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1 Differences between the Matsubara formalism and its optical
formulation

1.1 General discussion

The Green-Matsubara formalism was originally developed to handle N -particle interactions within solids
at an arbitrary temperature. It allows to express quantum Green’s functions for solid-state physics in
the frequency domain through a perturbative expansion as a function of a growing number of interaction
processes, whose orders are easily represented by Feynman loop-diagrams. In a previous paper [1], we
have shown that the formalism could be adapted in order to compute the linear and nonlinear optical
responses of a system composed of several interacting entities, as optical response functions belong
to Green’s functions. Here we would like to elaborate on the differences between the original Green-
Matsubara formalism and its optical formulation.

In the original Green-Matsubara formalism, all frequencies (associated to both fermion and boson
states) appearing in a Feynman diagram are Matsubara frequencies (as defined in Part 2.1): input and
output frequencies; frequencies propagating inside a loop; virtual bosons associated with interaction pro-
cesses. The Feynman diagram is then computed by summing over all the internal Matsubara frequencies
and considering all the possible values for the input and output frequencies.

In the optical formalism, there are substantial differences in the constraints put on the system:

1. the input and output frequencies of the response functions, representing photons getting in and
out of the system, are fixed and freely chosen by the experimenter;

2. each interaction process is fully described by an interaction hamiltonian which is exactly known;
the associated coupling constants are not supposed weak and, consequently, Feynman diagrams at
all orders have to be included in the calculation (it does not consist in a perturbative expansion);

3. diagrams represent composite systems made of several sub-units (e.g. a molecule and the nanopar-
ticle on which it is adsorbed) so that each loop embodies a given sub-unit, thus described as an
N -particle system interacting with the other(s); these sub-units can either be an assembly of N
identical particles (like in a solid-state description), or the distribution of N discrete eigenstates
of an entity (e.g. a molecule) defined by a constitutive hamiltonian; this is quite different from
the classical formalism wherein all the loops of a diagram represent the propagation of different
states of the same N -particle system;

4. the interactions take place between these defined and separated sub-units, and proceed from optical
processes; as a consequence, the virtual bosons exchanged within the diagrams actually represent
real vector bosons (i.e. photons).

Point #3 has been addressed in Ref. [1]. A correspondence between the fermion distribution function
ρ(ωm) and the density matrix diagonal elements ρ̂mm allows to treat either condensed matter or discrete
eigenstate entities by means of the same formalism. These four differences translate into an adaptation
of the original Feynman rules, governing the drawing and the calculation of the Feynman diagrams, into
new ones (recalled in Part 1.4) adapted to the optical response functions.

The description introduced in Ref. [1] implicitly integrates these differences, but we detail them here
in order to establish a firm link between classical and optical formulations, ensuring the rigor of the
latter while clarifying its specific hypotheses and implicit assumptions.

1.2 Differences in filling the Feynman diagrams

In Figure S1, we illustrate the two ways (classical and optical) to draw and fill a Feynman diagram.
On the right, we recognize diagram [2,1,↓↑] as sketched in the main text of the present paper (Figure
2). On the left, the same diagram is shown with all frequencies defined according to the classical
Matsubara formalism. The differences are twofold: first, the input and output frequencies in the classical
diagram belong to Matsubara frequencies (leading to the calculation of β̃(ıωη, ıωκ), where β̃ defines the
hyperpolarizability in the Matsubara frequency space), whereas ıω1 and ıω2 (ıω3 = ıω1 + ıω2) are
arbitrarily chosen in the optical diagram for the definition of β̃(ıω1, ıω2). In order to understand this
point, we have to get back to the mathematical foundations of the Green-Matsubara approach, which
are briefly recalled in Part 2.1. This summary shows that all frequencies involved in a Feynman diagram
must indeed be Matsubara frequencies, i.e. a multiple of π/~b, over which a summation is performed
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to compute the diagram, before implementing analytical continuity to recover the response functions
expressed in real frequencies. This is not strictly fulfilled in the optical diagrams. Choosing at will
the input and output frequencies implies that the set of Matsubara frequencies ıωη and ıωκ has to
continuously pave the imaginary axis in the complex plane, which is only valid when b→∞, that is for
a temperature T → 0. The vanishing temperature limit is therefore an implicit hypothesis of the optical
formalism.

The second difference belongs to the same kind: in the optical formalism, the frequencies of the
virtual bosons exchanged during interaction processes between the two loops (i.e. the two subsystems)
are limited to the frequencies injected or created in the diagram (as stated by Feynman rule #5). In
the classical description, these processes remain internal to the N -particle system and, as such, they
also convey arbitrary Matsubara frequencies ıωα associated to the inner loop, over which a summation
is performed. In the optical description, the subsystems are split and identified, so that the interaction
takes place in a real (not virtual) sense between them. In these conditions, the bosons exchanged
between the entities are not virtual anymore but become real vector bosons. Depending on the nature
of the interaction, their frequencies may freely span the whole Matsubara set or be restricted to specific
frequencies. Here we have focused on optical interactions in a broad sense, relying on the interplay
between electric and magnetic fields on one side, electric and magnetic dipoles (and multipoles) on the
other side. Consequently, only frequencies related to the oscillation of a dipole in the system may be
conveyed by the interaction bosons (i.e. photons). On the one side, the hypothesis of T → 0, allowing
to consider all frequencies as Matsubara frequencies, makes this possible, as it is the case for the input
frequencies; on the other side, it implies that the additional Matsubara frequency ıωα in Figure S1
has to vanish (corresponding to Feynman rule #5), leading to a separation between the loops in the
Matsubara sums. This, of course, modifies the way the diagrams are calculated.

1.3 Differences in calculating the Feynman diagrams

The Feynman rules also provide a guide for calculating the diagrams in the optical formalism. From the
previous paragraph, we understand that the sum over internal frequency ıωα is weighted by a δα,0 factor
to fulfill rule #5 (see Part 2.4). In fact, the rules listed in Part 1.4 already integrate the disappearance
of ıωα. However, each sum over Matsubara frequencies being weighted by a factor 1/b, like in Eq. (3),
the 1/b related to the sum over ıωα remains in the overall b exponent as defined in rule #8. This has
major consequences on the factorization procedure as detailed in Part 4. The counting of these factors
1/b in the general case is detailed in Part 2.3.
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Figure S1: Correspondence between the classical and optical formalisms. Frequency filling of the
Feynman diagram [2, 1, ↓↑] before (left) and after (right) applying the Feynman rules adapted for the
computation of optical response functions. Computing optical response functions from loop diagrams in
the Matsubara frequency space involves eliminating the internal boson frequencies (e.g. ıωα) and taking
the limit b→∞, i.e. T → 0.

3



Furthermore, as explained above, the vanishing of ıωα stems from the nature of the interaction
hamiltonian, which has a second consequence on the calculation process. This hamiltonian being related
to a real (not virtual) energy exchange between the subsystems, it relates to the same order of magnitude
as the fundamental process (e.g. β̃(123)(ıω1, ıω2) in the case of Figure S1). In condensed matter processes,
all interactions remain internal to the N -particle system by exchange of virtual bosons, leading to their
perturbative treatment: a diagram made of n virtual bosons (associated to the coupling constant W )
thus represents a perturbative contribution of order n, i.e. depending on Wn. In our optical approach,
diagram evaluation must take into account all the allowed orders describing a process involving the
interactions, whatever the number of vector bosons (i.e. photons) exchanged. This what is done in the
main text, leading to a final description of the hyperpolarizability of the molecule/nanoparticle system
as a sum of all V = 0 to V = 3 processes. In essence, in optics, a perturbative expansion of the dipole
moments is indeed performed with respect to the electric field (see Part 2.2), instead of a perturbative
expansion with respect to the coupling constants.

