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Artificial intelligence is moving in two direction: One is to teach us how to learn and the other is

to make us learn by creating curiosity about the world 1.

- GPT-2 transformer-based language model

1An artificial intelligence, developed by OpenAI, generated this quote (https://boredhumans.com/quotes.php).
And now, you understand why I don’t use an AI to write this thesis.
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Abstract

With GW170817, gravitational waves have shown themselves to be very useful for multi-messenger

astronomy. Combining the information from multiple channels such as gravitational waves, gamma-

rays, neutrinos, etc. can lead to great physics. Contrarily to the electromagnetic telescopes, a

gravitational wave interferometer surveys the entire sky. They do not have to focus on a small

portion of the celestial sphere as do standard telescopes. It is also known that for binary neutron

stars, the electromagnetic counterpart is produced during the last phase of the merger, whereas

the gravitational wave signal can be detected several minutes before these last stages. If one is able

to detect this signal before the merger and infer the sky location, gravitational wave astronomy

can then send an alert and produce a sky map indicating where the astronomer can point their

telescopes to see an electromagnetic counterpart.

The standard technique to detect these compact binary coalescences is matched filtering. The

principle is to compute a template bank of pre-computed waveforms and match them with the

data strain coming from the LIGO and Virgo interferometers. This thesis starts by illustrating a

matched filter search with a project to detect long signals coming from sub-solar coalescence.

Recently, some matched filtering pipelines have started to adapt their method to search for

gravitational waves with only the early stage of the signal. Other methods are beginning to be de-

veloped for this type of research. This thesis presents new methods, based on machine learning, to

detect the early phase of a binary neutron star merger. We have developed multiple convolutional

neural networks looking directly at the strain data of the detector to detect binary neutron stars

before the merger.

The last step to produce an early warning for the astronomer is to create a sky map indicating

the location of the event. We therefore shortly discuss how to accomplish this through a machine

learning method for the whole signal, and also mention how it can be adapted to the early part of

the signal.
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Application des réseaux neuronaux à la
recherche d’ondes gravitationnelles émises

par des systèmes légers

Résumé

Avec GW170817, les ondes gravitationnelles ont montré qu’elles étaient d’une grande utilité

pour l’astronomie multi-messagers. La combinaison des informations provenant de plusieurs canaux

tels que les ondes gravitationnelles, les rayons gamma et les neutrinos peut mener à de grandes

découvertes physiques. Contrairement aux télescopes calssiques, un interféromètre à ondes gravi-

tationnelles scrute l’ensemble du ciel. Il n’a pas à se focaliser sur une petite portion de la sphère

céleste comme le font les télescopes standards. On sait également que pour les binaires d’étoiles

à neutrons, la contrepartie électromagnétique est produite lors de la dernière phase de la fusion

des deux corps, alors que le signal des ondes gravitationnelles peut être détecté plusieurs minutes

avant cette dernière étape. Si l’on est capable de détecter ce signal avant la fusion et d’en déduire

la localisation dans le ciel, l’astronomie des ondes gravitationnelles peut alors envoyer une alerte

et produire une carte du ciel indiquant où l’astronome peut pointer ses télescopes pour pouvoir

observer une contrepartie électromagnétique.

La technique standard pour détecter ces coalescences binaires compactes est le filtrage adapté

(matched filtering). Le principe est de construire une banque de modèles de formes d’ondes et de

les faire correspondre avec les données provenant des interféromètres LIGO et Virgo. Cette thèse

commence par illustrer une recherche utilisant le matched filtering avec un projet de détection de

signaux longs provenant de coalescences d’objets ayant une masse inférieure à celle du soleil.

Récemment, certains pipelines au algorithmes de matched filtering ont commencé à adapter

leurs méthodes de recherche d’ondes gravitationnelles en tenant compte uniquement des premiers

stades du signal, appellé l’inspiral. D’autres techniques commencent également à être développées

pour ce type de recherche. Cette thèse contribue à cette démarchant en présentant de nouvelles

méthodes, basées sur l’apprentissage automatique (machine learning), pour détecter l’inspiral d’une

fusion d’étoiles à neutrons. Nous avons développé de multiples réseaux neuronaux analysant les

données des interféromètres pour détecter les binaires d’étoiles à neutrons avant leur fusion.

La dernière étape pour produire une alerte pour l’astronome est de créer une carte du ciel

indiquant la localisation de l’événement. Cette thèse présente une méthode pour obtenir cette

localisation à l’aide de machine learning et de réseaux neuronaux en utilisant l’entièreté du signal. Il

est indiqué comment cette méthode peut être modifiée pour obtenir cette localisation avec seulement

l’inspiral.
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effet, elle m’aura permis de l’utiliser comme phrase d’accroche pour rencontrer la personne qui a
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grâce à toi !

viii





Table of Acronyms

• BH: Black Hole

• BBH: Binary Black Hole

• BNS: Binary Neutron Star

• CBC: Compact Binary Coalescence

• CE: Cosmic Explorer

• C.L.: Confidence Interval

• CNN: convolutional neural network

• DL: Deep Learning

• DM: Dark Matter

• EB: Early Binary

• EM: Electromagnetic

• ET: Einstein Telescope

• FAP: False Alarm Probability

• FAR: False Alarm Rate

• FN: False Negative

• FP: False Positive

• FPt: False Positive over Time

• GCN: Gamma-ray Coordinates Network

• GR: General Relativity

• GRB: Gamma Ray Burst

• GW: Gravitational wave

• LB: Late Binary

ix



• LIGO: Laser Interferometer Gravitational-wave Observatory

• MAAE: Mean Absolute Angular Error

• MCMC: Markov Chain Monte Carlo

• ML: Machine Learning

• MMA: Multi-Messenger Astronomy

• MSE: Mean Squared Error

• MVG: Multi Variate Gaussian

• NLL: negative log-likelihood

• NN: Neural Network

• NSBH: Neutron Star Black Hole

• OTW: Observational Time Window

• PBH: Primordial Black Holes

• PISNR: Partial Inspiral Signal to Noise Ratio

• PSD: Spectral Density

• SNR: Signal to Noise Ratio

• TAP: True Alarm Probability

• TBM: Time Before the Merger

• TN: True negative

• TP: True Positive

• VMF: Von Mises Fisher

x



Contents

Members of the thesis jury iii

Abstract iv

Acknowledgements vi

Table of Acronyms ix

1 Introduction to gravitational waves 1

1.1 General relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Gravitational waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Theoretical definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Effect on matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.3 Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.4 Compact binary coalescence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Standard searches for sub-solar objects 17

2.1 Matched filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Antenna pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.2 The signal-to-noise ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.3 The ξ2 statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.4 The false alarm rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Sub-solar objects and primordial black holes . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 Primordial balck holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.2 Previous sub-solar searches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Article 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.2 Search, candidates and rate limits . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.3 PBH mass and rate distribution . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.4 Constraints on PBH models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

xi



xii CONTENTS

3 Detection searches with machine learning 45

3.1 Deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.1 Neurons and neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.2 Gradient descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.3 Convolutional neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Early alert and multi-messenger astronomy . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Article 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.2 Data generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.4 Article 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.4.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4 Sky localization with machine learning 91

4.1 Sky localization and importance sampling . . . . . . . . . . . . . . . . . . . . . . . . 91

4.1.1 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.1.2 Importance sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2 Article 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.2.6 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5 Conclusion 111



Chapter 1

Introduction to gravitational waves

1.1 General relativity

In 2016 the LIGO-Virgo collaboration announced the first direct observation of a gravitational

wave (GW) [1]. This earned Rainer Weiss, Kip Thorne, and Barry Barish a Nobel Prize as they

played a key role in the development of the Laser Interferometer Gravitational-wave Observatory

(LIGO). GWs are a prediction of the General Relativity (GR) of Einstein and can be seen as waves

propagating via the vibration of space-time [2].

When sea waves propagate through water and a sound wave propagates through the air, a

gravitational wave has no other substrate than space-time itself. Contrary to Newton’s theory

and even to special relativity, space-time is something that can be deformed in GR. In it, it is

the energy of the matter which curves space-time, and this deformation is interpreted as gravity.

For example, without any matter, space-time is flat, and the trajectory of the objects are straight

lines, but if a massive object, like the earth, is present, space-time is deformed and the object

follows this deformation, which makes it orbit the earth and fall on it. In a sense, these objects

continue to follow straight lines, but they are not on a flat entity but on a curved one, in that case,

they are called geodesics. Fig. 1.1 illustrates geodesics on different curved spaces. This idea is at

the heart of GR, massive matter tells space-time how to curve, and space-time tells matter how

to move. These two key principles are represented in GR by two sets of equations, respectively,

Einstein’s equations and the geodesic equations. To understand truly what a gravitational wave

is, it is mandatory to have a basic understanding of GR and especially of these two sets of equations.

Before starting with the geodesic equations, which rule the trajectory of free objects within

space-time, one must first introduce the means by which the space-time is modeled in GR and the

different mathematical tools used in this theory. Space-time is seen as a manifold of 4 dimensions

in GR. It is described by a second-order tensor, called the metric. This mathematical object is used

to define the notion of distance between two points of a manifold. One can define an infinitesimal

distance ds between two points, as follows:

ds2 = gµνdx
µdxν (1.1)

1



2 CHAPTER 1. INTRODUCTION TO GRAVITATIONAL WAVES

Figure 1.1: The first image represents three geodesics forming a triangle on a flat space. The
second and third images represent respectively the three same geodesics on a sphere and on a
hyperbolic geometry.

where xµ represent the coordinates of space-time (t, x, y, z) and gµν is the metric tensor. Note that

here Einstein’s sum convention is used, meaning that if the same index appears once up and once

down, there is an implicit summation on this index. The metric tensor is of capital importance

in GR because it describes how space-time is deformed. The goal of Einstein’s equations is to

determine the values of this metric tensor.

The metric is something already used in special relativity. In that case, the value of the metric is

the same at each point and is equal to:

η =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 (1.2)

This special metric is called the Minkowski metric, it describes the flat space used in special rela-

tivity.

Going back to GR with a general metric gµν , at each point of space-time, one can define a

tangent space, where one can construct vectors and tensors. To compare vectors which are defined

on different tangent spaces, one has to introduce the covariant derivative ∇µ of a vector V :

∇µV ν = ∂µV
ν + ΓνµρV

ρ (1.3)

where Γνµρ is a connection coefficient. This is an important object because the curvature of the

space is described through this coefficient. Note that the connection coefficient is not a tensor. It is

further to be noted that this connection is not unique. Nevertheless, only one of these coefficients

is torsion-free (meaning Γνµρ = Γνρµ) and metric compatible (meaning ∇αgµν = 0). It is expressed

as:

Γαµν =
1

2
gαβ(∂µgνβ + ∂νgµβ − ∂βgµν) (1.4)

this special connection is the one usually used in GR and is called the Christoffel symbol. It is

through this object that the link will be made between the curvature of space-time and the metric.

From there, we have all the elements needed to introduce the geodesics and their equations. A



1.1. GENERAL RELATIVITY 3

geodesic is a generalization, in curved space, of a straight line in flat space. Just like a straight line,

a geodesic is the path with the minimal distance between two points. The mathematical equation

of a geodesic is:
d2xµ

dλ2
+ Γµαβ

dxα

dλ

dxβ

dλ
= 0 (1.5)

where λ is an affine parameter that parametrizes the path of the geodesic. Just as in Newton’s the-

ory free objects follow straight lines, in GR free objects follow geodesics. Consequently, the geodesic

equations are the equations of motion. Within these equations appears Γαµν , and so through Equa-

tion (1.4) appears the metric. Before being able to solve the equations of motion, one needs to

know the metric tensor. To do so, one needs to solve Einstein’s equations.

Let us write these Einstein’s equations and detail each term individually:

Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν (1.6)

This set of equations are the Einstein equations, and, as mentioned earlier, the goal of these equa-

tions is to predict the metric gµν . There are multiple terms within this equation and we shall

discuss each.

The first term is known as the Ricci tensor, which is a contraction of the Riemann tensor, which

is defined as follows:

Rρθµν = ∂µΓρνθ − ∂νΓρµθ + ΓρµλΓλνθ − ΓρνλΓλµθ (1.7)

The Riemann tensor is an interpretation of the curvature of space-time. More precisely, it charac-

terizes the curvature at each point of a manifold. To give a small intuition to the reader of why

this tensor is linked to the curvature, it is opportune to mention the notion of parallel transport.

In a flat space, if you define a vector at a point of space, you can “parallel transport” this vector

to another point, and whichever the path that you decide to take, the final vector will be the same.

This is illustrated on the first image of Fig. 1.2. This is not the case within a curved space, as

shown in the second image of Fig. 1.2, where choosing two different paths to parallel transport

a vector leads to a final vector that is not the same. This notion of parallel transport is useful

in highlighting the fact that there is curvature. Without going into the details (for that see [3]),

the Riemann tensor is constructed in such a way that it characterizes this variation of the parallel

transported vector on an infinitesimal loop [3]. In a sufficiently small region, the spacetime can be

considered flat, and an infinitesimal loop can be constructed with two vectors Aµ, Bν . The purpose

is to study the parallel transport of a vector V ρ on this loop. First, let us parallel transport V ρ

in the direction of Aµ, then along Bν , then backward, first following Aµ, then Bν , as illustrated

in Fig. 1.3. The change δV ρ between the parallel transported vector and the initial one is express

through the Riemann tensor:

δV ρ = RρσµνV
σAµBν (1.8)

From the Riemann tensor one can construct two other objects, the Ricci tensor Rµν and the
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Figure 1.2: Left : Illustration of the parallel transport on a flat space. Right : Illustration of the
parallel transport on a sphere. In that case, if one transports the black vector following the blue
path, or following the red path, one ends up with a different vector.

Figure 1.3: Illustration of an infinitesimal loop defined by two vectors Aµ and Bν .

Ricci scalar R, which both appear in Einstein’s equations (1.6) and are also linked to the curvature.

The Ricci scalar is the contraction of the Riemann tensor:

Rµν = Rλµλν (1.9)

From this reduced tensor one can define the Ricci scalar:

R = Rµµ (1.10)

Hence we already know the two first terms of Einstein’s equations (1.6), these terms represent the

curvature of the space-time. In the last term of the left-hand side of the equation, one can see the

cosmological constant Λ and consider its effects on the expansion of the universe.

On the right-hand side of Einstein’s equations, one can see the gravitational constant G, the

speed of light c, and most notably the stress-energy tensor Tµν , which represents matter:

Tµν =


u ρx ρy ρz

ρx Pxx σxy σxz

ρy σyx Pyy σyz

ρz σzx σzy Pzz

 (1.11)
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where u is the energy density, ρi are the momentum densities, Pij are the pressures and σij are

the shear stresses. Hence, the component Tµν represents how much momentum in the µ direction

flows into the ν direction through a given point in space-time. Einstein’s equations tell us how the

curvature (on the left-hand side of Equation (1.6)) reacts to the matter (on the right-hand side).

As mentioned, these equations are solved in order to obtain the value of the metric gµν .

Contrarily to special relativity or Newton’s theory where one must choose an inertial reference

system, in GR, one can choose any reference system. GR is a gauge theory, by choosing the

coordinate system one fixes the gauge.

1.2 Gravitational waves

1.2.1 Theoretical definition

Now that the basic concepts of GR have been presented, we can discuss what a gravitational wave

is. A GW is a local perturbation of the metric g which propagates through space. This perturba-

tion obeys a wave equation. More formally, a gravitational wave is notably a particular solution of

the linearized Einstein equation (the linearization is done on hµν). Let us start by introducing this

linearized form.

Einstein’s equations are non-linear, and most of the time they do not have analytic solutions.

But if one considers that we are in an almost Minkowski flat space, with just a weak perturbation

of the metric, one can demonstrate that it is possible to linearize these equations and find some

analytic solutions 1. In fact, those solutions are the gravitational waves. So one considers that we

are in a Minkowski space-time ηµν with a small correction hµν due to a weak gravitational field:

gµν = ηµν + hµν |hµν | << 1. (1.12)

In order to arrive at the linearized Einstein equations, one must substitute all gµν (also those

appearing in the Ricci tensor and in the Ricci scalar) in Equation (1.6) by this Equation (1.12) and

keep only the first order in hµν , that gives:

�h̄µν = −16πG

c4
Tµν (1.13)

where � = ∂µ∂
µ is the d’Alembertian operator and h̄µν is defined as:

h̄µν = hµν −
1

2
ηµνh with h = ηµνhµν (1.14)

To obtain the Equation (1.13), one must also work in the Lorentz gauge, which means that the

following condition is satisfied:

∂µh̄µν = 0 (1.15)

1It is possible to derive the GWs from a non-flat background metric, but for the simplicity of the demonstration,
we consider here a Minkowski flat space.
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These Equations (1.13) are the linearized Einstein equations. In the absence of any matter, they

become:

�h̄µν = 0 (1.16)

This is a wave equation for a wave traveling at the speed of light. A solution is for example a plane

monochromatic wave propagating in the z direction:

h̄µν = Aµν cos(ω(t− z/c) + ϕ0) (1.17)

where, ω = 2πf , with f the frequency of the wave, ϕ0 a phase, and Aµν a tensor defining the

amplitude of the wave. In principle, h̄µν is a symmetric 4×4 tensor, so it should have 10 independent

components. Nevertheless, it is possible to reduce this number of freedom to two, by appropriately

choosing the gauge. For further details we refer to [2, 4]. Note that with the right choice of gauge,

one can have h̄µν = hµν . Consequently, there exists a gauge, called the transverse-traceless gauge

or TT gauge, that is such that Equation (1.17) can be rewritten as:

hTTµν =


0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0

 cos(ω(t− z/c) + ϕ0) (1.18)

when we are in this TT gauge, we add a superscript TT on hµν . With that, we have finally defined

what a gravitational wave is. As one can see, a GW can be plus-polarized if h× = 0, cross-polarized

if h+ = 0, or elliptically polarized in the other cases.

1.2.2 Effect on matter

Now that gravitational waves are properly defined, let us explain how it is possible to detect them.

First, one must understand their effect on matter. Let us consider that we are in a flat space-time

with a gravitational wave, another way to say that is to write the metric:

gµν = ηµν + hTTµν (1.19)

=


−1 0 0 0

0 1 + h+ cos(ω(t− z/c) + ϕ0) h× cos(ω(t− z/c) + ϕ0) 0

0 h× cos(ω(t− z/c) + ϕ0) 1− h+ cos(ω(t− z/c) + ϕ0) 0

0 0 0 1

 (1.20)

To see the effect on the matter, one can write the interval:

ds2 =− c2dt2 +
(
1 + h+ cos(ω(t− z/c) + ϕ0)

)
dx2

+
(
1− h+ cos(ω(t− z/c) + ϕ0)

)
dy2

+
(
2h× cos(ω(t− z/c) + ϕ0)

)
dxdy

+ dz2

(1.21)
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More intuitively, consider first that h× = 0. In this case, the only differences with the flat Minkowski

space-time are the terms in dx2 and dy2. One can see that the interval in the x direction of space

will be stretched by a value of h+ cos(ω(t − z/c) + ϕ0)
)

compared with the case without a GW,

and the interval in the y direction will be contracted by a value −h+ cos(ω(t − z/c) + ϕ0)
)
. In

other words, a plus-polarized GW will compress the interval in the direction perpendicular to its

propagation, while it will stretch the other perpendicular direction by the same amount. Intuitively,

it is thus possible to detect a GW if one can measure the difference of variations of distance in

the two perpendicular directions. Now, let us see what happens if one considers a cross-polarized

GW. In that case, one observes that only the term dxdy varies from the standard Minkowski space.

To understand what happened better, the easiest way is to change the coordinate system. Let us

define the axes x′ and y′ as the rotation of 45◦ of x and y. With this coordinate system, ds is

written:

ds2 = −c2dt2 +
(
1 + h× cos(ω(t− z/c))

)
dx2 +

(
1− h× cos(ω(t− z/c))

)
dy′′2 + dz2 (1.22)

one can see that we obtain the same situation as in the case of a plus-polarization. Now, space is

stretched in a direction at 45◦ of x and y, while it will be compressed in the perpendicular direc-

tion. Fig. 1.4 shows the effect of a plus and a cross-polarization on a disc of matter. One can also

mention that usually in nature waves are a mixture of a cross and a plus-polarization, so most of

the GWs are elliptically polarized.

Figure 1.4: Top: Illustration of the effect of a plus-polarized GW on a circle of matter. Bottom:
Illustration of the effect of a cross-polarized GW on a circle of matter.
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1.2.3 Detector

Now that the effects of a GW on matter are known, we can think about how we can detect them.

As we just discussed, they modify the distances in two typical directions, a way to make them stand

out them is to measure the distance in two perpendicular directions. This is precisely the idea of

the LIGO and Virgo interferometers. These detectors are based on the principle of a Michelson

interferometer. This type of instrument is made of two perpendicular arms of the same length.

At their intersection, a laser beam is split in two and each part goes through an arm. At the end

of those arms, the beam is reflected on a mirror and goes back. The two beams are then sent to

the same detectors, and the interference between them can be translated as the difference in the

distances that each beam has covered. Fig. 1.5 illustrates how a GW detector works. If there is

no GW, in principle, the interference should not change, because the distance in the arms remains

constant. But if a GW passes through the detector, the distance in one direction will be period-

ically stretched while the other should be contracted, so the interference will change periodically,

depending on the polarization of the GW. What is really measured is a phase shift of the laser

beams, which represents this difference in distance between the two arms. Even if the principle is

simple, in practice detecting GW is a challenge. This stems from the fact that GWs are usually

very weak, and their effect on matter is extremely small. As we will see in the next section, the

typical value of h+ or h× is around 10−22 meters. Consequently, the variation of distance that

the GW detector must be able to detect is tiny, and compared to this faint signal, the amount of

noise in the detector is huge. A lot of techniques must be deployed to reduce this noise and be

able to see the gravitational wave. We will not enter into the details about the different types of

noises, or the different hardware techniques to diminish them. Nevertheless, let us already introduce

the Power Spectral Density (PSD), which is the curve that represents the sensitivity of the detector.

Let us say that s(t) is the output time series of the detector. So the PSD Sn(f) is defined such

as:

s̃(f)s̃(f ′) =
1

2
Sn(f)δ(f − f ′) (1.23)

where the bar denotes averaging over noise realizations, the δ represents the Dirac delta function,

f represents the frequency and the tilde means that the Fourier transform is used, so for example

s̃(f) is defined as:

s̃(f) =

∫ +∞

−∞
s(t)e−2πitfdt (1.24)

The PSD shows the sensitivity of the detector as a function of the frequency. Fig. 1.6, represents

the amplitude spectral density (ASD) of the LIGO and Virgo detectors during the third run of

observation [5]. The ASD is defined as the square root of the PSD. Note that, the smaller the

curve, PSD or ADS, the smaller the noise, and the higher the sensitivity of the detector. It is to

be mentioned that a lot of different types of noise appear in that kind of detector, for example,

the photon radiation pressure applied by the laser on the mirror, the Newtonian noise produced by

terrestrial gravity fluctuations, the thermal noise coming from the Brownian motion of the atoms

in the mirrors and their suspensions, etc. We refer the interested reader to [6] for more information
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Figure 1.5: Illustration of the basic principle of a Michelson interferometer. The light emitted by
the laser is split in the beam splitter, the light travels through the arms hits the mirror, and finally
arrives at the receptor, where one can evaluate the interference and then the difference in distance
between the two arms.

about the different types of noise and the detector hardware.

1.2.4 Compact binary coalescence

Now that it is know how to detect gravitational waves, it is time to discuss the different sources

of GWs. Every system that has a variation of the quadrupole moment emits gravitational waves.

To be more precise, the second and the third derivatives with respect to time of the quadrupole

moment M ij must be non-zero. It is possible to show that in the presence of matter, meaning that

the wave equation for GWs is Equation (1.13), the solution depends on M̈ , and so at a distance r

from the source, h+ and h× become

h+ =
1

r

G

c4
(M̈11 − M̈22) (1.25)

h× =
2

r

G

c4
M̈12 (1.26)

for the details of this see [4]. Even if it is true that a lot of systems can generate GWs, in practice

just a very few can produce GWs strong enough to be detected on earth. Indeed, a light object
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Figure 1.6: The amplitude spectral density during the third run of observation [5, 7, 8] for the
two LIGO and the Virgo detectors.

hardly distorts space-time, and therefore only a very massive and dense object, like a binary black

hole system or a binary neutron star system, can distort the fabric of space-time to generate

detectable gravitational waves.

In gravitational wave searches, it is common to divide the sources of detectable GW in four different

categories:

• compact binary coalescence

• continuous waves

• stochastic background

• burst

The Compact Binary Coalescence (CBC) is the source that will be of interest for this thesis. Those

are two massive and compact objects rotating around each other before colliding and merging into

a new more massive object. Only the densest astrophysical objects, such as black holes or neutron

stars, can produce such signals [5, 7, 8]. This type of signal will be described in further detail,

but first, let us explain the other types of sources. Continuous waves are all the astrophysical

sources that emit GW on an ongoing basis, which means longer than weeks or months. Rotating

neutron stars could for example emit such waves [9]. Another candidate for continuous waves is

the creation of dark matter around a rotating black hole. One can show that if there exists dark

matter consisting of light bosons, there is a possibility that these particles form a cloud around
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a black hole by stealing its spin. When this cloud starts to collapse, it could emit gravitational

waves [10]. There may exist a background noise in the detector that has a GW origin, it is called

the stochastic gravitational-wave background. There are plenty of possible sources for this back-

ground, they range from a superposition of many unresolved sources coming from every direction

in the sky to relic stochastic backgrounds from early Universe phase transitions, inflation or cosmic

string [11]. The burst sources are all the other astrophysical sources that generate GWs. That

could be supernovae [12], but also accretion-disk instabilities [13], non-axisymmetric deformations

in magnetars [14] or gamma-ray bursts [15]. In general, the burst sources are not well modeled. To

detect these kinds of signals, one generally looks at some excess power in the detector output.

