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A B S T R A C T

Remote sensing can be used to collect information related to forest management. Previous studies demonstrated
the potential of using multispectral satellite imagery for classifying tree species. However, methods that can
map tree species in mixed forest stands on a large scale are lacking. We propose an innovative method for
mapping the proportions of tree species using Sentinel-2 imagery. A convolutional neural network was used
to quantify the per-pixel basal area proportions of tree species considering the neighbouring environment
(spectral–spatial deep learning). A nested U-shaped neural network (UNet++) architecture was implemented.
We produced a map of the entire Wallonia Region (southern Belgium). Nine species or groups of species were
considered: Spruce genus, Oak genus, Beech, Douglas fir, Pine genus, Poplar genus, Larch genus, Birch genus, and
remaining species. The training dataset for the convolutional neural network model was prepared using a map
of forest parcels extracted from the public forest administration’s geodatabase of Wallonia. The accuracy of the
predicted map covering the region was independently assessed using data from the regional forest inventory
of Wallonia. A robust assessment method for tree species proportions maps was proposed for assessing the
(1) majority species, (2) species composition (presence or absence), and (3) species proportions (proportion
values). The achieved value of indicator OA𝑚𝑎𝑗 (0.73) shows that our approach can map the majority tree
species in mixed and pure forest stands. Indicators MS (0.89), MPS (0.72) and MUS (0.83) support that the
model can predict the species composition in most cases in the study area. Spruce genus, Oak genus, Beech,
and Douglas fir achieved the best results, with PAs and UAs close to or higher than 0.70. Particularly, high
performance was achieved for detecting Oak genus and Beech in low area proportions: PAs and UAs higher
than 0.70 from the 0.4 proportion. Predicted proportions had a R2

𝑎𝑑𝑗 of 0.50. The proposed method, which uses
spectral–spatial deep learning to map the proportions of tree species, is innovative because it was adapted to
the complexity of mixed forests and spatial resolution of current satellite imagery. Additionally, it optimises
the use of available forest data in the model conception by considering all pixels from pure stands to highly
mixed forest stands. When forest inventories are available in a broad sense, that is, georeferenced areas with
the proportions of tree species, this method is highly reproducible and applicable at a large scale, offering
potential for use in forest management.
1. Introduction

Forest ecosystems provide many services; to maintain their eco-
logical and socio-economic functions, appropriate policies ensuring
sustainable management must be implemented. Understanding current
challenges and forest evolution at the regional or national level is
essential for enacting a well-thought-out forest policy, particularly in
the context of global climate change. Tree species are a key source of
information for ecologists and forest managers.

In addition to field inventories, remote sensing is useful for col-
lecting information on forested areas. When applied to satellite data,
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machine learning methods (Maxwell et al., 2018) and, more recently,
deep learning (Yuan et al., 2020) have shown potential in environmen-
tal remote sensing research. Tree species classification has evaluated in
numerous studies, such as those reviewed in Fassnacht et al. (2016).
Open access to high-quality satellite images, including those from
Sentinel-2 (S2) satellites, has enabled land cover and land-use mapping
in recent years (Phiri et al., 2020).

Most recent studies focusing on medium-resolution satellite im-
agery involved using pixel-based classification approaches with ma-
chine learning methods such as random forests, support vector ma-
chines, and artificial neural networks (Zagajewski et al., 2021; Xie
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et al., 2021; Bjerreskov et al., 2021; Grabska et al., 2020; Immitzer
et al., 2019; Grabska et al., 2019; Hoscilo and Lewandowska, 2019;
Persson et al., 2018; Wessel et al., 2018; Bolyn et al., 2018). Two
studies were conducted to evaluate the potential of S2 time series using
Bayesian inference (Axelsson et al., 2021) and deep neural networks
(Conv1D, AlexNet, and LSTM) (Xi et al., 2021). These studies required
the availability of a reference database with pixel-level labels for tree
species. In general, the necessary pixels were extracted where the forest
was known to be pure for a specific species (mono-specific) or when
the species was considered as dominant. For example, in some studies
(Bjerreskov et al., 2021; Persson et al., 2018), when the reference data
were in the form of a field forest inventory, a proportion criterion based
on basal area was used to select only plots with a dominant species
(typically >70%). There are two reasons for this. First, the spatial
resolution of S2 imagery (10 or 20 m depending on the band) does
not allow for delineation of the distinct tree crowns of a forest stand.
Thus, one pixel may cover several trees of different species in mixed
forest stands. Second, even if the spatial resolution is high, field data
describing the forest at the tree level over large areas with a sufficiently
precise location are typically not available. Therefore, to label pixels
with a high level of certainty, a simple solution is to consider only pure
forest stands for a specific species.