1.4 Feynman rules for nonlinear optics

The extrapolation of the Feynman-Matsubara formalism from condensed matter physics to optics is
based on the application of twelve rules. Here we recall them:

1) Define the system by its number Nl of partners (or subsystems); define the optical process by the
number Np of photons involved, their nature (creation or annihilation) and their frequency relationships
(e.g. ω3 = ω1 + ω2 for SFG); first-order α functions are represented by diagrams for which Np = 2,
second-order β functions when Np = 3, and third-order γ functions when Np = 4; indeed, in virtue
of nonlinear optics theory, we know that any nth order process consists in a (n + 1)-wave mixing, i.e.
Np = n+ 1;

2) Define the total number Nv of interaction processes, first, between the partners and the photons
(Np) and, second, between the partners themselves (Nv − Np), reminding that two nodes linked by a
virtual boson propagator represent one interaction process;

3) Draw all the topologically distinct loop diagrams made of Nl loops (as many as subsystems) and Nv
interaction processes;

4) For each loop, assign an implicit Matsubara frequency (e.g. ıων) to the propagator associated to the
initial state;

5) Apply the energy conservation rule (in terms of frequencies) at each vertex with boson frequencies
chosen among those present in the system, by ensuring that the constitutive energy relationship (e.g.
ω3 = ω1 + ω2) applies at one and only one vertex; draw as many distinct diagrams as possible by
considering all allowed frequencies, initial states and directions of rotation on the loops; if some diagrams
are equivalent, keep only one of them;

6) Determine for each vertex the coupling constant corresponding to the interaction hamiltonian (e.g.
pinm for light-matter interaction) and multiply them;

7) Determine for each propagator the associated imaginary-time Green’s function and multiply them;

8) Multiply by (−1)Np+1 · bNp−Nv−1 · ~Np−2Nv , where b = 1/kBT ;

9) Sum over all the quantum numbers and all the implicit Matsubara frequencies to get the response
function with imaginary frequency arguments;

10) Use the residue theorem in order to reduce the sums over the implicit frequencies;

11) Replace the imaginary frequencies ıω of photons by ω + ı0+ to get the response function with real
frequency arguments;

12) Introduce the damping constants Γnm by replacing each term (±ωnm+ı0+) by (±ωnm+ıΓnm). This
last rule takes into account the finite lifetimes of real quantum states. Experimentally, the system is not
strictly isolated (or else we could not interact with it nor characterize it), and the resonances identified
through spectroscopy measurements are not ideal eigenstates. The phenomenological damping constants
Γnm are added to account for the real homogeneous broadening of the theoretical eigenstates (arising
from Heisenberg principle).

In order to demonstrate some results presented in the Article, we must elaborate on the mathematical
origin of rules #5, #8 and #11.
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2 Mathematical origin of modified Feynman rules for optics

2.1 Rule #11: Analytical continuity of Green’s functions

In solid-state physics, the propagation of quantum states after excitation of the system is physically
described by retarded Green’s functions Gnm(t) defined with respect to the physical time t:

Gnm(t) = −ıθ(t) tr
(
ρ̂(0){cn(t), c†m(0)}

)
, with ci(t) = eıH0t/~ ci e

−ıH0t/~. (1)

Mathematically, it is much more convenient to handle Green-Matsubara’s functions G̃mn(τ) (also known
as imaginary-time Green’s functions), defined as:

G̃nm(τ) = −~ tr
(
ρ̂(0)Tcn(τ)c†m(0)

)
, with ci(τ) = eτH0 ci e

−τH0 , (2)

and where T is the time ordering operator. Theses functions admit a Fourier series expansion:

G̃nm(τ) =
1

b

+∞∑

ν=−∞
e−ı~ωντ G̃nm(ıωv) with G̃nm(ıωv) =

∫ b

0

dτ G̃nm(τ) eı~ωντ . (3)

If |n〉 and |m〉 depict fermion states, the Matsubara frequencies read:

~ων =
π

b
(2ν + 1), ν ∈ Z, (4)

while they read:

~ων =
π

b
2ν, ν ∈ Z, (5)

if |n〉 and |m〉 depict boson states. Actually, the Matsubara frequencies are respectively defined as
the poles of the Fermi-Dirac distribution ρ+ (for fermions) and the Bose-Einstein distribution ρ− (for
bosons):

ρ±(z) =
1

e~bz ± 1
, z ∈ C. (6)

Because retarded Green’s functions and Green-Matsubara functions both derive from the Hilbert trans-
form of the same function (the spectral function), they satisfy a simple relationship thanks to analytical
continuity of the Hilbert transform over the C-plane: when we replace the Matsubara frequency ıων ∈ ıR
by (ω+ ıγ) ∈ C within G̃nm(ıων), we retrieve the Fourier transform Gnm(ω) of the retarded Green func-
tion Gnm(t), for γ → 0+. In other words:

Gmn(ω) = G̃mn(ω + ı0+). (7)

The same principle (enforced in Feynman rule #11) is applied within our method to calculate the
optical response functions, which are retarded Green’s functions of photon states in real frequency
domain. For instance, for second-order hyperpolarizabilities, we have:

β(ω1,ω2) = β̃(ω1 + ı0+,ω2 + ı0+), (8)

where the Green-Matsubara’s function β̃ is defined with respect to the boson Matsubara frequencies
(ıωη, ıωκ) defined as the poles of the Bose-Einstein functions describing the distribution of the photon
frequencies ω1 and ω2 within the input optical beams.

2.2 Rule #8: Signature of optical loop diagrams

In solid-state physics, the derivation of the Feynman rules lies on the application of the Wick theorem
which implies a multiplication by the signature (−1)n+L, where n is the perturbative order of the
diagram (i.e. the number of virtual bosons) and L the number of loops (related to the same N -particle
system).

In optics, the dielectric response of a system to an excitation electric field E(ω) is characterized by
its dipole moment p(ω). Optical response functions (also called susceptibilities in the frequency domain)
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Figure S2: Perturbative expansion. In optics, there is no ordering between diagrams according to
their number of virtual/vector bosons (dashed lines), but with respect to their number of input/output
photons (waved lines). All the diagrams of a same column are made of the same number Np of photons.

are then defined through the perturbation expansion of p(ω) with respect to E(ω):

pi(ω) = αij(ω)Ej(ω) (9)

+

∫
dω′ βijk(ω′,ω − ω′)Ej(ω′)Ek(ω − ω′) (10)

+

∫∫
dω′ dω′′ γijkl(ω

′,ω′′,ω − ω′ − ω′′)Ej(ω′)Ek(ω′′)El(ω − ω′ − ω′′) (11)

+ · · ·

In terms of diagrams, this expansion can be seen as a sum of contributions of Np = 2 photons (α),
Np = 3 photons (β), Np = 4 photons (γ), etc. (see Figure S2). Therefore, n = Np plays the role of
n in the signature. Here, it corresponds to the number of input/output photons which drive the order
of the perturbative expansion with respect to the electric field. Moreover, in the case of composite
systems, each subsystem is only described by one loop. By construction, L = 1: the quantum states of
each sub-unit propagate only once (there is a unique fermion Matsubara frequency per sub-unit). As a
result, the signature of optical loop diagrams is given by (−1)Np+1, as stated by rule #8.