All the events currently detected by the LIGO-Virgo-KAGRA collaboration, during the process

of writing this thesis, come from the first source: the compact binary coalescence. This thesis

focuses on this type of signal, so let us discuss them and study some of their proprieties. Fig. 1.7

represents the stellar graveyard. Even if most of the CBC events detected so far are Binary Black

Holes (BBH), a few Binary Neutron Star (BNS) have been detected as well as two Neutron Star

Black Hole (NSBH). A difference between BNS and BBH is the length of the signal. Indeed, BBHs

are more massive than BNSs, and as we will see that the duration of the detectable signal depends

on the masses of the system. Another difference between those two types of GWs is the tidal

deformability. Under the effect of an external tidal field, the neutron star can be deformed, those

deformations are called the tidal deformability, and a signature of this deformation can be found

in the GW waveform [16].

Figure 1.7: The stellar graveyard after the third run of observation [5, 7, 8].
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A CBC signal can be decomposed into three different phases, the inspiral, the merger, and the

ringdown, see Fig. 1.8. The inspiral is the phase where the two objects turn around each other.

When they are too close, the system does not anymore have a stable orbit and the two objects

plunge towards each other and merge into a new, more massive object, this stage is called the

merger. The newly created object is initially in an excited stage, it will vibrate and emit GWs

before reaching a stable mode, where no GWs are emitted. The merger and the ringdown are very

short parts of the signal less than one second long. On the other hand, the detectable inspiral can

be way longer, up to several minutes. As we will see, the duration of this phase depends on the

mass of the system and thus is not the same for BBH as for BNS. In GR, the two-body problem

does not have, in general, an analytic solution. Nevertheless, there exists a formalism called the

post-Newtonian expansion, which approximates GR and can be used to describe the early inspiral

phase with reasonably good accuracy. This formalism and the approximation that it supposed

cannot anymore be used for the very late inspiral and the merger. One needs to resort to numerical

simulation of GR to model this part of the signal. Finally, for the ringdown, it is possible to use a

perturbative treatment in the BBH case.

Figure 1.8: A Compact Binary coalescence signal. This figure comes from https://www.

soundsofspacetime.org/the-basics-of-binary-coalescence.html

As this master thesis, will mostly focus on the early inspiral, let us show how it is possible to

model it with the first order of the post-Newtonian formalism. To do so, first consider two massive

particles of masses m1 and m2 rotating around each other in a circular orbit, at a distance R of

each other. In that case, and if one chooses a coordinate system where the origin is the center of

mass, it is possible to show that the quadrupole moment takes the form:

M ij(t) = µR2êiêj (1.27)

where µ = m1m2/(m1 +m2) is the reduced mass and the vector ê is the unit vector pointing from

the center of mass to the object of mass m1. As previously, one can also choose the z axis to point

https://www.soundsofspacetime.org/the-basics-of-binary-coalescence.html
https://www.soundsofspacetime.org/the-basics-of-binary-coalescence.html
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to the observer. In that case one can define the inclination angle ι, such as :

ê = (cos(ωt), cos(ι) sin(ωt), sin(ι) sin(ωt)) (1.28)

with ω the orbital angular frequency. Let us also mention here that ω, R and the masses of the

system are not independent and are linked through Kepler’s third law:

R3 =
GM

ω2
(1.29)

By injecting Equation (1.27) into Equations (1.25) and (1.26) and taking into account Equa-

tion (1.29), one can determine the value of h+ and h×:

h+ = −4

r

(GMc

c2

)5/3(ω
c

)2/3 1 + cos2(ι)

2
cos(2ωtret) (1.30)

h+ = −4

r

(GMc

c2

)5/3(ω
c

)2/3
cos(ι) cos(2ωtret) (1.31)

where, tret = t− r/c is the retarded time and Mc is the chirp mass defined as:

Mc =
(m1m2)3/5

(m1 +m2)1/5
(1.32)

In Equations (1.30) and (1.31), one can observe that the orbital frequency arises in the cos and sin

with a factor 2, meaning that the gravitational waves radiate with twice the orbital frequency of

the system. In other words, one can obtain the gravitational wave frequency fgw from the orbital

frequency of the system forb = ω/(2π):

fgw = 2forb (1.33)

which also means that ω = πfgw.

Equations (1.30) and (1.31) are not completely true, for GWs carry energy away. One can show

that the power carried by a GW is [4]:

dEGW
dt

=
32

5

c5

G

(GMcω

c3

)10/3
(1.34)

Consequently, the two objects are not really in a circular orbit. The distance R will decrease with

time, because of the loss of energy carried by the GW. This also means, as seen in Equation (1.29),

that ω will increase. This ought to be taken into account in the expression of h+ and h×. For that

reason, let us first define the angle Φ which is the angle made by a fixed line and the line that joins

the two particles, in other terms Φ is the angle used to define the orbital frequency ω:

ω = Φ̇(t) Φ(t) =

∫ t

ω(t′)dt′.
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We also made an approximation that the change of ω is weak, this is valid when R is sufficiently

large, typically when in the inspiral phase. This approximation lets us rewrite ω → ω(tret) and

ωtret → Φ(tret). The amount of power carried away by the gravitational wave, must be equal to

the power of the orbital energy:
dEorb
dt

= −dEgw
dt

(1.35)

where the orbital energy is:

Eorb =
1

2
m1v

2
1 +

1

2
m2v

2
2 −

Gm1m2

R
(1.36)

where v1 and v2 are respectively the speeds of particles 1 and 2. This equation can be rewritten as

follows, using the Equation (1.29):

Eorb = −1

2
(G2M5

cω
2)1/3 (1.37)

Thus one can rewrite Equation (1.35) with Equation (1.37) and (1.34):

ḟgw(tret) =
96

5
π8/3

(GMc

c3

)5/3
f11/3
gw (tret) (1.38)

which is a differential equation for the gravitational wave frequency, one can show that this equation

is solved by:

fgw(t) =
1

π

(GMc

c3

)−5/8( 5

256

1

τ(t)

)3/8
(1.39)

with τ(t) = tc − t, where tc is the coalescence time, i.e. the time when the frequency formally

diverges: t→ tc implies fGW →∞, which also implies through Kepler’s third law that R → 0. In

a real scenario, the objects are not point particles, but astrophysical objects, thus they have a size,

and one never reaches this divergence. It is possible to see through the full general relativity that

the innermost stable circular orbit (ISCO) is reached when the distance between the two objects

is RISCO ' 6GM/c2.

This Equation (1.39) is important in this work because it links the frequency of the wave and

the time before the merger τ(t). As we will see in Chapter 3, one of our primary goals will be to

detect the GW before the merger. To do that, we will have to look for a GW with a maximum

frequency that can be interpreted as a typical time before the merger (assuming that the chirp mass

is constant). Let us take a moment to study the significance of Equation (1.38) and its solution,

Equation (1.39). From the differential equation for f , one can see that the variation of frequency

as a function of the frequency, evolves as a power law with the frequency, meaning that the higher

the frequency, the faster the frequency evolution. But the variation of frequency also depends on

the chirp mass: the heavier the objects, the faster the evolution of frequency. The right-hand plot

of Fig. 1.9 shows this double dependency. From Equation (1.39), one can see that running through

a variation of frequency, takes a longer time if the chip mass is lower. This behavior is illustrated

in the left-hand plot of Fig. 1.9. This means that the duration of the detectable inspiral is longer

for lighter objects. In practice, most of the detections made so far are BBHs and have a detectable
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inspiral which is very short, one second or less for most of them. But for BNSs, the detectable

inspiral is way longer. If the minimal detectable frequency is about say 20 Hz, the inspiral of a

BNS made of two objects of 1.4M� lasts around three minutes. And if you can go down to 10 Hz,

the inspiral could last for almost twenty minutes. This is one of the reasons why this thesis focuses

more on BNSs than BBHs for the early detection. The other interest of BNSs, is obviously that

they can emit electromagnetic counterparts, which will be discussed in Section 3.2.

Figure 1.9: Top: The evolution of the frequency of the inspiral as a function of time for different
chirp masses. Bottom: The variation of frequency as a function of the frequency of the inspiral for
different chirp masses.

Let us go back to our problem to find the expression of h+ and h×. With Equation (1.39) one

can finally write the equation for Φ, where Φgw = 2Φ because it has been seen that fgw = 2forbi.
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Using Equation (1.39) one obtains:

Φgw(t) = −2
(5GMc

c3

)−5/8
τ5/8(t) + Φc (1.40)

where Φc is the phase when t = tc. One can finally rewrite h+ and h× for the inspiral:

h+ = −4

r

(GMc

c2

)5/3(πfgw(tret)

c

)2/3 1 + cos2(ι)

2
cos(Φgw(tret)) (1.41)

h+ = −4

r

(GMc

c2

)5/3(πfgw(tret)

c

)2/3
cos(ι) sin(Φgw(tret)) (1.42)

With those expressions, one knows how much the space will be deformed by the passage of a GW

coming from a CBC signal. Just to give us an intuition of the order of magnitude of this deforma-

tion, let us quickly do a calculation, if one considers the parameters of GW170817 [17], and that

one wants to estimate h one second before the merger, we obtain h+ ∼ O(10−24). Thus, one can

see that the effect of a GW on earth is tiny. It is why we need such huge interferometers. It also

explains why so much effort is made to reduce the noise in the GW detectors.



Chapter 2

Standard searches for sub-solar

objects

2.1 Matched filtering

In this chapter, matched filtering is introduced, which is the standard technique to detect GWs

coming from CBCs. To illustrate this technique, a paper, in which we have participated is pre-

sented. It is a matched filtering search for the coalescence of sub-solar objects. Before presenting

this paper, the key concepts of matched filtering and the sub-solar objects are introduced.

2.1.1 Antenna pattern

The output of GW detectors is a time-series, which characterizes the difference in length between

the two arms of the interferometer. Let us denote the output of one detector as s(t). In general,

this time-series is just composed of noise n(t), but if a GW goes through the detector, the output

is the sum of the noise plus the gravitational wave h(t):

s(t) = n(t) + h(t) (2.1)

The h(t) that is measured by the detector depends on the sky position of the source compared to

the interferometer. As seen in the previous chapter, a gravitational wave has two polarizations, h+

and h×. What one can measure with one detector is the quantity:

h = F+(θ, φ, ψ)h+ + F×(θ, φ, ψ)h× (2.2)

where F+ and F× are the antenna patterns defined such as:

F+(θ, φ, ψ) =
1

2
(1 + cos2(θ)) cos(2φ) cos(2ψ)− cos(θ) sin(2φ) sin(2ψ) (2.3)

F×(θ, φ, ψ) =
1

2
(1 + cos2(θ)) cos(2φ) sin(2ψ) + cos(θ) sin(2φ) cos(2ψ) (2.4)

17
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where (θ, φ) are respectively two angles defined in Fig. 2.1, that can be linked to the declination

and the right ascension angles. In other words, the position of the sources on the celestial sphere,

ψ is the polarization angle, which is defined in Fig. 2.1.

Figure 2.1: Left : The (x, y, z) coordinate basis of the detector, defined such that θ and φ represents
the position of the sources in the celestial sphere. By a simple rotation, these two angles can be
rewritten through the well-known declination and right ascension angles. The (x′, y′, z′) is the
coordinate system of the source: the z′ axis is chosen to be on the line connecting the detector and
the sources, while the x′ one is along the major axis of the projection onto the sky of an orbit.
Right : The plan tangent to the celestial sphere at the point of the center of an orbit. The ellipse
represents the projection of an orbit onto this plan. The x′ axis is along the major axis of the
ellipse, and the z′ one is perpendicular to the plane. The horizontal dotted line is parallel to the
xy plane, and is used to define the polarization angle ψ.

2.1.2 The signal-to-noise ratio

This quantity h is several orders of magnitude smaller than the noise present in the LIGO and

Virgo interferometers. Nevertheless, it is still possible to detect such a signal with some filtering

methods. First of all, to give an intuition to the reader, let us say that one wants to filter s(t) with

a template htemp. If one takes the integral from 0 to T of s(t)htemp(t) divided by T , one can make

the GW signal stand out [4]:

1

T

∫ T

0
s(t)htemp(t)dt =

1

T

∫ T

0
(n(t) +h(t))htemp(t)dt =

1

T

∫ T

0
n(t)htemp(t)dt+

1

T

∫ T

0
h(t)htemp(t)dt

(2.5)

If htemp is the correct template, it means that h(t) = htemp(t), and the last term becomes
1
T

∫ T
0 h2(t)dt. h(t) and n(t) are oscillating functions. More precisely n(t) can be seen as a ran-

dom walk process. In this case, the first integral in the right-handed size of Equation (2.5) goes

as ∼ ( τ0T )1/2n0h0, in which h0 and n0 are respectively the characteristic amplitude of h and n. τ0
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is a timescale associated with h(t), which can be approximated as the period of the GW. On the

other hand, the second integral of the right-handed side of Equation (2.5) depends only on the

template, and this integral goes as ∼ h2
0. If T →∞ the first integral goes to zero, while the second

stays constant at h2
0. It is clear that only the first integral contributes if s(t) contains only noise.

Therefore, for T →∞ one has 1
T

∫ T
0 s(t)h(t)dt→ 0. In the case in which a GW is present into the

data, one obtains 1
T

∫ T
0 s(t)h(t)dt→ h2

0 for T →∞. With this simple Equation (2.5), one obtains,

in theory, a way to distinguish between data containing only noise and data containing noise plus a

GW. Nevertheless, it is important to be aware that, in reality, it is not possible to choose T =∞:

in reality, a GW signal has a finite length. However, this simple technique still works if one has:

h0 � (
τ0

T
)1/2n0 (2.6)

In practice, for a BNS system, T ∼ 100 s, the frequency f monotonically increases, so one can take

τ0 to be the period at 100 Hz, which means τ0 ≈ 0.01 s. Thus, one has ( τ0T )1/2 ≈ 10−2, which

means that one can detect a signal h even if it is two order of magnitude smaller than the noise.

Matched filtering techniques are based on a similar idea, nevertheless, in practice, matched filtering

pipelines used more sophisticated methods than Equation (2.5). For example, these pipelines also

take into account the sensitivity of the detector.

Let us first introduce the inner product, defined as:

〈a|b〉 = 4

∫ ∞
0

ã(f)b̃∗(f)

Sn(f)
df (2.7)

where Sn(f) is the PSD defined in the previous chapter in Equation (1.23), the ∗, means that the

complex conjugate is taken and the tilde over a and b signifies that those objects are in the Fourier

domain, i.e.:

ã(t) =

∫ +∞

−∞
a(t)e−2πiftdt (2.8)

If the object a is real, it can be expressed by the Fourier components as:

a(t) = 2

∫ +∞

0
<(ã(t)e2πift)df. (2.9)

From the inner product, Equation (2.7), one can define the signal-to-noise ratio as ρ [18, 19]:

ρ2 =
|〈s|htemp〉|2

〈htemp|htemp〉
(2.10)

the reason why this equation for the SNR is not simply 〈s|htemp〉 is because this last object still

depends on the phase at a reference time (i.e. the time when it enters the frequency band of the

detector). One can show that it is possible to minimize the phase by taking the absolute value [20].

This means that with one template it is possible to search for every gravitational wave, whatever

the phase at the time when it enters the frequency band of the interferometer. This is an advantage

since you need to compute fewer templates to search for gravitational waves. Now that the reason
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for the absolute value is understood, it is necessary to explain why the denominator appears in

this definition of the SNR. The quantity 〈s|htemp〉 also depends on the amplitude of the template

htemp, and this amplitude depends mainly on the chirp mass of the system but also on its sky

position and the distance of the source. If you imagine that you have an event, and then the same

one but at a further distance, the signal will be exactly the same except for the amplitude. The

denominator 〈htemp|htemp〉 is there to make the SNR independent of the amplitude, meaning that

with one template, it is possible to search for a typical signal whatever the distance of this signal.

From expression (2.10), one can define the SNR ρ(t) time series:

ρ2(t) =
4

〈htemp|htemp〉

∫ ∞
0

s̃∗(f)h̃temp(f)

Sn(f)
e2πiftdf (2.11)

The basic idea of matched filtering techniques is then to compute the SNR over all the data and

look for some peaks in this SNR time series.

As seen in the previous chapter, the shape of a signal is mainly driven by the masses of the sys-

tem. Some other parameters as the spin and the tidal deformability also modify the behavior of the

signal to a lesser extent. Computing the SNR of Equation (2.11) allows us to search with a single

template for any corresponding signal, whatever the distance of the sources and the phase are. Yet,

in order to search for any GW whatever the other parameters, masses, spins, etc., it is required to

compute all the corresponding templates, and for each of them, compute Equation (2.11). This is

what a matched filtering pipeline is. First of all, a template bank is constructed in such a way that

the templates generated cover properly all the desired parameter space. Since the masses and the

other parameters are continuous, it is not possible to produce a template for each set of parameters.

In order to cover the parameter space, the templates are generated in such a way that the differ-

ence of SNR given by the match of a template by one of its adjacent ones and the SNR compared

to the match of the template by itself is smaller than a typical threshold (typically 3%). [19]. In

Fig. 2.2, one can see that the template bank is more densely populated at low masses. This is easily

understandable, since a lighter object will have a longer signal, which leads to more oscillation and

to a higher mismatch than for a heavier object, as shown in the frequency evolution Equation (1.39).

2.1.3 The ξ2 statistics

In real noise, the data contain glitches and artifacts can mimic a gravitational wave and could

potentially result in a peak of high value in the SNR time series, just as a GW would. To distinguish

between real GW events and these glitches, standard searches, like gstlal [21], use the ξ2 statistic.

The idea is to compare the peak of SNR in the real data with the auto-correlation of the template

R(t). In the absence of noise, if R(t) is rescaled to the peak SNR, those two objects must match

exactly. The ξ2 statistic is computed on a δt window around the peak (assumed to be at t = 0):

ξ2 =

∫ +δt
−δt |z(t)− z(t0)R(t)|2dt∫ +δt
−δt (2− 2|R(t)|2)dt

(2.12)
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Figure 2.2: The template bank that was used in our paper to search for sub-solar objects. We
focus on asymmetric binaries, where only one of the components has a sub-solar mass. The mass
ratio (q = m2/m1) is fixed to be over 0.1, which explain why only the top left triangle is populated
with templates. The minimal match is 0.97.

To constitute a trigger, the SNR must be higher than a certain threshold, and the ξ2 must be

smaller than another threshold.

2.1.4 The false alarm rate

Another way to discard glitches from proper GWs is to use the coincidence trigger [18, 21]. If

a gravitational wave passes through the earth, it should go through all the detectors, unlike the

glitches, which are linked to a detector. Therefore, all the triggers that appear only in one detector

can already be discarded as potential GW candidates. Only the others, called coincidence triggers,

appear at least in two detectors in a time frame smaller than the one that a GW will take to travel

between those interferometers. To be considered as a potential candidate, each peak of SNR in the

different detectors that constitute the coincident trigger must result from the match with the same

(or a very similar) template. When this is the case, they are called coincident events. It is also

useful to define a single SNR for all the detectors, called the network SNR:

ρnet(t) =

√√√√ N∑
i

ρ2
i (t) (2.13)
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while the index i represents the different detectors and N is the total number of detectors (three

at the time when we are writing this thesis).

Even a coincident event is not enough to claim the detection of a GW. Indeed, it also happens

that glitches occur at the same time in multiple detectors. To distinguish between the two types of

coincident triggers, one can build a score of confidence, which is called the False Alarm Rate (FAR).

This score represents the number of times that such a coincident event appears, because of noise

fluctuation and glitches for a given period of time (usually expressed in years). To define properly

the FAR, it is mandatory to introduce the probability distribution p(ρnet) that such a trigger could

appear in the data which contains only noise. Let us explain how one can estimate this probability

p(ρnet): we call background triggers all the coincident events that are due to noise fluctuation or

glitches, and foreground triggers are those which are actually due to a gravitational wave. Here,

the purpose is to distinguish between these two types of coincident events. Even though it is not

possible to remove the background triggers, it is yet possible to characterize them, and especially

their distribution p(ρnet). Unlike the background triggers, it is possible to make the foreground

triggers disappear. To do so, let us imagine that one has only two detectors and one can time-shift

one with respect to the other. For example, let us say that the new output s′(t) in one of the

detectors is:

s′(t) = s(t+ ∆tshift) (2.14)

where s(t) is the original output in this detector and where ∆tshift is a chosen time which is longer

than the one needed by a GW to travel between the two interferometers. Thus, all the coincident

events could not be due to a GW, so that they are all background triggers. It is also possible to

follow the same principle with three detectors by choosing two different ∆tshift. This technique

allows us to generate a lot of data only with background triggers. When one has generated X years

of this type of data, called background data (unlike the data used for the search, which is called

foreground data), one can estimate the probability distribution p(ρnet) by looking at the number of

coincident events which have a typical SNR value. Fig. 2.3 represents the estimation of p(ρnet). If

one obtains a trigger in the foreground data with an SNR value of Y , one can make the integration

of the p(ρnet) over the SNR value of Y estimated in the background data, see Fig. 2.3. This is

called the FAR, and it can be interpreted as the number of triggers due to noise fluctuation with

an SNR higher than Y for X years. It is usually this specific statistic which is used to distinguish

between a trigger due to noise and a trigger due to a GW.

In reality, the matched filtering pipelines like gstLAL [21] used a likelihood-ratio ranking statistic

to rank all the coincident triggers., and the FAR is computed with this likelihood-ratio instead of

the SNR. A likelihood ratio can be expressed as [22]:

L =
P (
−→
DH ,

−→
O,−→ρ ,

−→
ξ2 ,
−→
φ ,
−→
t |s)

P (
−→
DH ,

−→
O,−→ρ ,

−→
ξ2 ,
−→
φ ,
−→
t |n)

(2.15)

the arrow over the different letters represents a vector in which each component belongs to one
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Figure 2.3: Left: The detection probability for the network SNR ρnet estimate with the normalized
histogram of the background noise. Right: The fit of the histogram and the definition of the FAR,
as the integral of this curve, with the minimal bound being the observed SNR. This figure comes
from [4].

detector.
−→
DH , represents the distance horizon, i.e. the sensitivity for each detector,

−→
O represents

the set of detectors available at the time of the coincident trigger, −→ρ represents the SNR,
−→
ξ2 the

ξ2 veto,
−→
φ is the estimated phase,

−→
t is the estimated time of the merger in each detector. The

denominator in Equation (2.15) is the probability that all the characteristics mentioned just above

occur if pure noise is assumed. The numerator is in the same probability, but if one assumes that

an event is present in the data. In this thesis, we will not describe how this likelihood ratio is

computed; we refer the reader to [22] for more information. What is important to know is that the

FAR can be defined with the likelihood ratio instead of just being defined with the SNR. In fact,

in most of the searches, the FAR is computed with this ranking statistic.

2.2 Sub-solar objects and primordial black holes

To illustrate the standard matched filtering techniques, we present a paper in which we used this

method to search for CBC signals coming from sub-solar compact objects. Before introducing the

paper, let us first discuss the motivation behind this type of search, and also explain what the

sub-solar object that we are looking for are.

2.2.1 Primordial balck holes

As mentioned earlier, with the current detectors, it is expected to find GW coming from CBC sys-

tems in which the objects are dense enough, i.e. neutron stars and black holes. When a supergiant

star with a mass between 10 and 25 M� comes to the end of its life, this one will collapse into a

neutron star. This process is quite well understood and predicts that the mass of the neutron star
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should be roughly between 1 and 2.3 M� [23, 24, 25, 26]. Except for black holes (or hypothetical

exotic objects), the neutron stars are the densest objects that exist in our universe. On the other

hand, it is known that black holes can also be produced in a similar process, with the exception

that the supergiant star must be heavier. Once again, there exists a limit on the minimal mass

that a black hole formed with such a scenario could take, which is around 4 M� [27, 28, 29]. A

priori, black holes or neutron stars that are lighter than one solar mass should not exist. One

can wonder: what is the interest in searching for CBC objects which are lighter than one solar

mass, (called sub-solar objects). There are some theories where some special black holes can have

sub-solar masses, for example, the PBH [30]. Even though we will focus on this specific one, let

us mention that some other theories, such as the accretion of dark matter into a neutron star [31],

allow the existence of sub-solar black holes. The major interest in searching for sub-solar objects

is to confirm or put some constraints on these theories.

PBHs are black holes that could have been created by the collapse of large over-densities in

the very early universe. At that stage, the universe was very dense, and some quantum fluctuation

led to some variations of density. This phenomenon is the origin of the anisotropies in the Cosmic

Microwave Background (CMB). In theory, if some fluctuations are high enough, it is possible that

the over-density collapses into PBH. In the simplest model, the condition for an over-density δρ to

become a PBH is to have the length of the instability which is larger than what the so-called Jeans

length defines as:

Lj =

√
πc2

s

Gρ
(2.16)

where cs is the speed of sound of pressure disturbances, ρ is the density, and G is the gravitational

constant. The Jeans length is the critical oscillation wavelength at which a small perturbation to

a self-gravitating medium of uniform density becomes unstable to gravitational collapse [32, 33].

PBHs are supposed to be nearly collisionless, stable, in the universe since its earliest stage,

which makes the PBH a good candidate for dark matter. Several studies such as microlensing

have put some constraints on the fraction of dark matter that can be made of PBH [34], as we

will make it explicit it in the paper, that we present here. However, those constrains are often

model-dependent and do not take into account the newest mass distribution of the PBH. If one

does so, most of the constraints can be avoided [35].

Unlike stellar black holes, the range of allowable masses for the PBHs is way wider. Even

though the exact mass distribution depends on the theory used to model the early universe, most

of these theories predict PBHs with a broad mass range. That makes the PBH natural candidates

to be the seed for the intermediate-mass and supermassive black holes [36]. It has been shown that

if one considers the equation of state for the QCD phase transition, it affects the mass distribution

of the PBHs [37]. Fig. 2.4 shows that most of the PBHs must have a sub-solar mass. Yet, a second

peak is also present around the value of 20 solar masses, which coincides in a way with the mass

distribution of the black holes found by the LIGO and Virgo. One can hypothesize that some of

these black holes have a primordial origin [30].
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Figure 2.4: The mass distribution of the PBH formed during the phase transition is shown for a
scale-invariant density power spectrum. The dashed line represents the mass distribution if there is
no phase transition. This figure comes from [37], for more information about the different curves,
we refer the reader to this article.

