the emission spectra satisfying I(λ) > I0(λ). Moreover, to
strengthen our position, let us notice that, from QD1 to QD4:

x =
∆S

δλ
decreases

⇓
J(x) decreases

⇓
The QD population is less and less statistically polarized in terms of donor and acceptor behaviors

⇓
They are more and more QDs playing both the roles of donor and acceptor

⇓
The cascade energy transfer is longer and longer
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Henceforth, under the hypothesis of a quenching due to the length of the FRET cascade, sample QD4
should be more quenched than QD1, which is not experimentally the case.

As a result, the quenching observed for the samples QD1 to QD4 cannot be ascribed to the non-
unity (i.e. the unknown statistical distribution) of the intrinsic quantum yield of QDs, nor to a would-be
decreasing effective quantum yield driven by the length of the cascade energy transfer from the smallest
to the biggest QDs.
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