2.3 Rule #8: Counting of internal Matsubara frequencies

In the theory of Feynman diagrams, we count one factor 1/b for each sum over a Matsubara frequency.
In practice, if Nf internal Matsubara frequencies intervene within a loop diagram, the computation of
the associated Green’s function includes a factor b−Nf . In Ref. [1], we count as many internal Matsubara
frequencies as subsystems Nl, so that we would have Nf = Nl. However, there are hidden Matsubara
frequencies that lead to Nf = Nv −Np + 1.

Let us consider the example of the diagram [2, 1, ↓↑] (Figure 2), for which Nl = 2. As there are
two virtual bosons, the conservation of energy at vertices allows the propagation of a boson Matsubara
frequency ~ωα = π

b 2α, α ∈ Z, as represented in Figure S1. Hence, Nf = 3 6= Nl = 2. For a diagram
made of three virtual bosons, like [3, 0, ↓↑] (Figure 3), we are allowed to propagate two boson Matsubara
frequencies, and Nf = 4 6= Nl = 2. The correct way to count the total number of Matsubara frequencies
is illustrated by the Figure S3. First, a diagram is always made of one loop at least. In this case, Nf = 1.
Second, for a system of Nl sub-units, we have (Nl − 1) virtual bosons at least, which is the minimum
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Figure S3: Internal Matsubara frequencies. Illustration of the counting of the Matsubara frequencies
according to the number of subsystems (Nl loops) and the number of interactions (Ni) between them.
The fermion Matsubara frequencies are written with labels ν, while boson Matsubara frequencies are
written with labels α. For a given Nl, the minimum number of virtual bosons to connect the subsystem
is Ni = Nl−1. In this case, Nf = Nl. As soon as Ni > Nl−1, each additional virtual boson introduces a
new boson Matsubara frequency: we have Nl fermion frequencies ıων and (Ni−Nl+1) boson frequencies.
Hence, in all cases, the total number of Matsubara frequencies is given by Nf = 1 +Ni.

number of connections to get an interacting composite system. Because of the conservation of energy at
vertices, the frequencies of theses (Nl − 1) virtual bosons are fixed, so that they do not introduce new
degrees of freedom over the Matsubara frequencies. At this stage, we count Nf = 1 + Ni Matsubara
frequencies, where Ni is the number of interactions, here equal to the number (Nl − 1) of additional
sub-units (compared to a 1-loop diagram). Third, when Ni > Nl − 1, each additional virtual boson
leads to the introduction of a new degree of freedom, and then to an additional internal Matsubara
frequency. The total number of Matsubara frequencies is eventually given by Nf = 1 +Ni in all cases,
where Ni is the total number of interactions between sub-units. From the rule #2: Ni = Nv −Np, i.e.
Nf = 1 + Nv − Np. This is why the rule #8 states that the response function is characterized by a
factor bNp−Nv−1 = b−Nf .

2.4 Rule #5: Matsubara frequencies of virtual bosons

Even though the previous reasoning gives an explanation to rule #8, rule #5 states that we only sum
over the Matsubara frequencies associated to the Nl subsystem loops. To understand why, let us call Nd
the number of additional degrees of freedom introduced by excess virtual photons (when Ni > Nl − 1).
We have Nd = Ni − (Nl − 1) = Nv −Np −Nl + 1. The total number of internal Matsubara frequencies
is then Nf = Nl + Nd. For any Nl-loop diagrams, it is possible to split the Nl sums over the fermion

Matsubara frequencies {ων(n)}n=Nl
n=1 (propagators in fermion loops) from the Nd sums over the boson

Matsubara frequencies {ωα(n′)}n
′=Nd
n′=1 (virtual boson interaction vertices) within the computation of the
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associated Green-Matsubara’s function:

G̃(ıωη(1), · · · , ıωη(Np)) =

Nl∏

n=1


1

b

∑

ν(n)




Nd∏

n′=1


1

b

∑

α(n′)


 f(ıων(n), ıωα(n′)), (12)

where function f is a product of elementary Green’s functions and coupling constants (see in Figure S3
examples of diagrams illustrating the definitions of ıων(n) and ıωα(n′)). In solid-state physics, the aim
is to treat N -body interactions as perturbations and then to sum over all the frequencies which can
be propagated within the system through virtual bosons. In this manner, there is an ordering between
the processes according to the number of virtual bosons: processes encoded by (V + 1) virtual bosons
are negligible in comparison with those encoded by V virtual bosons. As discussed previously, the
interactions are not treated as perturbations in optical diagrams so that we should talk about vector
bosons instead of virtual bosons. This point has an important consequence: as mediators of dipole-
dipole interactions, the vector bosons only propagate linear combinations of the optical frequencies
ıω1, · · · , ıωNp . Let us consider again the diagram [2, 1, ↓↑] which leads to the computation of β̃(ıωη, ıωκ)
(Figure S1). The two vector bosons propagate the Matsubara frequencies (ıωη + ıωα) and (ıωη + ıωκ +
ıωα). The frequency ıωα is internal to the system and summed for α ∈ Z, while (ıωη, ıωκ) are fixed and
associated to the input photons (ω1,ω2). So, the vector bosons embody real processes if, and only if,

ıωη = ıω1, ıωκ = ıω2 and ıωα = 0. In the general case of Np photons of real frequencies {ωN}N=Np
N=1

interacting with a composite system, we are actually interested in the response function:

G̃(ıω1, · · · , ıωNp) =

Np∏

N=1

∫

R
dωη(N) δ(ωN − ωη(N)) G̃(ıωη(1), · · · , ıωη(Np)). (13)

The condition ωη(N) = ωN means that it must formally exists an integer η(N) so that:

~ωN =
π

b
2η(N). (14)

As the optical frequencies ωN are continuously distributed over R, the real optical response function is
deduced from the Green-Matsubara’s function G̃(ıω1, · · · , ıωNp) after taking the limit b→∞, i.e. T → 0.
Indeed, 1/b quantifies the distance between two consecutive Matsubara frequencies, so that b must tend
to the infinity for {ωη(N)}η(N)∈N to be dense in R. Moreover, as we do not treat the interactions between
subsystems as perturbations, the degrees of freedom introduced by the boson Matsubara frequencies
ωα(n′) must be eliminated. In other words, the Nd sums over the boson frequencies must be weighted
by Kronecker symbols of type δα,0:

G̃(ıω1, · · · , ıωNp) =

Nl∏

n=1


1

b

∑

ν(n)




Nd∏

n′=1


1

b

∑

α(n′)

δα(n′),0


 f(ıων(n), ıωα(n′)) (15)

=
1

bNl

Nl∏

n=1

∑

ν(n)

1

bNd
f(ıων(n), 0) (16)

= (bNp−Nv−1)

Nl∏

n=1

∑

ν(n)

f(ıων(n), 0). (17)

For all these reasons, the diagrams are drawn and filled with (ıω1, ıω2) instead of (ıωη, ıωκ), and vir-
tual/vector bosons are not associated to internal Matsubara frequencies.