If the mass distribution of PBHs in Fig. 2.4 is correct, most of the PBHs should be sub-solar.

There is a major interest to search for sub-solar objects. Let us first mention that the searches

[7, 8, 38] do not take into account the sub-solar region because there is no way to form black

holes and neutron stars of these masses by non-speculative astrophysical processes. As mentioned

in section 2.1, the lighter the masses are, the longer the waveform is, which implies that more

templates have to be used to cover correctly all the mass space. That also means that more

computational power is needed to perform the matched filtering. It is also another reason why in

[7, 8, 38] they do not include a search for sub-solar objects. Nevertheless, this type of search has

been made for the first and second runs of observation [39, 40, 41].

2.2.2 Previous sub-solar searches

The paper that we are presenting is a follow-up to the previous searches for sub-solar objects

[39, 40]. We will summarize quickly those two papers and the major results before presenting our

work. The first sub-solar search [39] focuses on the first run of observation O1. They used a tem-

plate bank of 500 332 template waveforms which was constructed to cover a mass range going from

0.19 to 2.0 M� with 97% fidelity. They also did not consider spin in the bank. Even though it is

not totally realistic, this is assumed to reduce the computational cost of such a search. According
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to Equation (1.39) the duration of a CBC signal of component masses of 0.19 M� with a minimum

frequency of 20 Hz has a duration of almost 80 minutes. Creating a template bank with such a long

signal and using it in the context of matched filtering searches is too computationally expensive.

It is the reason why the author of [39] chose a maximum frequency of 45 Hz, which leads to a

duration of around 500 s for a system with two objects of 0.19 M�. Using this template bank, no

viable gravitational wave candidate has been found in O1. Nevertheless, with these results, they

were able to put a constraint on the binary merger rate. To do so, they used the loudest event

statistics [19, 42]. Let us quickly describe how this method works.

If a search does not find any event, it is possible to put a limit on the rate at which these events

occur. It is common to use the loudest event statistic to do so. Let us say that ρ∗ is the SNR

threshold at which a trigger is recorded, and R is the mean rate at which an event arrived at the

set of detectors with a value of SNR ρ > ρ∗. One can model the arrival of a signal as a Poisson

process. The probability of detecting an event with ρ > ρ∗ within time T can be written as:

P (ρ > ρ∗|R) = 1− e−RTε(ρ∗) (2.17)

where ε(ρ∗) is the detection efficiency, meaning the ratio between detected signals and incident

signals at the threshold ρ∗. This formula is not accurate, because it does not take into account the

fact that there are background triggers. Let us denote by PB the probability to observe no trigger

with a higher SNRρ than ρ∗. In that case, one can rewrite Equation (2.17) such as:

P (ρ > ρ∗|R, B) = 1− PBe−RTε(ρ
∗) (2.18)

One can use this equation to set up an upper limit on the rate. For example, one can set up a rate

R90%. This corresponds to the fact that, if one assumes such a rate, there is a 90% chance that

an event with a higher SNR value than ρ∗ occurs during the time of the search. One can compute

this rate using Equation (2.18). In that case, one obtains:

R90% =
2.303 + ln(PB)

Tε(ρmax)
(2.19)

Note that, in this equation, PB is the probability that no event in the background has a SNR

higher than ρmax. To compute this quantity, one needs to know PB and ε(ρmax). It is possible to

evaluate the second one using a Monte Carlo simulation, by injecting some BNS signals into the

data and seeing how many are possible to recover. Estimating PB is more tricky. One can argue

that the background triggers recorded in the background data (the data created by time shift, as

explained in section 2.1) can be used. Nevertheless, these triggers are known to have big variations

depending on the details of the search. Therefore, it is very difficult to quantify them accurately.

A standard method is then to set PB to 1. In this case, R90% is maximized with respect to PB

and the estimation of the limit is then conservative. In addition to that, given the definition of PB

and the fact that ρmax is the loudest event observed, it is statistically unlikely that the real R90%

could be much under the one used with the approximation PB = 1.
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Let us go back to the description of [39]. With this loudest event statistic method, they set

up a rate limit for the sub-solar event, which is illustrated in Fig. 2.5. Note that the rate is given

per Gpc3 per year. They finally put some constraints on the fraction of dark matter that sub-solar

PBHs can provide, and this is illustrated in Fig. 2.6. Note that this constraint depends on the mass

distribution of the PBHs. In their paper, they assumed a uniform mass distribution for the PBHs.

In our paper, it is shown that using a different mass distribution leads to other constraints.

Figure 2.5: The constraints on the merger rate for sub-solar binaries as a function of the chirp
mass. The curves are made for equal mass binaries. This graph comes from [40]

The second paper [40] is very similar to the previous one, but it has two major changes. First,

they search in the data of the second run of observation O2. Then, they use another more complete

template bank, in which they include the spin effect: the authors consider templates in which the

objects have aligned or anti-aligned spins with a magnitude of 0.1 or less. This inclusion leads to

a bigger template bank of 992 461 waveforms. Once again, no event has been found during this

search. As in the first paper, constraints on the rate of the sub-solar merger, and the fraction of

dark matter that they can contribute to were computed, see Fig. 2.5. There are now some papers

that have searched for sub-solar in O3 [41], but as our search focused on O2, we will not discuss

them in this thesis and leave them for the interested readers.

Now, we will present our search for sub-solar black holes. This search is an extension of [40], in

which the data analyzed is also the one of O2, but the template bank is different. In this search, we

consider asymmetric binaries in which one of the components is a sub-solar object and the other
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one is a more massive object. Since no significant event is found, we also compute a rate limit for

this type of CBC event, and for the fraction of dark matter that PBHs can contribute to. Unlike

[40], we used a non-uniform PBH mass distribution coming from [37] and we also considered other

methods for the formation of PBH binaries.
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Figure 2.6: Left : Constraints of the first run of observation O1 on the dark matter that PBH
can contribute as a function of the masses if a monochromatic distribution is assumed. This graph
comes from [39] Right : Same as the left one, but for the second run of observation O2, this graph
comes from [40].
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2.3 Article 1

The hunt for sub-solar primordial black holes in low mass ratio

binaries is open

Khun Sang Phukon, Gregory Baltus, Sarah Caudill, Sebastien Clesse, Antoine Depasse,

Maxime Fays, Heather Fong, Shasvath J. Kapadia, Ryan Magee, Andres Jorge Tanasijczuk

Abstract

We perform a search for binary black hole mergers with one subsolar mass black hole and a

primary component above 2M� in the second observing run of LIGO/Virgo. Our analysis

therefore extends previous searches into a mass region motivated by the presence of a peak in any

broad mass distribution of primordial black holes (PBHs) around [2− 3]M� coming from the

equation of state reduction at the QCD transition. Four candidate events are found passing a

SNR> 8 and a false alarm rate (FAR) threshold of 2 per year, although none are statistically

significant enough for being clear detections. We first derive model independent limits on the PBH

merging rates assuming a null result of the search. Then we compare them to recent scenarios in

which PBHs can constitute up to the totality of the Dark Matter, explain LIGO/Virgo mergers

and the possible observation of a stochastic gravitational-wave background by NANOGrav. We

find that these models still pass the rate limits and conclude that the analysis of the O3 and O4

observing runs will be decisive to test the hypothesis of a primordial origin of black hole mergers.
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2.3.1 Introduction

The first detection of a gravitational wave (GW) event (GW150914) [1] has ushered astronomy into

a GW era. Since then more than forty binary black hole (BBH) mergers [7, 43, 44, 45, 46, 47, 48, 49,

38] have been observed by Advanced LIGO [6] and Advanced Virgo [50], revealing some intriguing

and mostly unexpected properties of BBHs: large masses, low spins, the existence of black holes

(BHs) in the low mass gap [44] or in the pair-instability mass gap [43] and with low mass ratios [44].

Elucidating the origin of LIGO-Virgo BHs has emerged as an important research topic. One of the

most attracting possibilities is that some are primordial black holes (PBHs) [30, 35, 51].

PBHs may have formed in the early Universe due to the gravitational collapse of large overden-

sities [52, 53, 54, 55], e.g. coming from inflation [56, 57, 58, 59], and could explain from a fraction

to the totality of the dark matter (DM). There exist a series of astrophysical and cosmological

limits on their abundance, covering almost all possible masses (see e.g.[60, 61] for reviews on PBHs

and [34, 62, 63] for recent developments), as well as possible clues in observations [64, 65]. Those

limits and observations are however model dependent, some are debated and today the status of

PBHs to explain all the DM and GW observations is still controversial.

Contrary to stellar BHs, there is no physical process preventing the formation of PBHs lighter

than the Chandrasekhar mass [66] or in the pair-instability mass gap [67, 68]. The subsolar and

intermediate mass ranges are thus ideal targets to distinguish between stellar and primordial ori-

gins. If some of the observed BH mergers are primordial, one can expect a relatively broad mass

distribution of PBHs spreading within these interesting regions. In such a case, the known thermal

history of the Universe at the QCD epoch and the resulting transient reduction of the equation-of-

state unavoidably leads to features in the PBH mass distribution [37, 69, 70], in particular a peak

around the solar-mass and a bump around 30M� [37]. They could explain the LIGO/Virgo merging

rates [65, 71], a series of OGLE microlensing events due to BHs the low mass gap [72], boost the

clustering of DM at high redshift and thereby explain unexpected correlations in the infrared and

X-ray backgrounds [73] and evade the microlensing limits [65]. All this provides strong theoretical

and observational motivations to extend previous subsolar searches in the first [39] and second [40]

observing runs of LIGO/Virgo (referred as O1 and O2) and to search for binaries combining a

subsolar black hole and a primary component above 2M�, eventually coming from the QCD peak.

In this letter, we perform an extended search on O2 data, assuming one subsolar component

between 0.19M� and 1M� and a primary component between 1.95 and 11M�. Our analysis is

therefore complementary to previous searches, either restricted to 2M� for the primary compo-

nent [39, 40] or considering even lower mass ratios [74]. We derive new model-independent merger

rate limits in the (m1,m2) plane of the two component masses1. Furthermore, whereas previous

limits on fPBH – defined as the PBH abundance with respect to DM – relied on the merging rates

of early PBH binaries from [51], we include the rate suppression due to binary disruption by early

forming clusters, matter inhomogeneities and nearby PBHs, put in evidence with N-body simula-

tions [76]. We consider in addition the merging rate of late PBH binaries formed in clusters. For

1When our work was almost completed, an independent search has been released with a similar mass range [75].
Besides providing an independent confirmation of their results, our analysis also reveals a few candidate events and
includes new limits for some motivated realisations of the PBH mass function.
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Table 2.1: The candidates of the search with a SNR > 8 and a FAR < 2 yr−1. Here we report the
FAR, lnL, the UTC time of the event (date and hours), and recovered template parameters.
FAR [yr−1] lnL UTC time mass 1 [M�] mass 2 [M�] spin1z spin2z Network SNR H1 SNR L1 SNR

0.1674 8.457 2017-03-15 15:51:30 3.062 0.9281 0.08254 -0.09841 8.527 8.527 -
0.2193 8.2 2017-07-10 17:52:43 2.106 0.2759 0.08703 0.0753 8.157 - 8.157
0.4134 7.585 2017-04-01 01:43:34 4.897 0.7795 -0.05488 -0.04856 8.672 6.319 5.939
1.2148 6.589 2017-03-08 07:07:18 2.257 0.6997 -0.03655 -0.04473 8.535 6.321 5.736

the PBH mass distribution, we include thermal features and consider scenarios based on a (nearly)

scale invariant primordial power spectrum. We argue that the derived limits are relatively conser-

vative and should apply to most other broad mass models. We conclude that searches in the third

and fourth observing runs of LIGO/Virgo will be decisive to test the hypothesis of a primordial

origin of BBH mergers.

2.3.2 Search, candidates and rate limits

We analyze O2 public data from single and coincident observation time of the two LIGO detectors,

comprising ∼193 days of analysis time. This search uses the GstLAL-based inspiral pipeline [21,

22, 77, 78, 79, 80] with configurations and procedures as outlined in [7]. Data from each detector

are matched-filtered [20, 78, 81, 82, 83, 84] with an (anti-)aligned low-spin template bank of 195468

template waveforms modelled with the frequency-domain waveform-approximant, TaylorF2 [85, 86,

87, 88, 89, 90, 91, 92, 93, 94, 95]. Components have primary mass m1 ∈ [1.95, 11.0]M�, subsolar

mass m2 ∈ [0.19, 1.0]M� and spin magnitude χi,z ∈ [0, 0.1]. The total masses (Mtot) and mass ratios

(q = m2/m1) of the search are limited between Mtot ∈ [2.2− 11.0] M� and q ≥ 0.1, respectively.

The template bank construction uses the stochastic method of Refs. [96, 97, 98, 99] with a minimal

match of 0.97. Following Ref. [100], we perform matched-filtering of the data in the frequency band

45-1024 Hz in order to reduce the computational burden of filtering data.

Candidates are ranked using a likelihood-ratio L ranking statistic [22, 79, 101]. Here we note,

in contrast to Ref. [7], our pipeline does not include data-quality penalties to rank single-detector

candidates [102, 103]. This ranking statistic also provides an algebraic procedure to estimate the

significance of each event [79, 104]. The significance of an event is expressed in terms of a false

alarm rate (FAR), e.g. defined in Section IV.C of Ref. [79].

Search results are presented in Fig. 2.7. Table 2.1 reports four candidates with a signal-to-

noise ratio SNR> 8 and a FAR< 2 yr−1. Time-frequency representations of the whitened data

around each candidate are provided in the Appendix for different resolutions and do not reveal

any clear GW signature. The first two candidates are single detector triggers, implying their lower

FAR values may have more uncertainty. The remaining candidates have high FARs considering

the number of days analyzed and in comparison to GW events reported in [7, 38]. With these

considerations, it is not clear if any of the four candidates are real GW events; future parameter

estimation investigations will explore this further. For the rest of the paper, we assume a null result

of the search.

Following methods in Refs. [105, 106], we place upper limits on the rate of mergers of binaries

with a sub-solar mass component for the discrete mass pairs shown in Fig. 2.9. The merging rate

limits are presented in Fig. 2.9 and Tab. 2.2.
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Figure 2.7: Results of the extended sub-solar PBH search in O2, in terms of number of events as a
function of their inverse FAR. The dashed line is the expected distribution of background triggers,
with the gray bands indicating uncertainties in multiples of the standard deviation for a Poisson
distribution. The four candidates reported in Table 2.1 lie slightly above the 3σ limit.

2.3.3 PBH mass and rate distribution

The recent wide mass distribution proposed by Carr el al in [65] has been considered in our analysis

(referred as mass model 1). It includes the expected features from the QCD transition and relies on

an almost scale invariant primordial power spectrum of density fluctuations, enhanced compared to

cosmological scales, with a spectral index ns = 0.97 (values of ns between 0.96 and 0.98 are realistic).

The PBH peak is located at the solar-mass scale and there is no overproduction of PBHs at smaller

and larger masses. Even if fPBH = 1 the model can evade the microlensing limits because of PBHs

clusters seeded by the Poisson fluctuations in the PBH distrubtion at formation [71]. Assuming

an almost scale invariant primordial power spectrum allows us to set relatively conservative limits,

because peaked spectra or with a negative running of the spectral index typically lead a lower

number density of PBHs both at high and low mass. For comparison, we have also considered the

model proposed by De Luca et al in [107] (referred as mass model 2), with ns = 1 and a cut-off

mass around 10−14M�. It produces a DM fraction made of stellar-mass PBHs of order 10−4. But

the merging rates are much lower than the limits obtained from this subsolar search and we do not

set any significant limit on this model. The two density distributions f(mPBH) (normalized such

that
∫
f(m)d lnm = 1) are represented on Fig. 2.8 for two plausible values of the ratio between

the PBH and the Hubble horizon masses at formation, γ = 0.8 and γ = 0.2. The first value

leads to a peak around 2.5M� motivated by GW190425 [108] and GW190814 [44]. The second

one is obtained by considering the turnaround scale [37] in the PBH gravitational collapse. These

models are further motivated because of the stochastic GW background generated at second order

by the overdensities at the origin of PBHs [109, 110, 111, 112, 113], coinciding with the possible
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Figure 2.8: PBH mass functions f(mPBH) for the mass models 1 (blue lines) and 2 (red lines) with
γ = 0.8 (solid lines) and 0.2 (dashed lines).

NANOGrav observation [114]. PBH binaries can form through two channels whose associated

merging rates are briefly introduced below.

Merging rate of Early Binaries (EB). PBH binaries are formed in the early Universe,

between the PBH formation time and the matter-radiation equality. A fraction of them will merge

nowadays with a merging rate distribution (per unit logarithmic mass of the two black holes) given

by [71, 76, 115, 116, 117, 118, 119]

REB =
1.6× 106

Gpc3yr
fsupf

34/37
PBH

(
m1 +m2

M�

)−32/37

×
[

m1m2

(m1 +m2)2

]−34/37

f(m1)f(m2) ,

where m1 and m2 are the two binary component masses. N-body simulations have shown that

the original merging rates from [51] are somehow suppressed [76], which motivates the introduction

of a suppression factor fsup plausibly ranging between 10−3 and 0.1. Our assumption for fsup in

relation with previous works of [76, 119] is described in Appendix. We did not consider the merging

rate of disrupted binaries, estimated in [120] for a monochromatic mass function and which may

surpass the EB rate if fPBH is close to one, because it is unclear how to extend these estimations

for wide mass distributions like the ones we consider here.

Merging rate of Late Binaries (LB). PBH binaries also form by tidal capture in PBH

clusters, which gives the following rate distribution [71],

RLB ≡ Rclust.fPBHf(m1)f(m2)
(m1 +m2)10/7

(m1m2)5/7
, (2.20)



36 CHAPTER 2. STANDARD SEARCHES FOR SUB-SOLAR OBJECTS

Figure 2.9: The disk color and numbers inside represent the merger rate limits at 90% C.L, for
component masses between 2 and 10M� for the primary component and between 0.2 and 1M�
for the secondary component, with mass ratios q > 0.1, in respective bin sizes of 2 and 0.2M�.
The color scale behind represents the predictions of the EB merging rates for our mass model 1,
assuming ns = 0.97, γ = 0.8 and fPBH = 1.

where Rclust. is an effective scaling factor that incorporates the PBH clustering properties. We

consider Rclust ≈ 420 yr−1Gpc−3 as a benchmark, following [71], and comprised within [80− 1770]2

for our estimations of uncertainty bands. This value is larger than one may expect from standard

halo mass functions [30] but is realistic if one takes into account the additional clustering due to

Poisson fluctuations in the initial PBH separation and the relaxation time of small DM halos. This

way, LBs compete with the rate of EBs and could also explain the rates of GW190425, GW190814

and GW190521 [71].

2.3.4 Constraints on PBH models

The EB merging rate predictions for mass bin widths ∆m1 = 2M� and ∆m2 = 0.2M�, fPBH = 1

and γ = 0.8 have been represented in Fig. 2.9 with the corresponding rate limits. The other cases

typically lead to lower rates in the mass region probed by the search. A similar figure for LBs

is included in the Appendix, where we also compare the rates for m1 < 2M� to the limits from

[39, 40]. In all cases, we find that the subsolar limits do not yet exclude that fPBH = 1. Therefore

more data will be needed to probe these broad-mass PBH models. For EBs the rate predictions

are quite close to the current limits. If some candidates were to be real GW events, they could

be explained by EBs given the uncertainties on the rate suppression parameter fsup. But it is less

2This range for Rclust is obtained when imposing the 90% C.L. rate limits from GW190425 at m1 = 2.6M� and
m2 = 2.0M� with γ = 0.8 in the mass model 1.



2.3. ARTICLE 1 37

Figure 2.10: Limits (90% C.L.) on fPBH for the mass model 1, for late (LB) and early (EB) binaries
for γ = 0.8 and 0.2, from the search results in O2 data restricted to m1 < 2M� [40] (O2-Res), this
search (O2-Ext) and their combination (O2-Tot). The error bars estimate the uncertainties from
the rate parameters Rclust and fsup as described in Appendix. The dashed horizontal lines denotes
fPBH = 1.

likely that they come from LBs. A firm detection would therefore help to distinguish the possible

mass distributions and binary formation channels. For each case, we have computed an upper limit

on fPBH, shown in Fig. 2.10 with error bars corresponding to the estimated rate uncertainties. For

this purpose, we assume a Poissonian distribution of GW events and build a simple χ2 function for

fPBH,

χ2 =
∑

bins i,j

[
REB/LB(fPBH,m1,i,m2,j)∆m1∆m2

m1,im2,i ×R1σ(m1,i,m2,j)

]2

+
∑

bins k

[
REB/LB(fPBH,mch,k)∆mch

mch,k ×R1σ(mch,k)

]2

that combines the (1σ) rate limits in all the mass bins of the present search and the limits in

the chirp mass bins of the previous O2 search [40]. REB/LB(fPBH,mch,k) denotes the integrated

merger rate per unit logarithmic chirp mass. A more accurate analysis would be to calculate

the rate limits from a large number of injections, distributed along m1 and m2 according to the

expected rate distribution for each PBH mass model. However this would have been much more

computationally expansive. Given the relatively large theoretical uncertainties on the rate limits,

this was beyond the scope of the present paper and is thus left for future work. For γ = 0.8, we find

that this search greatly improves (by about one order of magnitude) the limits on fPBH, compared

to previous sub-solar searches. But as expected, the improvement is marginal if the peak of the

mass function lies well below 2M�, as in the case γ = 0.2. For our benchmark modelling of the

rates, the combined 90% C.L. limits on fPBH lie between 10 and 100. As a consequence, probing

fPBH < 1 will be possible with an improved detector sensitivity between two and four. Other
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spectral shapes for the primordial fluctuations (lognormal, broken power-law...) are possible but

typically lead to a suppression of low mass ratio binaries compared to a scale-invariant spectrum.

Therefore the derived limits are relatively conservative.

Finally, we have reanalized the O2 limits on fPBH for monochromatic mass models in [40] with

our merging rate prescriptions. Due to the EB rate suppression, these limits are much less stringent

and we find that O2 data do not yet exclude fPBH = 1, both for EBs and LBs, as shown in Fig. 2.13

in Appendix.

2.3.5 Conclusion

Broad-mass PBH models with a peak at the solar-mass scale from the QCD transition have been

proposed to explain the DM and at least some GW events. Motivated by these models, an extended

search of mergers of subsolar BHs between 0.1 and 1M� in binaries with a primary component

between 2 and 10M� has been performed on the data from the second observing run (O2) of

Advanced LIGO. The search has revealed four candidates (two being single detector triggers) with

a total SNR > 8 and a FAR < 2 yr−1, but whose statistical significance is not high enough to claim

for a detection. Further investigation (parameter estimations, mass model dependence) is ongoing

to clarify their status.

Assuming a null result of the search, new merging rate limits are set in this mass range, shown

in Fig. 2.12, which complement previous limits restricted to 2M� for the primary component. We

emphasize that the search results and rate limits are model independent. But in order to translate

them in limits on the PBH abundance, one has to assume a mass function and a rate model.

Compared to previous studies, we tried to be more realistic while remaining relatively conservative,

by choosing a wide mass distribution including inevitable thermal effects from the QCD transition,

as well the latest prescriptions for the PBH merging rates.

When they are compared to the theoretical predictions for PBH merging rates, we find that

our limits still allow fPBH = 1 for both early and late binaries (respectively PBH binaries formed

before matter-radiation equality and in PBH clusters). This seems to contradict some conclusions

of [40] where more stringent limits on fPBH were obtained. The main difference comes from the

inclusion of the rate suppression of early binaries seen in N-body simulations [76]. Nevertheless,

we emphasize that rate predictions are within the range of the O3 or future O4 and O5 observing

runs. Subsolar searches in these data sets should therefore ideally include binaries with low mass

ratios.

Ultimately, detecting a subsolar black hole is the best way to distinguish primordial and stel-

lar BHs, which would therefore have groundbreaking implications in cosmology and high-energy

physics. The fact that we found a series of candidates might be a first sign of a subsolar BH

population, opening their hunt with longer and more sensitive strain time series.

Acknowledgments

S.C. and K. S. P. are supported by the research program of the Netherlands Organisation for Sci-

entific Research (NWO). G.B. is supported by a FRIA grant from the Belgian fund for research

FNRS-F.R.S. S.C. aknowledges support from the FNRS-F.R.S and the Franqui foundation. This



2.3. ARTICLE 1 39

research has made use of data, software and/or web tools obtained from the Gravitational Wave

Open Science Center (https://www.gw-openscience.org/ ), a service of LIGO Laboratory, the LIGO

Scientific Collaboration and the Virgo Collaboration. LIGO Laboratory and Advanced LIGO are

funded by the United States National Science Foundation (NSF) as well as the Science and Tech-

nology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the

State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construc-

tion and operation of the GEO600 detector. Additional support for Advanced LIGO was provided

by the Australian Research Council. Virgo is funded, through the European Gravitational Observa-

tory (EGO), by the French Centre National de Recherche Scientifique (CNRS), the Italian Istituto

Nazionale della Fisica Nucleare (INFN) and the Dutch Nikhef, with contributions by institutions

from Belgium, Germany, Greece, Hungary, Ireland, Japan, Monaco, Poland, Portugal, Spain. The

authors are grateful for computational resources provided by the LIGO Laboratory and supported

by National Science Foundation Grants PHY-0757058 and PHY-0823459.

2.3.6 Appendix

Appendix A: Injections and sensitive space-time volume

We estimate the sensitive space-time volume 〈VT〉 of our search by using 15 populations of simu-

lated, non-spinning binary sources, spanning the (m1,m2) plane of our search. Binaries in a given

population have the same component masses and their distributions are isotropic in sky locations

and source orientations, and uniform in co-moving distances. We simulate O(106) sources using the

time-domain TaylorT4 waveforms with phase corrections at 3.5 PN order [89] and inject them in

data during the observation period Tobs of O2. We search for all these injected signals to measure

〈VT〉 for each population. Subsequently, we use the estimated 〈VT〉 to calculate upper limits on the

merger rate. We carry out this analysis for a uniform mass model search and present the sensitive

space-time volumes and the corresponding rate limits in Table 2.2, and on Fig. 2.9.

Appendix B: EB merger rate suppression factor fsup

For the suppression factor fsup[fPBH, f(m1), f(m2)] in the EB merging rates of Eq. 2.20 we have used

the latest analytical prescriptions from Ref. [119], adapted to our broad PBH mass distributions,

with two contributions

fsup = S1 × S2 . (2.21)

The first factor is given by

S1 = 1.42

[
(〈m2

PBH〉/〈mPBH〉2)

N̄ + C
+

σ2
M

f2
PBH

]−21/74

e−N̄ . (2.22)

It takes into account the binary disruption by both matter fluctuations with a (rescaled) variance

σ2
M ' 0.005, and by the number of nearby PBHs N̄ at a distance smaller than the maximal

comoving distance for such nearby PBH to fall onto the binary before matter-radiation equality.
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Table 2.2: Sensitive space-time volume 〈VT〉 and rate upper limit R90%.
(m1,m2)M� 〈VT〉 (Gpc3yr) R90% (Gpc−3yr−1)

2.0, 0.21 5.56× 10−5 44,368
2.0, 0.40 2.00× 10−4 12,333
2.0, 0.60 4.19× 10−4 5,882
2.0, 0.80 7.28× 10−4 3,389
2.0, 0.99 1.17× 10−3 2,111
4.0, 0.41 1.45× 10−3 1,704
4.0, 0.60 1.89× 10−3 1,302
4.0, 0.80 2.84× 10−3 869
4.0, 0.99 3.99× 10−3 618
6.0, 0.61 4.97× 10−3 496
6.0, 0.80 6.35× 10−3 389
6.0, 0.99 8.25× 10−3 299
8.0, 0.81 1.00× 10−2 246
8.0, 0.99 1.23× 10−2 200
9.8, 0.99 1.31× 10−2 188

This number, for any mass function, has been estimated as

N̄ =
m1 +m2

〈mPBH〉
fPBH

fPBH + σM
. (2.23)

In Eqs. (2.22) and (2.23), 〈mPBH〉 is the mean PBH mass and 〈m2
PBH〉 is the corresponding variance.

The function C in Eq. 2.22 encodes the transition between small and large N̄ limits. A good

approximation (with an estimated accuracy of 7% [119] compared to the N-body simulations of [76]

for a monochromatic or a lognormal mass function) is given by

C '
f2

PBH〈m2
PBH〉

σ2
M〈mPBH〉2

×

{[
Γ(29/37)√

π
U

(
21

74
,
1

2
,
5f2

PBH

6σ2
M

)]−74/21

− 1

}−1

(2.24)

where Γ is the Euler function and U is the confluent hypergeometric function. For an extended mass

function spanning several decades of masses, this approach generically gives N̄ � 1, which would

lead to a huge rate suppression for EBs and, as a consequence, LB mergers would be dominant.

However it is unrealistic because it is unlikely that PBHs with a much smaller mass than the one

of the binary components can ionize this binary. Instead, given that we have a sharp peak in the

mass function, we use the approximation N̄ ' 2 and 〈m2
PBH〉/〈mPBH〉2 ' 1 that corresponds to the

monochromatic limit. For fPBH = 1, one gets S1 ≈ 0.2. Given the uncertainties on the exact value

of N̄ , we estimate the possible error on S1 as the following. As a lower bound, we consider a value

of S1 ten times lower than for N̄ = 2. As an upper bound, we consider the limit N̄ → 0, which

gives

Smax
1 =

(
5f2

PBH

6σ2
M

) 21
74

U

(
21

74
,
1

2
,
5f2

PBH

6σ2
M

)
. (2.25)
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Figure 2.11: Merger rate predictions for LBs and the mass model 1 with γ = 0.8 and fPBH = 1 in
mass bin sizes ∆m1 = 2M� and ∆m2 = 0.2M�. The colored disks represent the 90% rate limits
from this extended search in O2 data, as in Fig. 2.9.

For fPBH > 0.1, one gets Smax
1 ' 1 and there is no suppression in the EB merger rate. These lower

and upper bounds on S1 have been used to calculate the uncertainties in the fPBH limits reported

in Fig. 2.10 for our different mass models.

The second factor S2(fPBH) comes from the binary disruption in early-forming clusters and can

be approximated today by

S2 ≈ min
(

1, 9.6× 10−3f−0.65
PBH e0.03 ln2 fPBH

)
. (2.26)

Since we are interested by subsolar BHs at typical distances that are still relatively small compared

to cosmological scales, one can safely neglect the redshift dependence in S2 from [119]. For fPBH = 1,

one gets S2 ' 0.01, such that one gets fsup ' 0.002. Such a value is also motivated observationally,

since it can reproduce the merging rates of GW190521, GW190814 and GW190425 [71].

Finally, we point out that if fPBH ∼ 1, the merger rates from perturbed binaries could exceed

the rate of non-perturbed binaries [120], however there is no simple prescription that could be used

for extended mass functions and these rates also have large uncertainties. Therefore we did not

consider perturbed binaries in our work. It can be also pointed out that subtle general relativistic

effects may also highly suppress the rate of EBs [123] if the metric around each PBH is similar

to the Thakurta metric. However this is not the case for a perturbed Mc Vittie metric, as shown

in [124].

With these assumptions, the merging rates of EBs and LBs for fPBH = 1, γ = 0.8 or γ = 0.2

are shown in Figs. 2.9, 2.12 and 2.11 for the mass model 1. These rates are compared to the rate
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Figure 2.12: The previous O1 (blue line) and O2 (orange line) 90% C.L. limits on the merger rate
as a function of the binary chirp mass [121]. Rate predictions for EBs (green) and LBs (red) for
the mass model 1 and fPBH = 1, with γ = 0.8 (solid lines) and 0.2 (dashed lines).

limits from the extended search in O2 data.

Appendix C: Comparison with previous limits

The rate predictions have also been compared to previous limits restricted to m1 < 2M� [39, 40], for

both broad-mass and monochromatic models. On Fig. 2.12 we have represented the rates obtained

for the mass model 1 for EBs and LBs, as a function of the binary chirm pass, assuming bins with

∆mch = 0.15M�.

The previous O2 limits on fPBH for monochromatic mass models can also be re-analysed with

our assumptions for the merging rates of EBs and LBs, using the same method as [125]. These

limits are shown in Fig. 2.13 and for EBs they are two orders of magnitude less stringent than

previously found, an effect due to the rate suppression factor fsup. We find a limit of fPBH . 1

only for EBs and masses between 0.8M� and 1M� but without firmly excluding fPBH = 1 given

the rate uncertainties.

Appendix D: Time-frequency analysis

We perform time-frequency analysis of data around the trigger-times of the four candidates events

reported in Table 2.1 for quantitative inspection about presence of GW signal. The scalograms or
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Figure 2.13: Subsolar limits on fPBH for a monochromatic mass model, for late binaries (LB), early
binaries (EB) in our benchmark rate models and as estimated for EBs in the previous search [40]
without including EB rate suppression effects.

q-scans are obtained from the strain channel data stretches of the two LIGO detectors centered at

trigger times of the four candidates. No q-scan provides clear visual indications of chirpy signatures

or the presence of GW signal in the time-frequency representation of data. A similar conclusion

is obtained for a search of long-duration bursts 80 seconds around the triggers using the strain

channel DCH-CLEAN STRAIN C02, after spectral whitening each 4 seconds with 2 seconds of overlap.
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Figure 2.14: Q-scans of strain-channel data centered at trigger-times of the four candidates of
Table 2.1: Candidate 1 in H1 (top left), Candidate 2 in L1 (top right), Candidate 3 (middle panels),
Candidate 4 (bottom panels). For each trigger, three q-scans with different time intervals are shown.
The colored scale represents the normalized power. The plots are generated using PyCBC [122]
software. Here, Candidate 1 and Candidate 2 are single detector triggers and observed by LIGO
Hanford (H1) and LIGO Livingston (L1), respectively. Data channel name is displayed on top of
each plot.



Chapter 3

Detection searches with machine

learning

3.1 Deep learning

As mentioned in Section 2.1, longer signals need a bigger template bank. In principle, it is pos-

sible to detect a long signal well before the merger has been recorded by the detector. If a GW

detector can detect a signal before the merger, it could be very useful for Multi-Messenger Astron-

omy (MMA). Indeed, it could send an alert to the astronomers with the sky location of the event.

Thus, they would have time to point their telescopes in the right direction and perhaps observe an

electromagnetic counter-part or to store part of their data before a finer analysis is made. This is

particularly useful for the BNSs, in which this kind of system has long signals and can emit light

[126, 127]. This idea is one of the main motivations of this thesis and of the other articles that we

will present here.

As mentioned, dealing with long signals can be a problem in matched filtering searches. Even

though a lot of upgrades have been implemented to speed up these searches [18, 22, 21, 77, 128, 129],

they are still computationally heavy and slower than other techniques such as Deep Learning (DL).

The next two papers [130, 131] that we will present used DL techniques to detect a GW signal

coming from the early inspiral of a BNS. This work was the main focus of the thesis and we have

produced two papers on this subject. While the first is a proof of concept with multiple limitations,

the second introduces the improvements and has been set up to run in a more realistic scenario.

3.1.1 Neurons and neural networks

Before presenting these papers, we will give a small introduction to DL. Machine learning is an

ensemble of techniques that allow the software to learn by itself and increase its own performance at

predicting outcomes without being explicitly programmed to do so. DL is a subbranch of machine

learning, which uses neural networks. Deep learning can deal with a lot of different problems, such

as classification, data generation, etc. We start by explaining it with a simple regression problem.

45
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To understand how it works, let us make an analogy with linear regression. One has some input x

and one has to predict the y value. One can represent this problem as a cloud of points in 2D space

x, y as shown in Fig. 3.1. The easiest model that we can think about is a linear regression. One

can construct such a model by finding the optimal parameters m and p, such that the equation

y = mx + p predicts y given x well. To do so, it is needed to introduce a loss function l, which,

will be minimized with respect to m and p, to find the optimal linear regression. For example, one

can use, as a loss function, the Mean Squared Error (MSE):

l =
1

N

N∑
i=0

e2
i =

1

N

N∑
i=0

(yi − ŷi)2 (3.1)

where yi and xi are respectively the y and x components of the point i, and ŷi is the prediction

of the linear regression at a value of xi. In this particular case of linear regression with such a

loss, there exists an analytic solution to find the optimal m and p. When the best line is found,

according to the cloud of points, one can use it to estimate y given some new x.

Figure 3.1: Illustration of a linear regression. The blue line is the linear regression with an equation
of y = mx + p, in which m and p are parameters that need to be determined by minimizing the
MSE.

The principle of deep learning is the same, except that the model is a neural network, which

is a mathematical differentiable function 1 with way more parameters than a linear regression.

The easiest and simplest neural network to describe is the one based on dense (or fully connected)

layers, illustrated in Fig. 3.2. The basic block of a neural network is a neuron and its mathematical

expression is:

h0 = AF (
∑
i

wixi + b) (3.2)

1The functions used in a neural network do not have to be differentiable everywhere. For example, the ReLU, see
Fig. 3.3, is not differentiable in 0, but it is very regularly used in deep learning because in practice you are never
precisely at 0.
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where {xi} is the component i of the input vector, {wi} is a parameter called weight, b is also a

parameter called the bias and AF represents an activation function. An artificial neuron is inspired

by the one of the brain. In the brain, a neuron is connected to a lot of others and activates itself

only if the signal received from the others is strong enough. This feature is represented by the

activation function, which could be anything that mimics the true neuron activation. Fig. 3.3

illustrates different types of activation functions. In our work, we mainly used the Sigmoid and the

ReLU, which have respectively the following equations:

σ(x) =
1

1 + exp−x
(3.3)

and the ReLU, which is defined as:

ReLU(x) =

x if x bigger than 0

0 otherwise
(3.4)

  

x
0

x
1

x
2

h
0

h
1

h
2

h
3

h’
0

h’
1

h’
2

h’
3

x
1

y
0

x
1

y
1

0

A Neural Network A Neuron

Figure 3.2: Left : Illustration of a neural network made of three linear layers, x represents the
input, h and h′ represent the value of the neurons, respectively of the first and second hidden layer,
and y is the final output of the neural network. Right : Illustration of a neuron. Sign represents
the activation function; the equation of a neuron is given in (3.2).

A neural network (made of fully connected layers) is just multiple neurons, organized in layers,

in which each neuron takes as input the neurons of the previous layers, see Fig. 3.2. Thus, one can

express a layer of neurons as a vector:

−→
hµ = AF (wT

−−→
hµ−1 + bµ) (3.5)

wT represents the transposed matrix of the weight of the whole network,
−→
hµ is the value of the

neurons of the layers µ, and bµ is the bias at the layers µ. Let us remark here that each layer can be

expressed as a function of the previous ones. Therefore, the output of the whole network is given
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Figure 3.3: Representation of different activation functions.

by Equation (3.5), in which µ is the final layer. Just like our problem with the linear regression,

all we have to do is to define a loss for our problem and minimize it with respect to w and
−→
b .

Because of the activation function, a neural network is highly non-linear, and thus, it does not have

an analytical solution. Nevertheless, it is still a differentiable function. A well-known technique to

be able to find at least a local minimum of the loss is the gradient descent.

3.1.2 Gradient descent

The gradient descent technique is an iterative process. It starts by evaluating the loss for a given

set of values of the parameters w and
−→
b . Then, it makes a local approximation of this loss, and

minimize it. Finally, the real loss is re-evaluated with the new value of the parameters and it

repeats the process. Fig. 3.4 represents this gradient descent cycle. L denotes the loss and the

whole parameters (w and
−→
b ) is denoted θ. We start by evaluating L at a set value of the parameters

θ0. It is possible to approximate the loss around that point θ0 with a first order approximation:

L̂(θ0 + ε) = L(θ0) + ε∇θL(θ0) +
1

2γ
||ε||2 (3.6)

L̂ represents the approximate loss, ε is a small variation in the parameters space, and γ is a free

parameter that one needs to choose, known as the learning rate. The last term is added so that

the Equation (3.6) is a parabola tangent to the true loss at the point θ0 as shown in Fig. 3.4.

The learning rate γ controls the size of the parabola. The goal is to find the ε that minimizes the

approximate loss and re-evaluate it at this new point (θ0 + ε). To find this minimum, one simply

has to solve ∇εL̂(θ + ε) = 0. If one does so, one can obtain the value of ε:

ε = −γ∇θL(θ0) (3.7)
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At each step of the gradient descent, the value of the parameters is changed to:

θn+1 = θn − γ∇θL(θn) (3.8)

where n represents the number of steps already done. Training a neural network is nothing else than

performing this gradient descent until one finds at least a local minimum in the parameters space

that allows the network to perform correctly its task. Equation (3.7) depends on the parameter γ,

which is an important parameter. If it is too big, one can miss a minimum by just jumping from

one side to the other. If it is too small, the algorithm just converges too slowly to the minimum.

This is one of the parameters that one can adjust during the training, or with some optimizer, but

we will discuss this later.

L is the loss computed for all the training sets. For example, if one uses the mean squared error

(MSE), one needs to compute the MSE for each piece of data, and just as in the case of the linear

regression, the total loss L will be the sum (or the average) of these MSE losses. Computing the

loss and the gradient for the whole dataset can take time and computational memory. In a lot of

cases, the computer has not enough memory to load the whole dataset and perform one step of

gradient descent over it. Because of this, it is very common not to compute the loss over the whole

dataset before making a step of gradient descent, but only over a smaller sub-set called the batch2.

Using a smaller batch size allows us to explore the parameters space in a more erratic way than

using the full data set. On the one hand that helps to avoid local minima, but on the other hand,

it could also take more time to converge. In practice, using a higher batch size is a good idea to

increase the speed of the training, and, at least in our case, the batch size is usually limited by the

amount of memory that we could to use.

Multiple tricks can be added to the principle of the gradient descent to converge faster or

to avoid local minima, the algorithm that computes this gradient descent with all the tricks is

called the optimizer. For example, the one we used in our search is Adam (for Adaptive Moment

Estimation) and AdaMax [132]. We do not enter into the detail here, but the idea behind Adam

is that at each step, the learning rate is adapted by a factor that depends on a running average of

both the gradients and the second moment of the gradient.

3.1.3 Convolutional neural networks

Until now, we have taken the example of a neural network composed of dense layers. Yet, in deep

learning, it is possible to invent a lot of different types of layers, and searching for new architectures

is still an active field of research. In a single network, it is also common to combine multiple types

of layers. In our papers, the network is composed of convolution with some dense layers only at

the end. Therefore, let us describe how convolutional layers work.

The problem with dense layers is that the number of parameters can be huge for large and deep

2When using a batch of size 1, so with only one piece of data, is called a stochastic gradient descent.
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Figure 3.4: Representation of the gradient descent techniques for 3 different steps. The black curve
is the real loss, the red one is the first-order approximation, and the dashed line is the tangent to
the real loss at the point θn.

networks, and it could take a very long time to train it properly. In addition, the necessary memory

depends on the number of parameters. As each neuron of one layer is connected to every neuron

of the next one in a dense layer, the information of the spatial position of the input is destroyed

in a dense layer. This can be a problem, for example, if one wants to do image recognition, the
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information of where is which part of the image is important. To solve both of these problems,

convolutional layers have been created. They are usually conceived in 2 dimensions because they

are especially useful for image recognition. Nevertheless, we introduce them with the 1D version

since we deal with 1D strain data in our work. The concept of convolutional layers can be easily

adapted to higher dimensions.

In a convolution layer, one neuron of this layer is not connected to all those of the previous

layer, but only to a few of them. As you can see in Fig. 3.5 which represents the principle of a

convolutional layer, the first neuron of the second layer is only connected to the first three of the

previous layer. The second neuron takes as input the second, the third, and the fourth, and so

on. One can also see in Fig. 3.5, that every neuron has the same weight in a same layer. In this

example, there are only three weights on this layer, which is less than in a dense layer of the same

size. The set of weights in a layer is called the kernel, and so the number of weights is the kernel size.

It is also common to stack convolutional layers in parallel, just as shown in Fig. 3.6. In that

case, each “parallel layer”, which are called the channels, has the same kernel size, but the kernel

(meaning the weights) could be different. In Fig. 3.6, the number of parameters depends on the

kernel size and must be multiplied by the number of channels. Let us interpret this kind of layer

in 2 dimensions, in which one can have a simpler intuition. Let us imagine that a convolutional

neural network is trained to recognize cats in pictures. The kernel of a channel in the first layers

will activate itself only if it sees straight lines. Another kernel from another channel in the same

layer will be triggered only if it sees corners. In the first layer, each neuron of the different pattern

is trained to trigger if they see very basic and small patterns. In the second layer, a neuron will

trigger only if it sees a more complex pattern, such as a rectangle or another simple form. The

deeper you go into the network, the more complex, abstract, and macroscopic the representation

of the neuron is. In the very last layers of our supposed network, a neuron can represent eyes,

a mouth, a tail, and in the final layer, a cat. In reality, it is very difficult to say exactly what a

neuron represents because it could be very abstract.
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Figure 3.5: Representation of a convolutional layer. The first neuron h0 is only connected to the
first three of the previous layers. The second neuron h1 is connected to x1, x2, x3, but the kernel
to compute h0 or h1 or any other neuron of this layer is the same. The kernel size is three in this
example.
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In a convolutional layer, there are multiple hyperparameters which one can play with. We have

already seen the number of channels, the kernel size, which represents the number of connections

that exist between one neuron and the previous layer. Yet, they are more hyperparameters. For

example, there is what it is called the stride. The stride represents the step of the kernel between a

neuron and the next one. For example, in Fig. 3.7, the first neuron is connected to the first, second,

and third neurons of the previous layer, but the second one is connected to the third, fourth and

fifth ones. This represents a stride of two because the step is two in that specific case, while in

Fig. 3.5 the step was one. Unlike a dense layer, in which you can choose the output length, the

output length in a convolution layer is a function of the kernel size, the stride, and the input length

(the formula is given in Equation (3.9)). One can wish to keep the same size for input output. To

do so, one introduces another hyperparameter: the padding. The idea of padding is to increase

the size of the input artificially during the convolution by adding some zeros in the beginning and

at the end of the input. For example, in Fig. 3.8, one sees that the first neuron will take 0 value,

the first and the second neurons of the previous layer as input the due to padding. The number

of padding is just the number of zeros added at the beginning and at the end of the input. A

last feature of the convolution is the dilation, which has been introduced by [133]. The idea is to

leave a space between the connection of a neuron and those of the previous layers. For example,

in Fig. 3.9 the first neuron takes the first, the third, and the fifth neurons of the previous layer as

input, which illustrates a dilation, while in Fig. 3.5, there is a dilation of zero, which means that

there is no dilation. As mentioned, it is possible to know the length of the output Lout by taking

into account all of these features. It can be expressed as follows:

Lout = b
Lin + 2lpad − ldil(lker − 1)− 1

lstr
+ 1c (3.9)

where Lin, lpad is the padding, ldil is the dilation, lker is the kernel size and lstr is the stride. The

symbol bc represent the inferior entire part.

  

Number 
of channels

Figure 3.6: Representation of a 2D convolutional neural network followed by two dense layers.
The neural network takes only one image as input, but the first layers have six channels.

In some situations, one can wish to reduce the output size of a convolutional layer: for example,

in order to reduce the memory required to train the network. To do so, one can use pool layers.

They are not trainable layers, which means that they have no parameter of their own which needs
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Figure 3.7: Representation of the principle of a convolutional layer, with a kernel size of 3 and a
stride of 2.
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Figure 3.8: Representation of the principle of a convolutional layer, with a padding of one.

to be fine-tuned by the gradient descent technique. A pool layer works similarly to a convolutional

layer in the sense that it also has a kernel, and that it is possible to use padding, stride, and

dilation. Le us start by explaining the MaxPool layers, but there are others. In a MaxPool layer,

the value of a neuron will be the maximum of those of the kernel, as illustrated in Fig. 3.10. There

also exist average pool layers, in which one takes the average over the kernel instead of taking the

maximum value of the kernel. As mentioned, the pooling layer is often used to reduce the size of

the input after a convolution. To do so, the stride is often higher than the one in the convolution.

To determine the length of the layer, one can use formula (3.9).

Training a neural network can be challenging. A way to facilitate it is to normalize the data.

A well-known type of normalization in deep learning is batch normalization [134]: it consists of

ensuring that the variance of the data in a batch is the same for each piece of data. During the

training, it shifts and rescales according to the mean and the variance computed on the batch. When

the network is trained, the batch normalization will shift and rescale according to the empirical

moments estimated during the training. The mathematical expression of the batch normalization

is:

y =
x− E[x]√
V ar[x] + ε

γ + β (3.10)

where x is the input, E[x] and V ar[x] are respectively the mean and the standard deviation com-

puted on the whole batch, ε is an arbitrary small constant added to avoid division by 0 and γ and
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Figure 3.9: Representation of the principle of a convolutional layer, with a dilation of one.
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Figure 3.10: Representation of the principle of a MaxPool layer. Here h1 will take the value of
the maximum between x1, x2, x3

β are learnable parameters.

A final tool that we need to introduce here is the Softmax layer. Since the two papers that we

will present here deal with a classification problem, we want the output of the network to represents

a vector in which each component is the probability that the input belongs to a particular class.

The component of the output vector should be between zero and one, and the sum should be equal

to one. A Softmax will transform every vector into a vector which has those two proprieties. The

mathematical expression of a Softmax is:

SM(xi) =
exi∑
j e

xj
(3.11)

where xi is the ith component of the input vector. The exponentials are there to ensure that all

the value become positive.

In deep learning, it is common to see every operation made to the initial input as a layer, i.e.

when one does a batch normalization to the data, it is common to say that one first applies a layer

of batch normalization. The same stands for the activation function. For example, if one builds

a dense layer or a convolutional layer, and one chooses to use a ReLU as activation function, it

is common to say that one first has a dense (or convolutional) layer and then a layer of ReLU.

This only means that one used the ReLU as activation function. One can define one’s own network
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depending on the problem by stacking different layers. For example, in the two papers that we

will present, the network is composed of batch normalization layers followed by a few blocks of

convolution, ReLU, pool layers, and finally attached to some dense layers at the end.

3.2 Early alert and multi-messenger astronomy

Before presenting our two papers on machine learning techniques for pre-merger alerts, let us in-

troduce multi-messenger astronomy (MMA) and why early alerts of GWs are important in this

field. MMA is astronomy based on the observation of a same event with different channels such

as gravitational waves, electromagnetic waves, neutrinos, and cosmic rays. MMA is not new, in

1940, cosmic rays were detected coming from solar flares [135]. In 1987, a supernova detected

with an electromagnetic telescope was also detected through neutrinos [136]. More interesting for

us, in 2017, the Fermi Gamma-ray Burst Monitor saw a gamma-ray burst six minutes after the

LIGO Virgo collaboration announced that a low latency pipeline had detected a BNS event known

as GW170817 [127]. This was the first example of MMA with GWs. Using multiple channels to

observe an event can lead to a better understanding of some very inserting physics such as the r-

and s-processes which are at the origin of heavier elements in the Universe. It can also lead to a

better measurement of the Hubble constant and to new tests of GR, such as a measurement of the

speed of GWs [137, 138, 139, 140, 141, 142]. In principle, gravitational waves could play another

important role in this MMA field. The electromagnetic signal emitted by a BNS occurs at the very

end of the inspiral and at the merger [143]. On the contrary, the GW detectors can detect the

early inspiral of BNSs. In addition, the LIGO and Virgo interferometers can survey the whole sky

at the same time, which is not the case for the light telescopes, which can only focus on a small

portion of the sky. Because of these two characteristics, GWs can serve as an early alert for the

other messengers. If one detects the early inspiral of a BNS and if one can deduce its sky location,

one can send an alert to the astronomer and suggest surveying the portion of the sky in which the

BNS is, so that they can perhaps record an electromagnetic counterpart.