2.5 Rule #9: Summations over quantum states and Matsubara frequencies

Equation (17) shows the general shape of the response function derived from any optical diagram. First,
the fermion Matsubara frequencies ıων(n), which are internal variables without direct physical meaning,
must be eliminated thanks to the residue theorem. Second, function f(ıων(n)) is itself a sum over all
the quantum numbers labeling the states of the sub-units composing the system. Interestingly, the
application of the residue theorem changes the sums over Matsubara frequencies into sums over the
poles zu of Matsubara-Green’s functions weighted by the distribution function ρ(zu) of Fermi-Dirac
and/or its derivatives (as we only deal with fermion Matsubara frequencies, we have to handle function
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ρ+(z) defined by Eq. (6), for which we drop subscript ‘+’ in the following). Here, for each sum over a
Matsubara frequency, unambiguously associated to a given sub-unit, the poles zu depend on the eigen-
frequencies ωm of the sub-unit itself (and a linear combination of the input optical frequencies). The
mathematical information encoded by Matsubara frequencies thus translates into physical information
about the statistical distribution of the quantum states within the system. As a result, summing over the
quantum states |m〉 introduces statistical selection rules driven by ρ(ωm), ρ′(ωm), ρ′′(ωm), etc., which
depend on the temperature. This is of high importance as our optical formulation considers the optical
response functions as the asymptotic values of the Green-Matsubara’s functions at zero temperature.
Here we detail the mathematical formulation of these selection rules.

Matsubara frequencies and residue theorem. The residue theorem allows the reduction of sums of
products of Green-Matsubara’s functions by using the fact that the fermion Matsubara frequencies are
the poles of the Fermi-Dirac distribution ρ(z). It states that for all meromorphic function φ characterized
by N simple poles {zu}16u6N and the associated residues {ru}16u6N [1]:

1

b

∑

ν

φ(ıων) = ~
∑

u

ru ρ(zu). (18)

In the general case of multiple poles, we have:

1

b

∑

ν

φ(ıων) = ~
∑

u

Reszu [ρ(z)φ(z)]. (19)

Residues are then computed from:

Resa(f) =
1

(n− 1)!
lim
z→a

∂n−1

∂zn−1
[(z − a)nf(z)] , with f(z) = ρ(z)φ(z). (20)

Derivatives of the Fermi-Dirac distribution. It is worth noting that the first derivative of ρ(z) can
be expressed with ρ(z) itself:

ρ′(z) = ~b ρ(z) (ρ(z)− 1). (21)

As a consequence, for z ∈ R, the limit T → 0 (b→∞) leads to:

ρ(z) ρ(z)− 1 ρ′(z)
z > 0 ∼ e−~bz ∼ −1 ∼ −~b e−~bz
z < 0 ∼ 1 ∼ −e~bz ∼ −~b e~bz

Then, in the zero temperature limit:

supz∈R |ρ′(z)|
supz∈R |ρ(z)| ∼ ~b =⇒ sup

z∈R
|ρ′(z)| � sup

z∈R
|ρ(z)|. (22)

In other words, when a quantity sums up on states |m〉 different contributions respectively weighted
by ρ′(ωm) and ρ(ωm), the low temperature limit comes down to selecting the sole terms weighted by
ρ′(ωm), as they are dominant inside the sum. Typically, for all functions f and g satisfying f ∼

T→0
g:

∑

m

(
ρ′(ωm) f(ωm) + ρ(ωm) g(ωm)

)
−→
T→0

∑

m

ρ′(ωm) f(ωm), (23)

and the sum reduced to the terms weighted by ρ′(ωm) contains all the significant contributions when
T → 0. This result can be generalized for all the successive derivatives ρ(n)(z) of ρ(z), as their leading
terms are:

ρ(n)(z) =
dnρ

dzn
= (~b)nρ(z) [n! ρn(z) + · · · ] . (24)

Hence, for all n > n′:

supz∈R |ρ(n)(z)|
supz∈R |ρ(n′)(z)| ∼ (~b)n−n

′
=⇒ sup

z∈R
|ρ(n)(z)| � sup

z∈R
|ρ(n′)(z)|. (25)

Taking the low temperature limit within a sum over quantum states thus leads to only keeping the
contributions weighted by the highest order derivative. Combined with the residue theorem (eq. (19))
and the derivative character of the calculation of the residues (eq. (20)), this condition of higher derivative
order translates into a condition of higher multiplicity of the poles. When performing the sum of a
meromorphic function φ over Matsubara frequencies as in equation (19), selecting the contributions of
higher derivative order ρ(n) conveys into selecting only the contributions of the (n + 1)-multiple poles
of function φ.
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3 Canonical linear and nonlinear optical response functions

3.1 First-order polarizability

As previously derived from the Feynman rules governing the loop diagram formalism [1], the 1st-order
response function αij(ω) of a simple system is given by the loop diagram of Figure S4(a). In imaginary
frequency (Matsubara formalism), it reads:

αij(ıω) =
−1

b~2

∑

m,n

∑

ν

pimn p
j
nm G̃m(ıων) G̃n(ıων + ıω). (26)

where p is the dipole moment, b = 1/(kBT ), and:

G̃m(z) =
1

z − ωm
. (27)

This actually corresponds to the smallest unit diagram of optics. The calculation leads to [1]:

αij(ıω) =
1

~
∑

m

ρ̂mm
∑

n

(
pimnp

j
nm

ωnm − ıω
+

pjmnp
i
nm

ωnm + ıω

)
, (28)

which gives, after application of rules #11 and 12:

αij(ω) =
−1

~
∑

m,n

ρ̂mm

(
pimnp

j
nm

ω − ωnm + ıΓnm
− pjmnp

i
nm

ω + ωnm + ıΓnm

)
. (29)

In imaginary frequencies, the polarizability conveniently separates into:

αij(ıω) = α−ij(ıω) + α+
ji(ıω), with α±ij(ıω) =

±1

~
∑

m

ρ̂mm
∑

n

pimnp
j
nm

ıω ± ωnm
. (30)

These two terms α−ij and α+
ji can be seen as the resonant and non-resonant parts of the linear polariz-

ability αij , respectively. It is worth noting that α−ij(ıω) = α+
ij(−ıω).

3.2 Second-order hyperpolarizability

In the case of 2nd-order processes like SFG, we must consider two 1-loop diagrams (Figure S4(b)), as
deduced from the Feynman rules. The first diagram, associated to the cyclic permutation (1 2 3), leads
to:

β
(123)
ijk (ıω1, ıω2) =

1

b~3

∑

m,n,q

∑

ν

pimq p
j
nm p

k
qn G̃m(ıων) G̃n(ıων + ıω1) G̃q(ıων + ıω3), (31)

with ω3 = ω1 + ω2. The second one, associated to the permutation (2 1 3), can be expressed as:

β
(213)
ijk (ıω1, ıω2) = β

(123)
ikj (ıω2, ıω1). (32)

ω3

ω4

2n
d 

or
de

r

(123)

ω2

ω1
ω3

<

ω1

ω2
ω3

(213)

<

1s
t o

rd
er

ω
<

ω

3r
d 

or
de

r

<

ω1ω2

ω3 ω4

(1234)

ω1ω2

ω4 ω3

(3124)

<

ω1

ω4 ω2

ω3

(2134)

<

ω1

ω4ω2

ω3

(1324)

<

ω1

ω2

ω4

ω3

(3214)

<

ω1ω4

ω2 ω3

(2314)

<

(a)

(b)

(c)

<

ω ω’

ω’ω

<

<

<

<

ω ω’

ω’ω

< <<

ij

k l

j

k

i

l

× ×

<

ω1ω2

(123456)