Such a scenario has not occurred yet. This is mainly because the pipelines were looking for

the signal as a whole, not just for the early inspiral. This is not the case anymore since some

pipelines have adapted their method to be able to produce pre-merger alerts. For example, the

gstLAL team has now set up a method to search for the early inspiral of BNSs [144]. With this

method, it performs multiple searches at the same time. Like all the matched filtering pipelines, it

computes a template bank. Yet, instead of performing the matched filter with this template bank

once, it does it six times. Each time, the filtering is done with a different maximum frequency,

meaning that each search looks for a different time before the merger. Ref. [144] ha shown that

they can recover some events into design sensitivity noise around one minute before the merger.

PyCBClive [18, 145], another pipeline based on matched filtering is also able to produce pre-merger

alerts with a similar strategy: where it uses truncated waveform to search for the early inspiral part.

However, these adapted matched filtering techniques have some disadvantages. As explained,
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they sometimes need to run multiple analyses at the same time to check at different times before

the merger. This results in a need for more computational resources. We also should remember

here that these techniques already need parallelization over multiple CPUs to be able to perform

the matched filtering with all the templates of the bank. This is a reason why some people started

to think about other methods to detect CBC events and to produce pre-merger alerts. Some of

those techniques include machine learning and convolutional neural network. The first paper to

use this kind of algorithm was [146], in which CNN was trained as a classifier to distinguish be-

tween noise and noise plus CBC signal coming from massive BBHs. In the following years, multiple

groups have tried to improve this method and adapt it to BNS, or have just tried to consider a

more realistic scenario or increase the performance [147, 148, 149, 150, 151]. Later, some papers

used these neural networks to produce early alerts [152, 153, 130, 131]. We present here one of the

first papers on this subject [130], which is a proof of concept to search for the early inspiral with a

CNN. Then, we present a second paper [131], which deals with the upgrades on this method, and

which works on a more realistic scenario.
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3.3 Article 2

Convolutional neural networks for the detection of the early

inspiral of a gravitational-wave signal

Grégory Baltus, Justin Janquart, Melissa Lopez, Amit Reza, Sarah Caudill, Jean-René

Cudell

Abstract

GW170817 has led to the first example of multi-messenger astronomy with observations from

gravitational wave interferometers and electromagnetic telescopes combined to characterise the

source. However, detections of the early inspiral phase by the gravitational wave detectors would

allow the observation of the earlier stages of the merger in the electromagnetic band, improving

multi-messenger astronomy and giving access to new information. In this paper, we introduce a

new machine-learning-based approach to produce early-warning alerts for an inspiraling binary

neutron star system, based only on the early inspiral part of the signal. We give a proof of concept

to show the possibility to use a combination of small convolutional neural networks trained on the

whitened detector strain in the time domain to detect and classify early inspirals. Each of those is

targeting a specific range of chirp masses dividing the binary neutron star category into three

sub-classes: light, intermediate and heavy. In this work, we focus on one LIGO detector at design

sensitivity and generate noise from the design power spectral density. We show that within this

setup it is possible to produce an early alert up to 100 seconds before the merger for the best-case

scenario. We also present some future upgrades that will enhance the detection capabilities of our

convolutional neural networks. Finally, we also show that the current number of detections for a

realistic binary neutron star population is comparable to that of matched filtering and that there

is a high probability to detect GW170817- and GW190425-like events at design sensitivity.
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3.3.1 Introduction

On August 17, 2017 the first gravitational wave (GW) from a binary neutron star (BNS) system

was observed by the Laser Interferometer Gravitational Wave Observatory (LIGO) [6] and by the

Virgo detector [50].

The Fermi Gamma-Ray-Burst Monitor (Fermi-GBM) [154] and the INTEGRAL satellite [155]

detected the associated γ-ray signal 1.7 s after the coalescence. This event, called GW170817,

provided the first direct evidence of a link between these mergers and short γ-ray bursts. In

addition, it gave an extra confirmation of the existence of GWs and initiated the era of multi-

messenger astronomy (MMA) with GWs [17, 127, 156, 157]. The combined detection of multiple

messengers allows us to improve our understanding of complex astrophysical phenomena, such as

the r- and s-processes at the origin of heavier elements in the Universe. This improvement of MMA

will also allow a better measurement of the Hubble constant and novel tests of General Relativity,

such as a measurement of the speed of GWs [137, 138, 139, 140, 141, 142]. A key element in MMA is

the time delay between the detection of a GW and the identification of the location of its source. In

fact, to discover new physics it is necessary to detect the source in the electromagnetic band at times

close to the merger. However, the time of response varies from one telescope to another, so that a

detection in the GW channels should be made early to leave enough time for the electromagnetic

observatories to focus on the source. For instance, the Swift Observatory [158] is able to focus on

a sky position in only seconds (around 15 s for Swift’s Burst Alert Telescope [158]). Thus, it is

advantageous to detect gravitational waves from the inspiral, before the merger, to enable prompt

detection of the merger event in the electromagnetic band.

The signal of a GW coming from compact binary coalescence (CBC) is composed of three

parts: the inspiral (when the orbital motion of the two objects radiates away energy and the orbit

shrinks), the merger (when they touch and join), then by a ringdown (when the newly formed body

returns to its ground state). As the signal enters in the detector, the signal-to-noise-ratio (SNR)

accumulates. Due to the low frequency and small amplitude of the signal during the early inspiral,

the SNR accumulation is slow, which hinders the detection of the signal. It becomes observable

when the frequency of the early inspiral enters into the sensitivity band of the detector. Upgrading

the current detectors and building the next generation of interferometers, such as Cosmic Explorer

(CE) and the Einstein Telescope (ET) [159, 160, 161], will increase significantly the sensitivity

through, among other things, the reduction of the noise. As a consequence the frequency threshold

will also decrease, leading to the detection of signals with longer inspirals and to a larger number of

detections. Up to now, both the low-amplitude early inspiral and the high-amplitude late inspiral

have been needed to detect BNSs. Some studies already investigate the question of early warning

for the next generation of interferometers [162].

The standard methodology employed to search for GWs relies on matched filtering techniques.

A large bank of template waveforms is built. The templates are then correlated with the input

data of the detector over their sensitivity band, extracting the signals from the detector noise. The

standard matched filtering can be computationally expensive [78, 79, 163, 164], but some pipelines

such as GstLAL [21], PyCBCLive [18], MBTAOnline [165] and SPIIR [129] are adapted to run

in low latency and obtain fast candidate detection, also referred to as trigger.
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Matched filtering techniques usually consider the whole template (meaning the template over

all the sensitive frequencies of the detector) to correlate it with the signal. However in the context

of MMA it is necessary to employ only the pre-merger information of the template for prompt

alerts. In this line of thought, recent advances to perform matched filtering with only a fraction of

the inspiral have been made in Ref. [144], where the authors have implemented a GstLAL-based

pipeline that produces pre-merger alerts.

It enabled them to compute the matched filter, the false-alarm rate, and the sky localisation

using only the information in the low-frequency band of the template, corresponding to the early

inspiral. This showed that this method could detect signals as early as one minute before the

merger. However, the number of early alerts issued is lower than the total number of detections

based on full waveforms.

Due to the computational complexity of matched filtering and the increasing amount of events

related to the future upgrades of the detectors, alternative approaches to overcome the challenges

of MMA are under development. In particular, the use of Machine Learning (ML) methods has

sparked the interest of several authors, who have built Deep Learning (DL) algorithms. These

algorithms are able to capture complex non-linear relationships in the data by composing hierar-

chical internal representations. The main advantage of these methodologies is that the prediction

task is performed rapidly since most of the computations are made during the training stage [146].

Several studies have shown the power of these algorithms for the detection of GW in low latency,

obtaining a sensitivity similar to that of matched filtering techniques [146, 147, 148, 150, 153, 166].

Other recent papers [167, 168, 169, 170, 171] focus on the parameter estimation for CBC events

and other applications of ML for gravitational wave astronomy. Moreover, in [146] and [166]

the authors have presented the generalisation ability of convolutional neural networks (CNNs) by

training with a data set of non-spinning waveforms and obtaining a high performance when testing

with precessing systems.

In [153], only part of the template is used in their DL approach. The authors employed a pre-

trained Resnet-50 network [172] to classify time-frequency maps. The data were acquired from the

detectors after an extra preprossessing step to build a spectrogram of the data. When computing

such figures, depending on the desired resolution, we found that the time to produce a single map

could vary from ∼ 0.5 seconds 3.

In this paper, we propose to use the 1-D whitened strain as the input data of a CNN for pre-

merger alert so that we bypass the computation of the spectrograms. The goal of the algorithm

is to perform a binary classification task to differentiate inputs that contain a GW from inputs

that do not. The classification is made independently for three different categories of objects:

light, intermediate and heavy BNS. The templates with a GW contain only the early inspiral

part of the waveform, which is embedded in colored Gaussian noise, made with the noise power

spectral density (PSD), corresponding to the design sensitivity of LIGO and given in PyCBC [122].

Different categories have different observational time windows (OTW), i.e. the duration of inspiral

seen by each CNN is different depending on the category. A short CNN, as in [146, 147, 166], is

implemented for each category. We stress that this work is a proof of concept to show the promises

3All the tests on CPU were done on a Intel(R) Core(TM) i7-8650U CPU.
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of this type of neural networks. The optimisation of their performance and the inclusion of multiple

detectors will be considered in further studies.

This paper is organised as follows. In the first section, we discuss the data generation. The

second section details the methodology used to design and train the networks. The third section is

devoted to our different results and discusses them. Finally, we draw our conclusions and consider

future enhancements to be brought to our detection system.

3.3.2 Data generation

SNR and Partial-Inspiral SNR

The final output of a matched filtering algorithm is the signal-to-noise ratio (SNR). It measures

the match between the template and the data. Mathematically, the SNR (ρ) [20] is defined as

ρ =

(
4Re

(∫ fmax

fmin

d̃(f)h̃∗(f)

P(f)
df

))1/2

, (3.12)

where h̃∗(f) and d̃(f) are respectively the complex conjugate of the Fourier transform of the tem-

plate and the Fourier transform of the data. P(f) is the noise power spectral density. Here, fmin

is the minimal frequency in the detector sensitivity band and fmax is the maximum frequency

considered, typically the Nyquist frequency, i.e. half of the sampling frequency.

The SNR represents how well a typical template h matches the data d, which is the addition of a

GW signal and noise. A matched-filtering-based search finds the template that maximises the SNR

and is optimal for Gaussian stationary noise and an exactly known signal. For this type of noise,

when the signal does not contain a GW, the SNR fluctuates around a mean value. Nonetheless, if

a GW enters the detector, the SNR increases and when that exceeds a predefined SNR threshold,

a candidate trigger event is recorded.

However, the noise from the detectors is neither Gaussian nor stationary, making the search

more complex. For example, glitches (spurious noise variations in the detector band) can occur

and lead to a peak in SNR which can mimic a GW trigger. To avoid the detection of noise,

the matched filtering-based pipelines often require the detection to be in coincidence in different

detectors. Additionally, more elaborate tests also exist, such as the χ2 test [173], that can downrank

the noise artefacts in the final candidate lists. The confidence one has about the detection is also

often translated by a false-alarm-rate that gives the frequency at which noise fluctuations lead to

the same ranking statistic value. This ranking is a multi-variate statistic that includes different

statistics such as SNR and χ2 [79].

The optimal SNR is obtained when the template is matched with itself [20]:

ρopt =

(
4Re

(∫ fmax

fmin

|h̃(f)|2

P(f)
df

))1/2

.. (3.13)

This value represents the loudness of the signal in the detector.

In the context of pre-merger analysis, only part of the inspiral is considered, and the loudness

of the signal is not represented anymore by the optimal SNR. Instead, we define it by a partial
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inspiral SNR (PI SNR), which has the same definition as the optimal SNR in Eq. (3.13), but where

the template is now the partial template containing only the early partial inspiral (hPI). In the

frequency domain, it is equivalent, for a given waveform, to replace the fmax in Eq.(3.13) by the

maximum frequency reached by the template in the part of the inspiral considered. Typically, this

frequency will be below 50 Hz (instead of thousands usually), reducing the value of the integral.

The SNR increases more rapidly around the late inspiral and the merger than during the early

inspiral. Fig. 3.11 shows this behaviour as it represents the value of the PI SNR as a function of

the fraction of the signal that is taken into account.

Figure 3.11: Evolution of the PI SNR as a function of the duration of the early inspiral for a BNS
with component masses of 1 M�. On the vertical axis, the PI SNR is normalised by the optimal
SNR, and on the horizontal axes, duration of the early inspiral is normalised by the duration of
the full template.

The behaviour of the PI SNR comes from the relation between frequency and time. At the

lowest order in velocity, one finds:

f(t) =
1

π

(
GMc

c3

)−5/8( 5

251

1

(tm − t)

)3/8

, (3.14)

where f(t) is the frequency at time t, Mc is the chirp mass defined in terms of the component

masses m1 and m2 of the system: Mc = (m1m2)3/5/(m1 +m2)1/5 and tm is the time of the merger.

This behaviour is illustrated in Fig. 3.12, which shows the full and partial templates and their

frequency evolution.
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Figure 3.12: The top panel represents an intermediate BNS template where the component masses
are m1 = m2 = 2M�. The bottom panel shows the frequency evolution of the template with time.
In both plots, the inspiral part considered for our ML-based approach is coloured in red.

BNS categories

The duration of the observable CBC signal depends mainly on the chirp mass Mc. Indeed, at the

lowest order in velocity4, the duration of the signal is given by [174]

τ(s) ' 3

(Mc/M�)
5
3

[(
100 Hz

flow

) 8
3

−
(

100 Hz

fhigh

) 8
3
]
, (3.15)

where flow is the lowest frequency in the detector sensitivity band and fhigh is the highest frequency

reached by the binary (approximated by the frequency of the innermost stable orbit). From this

expression it is clear that, for a fixed lowest frequency flow, if the chirp mass Mc increases, the

duration of the detectable signal shortens.

Furthermore, at the lowest order in velocity, the SNR also has a simple expression [175]:

ρ ' 1

2

√
5

6

1

π
2
3

c

D

(
GMc

c3

) 5
6√

I g(θ, φ, ψ, ι). (3.16)

In this expression, c is the speed of light, D is the luminosity distance, G is the gravitational

constant, Mc is the chirp mass, I is the frequency integral

I =

∫ fmax

fmin

(f ′)−7/3

P (f ′)
df ′ , (3.17)

and g(θ, φ, ψ, ι) is a function that depends on the orientation of the orbital plane and on the sky

position through the antenna pattern of the detectors [176]. From Eqs. (3.15) and (3.16) one can

see that if the chirp mass decreases, the optimal SNR of the signal decreases while its duration

4In the early inspiral, the strong field effects and the velocities are rather small, which means that the expression
derived for the lowest order in velocity approximates well the behaviour of the binary systems.
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BNS light intermediate heavy

Mc (M�) 1.13 - 1.56 1.56 - 2.09 2.09 - 2.61

flow (Hz) 20 20 20

Duration (s) 100 - 180 65 - 100 45 - 65

OTW (s) 80 50 30

Fraction of signal 0.44 - 0.8 0.5 - 0.77 0.46 - 0.66

Early alert
before merger (s)

20 - 100 15 - 50 15 - 35

Table 3.1: Summary of the CBC merger types for the different CNNs. A different OTW is con-
sidered for each category because of the difference in duration of the signals depending on the
component masses. The fraction of signal corresponds to the time passed by the signal in the frame
w.r.t the total duration. The early alert time is the duration between the end of the OTW and the
end of the signal. For each OTW, the minimum and maximum component masses are 1 and 3 M�.

increases.

As we can observe in Fig. 3.11, the PI SNR depends on the fraction of the signal considered,

as well as on the highest frequency reached within the observation time. Therefore, observing the

signal for a longer time would lead to a higher PI SNR, making the signal easier to detect. However,

we also want to detect the signal as early as possible in order to have an efficient pre-merger alert

system. This leads to a trade-off in our method, as we want to have a high PI SNR, but also

prompt detections.

Since we know that the time evolution of the amplitude of the signals will be different depending

on the masses, we split the BNS set into three different categories: light, intermediate and heavy

BNS. For each of these categories, we use a different observation time window (OTW), meaning

that we train the networks on a different length of data. Hence, our algorithm consists of 3 CNNs,

one for each category and input size. Note that the OTW is a hyperparameter that will be tuned

in a later work. A discussion of the influence of this parameter will be discussed in section IV.

Table 3.1 summarises the characteristics of the different categories, which are classified according

to their chirp mass Mc. In order to give an intuition for the masses of the objects present in each

category, we give the highest and lowest chirp masses of each category and the component masses

for an equal-mass system5. For each of the categories, in addition to the constraint on the chirp

mass, we also restricted the individual component masses to be between 1M� and 3M�, which

corresponds to a broad mass range for neutron stars. Note also that spin effects are absent at this

order in v
c , so that we considered only non-spinning BNS.

Data set generation

The inputs of the neural networks are 1-dimensional whitened time series, made of Gaussian noise

generated from the design sensitivity PSD of Advanced LIGO (aLIGO) with a GW added in some

cases. Indeed, the network is trained as a classifier between an event class (noise + template) and

a noise class (only noise). The GW data analysis and generation has been performed with the

5Non-equal mass systems were also considered during the training and testing of our networks.
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PyCBC package [122].

We start by generating 120 seconds of coloured Gaussian noise. Then, a non-spinning BNS

waveform is injected into it. The approximant used is SpinTaylorT4 [177] and it is generated with

a minimum frequency of 20 Hz.

By default, we employ the optimal sky localisation considering only the plus polarisation of

the GW aligned with the arms of the interferometer to generate training, validation and testing

sets. Note however that when we later will test the performance of the networks with realistic BNS

populations, similarly to [174], the sky location will not be the optimal one anymore.

Since our objective is to train the networks on the early inspiral part of the waveforms, we

select the desired OTW for the generated strain and its PI SNR is computed. In Fig. 3.13, we

plot the waveform embedded in Gaussian noise. The vertical red lines represent the portion of the

strain in the OTW. Note that the frame we use is always starts at the beginning of the 120 second

injection it is taken from. Finally, we whiten the stretch of data under consideration and normalise

its amplitude by dividing all the points by the maximum amplitude in absolute value. Therefore,

all points are in [−1, 1]. For the frames containing a GW, the event characteristics, such as the

distance, are chosen so that the PI SNR distribution covers a wide range.

Figure 3.13: Representation of the noise and the injected waveform before the whitening. The
CBC signal corresponds to a BNS where both component masses are 1.8M� and the binary is
placed at a luminosity distance of 100 Mpc. At the time of training and testing of the CNNs, we
do not pass this full frame to the network, but only the first 50 s (denoted by the two red lines),
which is the chosen OTW length for this BNS category.

3.3.3 Methodology

Architecture of the CNN

The goal of this search is to perform a binary classification task, to distinguish the OTWs with

GW signals from those without, with a short CNN, similarly to [146, 147, 166]. The CNNs were

implemented with the PyTorch package [178]. We use cross entropy as the loss function and

ADAMAX as the optimizer, which is a variant of ADAM, based on the infinity norm [132]. Several
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hyperparameters such as the learning rate, the batch size, the numbers of layers, the kernel size,

were tested, but in this work we only report on the ones that provided the best performance.

After several trials, we found that the best performance with the minimum computational cost

was acquired for 5 convolutional layers. It was found that a bottleneck structure, i.e. starting with a

large kernel size, making it smaller in the middle and enlarging it again afterwards, yielded the best

results. We represent the best-performing architecture in Fig. 3.14 and in Appendix A. The output

of the network is a probability vector which contains the probabilities of the template belonging

to the event class, where the event is present into the noise, or to the noise class otherwise. The

classification task is performed according to a predefined threshold, which is associated with the

False Alarm Probability (FAP).
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Figure 3.14: Architecture of the best performing CNN for all the categories. From one BNS type
to the other, one needs to adapt the input size.

Training and testing of our neural networks

For each category we have a predefined OTW, given in Table 3.1. Due to the varying size of the

inputs we perform a binary classification task with a tuned replication of the CNN for each BNS

category. The data set is balanced, i.e. it contains 4000 frames of the noise + signal class, and

4000 frames of the noise class, where each of the frames corresponds to an OTW, built as described

in the previous section. We employ 80% of the data set for training and 20% for validation. The

performance of the network in the training and the validation sets is compared to avoid overfitting.

Finally, we test the network with 2000 frames of the noise + signal class, where the events are
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chosen to fall into the distance range considered for each BNS category, and 2000 frames of the

noise class. More information about the distributions of the data set can be found in Appendix B.

To assess the performance of each neural network, we classify its output for a given data

frame into true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN),

according to the standard confusion matrix [179].

We also define the True Alarm Probability (TAP) and the False Alarm Probability (FAP) as

follows:

TAP =
TP

TP + FN
FAP =

FP

TN + FP
. (3.18)

The TAP corresponds to the number of noise + signal classified as such over all the number of

frames that belong to the noise + signal class, whereas the FAP represents the number of noise

frames which are misclassified over the number of frames that belong to the noise class. The

performance of the networks will be evaluated based on the TAP for a fixed FAP, which is related

to the threshold discussed in the previous subsection.

For this paper, we decided to present all the results for an FAP of 1%. This can be considered to

be high if compared with the current GW searches, but we want to insist on the fact that this work

is a proof of concept and that our pipeline uses only one detector. We expect that, by considering

coincident triggers in Nd detectors, the FAP will roughly go as 0.01Nd . This is an approximation

where we assume that the three channels are independent and that, at each instant, each CNN has

1% chance to claim a false detection.

3.3.4 Results and discussion

In this section, we first discuss the performance of the three networks. Then, we report on the

results of our method when applied to a realistic population of BNSs. Finally, we discuss a first

attempt at curriculum learning, which is promising for the future.

Performance of the CNNs

In Fig. 3.15 we plot the TAP as a function of the distance in Mpc and the PI SNR for each category

individually. We see that the network trained on heavier objects is able to reach higher distances.

From Eq. (3.16) we can observe the same behaviour, as for smaller chirp masses we need to decrease

the luminosity distance in order to keep the same SNR value. We obtain the best performance

for the heavy BNS category. The intermediate and low categories have very similar performance,

where we see that the 2σ interval of the two categories overlaps when considering the PI SNR. We

also note that, since the architecture of the network has been optimised for the heavy category, it

is expected that it performs best for this BNS category.

Note that the CNNs are sensitive to the accumulation of the signal. To confirm this, we trained

and tested the networks on data with low frequency cut-offs set to higher values than the usual

20 Hz. This is a way to reduce the PI SNR of the injected signal while maintaining the same

maximum amplitude. For the testing set, we obtained an 88% TAP for a cut-off at 20 Hz, and 71%

for a low-pass frequency at 26 Hz, showing that the CNN is sensitive to the PI SNR for a fixed

maximum amplitude. Similarly to matched filtering, a CNN is designed to recognise patterns and,
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in this context, the larger PI SNR means that the signal is present for a longer time.

Figure 3.15: The left panel represents the results of the three networks, each trained on its
category, as a function of the distance. In the second panel, we compute the mean µ PI SNR
and its standard error ε, as µ(PI SNR) ± ε(PI SNR) for each distance and a confidence of 2σ,
represented by the coloured band. For each graph the FAP is fixed at 0.01.

From Fig. 3.15, we see that Network 1 is able to reach distances larger than 60 Mpc before its

TAP has a departure from 100%. As the first BNS detected GW170817 was located at a distance of

the order of 40 Mpc, our method will have a high probability to detect similar signals when present

in noise at design sensitivity. This means that our method is able to recover realistic signal from

Gaussian noise when only the inspiral part is present. Network 2, which is trained on intermediate

BNSs, is able to have a better performance at higher distances, which is expected based on the chirp

mass - PI SNR relation. Finally, Network 3 has a TAP of 100% even for a distance of 125 Mpc,

meaning that the efficiency of detection is still high for distances similar to that of GW190425, the

second BNS discovered by the LIGO-Virgo collaboration [108].

We now perform a series of tests to evaluate the influence of the length of the OTW. Indeed,

this is an important hyperparameter that represents the fraction of the signal seen for a given event.

It needs to be optimised to have as many detections as possible while keeping a long enough delay

between the trigger and the merger time. In Fig. 3.16, we show the TAP for Network 3 when using

different OTW. As expected, a larger OTW increases the TAP, but is associated with a shorter

time lapse before the merger.

We also test whether a network trained on a certain category is able to find signals that belong

to a different category. We concentrate on Network 3, which is trained to detect heavy BNSs, and

check whether it is capable of detecting intermediate BNSs. For this, we increase the OTW of

intermediate BNSs to 30 s, to be able to feed the data set to Network 3. We find that the TAP

decreases significantly. Network 2, which is trained to detect intermediate BNSs, yields a TAP of

∼ 68%, while Network 3 reaches only ∼ 16%. This is also understandable in terms of PI SNR, as

the reduction of the OTW duration leads to a decrease in the PI SNR, and we already established

that this is the key parameter for detection.

We now compare the time needed for our CNN to analyse one frame with the time needed for

matched filtering. When applying matched filtering on a 50 s frame, similar to those passed to the
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Figure 3.16: Representation of the performance of the CNN trained on the heavy BNS systems
for different OTWs. One sees that a longer window gives a higher number of detections. However,
it also means the detection happens closer to the merger time. The mean times before merger are
35, 30, 25, and 20 seconds for the 20, 25, 30, and 35 seconds OTW, respectively.

CNNs and with only the optimal template, the computation time is ∼ 0.05 s. This is just the bare

minimum time needed to get the SNR in matched filtering. In this traditional method, several

templates are tested and the trigger is not only assigned an SNR, but also other statistics, such

as the FAR. As a consequence, the time to get the final information is longer [21]. Analysing the

same frame using our CNN on a Nividia GeForce RTX 2070 SUPER GPU, we get the probability

of an inspiral to be present in ∼ 0.005 s. Therefore, the time needed to analyse the frame and get

a prediction probability is improved by a factor of 10.

Test on a realistic population of BNS

In order to have a better grasp on the performance of our networks with respect to matched filtering,

we also test them on a simulated realistic population of BNS systems. Therefore, we compute both

the optimal SNR and the PI SNR for each BNS with a high-frequency cut-off of 32 Hz, similarly

to what was done in [144]. When performing the run with a high-frequency cut-off and the test

with our CNNs, we only consider the events that have a full matched filtering SNR higher than 8.