ω6

ω5

i
jk

l
u v

Figure S4: Simple systems. Complete list of Feynman diagrams accounting for first-, second-, and third-
order optical responses of one-body systems. Diagrams are labeled by the associated cyclic permutations.
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The total 2nd-order response function of a simple system consists in the sum of these two contribution:

βijk(ıω1, ıω2) = β
(123)
ijk (ıω1, ıω2) + β

(213)
ijk (ıω1, ıω2), as shown in Ref. 1. After application of rules #10 to

12, we get [1]:

βijk(ω1,ω2) = (33)

1

~2

∑

m,n,l

ρ̂ll

[
pilnp

j
mlp

k
nm

(ωnl − ω3 − ıΓnl)(ωml − ω1 − ıΓml)
+

pinmp
j
lnp

k
ml

(ωnm + ω3 + ıΓnm)(ωml − ω2 − ıΓml)

+
pinmp

j
lnp

k
ml

(ωmn − ω3 − ıΓmn)(ωnl + ω1 + ıΓnl)
+

pimlp
j
nmp

k
ln

(ωml + ω3 + ıΓml)(ωnl + ω2 + ıΓnl)

+
pilnp

j
nmp

k
ml

(ωnl − ω3 − ıΓnl)(ωml − ω2 − ıΓml)
+

pinmp
j
mlp

k
ln

(ωnm + ω3 + ıΓnm)(ωml − ω1 − ıΓml)

+
pinmp

j
mlp

k
ln

(ωmn − ω3 − ıΓmn)(ωnl + ω2 + ıΓnl)
+

pimlp
j
lnp

k
nm

(ωml + ω3 + ıΓml)(ωnl + ω1 + ıΓnl)

]
.

3.3 Third-order hyperpolarizability

Since 3rd-order processes imply four photons (i.e. three input frequencies), we count as many diagrams
as cyclic permutations of order 4, that is 3! = 6 (Figure S4(c)). Here we give the response function
corresponding to the diagram (1 2 3 4), as derived from the application of the Feynman rules:

γ
(1234)
ijkl (ıω1, ıω2, ıω3) =

−1

b~4

∑

m,n,q,r

∑

ν

pimr p
j
nm p

k
qn p

l
rq G̃m(ıων) G̃n(ıων + ıω1) G̃q(ıων + ıω1 + ıω2) G̃r(ıων + ıω4), (34)

with ω4 = ω1 + ω2 + ω3. The complete 3rd-order response function is then the sum of the 6 diagrams:

γijkl(ıω1, ıω2, ıω3) =
∑

σ∈S4

γ
(σ)
ijkl(ıω1, ıω2, ıω3), (35)

where S4 depicts the set of the cyclic permutations of order 4. Each γ
(σ)
ijkl can be deduced from (34):

γ
(2314)
ijkl (ıω1, ıω2, ıω3) = γ

(1234)
iklj (ıω2, ıω3, ıω1), γ

(1324)
ijkl (ıω1, ıω2, ıω3) = γ

(1234)
ijlk (ıω1, ıω3, ıω2), etc. (36)

3.4 Fifth-order hyperpolarizability

Even though optical processes of 5th-order are not studied experimentally, our derivation of the response
functions associated to 3-boson diagrams (Figure 3) involves the 5th-order response function of the
substrate. This is well defined on a mathematical point view by:

ξ
(123456)
ijkluv (ıω1, ıω2, ıω3, ıω4, ıω5) =

−1

b~6

∑

m,n,q,r,s,t

∑

ν

pimt p
j
nm p

k
qn p

l
rq p

u
sr p

v
ts

G̃m(ıων) G̃n(ıων + ıω1) G̃q(ıων + ıω1,2)G̃r(ıων + ıω1,2,3) G̃s(ıων + ıω1,2,3,4) G̃t(ıων + ıω1,2,3,4,5), (37)

where we concisely write ω1,··· ,n = ω1 + · · ·+ ωn. This functions is represented in Figure S5.
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<
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<
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<
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<
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<
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<
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<
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<
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<
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<

<
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<
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<
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Figure S5: Diagrammatic representation of ξ
(123456)
ijkluv (ıω1, ıω2, ıω3, ıω4, ıω5), with ω6 =

∑5
n=1 ωn.
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4 Factorization of odd-order response functions

In Figures 2 and 3, we show that the diagrams made of 2 and 3 virtual bosons lead to 2nd-order
response functions of the system which can be factorized by 3rd- and 5th-order response functions of
the nanoparticle. Indeed, the upper loops of these diagrams are respectively made of 4 and 6 propagators.
Interestingly, these 3rd- and 5th-order response functions can be split into products of simple 1st-order
response functions. In this section, we demonstrate this mathematical property for any odd-order
response function.

4.1 Factorization of third-order functions γijkl

The third-order response functions γijkl are sometimes split into the product of two first-order functions
αij αkl, i.e. “γijkl ∝ αij αkl” or “γ ∝ α⊗α”. But here are two significant inaccuracies of this splitting:
first, the two pairs of components (i, j) and (k, l) are coupled through γijkl, while they are not anymore
within αij αkl; second, γijkl is a function of three frequencies, while αij αkl is a function of two frequencies
(at most).

Actually, it is solely possible to factorize third-order functions in very specific cases: they must
explicitly depend on two frequencies only and, as we will see below, they must arise from a composite
diagram containing hidden boson Matsubara frequencies, i.e. satisfying Nv − Np > Nl − 1 (Part 2.4).
Under these conditions:

1

b
γ

(1234)
ijkl (ıω,−ıω, ıω′) = −α−il (ıω′)α−kj(ıω), (38)

where α−uv(ω) is the resonant part of αuv(ω), defined in Eq. (30), and 1/b = kBT is the thermal energy.
This result is illustrated by loop diagrams in Figure S6. We notice that the relation in Eq. (38) is
homogeneous, as [pE] = [αE2] = [γE4] (where p is a dipole moment and E an electric field) is an
energy, like [1/b]. This implies that [α] = [γE2] and, therefore, [1/b · γ] = [γαE2] = [α]2.

To demonstrate equation (38), we first write, in imaginary frequencies:

1

b
γ

(1234)
ijkl (ıω,−ıω, ıω′) =

−1

b2~4

∑

ν

∑

mnqr

pimrp
j
nmp

k
qnp

l
rqG̃m(ıων)G̃n(ıων + ıω)G̃q(ıων)G̃r(ıων + ıω′), (39)

and:

αkj(ıω)αil(ıω
′) =

1

b2~4

∑

m,n

∑

ν

pkmn p
j
nm G̃m(ıων) G̃n(ıων + ıω)

∑

q,r

∑

λ

piqr p
l
rq G̃q(ıωλ) G̃r(ıωλ + ıω′)

=
1

b2~4

∑

ν,λ

∑

mnqr

piqr p
j
nm p

k
mn p

l
rq G̃m(ıων) G̃n(ıων + ıω) G̃q(ıωλ) G̃r(ıωλ + ıω′). (40)

We notice that the two expressions coincide when m = q in (39), and (m, ν) = (q,λ) in (40). In order
to formally account for this, we define the linear operators {·}∗/† extracting the contributions for which
m = q and ν = λ, respectively:

{∑

mnqr

fmnqr

}∗
=
∑

mnqr

fmnqr δmq =
∑

mnr

fmnmr, (41)
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Figure S6: Factorization of γ functions. Diagrammatic representation of equation (38).
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and: {∑