This basic computation is performed for the high rate presented in [180]

The cut-off frequency of 32 Hz has been chosen to give results comparable to those in [144],

while having in-band times that correspond to the OTWs defined in Table 3.1.

The population synthesis is performed using the code of [174], with minor changes in order to

suit our framework. For example, the PSD employed is the same as for the noise generation, the

low frequency cut-off used is 20 Hz, and we generate the equivalent of 5 years of data.

One shortcoming of this procedure to generate a realistic population of BNSs is that, although

it is fast, it is based on analytical approximations. As a consequence, we do not inject the signals

in noise to compute the SNR, and are not able to compute the matched filtering false alarm rate
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Figure 3.17: The PI SNR for a low-pass filter at 32 Hz for each BNS with a full SNR higher than
8. The black crosses represent the events missed by the CNNs, and the red squares are the events
correctly found. The orange diamonds are triggers that correspond to noise fluctuations (false
positives).

(FAR) for such frames. So, we cannot use the criterion of Ref. [144] (namely an SNR threshold

followed by an FAR) and the direct comparison is non-trivial. Our procedure confirms the difficulty

to detect those events with matched filtering methods.

Once we have selected the events based on the analytical approach, we inject them in design-

sensitivity noise and pass the frames to the CNNs. Fig. 3.17 represents the events detected, those

missed and those misidentified. We also generate the same noise for each event but without injecting

the BNS in it. We test our networks on these pure noise frames to highlight the false positives. As

shown in Fig. 3.15, the networks detect most of the BNSs which have a PI SNR sufficiently high.

We also want to emphasise the fact that matched filtering applied for pre-merger alert also needs

the PI SNR to be above a threshold to lead to a trigger. This threshold depends of the framework,

and the number of detectors included. We can see that, if one chooses an SNR threshold of 8, our

results are comparable to those of matched filtering. Nevertheless CNNs are much faster6.

A key feature employed in [144] is the network of detectors. Requiring coincident detections

in the different detectors helps to remove signals due to noise artefacts. Another advantage is that

the signal can accumulate in several detectors simultaneously. Additionally, the sky localisation

is found using the data in the three detectors [181]. For a neural network, the input will have a

certain number of channels, one for each detector. Then, the input will be convolved through the

network, finding relationships between the different channels. This should decrease the FAP of our

detector network and enable us to find the sky localisation. This will be explored in a future work.

6Here, we neglected the latency needed for the data transfer. It would be, in the worst case, comparable to that
of [144].
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Figure 3.18: Comparison of the TAP as a function of the distance for the GW sources with and
without basic curriculum learning for the heavy BNS class. One sees that even a very rudimentary
curriculum learning setup helps improve the TAP at higher distances. Note that the blue curve is
the same than in Fig. 3.15

Basic curriculum learning exploration

Aside from the architecture, another key factor in the development of DL algorithms is the training

procedure. From the population analysis we conclude that the networks see the loudest events,

i.e. those with the highest PI SNR in the OTW (or the highest SNR in the detector for the full

template). The networks have been trained on a very wide distance range for the events (hence a

wide PI SNR range), but it is hard for them to detect smaller PI SNR, as we can see in Fig. 3.15.

A way to overcome this obstacle is by training the CNNs with curriculum learning. The main idea

is to train the network on batches of PI SNR, first on the easy examples, namely the frames with

highest PI SNR. Then the difficulty is increased iteratively by decreasing the PI SNR, until the

hardest examples are reached, namely the frames with the lowest PI SNR (see [166] or [182] for an

example).

With this idea in mind, we generate an extra batch of training data with higher distances and

lower PI SNR. Thus, we train on the first data set, store the weights, then train on the newly

generated set starting with the previously stored weights. The results of this test can be seen in

Fig. 3.18. It can be observed that the TAP increases significantly even if we are using only one extra

data batch. As a consequence, we expect the efficiency of our networks to increase substantially

once they are trained through the curriculum learning methodology.

3.3.5 Conclusion

In this work, we have introduced a new approach based on short CNNs for pre-merger alert. We

have shown that it is possible to detect BNS events when only part of the early inspiral is present

in the data stretch under consideration. For this purpose, we have introduced three different

neural networks, each trained on a particular range of chirp masses for the BNS systems. Such

developments are important in the context of MMA, as the prediction stage is computationally
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less expensive and usually faster than for traditional matched filtering. We have also shown that

our method is able to recover signals coming from a realistic BNS population simulated at design

sensitivity, and compared our detection statistics to those obtained with current matched filtering

pipelines. In addition, we also suggested some improvements in the training method, as well as in

the structure of our CNNs, to enhance their performance further, leading the way to a pre-merger

alert system that would be competitive.

This paper was presented as a a proof of concept and we will continue to build upon this

basis to upgrade our networks and get an even better performance. The next steps, which will

probably require more complex networks, are the consideration of multiple interferometers and

the implementation of sky localisation. Furthermore, curriculum training will be systematically

deployed, as this will allow us to train on a bigger dataset with smaller PI SNR. Indeed, the

training set currently has a minimum PI SNR around 8. With curriculum learning it will be

possible to lower this value. A fourth CNN trained to retrieve the full BNS signal regardless of the

category will be built. This will complete the pipeline as the events that are not detected based only

on their inspiral would still be found in low-latency. Another recent approach [152] used CNNs to

remove some non-linearly coupled noises and detect the early phase of a gravitational wave signal.

This further reinforces the case for using CNNs in early alert systems.

It has already been shown in various works that ML-based algorithms can help GW astronomy.

In this work, we have shown that it can also be used to solve one of the challenges that will arise

in the future, namely the early detection of BNS mergers in the context of MMA. However, we

still want to improve the performance and add some features, such as sky location. These are the

next milestones which will probably require more complex networks and more advanced training

methods.
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3.3.6 Appendix

Appendix A: Details on the architecture of the CNNs

In Section III we briefly described the networks, but in this section we provide with more details

about the architecture (see Table 3.2), and the different hyper-parameters fine-tuned for heavy

BNS category. The batch size of the training was 40 for networks 1 and 2, and 30 for network 3,

due to memory issues. We employ the cross-entropy as loss-function. The optimizer is Adamax
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[132] with a learning rate of 8 × 10−5 and a weight decay of 10−5. We trained the networks over

40 epochs. Usually, the validation and training loss drop before epoch 5, as we show in Fig. 3.19,

where plot the training and validation loss of the neural network 3, on heavy BNS category. As a

consequence, and to avoid over-fitting, we generally use early stopping (around the 12th epoch).

The training of the three networks was done with a dataset of 8000 frames. The data sets are

balanced so that half of them correspond to noise and the other half are noise + waveform. The

testing was performed with a testing set of 4000 frames, where again, half of them correspond to

noise, the other half are noise + waveform.

Layers Input Output Kernel size Stride Padding Dilation Activation

BatchNorm 1 1 - - - - -

Conv1D 1 32 128 1 0 1 ReLU

MaxPool1D 32 32 4 4 0 1 -

Conv1D 32 64 32 1 0 1 ReLU

MaxPool1D 64 64 4 4 0 1 -

Conv1D 64 128 16 1 0 1 ReLU

MaxPool1D 128 128 4 4 0 1 -

Conv1D 128 256 32 1 0 1 ReLU

MaxPool1D 256 256 4 4 0 1 -

Conv1D 256 612 128 1 0 1 ReLU

MaxPool1D 612 612 4 4 0 1 -

Dense X 128 - - - - ReLU

Dense 128 2 - - - - SoftMax

Table 3.2: Complete architecture of our CNNs. Between the last MaxPool1D layers we flatten all
the channels to obtain an output of dimension 1 and length X (the X depends of the OTW).

Figure 3.19: The loss variation for the training set and the validation set of CNN 3 as a function
of the epoch.
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Figure 3.20: Top left: Distribution of SNR for the training sets. Top right: Distribution of SNR
for the testing sets. Bottom left: Distribution of PI SNR for the training sets. Bottom right:
Distribution of PI SNR for the testing sets.

Appendix B: Data distribution

In this section we represent the data distribution with respect to the to SNR and PI SNR. Each

distribution employed for training contains 4000 frames, and each distribution employed for testing

contains 2000 frames. In Fig. 3.20 we observe that the main difference between the data distribu-

tions against SNR or PI SNR is a shift and a decrease in the range of PI SNR due to the removal

of the merger from the frames. Indeed, the SNR is in the range ≈ [20, 130], while the PI SNR is in

the range ≈ [1, 70]. Therefore, due to the smallness of the PI SNR, the classification task becomes

more difficult.
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Convolutional neural network for gravitational-wave early alert:

Going down in frequency

Grégory Baltus, Justin Janquart, Melissa Lopez, Harsh Narola, Jean-René Cudell

Abstract

We present here the latest development of a machine-learning pipeline for pre-merger alerts from

gravitational waves coming from binary neutron stars (BNSs). This work starts from the

convolutional neural networks introduced in [130] that searched for the early inspirals in

simulated Gaussian noise colored with the design-sensitivity power-spectral density of LIGO. Our

new network is able to search for any BNS with a chirp mass between 1 and 3 M�, it can take

into account all the detectors available, and it can see the events even earlier than the previous

one. We study the performance of our method in three different scenarios: colored Gaussian noise

based on the O3 sensitivity, real O3 noise, colored Gaussian noise based on the predicted O4

sensitivity. We show that our network performs almost as well in non-Gaussian noise as in

Gaussian noise: our method is robust w.r.t. glitches and artifacts present in real noise. Although

it would not have been able to trigger on the BNSs detected during O3 because their

signal-to-noise ratio was too weak, we expect our network to find around 3 BNSs during O4 with

a time before the merger between 3 and 88 s in advance.
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3.4.1 Introduction

Multi-messenger astrophysics (MMA) makes use of messengers from different forces of the Universe

to provide a wealth of information about various astrophysical processes. From previous investi-

gations it is well-known that the combination of at least two of these signals gives qualitatively

different and complementary types of information, capable of probing down to the densest and

most energetic regions of cosmic objects, which were hidden from astronomers’ sight up until now

[183, 184, 185].

In the context of gravitational waves (GW) combined with other astrophysical signals, it has long

been suggested that short gamma ray burst (GRB) might be related to binary neutron star mergers

[186], which fall in the sensitivity band of second generation ground based-detectors [6, 50, 187].

Several studies investigated the expectations of electromagnetic (EM) follow-up efforts during the

Advanced LIGO and Virgo era of compact binary coalescence (CBC) [78, 188]. On August 17, 2017

the Fermi Gamma-ray Burst Monitor [154] announced the detection of a GRB, later designated as

GRB170817A [126].

Approximately 6 minutes later, a GW candidate, later re-labeled as GW170817, was regis-

tered in low latency based on a single-detector analysis of the Advanced Laser Interferometer

Gravitational-wave Observatory (LIGO) Hanford data and disseminated through a Gamma-ray

Coordinates Network (GCN) Notice. A rapid re-analysis of data from Hanford, Livingston, and

Virgo confirmed a highly significant, coincident signal [127]. An extensive observing campaign was

launched across the electromagnetic spectrum in response to the Fermi-GBM and LIGO–Virgo

triggers, which led to the detection of the kilonova associated with GW170817, later called AT

2017gfo [189].

In recent times, there has been a sparkling interest in early warning (or pre-merger) alerts of

BNS in the field of GW for EM and astro-particle follow-ups [18, 130, 144, 145, 152, 190, 191,

192, 193, 194], since the radiation emitted from these systems enters the sensitive region of the

interferometers during the inspiral phase [195, 196]. Assuming all BNS’s produce a short GRB

with an X-ray, optical and radio afterglow, an LVK network, and a top-hat jet model, Ref. [197]

predicts rates for the joint detections of 0.02− 27 per year for X-ray band, 0.01− 190per year for

optical band, and 0.02 − 25 per year for radio band, respectively, at design sensitivity for a three

detector network [197]. It is relevant to note that the large uncertainty is due to the fact that

BNS merger rate is not well constrained. The improving sensitivity of second-generation detectors

and the even better sensitivity for the third-generation detectors, such as Cosmic Explorer and the

Einstein Telescope [159, 160] will lead, via an increase in the signal-to-noise ratio (SNR), to a major

improvement in the early-detection and sky-localization capabilities [191, 192, 198]. Another key

element to develop MMA further is the design of low-latency pipelines for the production of real-

time GW alerts, or even pre-merger alerts. The current state-of-the-art employs matched filtering

techniques [78] to perform online analyses via the pipelines GstLAL [21, 22, 77, 79], PyCBC [18, 20,

128, 163, 164, 173, 199], MBTAOnline [165, 200], cWB [201, 202, 203], and SPIIR [129]. We refer

the reader to [156] and [5, 8, 204] for a summary of the low-latency efforts carried out by the LIGO-

Virgo collaboration during the second and third observing runs. Recent investigations in the GW

field have focused on Machine Learning (ML) algorithms, due to their success in different tasks and
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domains. The main advantage of ML techniques is their rapidity because most of the computations

are made during the training stage. A widely used ML method for pattern recognition is based on

convolutional neural networks (CNNs) [205], in the context of GW it has been applied to different

tasks such as CBC identification [147, 148, 149, 150, 151], burst detection [182, 206, 207, 208], sky

localization [168, 171, 209], glitch classification [210, 211] and synthetic data generation [212, 213].

See [170] for a review on this topic.

ML methods have also emerged as a new tool in the context of early warning [130, 152], allowing

us to flag prompt triggers for GW candidates. The final goal of this work is to detect BNS signals

before the merger. To do that, we have design a single CNN that takes as input the time-series

data from all the online detectors and returns a classification between two classes: pure noise or

noise plus inspiral. In this paper, we build on our previous work [130], improving on the techniques

previously developed, and testing them on more realistic scenarios: we use real O3 noise, as well as

the data from all available detectors. In addition, we retrained our network on predicted O4 noise

and give expected efficiencies for this run.

The details of the differences with [130] are as follows:

– the addition of the spin effect to the BNS waveforms;

– a uniform sky location of the injections;

– the injection of simulated BNS signals in simulated O3 noise, real O3 noise and simulated O4

noise;

– a decrease of the minimal cutoff frequency from 20 Hz to 10 – 15 Hz;

– a fixed input-signal duration of 300 s with a sampling frequency of 512 Hz that allows to

analyse any BNS signal for all allowed neutron star masses;

– the implementation of curriculum learning [214].

This paper is organized as follows: in Section 3.4.2, the method is explained. Subsection 3.4.2

introduces the definition of the SNR and the partial inspiral signal-to-noise ratio (PISNR) used in

this work, as well as the relation between the frequency of a waveform and the time before the

merger. The description of the data generation and the training strategy is made in Subsection

3.4.2. The last part of this section, 3.4.2, describes the architecture of the CNN used in this paper.

Section 3.4.3 presents the results and the performance of our method in the three types of noise,

as well as studying the number of BNS that are expected to be found in advance by our network

in O4. Finally, we give our conclusions in section 3.4.4.

3.4.2 Method

Loudness and frequency evolution of the signal

In GW-searches, the matched-filtering SNR (ρ) [18, 175] is used to verify how well a template

matches the data. The SNR definition follows that of the FINDCHIRP algorithm [20] as imple-

mented in PyCBC [122]. One first transforms the signal s(t) and templates h(t) to frequency space:
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h̃(f) =

∫ ∞
−∞

h(t)e−2πiftdt (3.19)

and similarly for s̃(f). One can define the matched filtering output [175]

x(t) = 4R
∫ ∞

0

s̃(f)∗h̃(f)

Sn(f)
e2πiftdf (3.20)

where Sn(f) is the one-sided noise strain power spectral density (PSD) of the detector and the *

superscript denotes complex conjugation. One can show that this matched filtering output still

depends on the phase at a reference time of the signal, for instance at the time when it enters the

frequency band of the interferometer. It is possible to minimize x(t) analytically w.r.t. that phase

[19, 20] and express the result via the complex z(t):

z(t) = 4

∫ ∞
0

s̃(f)∗h̃(f)

Sn(f)
e2πiftdf (3.21)

as

min(x(t)) = |z(t)|

The variance of |z(t)| is given by:

σ2 = 4

∫ ∞
0

h̃(f)∗h̃(f)

Sn(f)
df. (3.22)

The signal-to-noise ratio is then taken to be [19]

ρ(t) =
|z(t)|
σ

. (3.23)

For a network of N detectors, identified by an index i = 1...N , one defines the network SNR as

ρnet(t) =

√√√√ N∑
1

ρ2
i (t). (3.24)

The SNR is a key quantity for the searches based on matched filtering, since it describes the

amount of overlap between a template and an unknown signal. In these searches, the strategy is

to create a template bank of pre-computed waveforms and use it to calculate the SNR over all the

data strain. As a first step, a trigger is created when the SNR reaches a maximum value higher

than a given threshold. After that, it undergoes a statistical treatment to be confirmed as a GW

candidate [18]. As we are interested in searching for the early inspiral, a more meaningful indicator

will be the partial-inspiral signal-to-noise ratio. It is defined as the SNR in which the template h

is the partial template that contains only the fraction of the inspiral part of the waveform that our

network tries to identify. For more details about the PISNR, and how it evolves depending on the

length of the template, we refer to section II. A. of Ref. [130].

At the lowest order in velocity, the frequency f at a time t depends on the chirp mass Mc of
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the system and the merger time tm:

f(t) =
1

π

(
GMc

c3

)−5/8( 5

251

1

(tm − t)

)3/8

. (3.25)

So for a given chirp mass, if we say that we can detect an event (tm− t) seconds before the merger,

it is equivalent to say that we detect the signal when the maximum frequency is f(t). Fig. 3.21

represents the time and frequency evolution for a GW.
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Figure 3.21: The top figure represents a GW signal corresponding to two objects of mass 1.8 M�.
The bottom figure represents the evolution in frequency for this binary.

Data and training strategies

In our previous work [130], we have shown the possibility to detect the early inspiral of a BNS

injected in Gaussian noise. In this work, we want to turn to a more realistic scenario, using real

O3 noise. To investigate the difference in performance between Gaussian and real noise, we also

inject the signals in colored Gaussian noise generated from the O3 representative PSD. In addition,

to assess the performance of our network in future observation runs, we consider colored Gaussian

noise generated from the predicted O4 PSD.

The corresponding PSDs are represented in Fig. 3.22. To generate a frame of simulated O3

Gaussian noise, we use the PSDs from [181], provided by PyCBC [122]7. To obtain data of O3, we

directly download the strain of the detectors [5, 8, 204] using the GWpy package [215]. To be closer

to a real time search, these downloaded strains are the ones recorded in low-latency, meaning that

they are not filtered and cleaned as extensively as the final noise 8. To generate the O4 Gaussian

7The PSD used for Gaussian O3 LIGO is aLIGOaLIGO140MpcT1800545, the one for Virgo is
aLIGOAdVO3LowT1800545, both are provided by LIGO and Virgo and implemented via PyCBC [122].

8To download the real O3 data, we use the channels H1:GDS-CALIB STRAIN, L1:GDS-CALIB STRAIN,
V1:Hrec hoft 16384Hz, and the frame type: H1 llhoft, L1 llhoft, V1Online in GWpy.
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noise, we use the predicted O4 PSD coming from the observing scenarios [181, 216]9.

Figure 3.22: Representation of the different PSDs, for the Livingston detector, used to generate
the different data sets. We also show the design sensitivity PSD provided by PyCBC [122] used
in [130].

Since the problem at hand can be solved as a classification task, we need a data set containing

two classes: noise and noise plus inspiral, also known as injections. For the injections, we generate

waveforms using the approximant SpinTaylorT4 [177]. We choose the component masses to be

uniformly distributed between 1 and 3 solar masses to cover all the possible BNS systems [25]. The

sources are uniformly distributed over the sky, and we also include the spin effects. With these

parameters and a lower frequency of 10 Hz, the simulated signal is always longer than 300 seconds.

In such a way, the inputs of the network contain only the early inspiral part (see Fig. 3.23 for an

illustration). After injecting the simulated signal into the noise the frames are whitened, and we

apply a low-pass filter at 100 Hz and a high-pass filter at 10 Hz. For O3 real noise, some significant

peaks can appear in the whitened strain due to non-Gaussian effects. In our approach, these effects

are vetoed by zeroing them out, see appendix 3.4.5. Afterwards, the final frame is renormalized,

making all the values in the frame between −1 and 1. This will be the input data of the network,

and we refer to a single sample as a frame.

For the training and testing, we choose a distribution in distance such that the distribution in

PISNR is an inverse Gaussian with a mean of thirty-five and a scale of one hundred 10. Despite

having a large data set containing one million frames, we have observed a low performance when

we decrease the maximum frequency to ∼ 25 Hz. This is because the CNN is good to detect a

variation of frequency, and for earlier inspiral phase, the signal becomes more monochromatic.

9The LIGO and Virgo PSDs used for O4 correspond to the ones shown in Fig. 1 of [181], with the BNS detector
horizon at 160 Mpc for the LIGO detectors and the horizon at 120 Mpc for the Virgo detector.

10We found that the inverse Gaussian (Wald) distribution fits better our goal. Indeed, this distribution gives a few
very high PISNR events that enable the network to start its learning process.
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Figure 3.23: Representation of the different types of noises for the Hanford detector used together
with an injection similar to GW170817, i.e. with neutron star masses of 1.46 and 1.27 M� [17].
Note that only the part in the rectangle is passed to the network.

To be able to detect events earlier, it is key to decrease the maximum frequency seen by our

model. For this aim, we change the training strategy and use curriculum learning [214] as a function

of the maximal frequency seen by the network, as it has shown an increase of the performance as

a function of the SNR in previous works [182]. The principle of curriculum learning is to train

the network first on easier data (on data with a high maximum frequency), and then gradually

increasing the difficulty (on data with a lower maximum frequency). The network is then iteratively

trained on each training set. To prevent the network from forgetting what it has learned, we keep all

the data of the previous steps while adding the new ones. To that effect, we generate five different

training sets. The parameter distributions for the injections stay the same, except for the maximal

frequency seen by the network. This parameter is now chosen as a Gaussian distribution with a

standard deviation of 2.5 Hz, and different mean depending on the data sets. More information

about these data sets can be found in table 3.3. Each training set contains 20000 frames and half of

them contain an injection. Note that 20 % of each training set was used for validation during the

training. For each step, we train for six epochs as it was enough to make the loss converge without

facing over-fitting. The use of curriculum learning allows to improve the performance on data set

3, 4, 5 with maximum frequency of, respectively, 30, 25, 20 Hz, while maintaining the performance

at higher frequencies.

The training on the real noise data was done in a similar way. Note that we have done the

training with noise coming only from O3a, meaning the first half of O3 [8]. We have vetoed the

time of the real events from the GWTC-2.1 catalog [8] not to train on them, as most of them were

BBH. For all the testing, we used noise coming from O3b, the second half of O3 [5, 204]. During

O3 there are times when not all detectors are online. To take this fact into account, when a certain

detector is offline, we fill the CNN entry corresponding to the detector with a vector of zeros. In
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Data set Max Freq Min Freq Min TBM Max TBM

Data set 1 40 Hz 12.9 Hz 7 s 44 s
Data set 2 35 Hz 12.8 Hz 10 s 63 s
Data set 3 30 Hz 12.6 Hz 15 s 95 s
Data set 4 25 Hz 12.3 Hz 24 s 115 s
Data set 5 20 Hz 11.7 Hz 45 s 280 s

Table 3.3: Each data set corresponds to a value for the maximum frequency seen by the networks,
which in turn leads to a minimum frequency and a Time Before the Merger (TBM). The numbers
shown for the maximum and minimum frequency are the mean value in each data set. The maximum
and minimum TBMs are the TBM for two objects of respectively 3 M� and 1 M�.

this way, our network is able to perform the search regardless of the number of detectors available.

For the training parameters, we use a batch size of 50. For each step of curriculum learning we

train for 6 epochs, it was enough to make the loss converge. The learning rate is 8× 10−5 and the

optimizer is ADAMAX with a weight decay of 10−5. ADAMAX is a variant of ADAM, based on

the infinity norm [132]. In our previous work [130], we have seen that using ADAMAX leads to a

faster the convergence of the training.

We use the weighted cross-entropy loss [217]. At first, we employed the cross-entropy loss, which

is standard for classification problems. However, this led to a large number of false positives. To

remedy that we decided to weigh this loss [182] by a factor 0.4 for the frames with an injection.

This reduces the chances that the network classifies a frame containing only noise as an event, so

it reduces the number of false positives. We tried multiple values for the weight and found that

for the task at hand a factor of 0.4 translates into a reduction of the number of false positive

while maintaining the number of true positive. The duration of the training is about one day on a

NVIDIA Tesla V100-PCIE-16Gb GPU.

Description of the network

The architecture of the network is similar to the one in Ref. [130], where multiple trial and errors

were made to end up with the architecture. A representation of the neural network is given in

Fig. 3.24, we use the Pytorch package to create the architecture [178]. The network takes 300

seconds of data for each available detector. In other words, it has three input channels, each

corresponding to one of the three detectors (Hanford, Livingston, and Virgo)11. It is composed of a

batch normalisation layer, followed by 5 blocks composed of a convolution layer, a ReLU activation,

and a pool layer. For the convolution, the kernel sizes are successively 16, 8, 4, 8, 16. For the pool

layers, the kernel size is always set to 4. The stride is set to 1 for the convolution layers and 4 for

the pool layers. After these blocks, we add two linear layers with sizes of respectively 128 and 2

interspersed by a ReLU activation. The final layer is a softmax layer that returns a probability

vector.

11The Conv1D layer as implemented in PyTorch allow us to give as input any number of channels, see https:

//pytorch.org/docs/stable/generated/torch.nn.Conv1d.html [178]

https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
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Figure 3.24: Representation of the CNN architecture, the yellow layers are the convolutions, the
blue ones are the ReLU activation, the red ones are the pool layers, the purple ones are the dense
layers, and the dark purple is the final softmax layer. The number under each layer represents the
number of channels.

3.4.3 Results

Performance of the network

After the training, the testing sets come from the same distribution as the training sets, see table 3.3.