νλ

f(ıων , ıωλ)

}†
=
∑

νλ

f(ıων , ıωλ) δνλ =
∑

ν

f(ıων , ıων). (42)

Henceforth: {
1

b
γ

(1234)
ijkl (ıω,−ıω, ıω′)

}∗
= −

{
{αkj(ıω)αil(ıω

′)}†
}∗

. (43)

Let us focus first on the product αkj αil. It derives from the function:

fmnqr(ıων , ıωλ) = piqr p
j
nm p

k
mn p

l
rq φmn(ıων , ıω)ψqr(ıωλ, ıω′) (44)

with:

φmn(ıων , ıω) = G̃m(ıων) G̃n(ıων + ıω) and ψqr(ıωλ, ıω′) = G̃q(ıωλ) G̃r(ıωλ + ıω′). (45)

After applying operator {·}†, the double sum over the Matsubara frequencies in Eq. (40) reduces to:





1

b2

∑

ν,λ

φmn(ıων , ıω)ψqr(ıωλ, ıω′)





†

=
1

b2

∑

ν

φmn(ıων , ıω)ψqr(ıων , ıω′)︸ ︷︷ ︸
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that is, following equation (43):
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The action of these operators is equivalent to extracting the contributions of the triple poles within the
⇠ function and the product of the three ↵ functions. From Part 2.5, it consists in keeping the terms
weighted by the second derivative ⇢00(z):
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We retrieve the triply resonant contribution ↵�
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4.3 Generalization

A generalization of Eq. (37) and (63) is even possible. For any response function f
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The action of these operators is equivalent to extracting the contributions of the triple poles within the
⇠ function and the product of the three ↵ functions. From Part 2.5, it consists in keeping the terms
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We retrieve the triply resonant contribution ↵�
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We retrieve the triply resonant contribution ↵�
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Figure S7: Factorization of ξ functions. Diagrammatic representation of equation (63).
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The action of these operators is equivalent to extracting the contributions of the triple poles within the
ξ function and the product of the three α functions. From Part 2.5, it consists in keeping the terms
weighted by the second derivative ρ′′(z):
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We retrieve the triply resonant contribution α−kj(ıω1)α−ul(ıω2)α−iv(ıω3) of the α product, which gives at
vanishing temperature:
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This equation is illustrated by Figure S7.

4.3 Generalization

A generalization of Eq. (38) and (63) is even possible. For any response function f
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odd order 2n + 1 (n > 1), the main term at low temperature is a pole of order (n + 1). This leads to
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This equation is illustrated by Figure S8. In particular:
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Such factorizations into α functions are only possible when the loops associated to the odd-order response
functions are involved in composite diagrams. For any response function of order (2n+1), the coefficient
1/bn has a physical meaning if, and only if, it derives from n + 1 hidden boson Matsubara frequencies
(see Part 2.4). Since 1/b → 0 is an infinitesimal parameter, it is expected to be removed through the
computation of the total response function associated to the whole composite diagram. Equation (64)
is not autonomous, but an intermediate step of the complete calculation of a diagram.
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The action of these operators is equivalent to extracting the contributions of the triple poles within the
⇠ function and the product of the three ↵ functions. From Part 2.5, it consists in keeping the terms
weighted by the second derivative ⇢00(z):
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We retrieve the triply resonant contribution ↵�
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4.3 Generalization

A generalization of Eq. (37) and (63) is even possible. For any response function f
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The action of these operators is equivalent to extracting the contributions of the triple poles within the
⇠ function and the product of the three ↵ functions. From Part 2.5, it consists in keeping the terms
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We retrieve the triply resonant contribution ↵�
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4.3 Generalization

A generalization of Eq. (37) and (63) is even possible. For any response function f
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The action of these operators is equivalent to extracting the contributions of the triple poles within the
⇠ function and the product of the three ↵ functions. From Part 2.5, it consists in keeping the terms
weighted by the second derivative ⇢00(z):
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We retrieve the triply resonant contribution ↵�
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1

b2
⇠
(123456)
ijkluv (ı!1,�ı!1, ı!2,�ı!2, ı!3) = ↵�

kj(ı!1)↵
�
ul(ı!2)↵

�
iv(ı!3). (63)

4.3 Generalization

A generalization of Eq. (37) and (63) is even possible. For any response function f
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The action of these operators is equivalent to extracting the contributions of the triple poles within the
⇠ function and the product of the three ↵ functions. From Part 2.5, it consists in keeping the terms
weighted by the second derivative ⇢00(z):
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We retrieve the triply resonant contribution ↵�
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4.3 Generalization

A generalization of Eq. (37) and (63) is even possible. For any response function f
(2n+1)
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The action of these operators is equivalent to extracting the contributions of the triple poles within the
⇠ function and the product of the three ↵ functions. From Part 2.5, it consists in keeping the terms
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We retrieve the triply resonant contribution ↵�
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The action of these operators is equivalent to extracting the contributions of the triple poles within the
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Figure S8: Factorization of odd-order response functions. Diagrammatic representation of Eq. (64).
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5 Pairing of diagrams

5.1 One-boson diagrams (V = 1)

Figure 1 and Figure S9 show the six 2-loop diagrams made of a single virtual boson linking the nanos-
tructure and the molecule (V = 1). Applying the Feynman rules to the first diagram [1, 1, ↓], we get:

β
[1,1,↓]
ijk (ıω1, ıω2) =

∑

h,l

Wlh(ω1)
1

b~2

∑

m,n

∑

ν

phmn p
j
nm G̃m(ıων) G̃n(ıων + ıω1)

× 1

b~3

∑

a,b,c

∑

λ

µiacµ
l
baµ

k
cbG̃a(ıωλ) G̃b(ıωλ + ıω1) G̃c(ıωλ + ıω3). (65)

In Part 3.1, we recall the expressions (deduced from the 1-loop diagrams) of the linear polarizability

αij(ıω) (Eq. (26)) and the first hyperpolarizability β
(123)
ijk (ıω1, ıω2) (Eq. (31)). Combining these two

equations (and applying the analytical continuity ıωx → ωx+ ı0+), we straightforwardly deduce (in real
frequencies):

β
[1,1,↓]
ijk (ω1,ω2) = −

∑

h,l

Wlh(ω1) αN
hj(ω1)β

(123)
ilk (ω1,ω2), (66)

where αN(ω) is the polarizability of the nanostructure. By defining matrix Q(ω) = −W (ω) ·αN(ω), we
can write:

β
[1,1,↓]
ijk (ω1,ω2) =

∑

l

Qlj(ω1)β
(123)
ilk (ω1,ω2) =

∑

i′j′k′

δii′
tQjj′(ω1) δkk′ β

(123)
i′j′k′(ω1,ω2). (67)

β[0,0]
ijk (ω1, ω2) = β(123)

ijk (ω1, ω2) + β(213)
ijk (ω1, ω2)

β[1,1]
ijk (ω1, ω2) = − αhj(ω1)Wlh(ω1)(β(123)

ilk (ω1, ω2) + β(213)
ilk (ω1, ω2))

β[1,2]
ijk (ω1, ω2) = − αhk(ω2)Wlh(ω2)(β(123)

ijl (ω1, ω2) + β(213)
ijl (ω1, ω2))