The other parameter distributions are the same as for the training sets. Each of the test sets contains

4400 frames, half of which are pure noise and half noise plus injection. The total size of the test

sets for a type of noise is then 22000 frames.

The efficiency of our network for the different steps of curriculum learning can be seen in

Fig. 3.25. We define the True Alarm Probability (TAP) and the False Alarm Probability (FAP)

as equation 7 in our previous work [130]. In Fig. 3.25, we represent the three lowest maximum

frequencies data set of curriculum learning, as the higher maximum frequencies have performances

similar to the 30 Hz data set. For the data sets with a maximum frequency > 25 Hz, an efficiency

of 50% is obtained at ∼ 15 PISNR, while the efficiency reaches 100% at 30 PISNR. This is not

the case for the data set with a maximum frequency of 20 Hz, where the TAP is lower. This is

expected since the sensitivity of the detectors becomes worse at lower frequencies, typically under

20 Hz, see Fig. 3.22. In all the figures shown in this work, the FAP is fixed at 1%.

Similarly, we have done the same test for the real O3 noise and the simulated O4 Gaussian

noise. The different tests are summarised in Fig. 3.26, where each curve represents the results for

the whole test set. In terms of PISNR, the efficiencies for O3 Gaussian noise and O4 Gaussian

noise are very similar. However, since the noise floor is lower in the O4 case, the network can

probe higher distances in this case. The performance for real noise is a bit worse than for the two

Gaussian cases. The network needs a slightly larger PISRN to achieve the same performance. For

example, the network needs a PISNR of 20 to have an efficiency of 50% in the case of real O3,

whereas it only needs a PISNR of 17 to reach the same sensitivity in the two other cases. Even if

some glitches and non-Gaussian features are present in the data, the network is still able to reach

a high performance provided that the PISNR is high enough. To be more realistic with a real time

search, the noise is downloaded from strains recorded at the time of low-latency. Therefore, it has

a low quality, explaining the reduced performance.

After testing the network on independent 300 seconds-long frames, we generate longer frames of
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Figure 3.25: The True Alarm Probability as a function of the PISRN for the O3 Gaussian noise
case. Each curve represents a different test set with a different maximum frequency seen by the
CNN.

1000 seconds, and we inject a complete GW signal into them. Then, we slide a 300 seconds window

over the frame, pass the data in the window to the CNN for each step and make a prediction. From

one step to the next, the window is shifted by 5 seconds. This is repeated until the full 1000 seconds

are covered. Note that the step of 5 seconds is arbitrary and can be reduced, since for a realistic

early-alert pipeline the length of the minimum step should be equal to the time required to load

300 seconds of data, pre-process it, and predict it with our network. The deep-learning algorithm

is fast and takes about 0.5 s on a CPU and 0.01 s on a GeForce GTX 750 GPU, the pre-processing

is also fast: about 0.13 s to compute the PSD with Pycbc, 0.01 s to perform the whitening and 1 s

to remove the peaks and do the renormalization. The limiting factor is to load 300 seconds of data

for 3 detectors with GWpy 12, which takes around 2 s on an Intel Xeon E5-2650 v4 CPU. Note that

the PSD used for the whitening is computed each time we load the 300s frame. To reduce further

this time, one can compute the PSD at regular intervals and use the result for multiple steps.

Fig. 3.27 illustrates the time left before merger when our approach is able to detect the event

for the different noise types. Each point contains 1000 frames with a duration of 1000 seconds and

each frame has a different noise realisation. In each frame, we inject a BNS signal with component

masses similar to those detected for GW170817 [17]. We choose fixed masses to keep the total

duration of the signal fixed. The sky position of the signal is changed for each frame. We then slide

a 300 seconds window over the 1000 seconds as described above. The process is then repeated for

injections corresponding to a larger distance. Fig. 3.27 shows that, for a given distance, the events

are detected the earliest in O4 Gaussian noise. It is also interesting to note that the time before

merger for real O3 noise and Gaussian O3 noise are similar, even if the Gaussian case is slightly

better. An event like GW170817 at a distance of 40 Mpc can be detected by our method 25 s in

advance in real O3 noise, 35 s in advance in Gaussian O3 noise, and 50 s in advance for Gaussian

O4 noise, showing quite good trigger capabilities in future observations runs.

12Using the built-in function gwpy.timeseries.TimeSeries.get()
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Figure 3.26: The True Alarm Probability as a function of the PISRN for the O3 Gaussian noise,
real O3 noise, and O4 Gaussian noise.

For an online matched filtering search, the performance is often evaluated by a false alarm rate

(FAR). It represents the probability that a trigger occurs because of the noise for a given period

of time [165]. The matched filtering FAR is computed for each event and represents how often the

noise is expected to produce a trigger with a ranking statistic value at least as high as the one of

the event. With our method, we can not compute such a FAR, but it is possible to compute, what

we call the False Positive Over Time (FPt), which is defined as the number of false positives by a

given period of time.

To compute the FPt, we run our network over the entire O3b data using the same setup as the

one described previously. We shift the observation windows by 5 seconds for each step, and veto

the times corresponding to events reported in the GWTC-3 catalog [5] and assume that there are

no other detectable events in the data13. The FPt is then defined as the number of triggers divided

by the total observation time. For O3b, we obtain a FPt of 277.54 per day, which is too high to

be used for online searches. To decrease its values, we can consider that an event is present when

our network gives multiple triggers in a row, as shown in Fig. 3.28. If we keep detections with 5

consecutive triggers, the FPt goes down to 12.31 per day, and it goes to 1.71 per day if we consider

10 triggers in a row. The use of multiple triggers implies larger waiting times before producing an

alert, and reduces the time before merger for the detection. For example, considering 5 triggers

leads to a delay of 20 seconds as we consider steps of 5 seconds when sliding the window. In the

end, this shows that we would need to find a trade-off between the time before merger and the

desired FPt.

Another way to decrease the FPt is to use coherent triggers between two or more detectors. The

training strategy for the network does not make it favor coherent triggers. Indeed, since it is trained

for one, two, or three detectors available, it learns to trigger even if only one detector is online.

Furthermore, even if more than one detector is online, we do not use a minimum SNR in each

13This assumption is reasonable since our network needs relatively high SNRs to detect the inspiral, and the event
would therefore have been detected.
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Figure 3.27: The time before merger at which the event is detected as a function of the distance.
These curves are made for a BNS with component masses similar to those of GW170817.

detector for the training set. Hence, the network learns to trigger even if only one interferometer

is picking up the signal. In the end, this means that as soon as the CNN sees something remotely

close to a signal in one of the detectors, it triggers, leading to a relatively high FPt.

Figure 3.28: Top: Representation of a signal and the noise it is injected in. Bottom: Represen-
tation of the output of the CNN. Each point represents the probability to have an inspiral in the
300 seconds of data. By convention, the time of a point represents the end of the time window.
The network does not trigger on the early inspiral because the PISNR is too low. When it becomes
high enough, the networks produces a trigger until the injection leaves the frame, giving multiple
points with a high probability in a row.
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Time before merger Mc (M�) network SNR net PISNR at detection Maximum frequency

88 s 1.19 71.87 15.32 25.45 Hz
59 s 1.08 63.77 23.43 31.35 Hz
58 s 1.26 53.01 16.63 28.75 Hz
25 s 1.16 28.72 16.31 41.39 Hz
22 s 1.95 64.07 19.8 31.45 Hz
22 s 2.06 54.88 18.01 30.42 Hz
19 s 2.15 30.55 10.37 31.29 Hz
14 s 1.69 31.26 14.42 40.75 Hz
11 s 1.98 27.68 13.63 40.43 Hz
10 s 2.0 28.95 16.28 41.58 Hz
10 s 1.79 25.04 12.9 44.52 Hz
7 s 2.01 20.47 11.87 47.48 Hz
7 s 1.72 34.21 25.71 52.2 Hz
3 s 2.12 28.28 20.68 63.01 Hz

Table 3.4: The time before merger, the maximum frequency seen by the network at detection, the
chirp mass of the event, the network SNR, and the PISNR at the moment of the detection for all
the detected BNSs in five years of simulated O4 data.

Number of BNS inspirals detectable in O4

To estimate the number of BNSs that our network could detect in O4, we simulate a population of

BNSs. It is generated using the method described in [174] and the BNS merger rate is normalised

so that the local rate is equal to the median rate given in [180]. The only difference with [174] is

that we adapt the detection thresholds and the PSDs to our O4 scenario. We keep the BNS events

with a network SNR higher than 13 and discard all the others. This threshold is chosen as we

expect our network to find only BNSs that are clearly visible in the detector network and a global

SNR of 13 corresponds approximately to an SNR of 8 in each detector.

To have more statistics, we compute the equivalent of 5 years of data, and we consider a duty

cycle of 100% for all the detectors. Our simulations predict that, on average, around twenty BNSs

per year will have a network SNR over 13 for O4 sensitivity. Our network can detect around three

of those BNSs in advance. Fig. 3.29 represents the time before the merger of all the BNSs detected

by our network for the 5 years of generated data. Even if our network is able to detected only

three events out of twenty, it is important to note that these events are seen in advance and would

therefore not be seen at that stage by the unmodified matched filtering searches. Nevertheless,

matched filtering pipelines adapted to the early detection of long inspirals are also being developed

[145, 144]. Those are also able to detect BNS mergers in advance. Even if the comparison between

these works and ours is difficult (partially because of the difference in noise, but also in performance

evalution), we can mention that times before merger of these algorithms are comparable to those

obtained by our network, ranging from O(10) to O(100) seconds. An advantage of these early-

warning matched filtering searches is that their FAR is lower than our FPt (around one per month)

but they require more computational ressources during the search as the highest cost for machine

learning is moved to the training step. During the search, our method can run on a single GPU or

even on a single CPU, while most of the standard matched filtering methods require parallelization

on multiple CPUs.

Table 3.4 shows the different characteristics of the detected BNSs. The network can see an

event when the net PISNR is between 10 and 25, which is expected according to Fig. 3.26. The

time before the merger at which the CNN can detect a signal depends on two factors: a) the
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Figure 3.29: The number of BNSs detected in advance by our network for a simulated population
of BNSs in five years of O4 data.

network PISNR and b) the length of the signal. The PISNR can be seen as a fraction of the SNR

and its exact value depends on which part of the signal we are considering (hence the maximum

frequency see by the CNN). Therefore, for a fixed signal duration, if the network SNR is high, the

network can detect an event at a lower maximum frequency, corresponding to a longer duration

before the merger. However, if we fix the SNR and the maximum frequency while increasing the

duration of the signal (for example by decreasing both the chirp mass and the luminosity distance

to compensate), the event will be detected with a larger duration before the merger. This behavior

is well represented in Fig. 3.29, where events with a light chirp mass and a high SNR are detected

the earliest. It also explains why some events with a lower chirp mass can be detected earlier, even

if the network SNR is smaller than for other events.

3.4.4 Conclusion

This work builds upon the framework developed in [130]. We implement several upgrades and

modifications to the CNN-based pipeline designed to detect the early inspiral phase of BNS events.

A major upgrade is the increased duration of the frames passed to the network. That allows us

to search for smaller frequencies and opens the door to earlier detections. Another benefit of this

increased duration is that we can use a single network to look for all type of BNSs, which was not

the case in our previous work. The detection of events for a smaller maximum frequency is not

easy and required an adapted training methodology: curriculum learning. We consider realistic

observation scenarios, including all the detectors of the LIGO-Virgo network and use realistic noise

realisations: O3 and O4 Gaussian noises, as well as real O3 noise. We have also demonstrated

that even in the real O3 noise our network is able to detect GW signals in advance. We expect

our network to detect some BNSs in O4, up to minutes in advance if the SNR of the event is high

enough. In future works, we will upgrade our method to search for neutron-star-black-hole mergers

as well. As discussed in section 3.4.3, we will also develop methods to decrease the FPt. Finally,
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we will investigate a way to infer the sky position with only the early inspiral part.
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3.4.5 Appendix

Details on the veto of peaks for real noise

After the noise has been downloaded and whitened, large peaks can still be present in the data

(see Fig. 3.30). This behavior only appears for real O3 noise, and leads to a problem for the

normalisation. Indeed, before passing the data to the network, we normalise them to be between

-1 and 1. To do so, we find the maximum absolute value of the strain and divided each point by

that value. When a large peak is present, the maximum absolute value is the value of the peak and

it makes the rest of the time series too small. That confuses the neural network, and we decided

to veto these peaks. The vetoing is done according to the z-score, which is defined as:

Zi =
xi − µ
σ

(3.26)

where xi is the value of a point i in the time series, µ and σ are respectively the mean and the

variance of the time series. We then compute the standard deviation of the z-score and put all the

points with a z-score larger than 5 times the standard deviation to zero, allowing to remove large

peaks such as those seen in Fig. 3.30. The normalisation is then done on the vetoed frame.
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Figure 3.30: The blue curve represents O3a noise after application of the whitening, the low-pass
filter, and the high-pass filter. The orange curve shows the part which will be vetoed.



Chapter 4

Sky localization with machine

learning

4.1 Sky localization and importance sampling

The work presented in the two previous papers is made for the detection of the early inspiral of

BNS but not for the sky localization of the detected events. As mentioned earlier, in order to

build an early alert system useful for the MMA, one needs to detect the BNS before the merger,

but also to produce a sky localization of the event before the merger is recorded into the detector.

In this thesis, we investigate a pipeline for quick sky localization with machine learning. This

project focuses on the full signal of BBH. Of course, it is just the first step and these methods can

be adapted, in the future, in order to produce a machine learning algorithm that focuses on the

early inspiral of BNS. Before presenting the paper, it is necessary to explain why such a pipeline

using machine learning is needed and why the traditional tools for sky localization are not sufficient.

4.1.1 Parameter estimation

As mentioned in the chapter 2, GWs are usually detected via a template bank. However, one

cannot use it to estimate the parameters of the event. The number of templates in the bank to

obtain a very precise parameter estimation would be way too huge. In addition, some parameters

could be degenerate and have the same effect on the waveform. The standard way to perform

parameter estimation is to use a Bayesian method. The aim is to compute the posterior p(θ|d,H),

which is the probability of having a set of parameters θ, with knowledge of the data d and under

the hypothesis H (this hypothesis is, for example, the fact that there is a GW present in the data)

[4, 218, 219, 220]. One can compute it with the Bayes formula:

p(θ|d,H) =
p(d|θ,H)p(θ|H)

p(d|H)
(4.1)

This is a very important equation and this is the core of the parameter estimation. Let us take a

moment to explain each factor. The first one, p(d|θ,H) is called the likelihood and represents the

91
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probability of having some data d given the hypothesis H and the parameters θ. As mentioned

previously, under our hypothesis H that there is a GW in the data, one expresses the data as

d = n+ h(θ). One can also show [218] that for Gaussian noise, one can express the probability of

having a noise realization n as follows:

p[n] = N e−
1
2
〈n|n〉 (4.2)

where N is a normalization constant, and the inner product 〈n|n〉 is defined in Equation (2.7).

Hence, one can compute the likelihood:

p(d|θ,H) = N e−
1
2
〈d−h(θ)|d−h(θ)〉 (4.3)

This likelihood implies the computation of the waveform h(θ) and the evaluation of this product

〈d− h(θ)|d− h(θ)〉. This computation can be done for a few points in a reasonable time.

The other factor of the numerator p(θ|H) is called the prior, it represents our belief about the

distribution of the parameters before we make the observation. Once this probability distribution

is chosen, it takes no time to compute.

It becomes more difficult when one tries to evaluate the denominator p(d|H), called the evidence.

One can express it as [4, 218]:

p(d|H) =

∫
p(d|θ,H)p(θ,H)dNθ (4.4)

where N is the number of different parameters. This integral could be very difficult to compute

because of the high dimensionality of the parameters space. Indeed, one has to sample from the

likelihood p(d|θ,H), which could be tricky. In practice, one needs to use some tricks and special

algorithms, like nested sampling [219, 220], to be able to evaluate this evidence and compute the

posterior.

There are 11 parameters in the case of CBC events, and they are:

• α: the right ascension

• δ: the declination

• r: the distance

• t⊗: the arrival time at geocenter

• ι: the inclination angle (see Equation (1.28))

• ψ: the polarization angle (see Fig. 2.1)

• φc: the coalescence phase
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• m1: the first component mass

• m2: the second component mass

• S1: the first spin

• S2: the second spin two

If one wants to be unbiased, one needs to search for the posterior for all of these parameters

(meaning θ = {α, δ, r, t⊗, ι, ψ, φc,m1,m2,S1,S2}). Any subset of these parameters will have some

correlations with the others, and evaluating only one subset will lead to some bias. One can split

the parameters into two classes: the ones which are intrinsic to the CBC (m1,m2,S1,S2) and the

others which are extrinsic. The major tools of the LIGO-Virgo-Kagra collaborations to perform

the estimation of the parameters are lalinference [219], and more recently Bilby [221]. Depending

on the signal, estimating precisely the parameters with these algorithms could take days or weeks.

As always, the longer the signal, the longer the time to estimate accurately its parameters.

To be able to produce a rapid sky map, some other packages have been developed. BAYESTAR

[222] is a package used by the collaboration to quickly produce sky maps. Unlike Bilby and other

parameter estimation algorithms, BAYESTAR does not use as direct input the time series, but

rather the output of the matched filtering, the times, the amplitudes, and the phases on arrival at

the detectors. It triangulates the position in the sky from the difference of time of the GW which

has been recorded in the different detectors. BAYESTAR is still a Bayesian analysis, but, contrary

to Bilby, it does not infer all the parameters but only the sky localization. Consequently, it is way

faster and takes only a couple of second (4 to 13 s if using 32 threads [222]).

4.1.2 Importance sampling

The goal of machine learning studies is to find a method that will be as fast as BAYESTAR, but

also almost as precise as Bilby. The paper that we will present here will describe such an algorithm.

The whole idea is to use a neural network to compute an approximate posterior of the sky map, and

to feed it to an importance sampling algorithm, in order to improve the likelihood’s approximation.

Before presenting the paper, we still have to explain what importance sampling is.

Importance sampling is a technique to obtain information on a distribution while sampling

another distribution. This is particularly useful when the distribution of interest is difficult or

impossible to sample from. Like Monte Carlo methods, importance sampling can be used to

estimate an expected value, which is defined with an integral of the type:

Ep[f(x)] =

∫
p(x)f(x)dx (4.5)

where p(x) is a probability density function of x and f(x) is a scalar function that we are interested
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in. The standard Monte Carlo estimates this expected value with a sum:

Ep[f(x)] ≈ 1

N

N∑
i=1

f(xi) (4.6)

the xi used in this sum are samples from p(x). Importance sampling uses almost the same techniques

but with an interesting trick that allows us to sample from another distribution q(x), instead of

p(x). In the case of importance sampling, one can rewrite Equation (4.5):

Ep[f(x)] =

∫
q(x)

[
p(x)

q(x)
f(x)

]
dx = Eq

[
p(x)

q(x)
f(x)

]
(4.7)

with q(x) which is another distribution that one can choose. Let us write the importance weight

distribution as w(x) = p(x)/q(x). One can then rewrite the approximation of the expected value:

Eq[w(x)f(x)] ≈ 1

N

N∑
i=1

w(xi)f(xi) (4.8)

this time, the xi are samples from the distribution q(x), so one can have an approximation of

the expected value Ep[f(x)] by sampling another distribution q(x). This technique is particularly

useful when it is not possible or very difficult to sample from the distribution p(x). Nevertheless, in

order to work, importance sampling needs to choose a q(x) which respects some proprieties. First,

one needs to be able to evaluate p(x) at a specific x (at least up to a normalization constant Z),

even if the parameter space is too large to sampled in its entirety. In other words, if p(x) can be

written as p(x) = 1
Z θ(x), one needs to be able to evaluate θ(x). Then, the distribution q(x) must

be non-zero valued, where the distribution p(x)f(x) is also non-zero. In other words, q(x) needs

to be large where |p(x)f(x)| is large. That the tricky part of importance sampling: one needs to

choose correctly q(x), so that it respects those two proprieties and it is easy to sample from it.

Another nice propriety of importance sampling is the fact that the weight distribution w(x) will

converge towards the distribution of interest p(x) given enough samples. In the article that we will

now present, it is this specific propriety which is very important. The aim of this paper is to use

importance sampling to approximate the likelihood with the distribution of weights and compute

the posterior for the sky position. Yet, to be able to use importance sampling to approximate

the likelihood, one needs to find a distribution q(λ), in which λ are the parameters of the sky

position, which respect the requirements of the previous paragraph. As mentioned, finding such a

distribution is not an easy task. The idea is to train a neural network to approximate this likelihood

and use it to start importance sampling.
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4.2 Article 4

Swift sky localization of gravitational waves using deep learning

seeded importance sampling

Alex Kolmus, Grégory Baltus, Justin Janquart, Twan van Laarhoven, Sarah Caudill, Tom

Heskes

Abstract

Fast, highly accurate, and reliable inference of the sky origin of gravitational waves would enable

real-time multi-messenger astronomy. Current Bayesian inference methodologies, although highly

accurate and reliable, are slow. Deep learning models have shown themselves to be accurate and

extremely fast for inference tasks on gravitational waves, but their output is inherently

questionable due to the blackbox nature of neural networks. In this work, we merge Bayesian

inference and deep learning by applying importance sampling on an approximate posterior

generated by a multi-headed convolutional neural network. The neural network parametrizes Von

Mises-Fisher and Gaussian distributions for the sky coordinates and two masses for given

simulated gravitational wave injections in the LIGO and Virgo detectors. We generate skymaps

for unseen gravitational-wave events that highly resemble predictions generated using Bayesian

inference in a few minutes. Furthermore, we can detect poor predictions from the neural network,

and quickly flag them.
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4.2.1 Introduction

Gravitational waves (GWs) have immensely advanced our understanding of physics and astronomy

since 2015 [46, 223, 224, 225]. These GWs are observed by the Hanford (H) and Livingston (L)

interferometers of the Laser Interferometer Gravitational Wave Observatory (LIGO) [6] and the

Advanced Virgo (V) interferometer [50]. The collaboration between these three detectors has

enabled triple-detector observations of GWs [46], making it possible to do proper sky localisation

of their astrophysical sources. This additional detector changes the sky distribution from a broad

band to a more narrow distribution [46].

Better early sky localisation capabilities would allow for real-time multi-messenger astronomy

(MMA), observing astrophysical events through multiple channels - electromagnetic transients, cos-

mic rays, neutrinos - only seconds after the GW is detected. MMA is limited to GWs originating

from binary neutron star (BNS) and neutron star-black hole mergers. According to current litera-

ture, it is unlikely that binary black holes (BBHs) emit an electromagnetic counterpart during their

merger [226, 227]. Currently, astrophysicists try to collect the non-GW channels in the weeks after

the event. A notable example is GW170817 [17, 137]. This process takes an enormous amount of

effort, while the obtained data quality is often sub-optimal. Having all channels observed for the

full duration of the event would be a major leap forward. Real-time MMA would enable a plethora

of new science, e.g. unravelling the nucleosynthesis of heavy elements using r- and s-processes,

more accurate and novel tests of general relativity, and a deeper understanding of the cosmological

evolution [139, 140, 228]. As aforementioned, real-time MMA relies on the generation of a skymap

and it imposes two limits on the methodology used to obtain one. First, it needs to be swift in

order to allow observatories to turn towards an event’s origin, preferably only seconds after its

observation. Second, the skymap needs to be as accurate as possible since telescopes have a limited

area they can observe. Below we present current approaches in generating skymaps for GW events.

Most GW software libraries [122, 219] use Bayesian inference methods - in particular Markov

chain Monte Carlo (MCMC) and nested sampling [229] - to construct the posterior over all GW

parameters. These methods asymptotically approach the true distribution given a sufficient number

of samples [230]. Although theoretically optimal, a chain with around 106 to 108 samples is required

[219] to closely approximate the true posterior distribution for a GW event. Even when using Bilby

[221] - a modern Bayesian inference library made for GW astronomy - to perform the inference for a

single BBH event, takes hours to produce [167]; BNS events take even longer. Bayesian inference is

the most accurate method available for GW posterior estimation, but its run-time is prohibitively

long when it comes to MMA.

To overcome the speed limitations of the Bayesian approaches, Singer and Price developed

BAYESTAR in 2016 [222], an algorithm that can output a robust skymap for a GW event within a

minute. BAYESTAR realizes this speedup in two ways. First, it exploits the information provided

by the matched filtering pipeline used in the detection of GWs. The inner product between time

strain and matched filters contains nearly all of the information regarding arrival times, amplitudes

and phases, which are critical for skymap estimation. Second, Singer and Price derive a likelihood

function that is semi-independent from the mass estimation and does not rely on direct computation

of GW waveforms, allowing for massive speedups and parallelization. Although BAYESTAR is fast,
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its predictions tend to be broader and less precise than those made by Bilby 1.

Deep learning (DL) algorithms have shown themselves to be exceptionally quick and powerful

when handling high-dimensional data [231, 232]. Therefore, they are an interesting alternative

to the Bayesian methods. Several papers have proposed methods to estimate the GW posterior,

including the skymap, using DL algorithms. Examples of such algorithms are Delaunoy et al. [233]

and Green and Gair [169]. Delaunoy et al. [233] use a convolutional neural network (CNN) to model

the likelihood-to-evidence ratio when given a strain-parameter pair. By evaluating a large amount

of parameter options in parallel, they can generate confidence intervals within a minute. The

reported confidence intervals are slightly wider than those made by Bilby. A completely different

approach was taken by Green and Gair [169]. They showcase complete 15-parameter inference for

GW150914 using normalizing flows. They apply a sequence of invertible functions to transform an

elementary distribution into a complex distribution [234] which, in this case, is a BBH posterior.

Within a single second, their method is able to generate 5,000 independent posterior samples that

are in agreement with the reference posterior2. A Kolmogorov-Smirnov test confirms that these

samples are very closely resemble the samples that are drawn from the exact posterior. Both DL

methods are fast and seem to be accurate for the 100 - 1000 simulated GW events they have

been evaluated on. However, these methods have a few issues: (1) they are both susceptible to

changes in the power spectral density (PSD) and signal-to-noise ratio (SNR), (2) both are close in

performance to Bilby but do not match it, (3) they can act unpredictably outside of the trained

strain-parameters pairs and, even within this space, they can act unpredictably due to the blackbox

nature of neural networks (NNs). Issues (1) and (2) have been addressed for the normalizing flow

algorithm in a recent paper by Dax et al. [235], however the robustness guarantees remain behind

those of traditional Bayesian inference.

Our method tries to bridge the gap between Bayesian inference and DL methods, allowing for

fast inference while still guaranteeing optimal accuracy. It is to be noted that combining Bayesian

inference and DL methods has recently gained traction in the GW community, see for example

reference [171]. The goal of our algorithm is to restrict the parameter space such that, via sampling,

one can quickly obtain an accurate skymap. We use a multi-headed CNN to parameterize an

independent sky and mass distribution for a given BBH event. The model is trained on simulated

precessing quasi-circular BBH signals resembling the ones observed by the HLV detectors. The

parameterized sky and mass distributions are Gaussian-like and are assumed to approximate the

sky and mass distributions generated by Bayesian inference. Using the parameterized sky and mass

distributions, we construct a proposal posterior in which all other BBH parameters are uniformly

distributed. By using importance sampling we can then sample from the exact reference posterior.

This implies that we effectively match the performance of Bayesian inference in a short time span,

without exploring the entire parameter space. We stress that this work is a proof of concept to

show the promises of combining NNs and Bayesian inference. More flexible DL models and BNS

events will be considered in future studies.

1The GWTC-2 catalog [7] data release provides skymaps made using Bayesian inference methods for re-
cent events. Comparison with the skymaps made by BAYESTAR can be made by looking at skymaps on
https://gracedb.ligo.org/latest/.

2Throughout this paper, reference posterior is used to imply a posterior that is generated using Bayesian inference.
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This paper is organised as follows. Section 2 discusses the model architecture and importance

sampling scheme. Section 3 details the performed experiments, including the model training.

Section 4 covers the results of these experiments and subsequently assesses the performance of the

model and importance sampling scheme by comparing it with skymaps generated using Bilby for

a non-spinning BBH system. Conclusions and future endeavours are specified in Section 5.

4.2.2 Methodology

Our inference setup is a two-step method. In the initial step we infer simple distributions for the

sky localization and the masses of the BBH by using a neural network. Subsequently, we apply

importance sampling to these simple distributions to compute a more accurate posterior. The first

subsection describes the role and implementation of importance sampling. The second subsection

discusses the neural network setup and our method for distribution estimation.

Importance sampling

High-dimensional distributions in which the majority of the probability density is confined to a small

volume of the space are hard to sample from, which results in long run times to get proper estimates

when using MCMC methods. A well-known method to cope with this problem is importance

sampling. By using a proposal distribution q that covers this high probability density region of

the complex distribution p one can quickly obtain useful samples. There are two requirements

when using importance sampling. First, the desired distribution p needs to be known up to the

normalization constant Z: p(λ) = 1
Z θ(λ), where θ(λ) is the non-normalized p(λ). Second, the

proposal distribution q needs to be non-zero for all λ where p is non-zero. Importance sampling

can be understood as compensating for the difference between the distributions p and q by assigning

an importance weight w(λ) to the each sample λ,

w(λ) =
θ(λ)

q(λ)
, (4.9)

where the fraction is the likelihood ratio between the - not-normalized - p and q. The distribution

created by the reweighted samples will converge to the p distribution given enough samples [236].

Generating accurate posteriors for GW observations using MCMC is very time consuming, and

thus importance sampling is an interesting alternative. Importance sampling requires us to have

a viable proposal distribution. Published posteriors for known gravitational waves show that the

probability density in the posterior is relatively well confined for both the sky location and the two

masses [7]. A Von Mises Fisher (VMF) and Multi Variate Gaussian (MVG) distribution are good

first order approximations of the sky and mass distribution respectively, and thus suitable to use as

a proposal distribution for importance sampling. We propose to construct this proposal distribution

by assuming a uniform distribution over all non-spinning BBH parameters, except for the sky angles

which will be represented by a VMF and a MVG distribution for the masses. Assuming that the

BBH parameters, sky angles, and masses are independent, our proposal distribution becomes the

product of these two distributions. In the next subsection we discuss how we create this proposal

distribution using a neural network.
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Importance sampling demands a likelihood function for the proposal distribution and the desired

distribution. In the previous paragraph we have discussed how we want to create a proposal

distribution, we will now focus on the desired distribution p. For the likelihood function of the GW

posterior p(s|λ) we take the definition given by Canizares et al. [237]:

p(s|λ) ∝ θ(s|λ) = exp

(
−〈s− h(λ)|s− h(λ)〉

2

)
, (4.10)

where s is the observed strain, h(λ) is the GW template defined by parameters λ. The inner product

is weighted by the PSD of the detector’s noise. In practice we use the likelihood implementation

provided by Bilby named GravitationalWaveTransient.

We now have all the parts needed to discuss how we utilize importance sampling for a given

strain s. A trained neural network parameterizes the proposal distribution q for the given strain.

The proposal distribution generates n samples, these samples represent possible GW parameter

configurations. For each sample we calculate the logarithm of the importance weight,

logw(λ) = log θ(s|λ)− log q(λ) + C, (4.11)

instead of the importance weight w(λ) itself to prevent numeric under- and overflow. The constant

C is added to set the highest logw(λ) to zero, to prevent very large negative values from becom-

ing zero when we calculate the associated likelihood. Since we normalize the weights afterwards

the correct importance weights are still obtained. The reweighted samples represent the desired

distribution p.

If the proposal distribution does not cover the true distribution well enough, the importance

samples will be dominated by only a single to a few weights if we restrict the run-time. We can use

this as a gauge to check if the skymap produced by the neural network and importance sampling

is to be trusted.

Model

Previous work done by George et al. [146] shows that convolutional neural networks (CNN) are

able to extract the masses from a BBH event just as well as the currently-in-use matched filtering.

Furthermore, work done by Fan et al. [238] indicates that 1D CNNs are able to locate GW origins.

We therefore chose to use a 1D CNN to model both the distribution across the sky for the origin

of the GWs and a multivariate normal distribution for the two masses of the BBH system.

The network architecture of this 1D CNN is presented in Figure 4.1 and consists of four parts: a

convolutional feature extractor and three neural network heads. These heads are used to specify the

two distributions. The following properties were tested or tuned for optimal performance: number

of convolutional layers, kernel size, dilation, batch normalization, and dropout. The model shown

in Figure 4.1 produced the best result on a validation set.

The convolutional feature extractor generates a set of features that characterize a given GW.

This set of features is passed on to the neural heads. Each head is specialized to model a specific

GW parameter. The first head determines the sky distribution, the second head the masses, and
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Figure 4.1: A graphical depiction of the convolutional neural network used in this work. After each
MaxPool1d and Batchnorm1d layer a leaky ReLU activation function with an α = 0.1 is applied.
The convolutional part is shown on the left and takes as input a time series of 4096 elements with
3 channels. Conv1D(i, o, k , d) denotes a 1D convolution with i input channels, o output channels,
kernel size k and dilation factor d. MaxPool1d(k) denotes a 1D max pooling layer with kernel size
k. The output of the convolutions is given to three independent neural network heads. The first
head predicts the sky location parameterized as D = (Dx, Dy, Dz), the second head predicts the
mean of the masses of the two black holes, and the last head predicts the uncertainty elements
of the covariance matrix over the two masses. Linear(i, o) denotes a linear transformation with i
input features and o output features. Lastly, Batchnorm1d(i) denotes a 1D batch normalization
layer with i input features.
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the third head the uncertainty over the two masses. Below we will elaborate on each of these heads

and how they characterize these distributions.

The first head specifies the distribution of the GW origin. Since the sky is described by the

surface of a 3D sphere, a 2D Gaussian distribution is an ill fit. A suitable alternative is the Von

Mises-Fisher (VMF) distribution [239] which is the equivalent of a Gaussian distribution on the

surface of a sphere. The probability density function and the associated negative log-likelihood

(NLL) of the VMF distribution:

p(x|µ, κ) =
κ

4π sinh(κ)
exp

(
κxTµ

)
(4.12)

NLLVMF(x, µ, κ) = − log(κ)− log(1− exp(−2κ))

−κ− log(2π) + κxTµ , (4.13)

where x and µ are normalized vectors in R3, with the former being the true direction and

the latter being the predicted direction. κ is the concentration parameter, which determines the

width of the distribution. It plays the same role as the inverse of the variance for a Gaussian

distribution. We use this distribution by letting the first head output a three-dimensional vector

D = (Dx, Dy, Dz). The norm of D specifies the concentration parameter κ, and its projection onto

the unit sphere gives the mean µ, κ = |D|, and µ = D/|D|. These values together with the true

direction x are used to calculate the negative log-likelihood, which is used as the loss function of

the first head.

The second and third neural heads specify a 2D multivariate Gaussian (MVG), which describes

the possible configurations of the masses. The means ν of the MVG are given by the second head

and the covariance matrix Σ is specified by the third head. Given the true values of the masses

y = (m1,m2) the probability density function and associated negative log-likelihood of the MVG

are:

p(y|ν,Σ) =
1√

(2π)2|Σ|

exp

(
−1

2
(y − ν)TΣ(y − ν)

)
(4.14)

NLLMVG(y, ν,Σ) =
1

2
(y − ν)TΣ−1(y − ν)+

1

2
log (|Σ|) + log (2π) . (4.15)

The inverse covariance term in the negative log-likelihood can contain imaginary numbers if

the covariance matrix is not positive-definite. To ensure that the covariance matrix Σ remains

positive-definite, it is parameterized through:

Σ11 = exp(s11) (4.16)

Σ22 = exp(s22) (4.17)

Σ21 = Σ12 = tanh(s12)
√

Σ11Σ22 . (4.18)
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The three variables s11, s22, s12 are predicted by the third neural head and define the covariance

matrix completing the MVG prediction of the masses. The paramerization and implementation of

the MVG is based on the work of Russell et al. [240].

By further assuming that the sky distribution is independent of the mass distribution, we

obtain a first approximation of the posterior distribution, thereby satisfying the requirements for

importance sampling.

4.2.3 Experiments

Experiments were performed on two different fronts: (1) training the neural network followed by

the empirical evaluation of its performances on unseen test data, and (2) comparing the neural

network model, importance sampling scheme, and Bilby based on several metrics and skymaps.

Below we describe the experimental details and justify decisions we made. All experiments were

performed on a computer with a 16-core AMD Ryzen 5950X CPU, NVIDIA 3090 RTX GPU, and

64 GB of RAM. Source code is available at https://github.com/akolmus/swiftsky.

Training and evaluating the neural model

To obtain strain-parameter pairs for training and validation, we sampled parameters from a BBH

parameter prior (see Table 4.1) and generated the associated waveforms using the IMRPhenomPv2

waveform model [241]. The waveforms were generated in the frequency domain in the frequency

band of 20 to 2048 Hz. The duration of the signal is 2 seconds. Subsequently, these waveforms

were projected onto the HLV interferometers. We sampled the SNR from a scaled and shifted Beta

distribution with its peak set to 15 (see Figure 4.5). The luminosity distance in the prior was set

to a 1000 Mpc and scaled afterwards to match the desired SNR. We generated Gaussian noise from

the design sensitivity PSD for each detector. Finally, the signal was injected into the noise and an

inverse Fourier transform was applied to obtain the strains as time series. This setup allowed us

to generate an arbitrary amount of unique strain-parameter pairs, which resulted in every training

epoch having a unique dataset.

We applied three preprocessing steps to the data. All time series were whitened with the

aforementioned PSDs. Next, the time series were normalized. A normalizer was calculated such

that noise-only strains have mean zero and a standard deviation of one. We found empirically that

calculating a normalizer for the noise instead of noise plus signal allowed the neural network to

converge faster and achieve lower losses. Lastly, to make the mass distribution easier to learn we

calculated a shift and scaling factor for the target masses such that all target masses were between

-1 and +1. The shifting and scaling were applied inversely to the neural network output during

importance sampling to get the correct masses.

The model was trained for 300 epochs with a batch size of 128. During each epoch we drew

500 000 strain-parameter pairs for training and 100 000 strain-parameter pairs for validation. The

Adam optimizer [242] was used to optimize weights of the model in conjunction with a cosine

annealing scheme with warm restarts [243]. The learning rate oscillated between 10−3 and 10−5

with a period of 20 epochs; weight decay was set to 10−6. Multiple hyperparameter configurations

were tested; this configuration obtained the best performance.

https://github.com/akolmus/swiftsky
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In order to benchmark the trained model, an unseen test set was generated of 100 000 strain-

parameter pairs at specific SNR values. The model was evaluated using the mean absolute angular

error (maae) and the average 90% confidence area of the predicted VMF distributions.

Applying and evaluating importance sampling

To evaluate the importance sampling procedure, we constructed a slightly simpler test set in which

we restricted the maximum spin magnitude to be zero. This was done to limit the Bilby run-

time. The importance sampling procedure discussed in Section 2.2 was applied to the first 100

strain-parameter pairs of this test set at three different optimal SNR values: 10, 15, and 20. For

each strain-parameter pair we generated 200 000 importance samples. In order to simulate multiple

independent runs at various time points for the same strain-parameter pair, we subsampled from

these 200 000 importance samples during the experiments.

We ran two experiments to test the convergence of the importance sampling method. In the first

experiment, we used the importance sampling scheme as a maximum likelihood estimator. For a

given set of importance samples we chose the sample with the highest likelihood and calculated the

angle between this sample and the true sky coordinates. In the second experiment, we represented

the probability density function of the importance samples by a kernel density estimator and tested

how well the resulting density covered the true right ascension. Specifically, we used a Gaussian

kernel density estimator3 to fit the right ascension distribution proposed by the importance samples.

The log-likelihood of the actual right ascension was used to measure the quality of the estimated

density. We removed a few outliers from the second experiment, by restricting ourselves to only

the right ascension the number of outliers was reduced. These outliers had densities that did not

cover the true right ascension at all, resulting in extreme negative log-likelihoods which dominate

the average log-likelihood. For both experiments we expect the metric to improve as the number

of importance samples increases, and to level after a significant number of importance samples

indicating convergence.

Generating skymaps

We use Bilby as a benchmark to generate skymaps for the first ten strain-parameter pairs of the

test set and for each create a version at an SNR of 10, 15, and 20. To make a fair comparison,

the prior given to the Bilby sampler has its spin components set to zero. Moreover, the posterior

inference was performed with standard settings, and each run took between 2.5 and 7 hours to

complete. During these runs the live points of the sampler were saved every 5 seconds and labelled

by the total number of sampled points. These saved points were used to run the two importance

sampling experiments for Bilby.

4.2.4 Results

In this section, we first discuss the performance of the CNN. Then, the importance sampling scheme

is evaluated using the experimental setup discussed in the previous section. Lastly, we compare

3The gaussian kde from the scipy python package.
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Figure 4.2: Characterization of the neural network in terms of accuracy and certainty over the test.
Left: the maae (mean absolute angular error) between the sky angle predicted by the model and
the actual sky location as a function of the SNR. Right: the average size of the 90% confidence
area, expressed in degrees squared, of the predicted VMF distributions as a function of the SNR.

sky maps generated using only the neural network, importance sampling, and Bilby.

CNN

In Figure 4.2 we summarize the results for the first experiment: the left panel gives the mean

absolute angular error (maae) in the sky location and in the right panel we plot the 90% confidence

area of the VMF distribution. As expected, as the SNR increases the prediction error in the sky

location decreases and the 90% confidence area becomes smaller. The error in the mass prediction

is similar to those of other CNN approaches [146], see Figure 4.6, indicating that the setup works

well. We do note that the error in the sky location seems to be quite high for SNR < 10 and

that it does not converge to zero for high SNR. We can think of two possible explanations for the

poor performance at low SNR. First, the detection rate using either CNNs or matched filtering

pipelines at an SNR of 5 is less than 40% [146, 149]. At such a low SNR, it is difficult for the

model to discern the differences in arrival time at each detector, which explains the slightly better

than random predictions for SNR < 7. When we compare our angular error with other CNN

approaches [238, 244], the average error seems to be similar. Furthermore, Chua and Vallisneri [245]

reported that Gaussian approximations are only accurate for high SNR (SNR > 8) and even then

multimodality might arise. Second, the sky distribution can be multimodal. This multi-modality

is either due to strong noise or can be due to a sky reflection [219]. For three detectors, there are

two viable solutions to the triangulation problem: the true sky location and its reflection. In most

cases the amplitude information is sufficient to break the degeneracy between the location and its

reflection. However, at certain sky angles this amplitude information does not lift the degeneracy

and a multimodal distribution is required. For these angles the model has a 50% chance of guessing

the wrong mode and thus having an average angular error of 90◦.
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Figure 4.3: Characterization of the importance sampling, with the number of importance samples
ranging from a 1 000 to 50 000. The colors represent different SNR values with blue, green, and
red being 10, 15, and 20 respectively. Left: the maae of the importance sample with the highest
likelihood as a function of the sample size. Right: the log-likelihood of the true right ascension
according to the kernel density estimator created by importance samples as a function of sample
size.

Importance sampling

The results of the importance sampling experiments are shown in Figure 4.3. The left panel shows

the maae as the number of importance samples increases. The right panel shows the log-likelihood of

the true right ascension given by kernel density based on a varying number of importance samples.

The majority of the convergence in the maae seems to happen within the first 30 000 samples.

The slow convergence can largely be attributed to strains for which the model predicted a wide

sky distribution. When we compare this to results of Bilby, we see that the maae of the highest

likelihood sample for all SNR is always between 1 and 8 degrees. Importance sampling is competitive

for an SNR of 20 and is close for an SNR of 15, especially when we consider that in both cases

2 out of the 100 sky distributions were parameterized as the sky reflection. However, importance

sampling is not competitive with Bilby in the second experiment. For all SNR values Bilby reports

log-likelihoods between 2 and 3, see Figure 4.9, and importance sampling does not reach these

values. If we consider runs that show good convergence, i.e. where 90% of the importance weight

is not determined by less than ten importance samples, importance sampling also reports log-

likelihoods between 2 and 3. In Figure 4.7 we have repeated the kernel density experiment, but

only for the well-converged runs. These runs represent 30% of all runs, and almost no SNR < 10

runs.

Generating skymaps

As a final test, we generated skymaps using the neural network, importance sampling, and Bilby on

the same signals. Three representative skymaps are shown in Figure 4.4. The skymaps generated by

the neural network are significantly more spread out than those generated by importance sampling

and Bilby. As we explained in the previous sections, this might be due to the neural network
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Figure 4.4: Examples of predicted skymaps by our neural network (left), importance sampling after
100 000 steps or roughly 5 minutes of computing time (middle), Bilby at convergence (right). The
Bilby runs took at least 3 hours to complete. The true sky location is indicated in red. The shown
skymaps were generated for signals with an SNR of 15. The number of significant importance
samples, and hence the quality of the sky maps, increases as we go from the top row to the bottom
row.

overestimating the uncertainty and having difficulty extracting the exact signal from the detector

noise. The skymaps generated by importance sampling and Bilby resemble each other quite a lot,

their peak intensities are in the same position and the sky distributions occupy roughly in the

same area. However, the importance sampling skymaps are grainy and sometimes do not cover

the complete area that Bilby does. As can be seen in the bottom row of Figure 4.4, when the

predicted VMF distribution has its peak intensity on the correct position the importance sampling

creates better looking sky maps. This improvement is due to the increased number of significant

importance samples. These results indicate that a larger number of significant importance samples

is needed, which is to be expected with only 5 minutes of run-time. Within only 1-4% of the Bilby

run-time we are already able to recover the essentials of the skymaps.

4.2.5 Conclusion

In this paper, we produced skymaps for simulated BBH events using an importance sampling scheme

that turns an approximate skymap made by a neural network into a skymap that represents the

exact Bayesian posterior distribution. Experiments show that our method is competitive with

Bilby and can produce the essentials of the skymap within 4% of the Bilby run-time. However, in

some cases the proposal distributions made by the neural network are too crude, which hampers

the efficiency of the importance sampling scheme. If the sampling efficiency is improved further,

importance sampling could be used as a quick alternative to Bilby or LALInference for inferring
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the GW posterior. Currently, the DL model has only been trained and tested on simulated noise

with a given PSD. We expect that providing the DL model with various PSD representations as

input into the model during training, as was done in [235], should allow the model to interpret

the real world signals correctly regardless of the noise profile. In future work, we will also consider

more advanced deep learning models such as normalizing flows to infer more accurate posterior

distributions and apply the model to real measurements.
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4.2.6 Appendices

Appendix A: Training details

Here we show the priors used for data generation (see Table 4.1) and the SNR distribution during

training (see Figure 4.5).

Figure 4.5: Scaled and shifted Beta distribution that acts as the SNR sampling distribution during
training and validation. The vertical axis represents the probability density function of this Beta
distribution, the horizontal axis represents the SNR value.

Appendix B: Mass estimation performance

In Figure 4.6, we show the mean relative error of the estimated masses over the test set. This figure

closely resembles Figure 5 in [146]. Any differences are due to the difference in setup. The main

differences are that our priors include spins and that we do not use a stationary sky origin.



108 CHAPTER 4. SKY LOCALIZATION WITH MACHINE LEARNING

Table 4.1: The priors used for the data generation. The luminosity distance in the prior was set to
a 1000 Mpc and scaled afterwards to match the desired SNR.

parameter prior minimum maximum unit

Masses (constraint) - 20 80 M�
Chirp mass Uniform 10 100 M�
Mass ratio Uniform 0.25 1.0 -
Spin magnitudes Uniform 0 0.95 -
Spin polar angles Sine 0 π rad
Spin azimutal angles Uniform 0 2π rad
Right ascension Uniform 0 2π rad
Declination Cosine -0.5π 0.5π rad
Binary inclination angle Sine 0 π rad
Coalescence phase angle Uniform 0 2π rad
Polarization angle Uniform 0 2π rad
Time Shift Uniform -0.1 0.1 s
Luminosity distance - 1000 1000 Mpc

Appendix C: Importance sampling

We redid the importance experiment with only well converged runs, the shown log-likelihood values

are close to those reported by Bilby.

Appendix D: Bilby run

For thirty Bilby runs, ten per SNR value, we repeated the experiments reported in Section 3.2.

Below we show the results for one of the ten samples.
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Figure 4.6: The mean relative error of the estimated masses by the neural network on the test set
as a function of the optimal SNR. It is almost identical to the Figure 5 in [146].

Figure 4.7: The log-likelihood of the true right ascension according to the kernel density estimator
using only the importance samples of well converged runs. These values are more in line with those
of Bilby, see Appendix D.
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Figure 4.8: The angle between the sky location of the highest likelihood sample and the actual
sky location. The vertical axis represents how many samples Bilby has generated (live and dead
samples).

Figure 4.9: The loglikelihood of the true right ascension according to the kernel density estimator
created by the Bilby samples. The vertical axis represents how many samples Bilby has generated
(live and dead samples).



Chapter 5

Conclusion

The main purpose of this thesis was to build a pipeline for the early alert of binary neutron star

mergers using machine learning. Before doing that, in order to understand better and have more

feeling for the standard techniques, we helped to carry out a matched filtering search for sub-solar

objects in the second run of observation of LIGO and Virgo, which lead to the paper that we have

presented here. This search did not lead to any detection, but helped us to put some constraints

on theories of primordial black holes. With this search, we have seen that we are getting closer

and closer either to detecting some primordial black holes with sub-solar masses or rejecting some

theories about them. The next run of observations O4 and O5 will be decisive.

As a second step, we started working on a deep learning pipeline for the detection of the early

inspiral of binary neutron star mergers. In a first paper, we have shown that a CNN can recognize

this partial signal even if we feed it directly with the 1D time-series data. This article is a proof

of concept and comes with a lot of limitations: first, we used simulated Gaussian noise coming

from the power spectral density at the design sensitivity of LIGO. Then, we limited ourselves to a

minimum frequency of 20 Hz. Finally, we had to divide the BNSs into three categories depending

on the masses, and used a different network for each category. In a second paper, we removed those

limitations and only one network can now search for any BNS, whatever its masses. It can also

search at lower frequency, which leads to a longer time before the merger, and we investigated the

real noise of O3. The performance of the CNN is quite similar in real noise (coming from strain

recorded at the time of low latency) and Gaussian noise, which means that the network is robust

to the glitches and artifacts present in the real noise. We predicted that our network could see

some BNSs in the next run of observation, with a warning time that can go beyond a minute before

the merger. However, it was not able to see the one in O3 because the SNR was too low. Indeed,

our method requires an SNR which is high enough to be able to find the early inspiral phase of a

BNS. To be completely fair, the network still has too many false positives, but we still have some

hints of techniques that we could try to improve it. Unfortunately, we did not have enough time

to implement them in this thesis. A future improvement could be to train the network to trigger

only if it sees a signal in multiple detectors, or if the SNR in multiple detectors is high enough.

111
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Finally, with the purpose of having a full low latency pre-merger alert pipeline in mind, we de-

cided to investigate how we can compute the sky map of a detected event with machine learning. We

helped on a paper to localize the binary black hole with importance sampling and neural network.

This paper introduces a method that can produce sky maps with a speed equivalent to BAYESTAR,

but with a precision almost equivalent to Bilby. This project is the first step: improvement can

be made so that the network could also produce the sky map for binary neutron star mergers,

and then perform the sky localization of events only with the early inspiral. Combining this work

and the previous one can result in a complete pipeline for the early warning of binary neutron stars.

Combining these last two work can result in a complete pipeline for the early warning of binary

neutron stars. This could be particularly useful for multi-messenger astronomy, and could poten-

tially lead to multiple detections of neutron star mergers with different channels of observation. In

the next run of observation of LIGO-Virgo-Kagra the sensitivity band will go to smaller frequencies,

then the signal will be longer, and it will be possible to detect them even earlier with this kind of

pipeline. This type of research is also of interest for the next generation of interferometers like the

Einstein Telescope and Cosmic Explorer. In these future instruments, the number of signals and

their length will be a challenge for analyses. Machine learning will be useful, not only to detect

events in advance, but also to perform parameter estimations or to denoise the strain data.
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