β[1,3]
ijk (ω1, ω2) = − αih(ω3)Whl(ω3)(β(123)

ljk (ω1, ω2) + β(213)
ljk (ω1, ω2))
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Figure S9: 1-boson diagrams. Elaboration on the computation of β
[1,n1]
ijk , n1 = 1, 2, 3, from the diagrams

pictured in Figure 1. We omit the implicit sums over h and l indices.
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The same result is obtained from diagram [1, 1, ↑] with β
(213)
ijk , so that we eventually retrieve β

[0,0]
ijk :

β
[1,1]
ijk (ω1,ω2) = β

[1,1,↓]
ijk (ω1,ω2) + β

[1,1,↑]
ijk (ω1,ω2)

=
∑

i′j′k′

δii′
tQjj′(ω1) δkk′

(
β

(123)
i′j′k′(ω1,ω2) + β

(213)
i′j′k′(ω1,ω2)

)

=
∑

i′j′k′

δii′
tQjj′(ω1) δkk′ β

[0,0]
i′j′k′(ω1,ω2). (68)

With the same method applied to the diagram [1, 3, ↑], we find:

β
[1,3,↑]
ijk (ıω1, ıω2) =

∑

h,l

Whl(ω3)
1

b~2

∑

m,n

∑

ν

pimn p
h
nm G̃m(ıων) G̃n(ıων + ıω3)

× 1

b~3

∑

a,b,c

∑

λ

µlacµ
k
baµ

j
cbG̃a(ıωλ) G̃b(ıωλ + ıω2) G̃c(ıωλ + ıω3). (69)

Given Eqs. (26) and (31), we can replace the sums by the corresponding responses functions −αN
ih (of

the nanostructure) and β
(123)
lkj (of the molecule):

β
[1,3,↑]
ijk (ıω1, ıω2) =

∑

h,l

Whl(ω3)
(
−αN

ih(ıω3)
)
β

(123)
lkj (ıω2, ıω1). (70)

From Eq. (32), we eventually get:

β
[1,3,↑]
ijk (ω1,ω2) = −

∑

h,l

αN
ih(ω3)Whl(ω3)β

(213)
ljk (ω1,ω2). (71)

We introduce matrix P (ω) = −αN(ω) ·W (ω) and write:

β
[1,3,↑]
ijk (ω1,ω2) =

∑

l

Pil(ω3)β
(213)
ljk (ω1,ω2) =

∑

i′j′k′

Pii′(ω3) δjj′ δkk′ β
(213)
i′j′k′(ω1,ω2). (72)

By adding the contributions of the six diagrams of Figure 1, we actually obtain:

β
[1,1]
ijk (ω1,ω2) + β

[1,2]
ijk (ω1,ω2) + β

[1,3]
ijk (ω1,ω2) =

∑

i′j′k′

Λ
(1)
ii′jj′kk′(ω1,ω2)β

[0,0]
i′j′k′ , (73)

with:
Λ

(1)
ii′jj′kk′(ω1,ω2) = δii′

tQjj′(ω1) δkk′ + δii′ δjj′
tQkk′(ω2) + Pii′(ω3) δjj′ δkk′ . (74)

Figure S9 sums up the method, which is actually based on the factorization of β[0,0] by pairing the
diagrams drawn on the same row.

5.2 Two-boson diagrams (V = 2)

Eight of the twenty-four 2-loop diagrams made of two virtual bosons are pictured in Figure 2 and
Figure S10. The 16 other analogous diagrams are obtained through the permutation of the three
photon frequencies. For [2, 1, ↓↑], the Feynman rules lead to:

β
[2,1,↓↑]
ijk (ıω1, ıω2) =

1

b

∑

h,l,h′,l′

Wlh(ω2)Wh′l′(ω3)

× 1

b~3

∑

a,b,c

∑

λ

µl
′

acµ
j
baµ

l
cb G̃a(ıωλ) G̃b(ıωλ + ıω1) G̃c(ıωλ + ıω3)

× 1

b~4

∑

m,n,q,r

∑

ν

pimr p
k
nm p

h
qn p

h′

rq G̃m(ıων) G̃n(ıων + ıω2) G̃q(ıων) G̃r(ıων + ıω3). (75)

Using equations (31) and (34) in Part 3.2, we get:

β
[2,1,↓↑]
ijk (ıω1, ıω2) =

−1

b

∑

h,l,h′,l′

Wlh(ω2)Wh′l′(ω3) γ
(1234)
ikhh′ (ıω2,−ıω2, ıω3) β

(123)
l′jl (ıω1, ıω2). (76)
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Figure S10: 2-boson diagrams. Elaboration on the computation of β
[2,1]
ijk , from the diagrams pictured

in Figure 2. We omit the implicit sums over h, l, h′ and l′ indices.

In this case, γ is the 3rd-order response function of the nanostructure. Once again, this factorization of

β
(123)
l′jl by Wlh(ω2), Wh′l′(ω3) and γ

(1234)
ikhh′ (ıω2,−ıω2, ıω3) can be directly read on the diagram. By adding

the seven other contributions (Figure S10):

β
[2,1]
ijk (ıω1, ıω2) =

−1

b

∑

h,l,h′,l′

Wlh(ω2)Wh′l′(ω3)
(
γ

(1234)
ikhh′ (ıω2,−ıω2, ıω3) + γ

(1234)
h′hki (−ıω2, ıω2,−ıω3)

+ γ
(1234)
h′khi (ıω2,−ıω2,−ıω3) + γ

(1234)
ihkh′ (−ıω2, ıω2, ıω3)

)
β

[0,0]
l′jl (ıω1, ıω2). (77)

Given that:

αil(ıω
′)αkj(ıω) = α−il (ıω

′)α−kj(ıω) + α−il (ıω
′)α+

jk(ıω) + α+
li (ıω

′)α−kj(ıω) + α+
li (ıω

′)α+
jk(ıω)

= α−il (ıω
′)α−kj(ıω) + α−il (ıω

′)α−jk(−ıω) + α−li (−ıω′)α−kj(ıω) + α−li (−ıω′)α−jk(−ıω),

it is possible to use Eq. (38) to split each γ function into a product of two α− functions and to recover
the complete product αil(ıω

′)αkj(ıω):

αil(ıω
′)αkj(ıω) =

−1

b

[
γ

(1234)
ijkl (ıω,−ıω, ıω′) + γ

(1234)
ikjl (−ıω, ıω, ıω′)

+γ
(1234)
ljki (ıω,−ıω,−ıω′) + γ

(1234)
lkji (−ıω, ıω,−ıω′)

]
. (78)

Hence, the sum of the four γ functions in equation (77) leads to the product −αN
hk(ω2)αN

ih′(ω3) after
application of rule #11 (analytical continuity):

β
[2,1]
ijk (ω1,ω2) =

∑

h,l,h′,l′

Wlh(ω2)Wh′l′(ω3) αN
hk(ω2)αN

ih′(ω3) β
[0,0]
l′jl (ω1,ω2). (79)

In other words:
β

[2,1]
ijk (ω1,ω2) =

∑

i′j′k′

Pii′(ω3) δjj′
tQkk′(ω2) β

[0,0]
i′j′k′(ω1,ω2). (80)
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Moreover, in addition to the 8 diagrams of Figure 2, there are 16 analogous diagrams of type [2, 2, ll] and
[2, 3, ll], obtained by permutation of the three photon frequencies. Considering these 24 contributions
in total, we find on the same principle:

β
[2,1]
ijk (ω1,ω2) + β

[2,2]
ijk (ω1,ω2) + β

[2,3]
ijk (ω1,ω2) =

∑

i′j′k′

Λ
(2)
ii′jj′kk′(ω1,ω2)β

[0,0]
i′j′k′ , (81)

with:

Λ
(2)
ii′jj′kk′(ω1,ω2) = Pii′(ω3) δjj′

tQkk′(ω2) + Pii′(ω3) tQjj′(ω1) δkk′ + δii′
tQjj′(ω1) tQkk′(ω2). (82)

5.3 Three-boson diagrams (V = 3)

Figure 3 and Figure S11 show the 2-loop diagrams built with three virtual bosons. Dealing with the
diagram [3, 1, ↓↑] for instance, the Feynman rules lead to:

β
[3,1,↓↑]
ijk (ıω1, ıω2) =

1

b2

∑

h,l,h′,l′,h′′,l′′

Wlh(ω1)Wl′h′(ω2)Wh′′l′′(ω3)

× 1

b~6

∑

m,n,q,r,s,t

∑

ν

pimt p
j
nm p

h
qn p

k
rq p

h′

sr p
h′′

ts G̃m(ıων) G̃n(ıων+ıω1) G̃q(ıων) G̃r(ıων+ıω2) G̃s(ıων) G̃t(ıων+ıω3)

× 1

b~3

∑

a,b,c

∑

λ

µl
′′

acµ
l
baµ

l′

cbG̃a(ıωλ) G̃b(ıωλ + ıω1) G̃c(ıωλ + ıω3). (83)

As usual, the molecular contribution is identified to β(123) according to equation (31). The contribution
of the nanostructure loop, corresponding to the sums over (m,n, q, r, s, t) and ν, can be identified to a

fifth-order response function −ξ(123456)
ijhkh′h′′(ıω1,−ıω1, ıω2,−ıω2, ıω3) whose diagrammatic definition is given

in Section 3.4. In a similar way as for γ functions, Eq. (63) shows that ξ functions can be split into the
product of three α− functions. Examining all the diagrams (Figure S11):

• Diagrams [3, 0, ↓↑] and [3, 0, ↑↑]
1

b2
ξh′′jhkh′i(ıω1,−ıω1, ıω2,−ıω2,−ıω3) = α−h′′i(−ıω3)α−h′k(ıω2)α−hj(ıω1)

= α+
h′′i(ıω3)α−h′k(ıω2)α−hj(ıω1). (84)

• Diagrams [3, 0, ↓↓] and [3, 0, ↑↓]
1

b2
ξih′khjh′′(−ıω2, ıω2,−ıω1, ıω1, ıω3) = α−ih′′(ıω3)α−jh(−ıω1)α−kh′(−ıω2)

= α−ih′′(ıω3)α+
kh′(ıω2)α+

jh(ıω1). (85)

• Diagrams [3, 1, ↓↑] and [3, 1, ↑↑]
1

b2
ξijhkh′h′′(ıω1,−ıω1, ıω2,−ıω2, ıω3) = α−ih′′(ıω3)α−h′k(ıω2)α−hj(ıω1). (86)

• Diagrams [3, 1, ↓↓] and [3, 1, ↑↓]
1

b2
ξh′′h′khji(−ıω2, ıω2,−ıω1, ıω1,−ıω3) = α−h′′i(−ıω3)α−jh(−ıω1)α−kh′(−ıω2)

= α+
h′′i(ıω3)α+

kh′(ıω2)α+
jh(ıω1). (87)

• Diagrams [3, 2, ↓↑] and [3, 2, ↑↑]
1

b2
ξijhh′kh′′(ıω1,−ıω1,−ıω2, ıω2, ıω3) = α−ih′′(ıω3)α−kh′(−ıω2)α−hj(ıω1)

= α−ih′′(ıω3)α+
kh′(ıω2)α−hj(ıω1). (88)

• Diagrams [3, 2, ↓↓] and [3, 2, ↑↓]
1

b2
ξh′′kh′ji(ıω2,−ıω2,−ıω1, ıω1,−ıω3) = α−h′′i(−ıω3)α−jh(−ıω1)α−h′k(ıω2)

= α+
h′′i(ıω3)α−h′k(ıω2)α+

jh(ıω1). (89)
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Figure S11: 3-boson diagrams. Elaboration on the computation of β
[3,n3]
ijk , n3 = 0, 1, 2, 3, from the

diagrams pictured in Figure 3. We omit the implicit sums over h, l, h′, l′, h′′ and l′′ indices.

• Diagrams [3, 3, ↓↑] and [3, 3, ↑↑]

1

b2
ξihjkh′h′′(−ıω1, ıω1, ıω2,−ıω2, ıω3) = α−ih′′(ıω3)α−h′k(ıω2)α−jh(−ıω1)

= α−ih′′(ıω3)α−h′k(ıω2)α+
jh(ıω1). (90)

• Diagrams [3, 3, ↓↓] and [3, 3, ↑↓]

1

b2
ξh′′h′kjhi(−ıω2, ıω2, ıω1,−ıω1,−ıω3) = α−h′′i(−ıω3)α−hj(ıω1)α−kh′(−ıω2)

= α+
h′′i(ıω3)α+

kh′(ıω2)α−hj(ıω1). (91)

Given that αij = α−ij +α+
ji, the sum of these 8 terms (Eq. 84-91) is strictly equal to the product of three

α components:
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αih′′(ıω3)αh′k(ıω2)αhj(ıω1) = α−ih′′(ıω3)α−h′k(ıω2)α−hj(ıω1) + α−ih′′(ıω3)α−h′k(ıω2)α+
jh(ıω1)

+ α−ih′′(ıω3)α+
kh′(ıω2)α−hj(ıω1) + α−ih′′(ıω3)α+

kh′(ıω2)α+
jh(ıω1)

+ α+
h′′i(ıω3)α−h′k(ıω2)α−hj(ıω1) + α+

h′′i(ıω3)α−h′k(ıω2)α+
jh(ıω1)

+ α+
h′′i(ıω3)α+

kh′(ıω2)α−hj(ıω1) + α+
h′′i(ıω3)α+

kh′(ıω2)α+
jh(ıω1).

The sum of these 8 terms, from Eq. (84) to (91), can be factorized by:

Wlh(ω1)Wl′h′(ω2)Wh′′l′′(ω3)
(
β

(123)
l′′ll′ (ıω1, ıω2) + β

(213)
l′′ll′ (ıω1, ıω2)

)
, (92)

as shown in Figure S11. After application of rule #11 (analytical continuity), the contributions of these
16 diagrams read:

β
[3,0]
ijk (ω1,ω2) + β

[3,1]
ijk (ω1,ω2) + β

[3,2]
ijk (ω1,ω2) + β

[3,3]
ijk (ω1,ω2)

=−
∑

l,l′,l′′

∑

h,h′,h′′

αih′′(ω3)αh′k(ω2)αhj(ω1) ·Wlh(ω1)Wl′h′(ω2)Wh′′l′′(ω3) · β[0,0]
l′′ll′(ω1,ω2)

=
∑

l,l′,l′′

Pil′′(ω3)Ql′k(ω2)Qlj(ω1) · β[0,0]
l′′ll′(ω1,ω2)

=
∑

i′j′k′

Λ
(3)
ii′jj′kk′(ω1,ω2)β

[0,0]
i′j′k′ , (93)

with:
Λ

(3)
ii′jj′kk′(ω1,ω2) = Pii′(ω3) tQjj′(ω1) tQkk′(ω2). (94)
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