Although such studies have successfully classified and mapped tree
species, a model built using such data for pure forest stands may not
show the same performance when applied to mixed stands. Strahler
et al. (1986) proposed an explicit framework of remote sensing models
in which pixel-based classification is implied considering a discrete
scene model, with the scene composed of discrete elements with bound-
aries. This discrete scene model is nearly always of the ‘‘H-resolution’’
type. Thus, the element may be individually resolved, as the resolution
cells of the image are smaller than the elements. Indeed, classification
assumes that measurements are samples of energy-exiting objects that
are larger than the resolution cells of the image (Strahler et al., 1986).
For tree species mapping, the elements of the scene model were trees.
Because local variance of an image is linked to the number of mixed
pixels, low local variance for pixel-based classification is assumed.
Woodcock and Strahler (1987) studied the local variance of an image as
a function of resolution. They highlighted that a peak in local variance
occurs at a resolution cell size that is somewhat smaller than the size
of objects in the scene, which was approximately 1/2–3/4 in their
study. Therefore, the imagery used for classification per pixel should
have resolution cells smaller than 1/2–3/4 of the tree size to avoid
theoretical accuracy limits in mixed forest stands.

Regarding this limitation, the number of studies that include robust
evaluation of the resulting tree species map is limited because mixed
pixels are not integrated in the validation scheme. Although the same
reference data are typically used to train and validate the model, such
data cannot fully represent the mapped area, as pixels are extracted
only from pure stands. Therefore, purposive sampling and pragmatic
site selection may be acceptable for training a classifier; however,
a probabilistic sampling design would improve accuracy assessment
(Stehman and Foody, 2019).

Several approaches can be used to match the levels of observation
to the levels of organisation: dividing a pixel into constituent elements,
aggregating the pixels to match a higher level of organisation, or
considering the environment of individual pixels without classifying
them (Girard and Girard, 2010). Another possibility is to abandon the
semantic classification and quantify the proportions of tree species at
the pixel level. Mixture models are the most appropriate approach for
high local variance conditions (Woodcock and Strahler, 1987). Using
this strategy, Gudex-Cross et al. (2017) used spectral unmixing of multi-
temporal Landsat images to quantify the basal area percentage of ten
tree species/genera using a stepwise linear regression model. The basal
area maps were then refined using a set of object-based rules to produce
2

a thematic forest classification.
Table 1
Forest stand types in Wallonia (southern Belgium). From the regional forest inventory,
period 1994–2008; (Alderweireld et al., 2015, 2016).

Forest type Area (ha) Percentage

Norway spruce stand 163450 34.09%
Oak stand 85200 17.77%
Other broad-leaved stand 56200 11.72%
Beech stand 43750 9.12%
Noble broad-leaved stand 40100 8.36%
Mixed stand Beech–Oak 21200 4.42%
Other needle-leaved 16850 3.51%
Douglas fir stand 13950 2.91%
Pine stand 12600 2.63%
Poplars stand 9800 2.04%
Mixed stand Norway Spruce–Douglas fir 8850 1.85%
Larch stand 7550 1.57%

In recent years, deep learning, particularly convolutional neural
networks (CNNs), have been widely used for remote sensing (Ghanbari
et al., 2021), primarily for classification and object detection. CNNs are
the most common type of NNs for computer vision and image analysis
because of their excellent performance and effectiveness. CNNs are
particularly robust because of their specific architecture characterised
by local receptive fields, shared weights, and subsampling (Kattenborn
et al., 2021). Their potential for tree species classification has been
tested in some studies and found to achieve high accuracy (Mäyrä et al.,
2021; Xi et al., 2021; Cue La Rosa et al., 2021; Illarionova et al., 2021),
outperforming traditional machine learning methods.

The objective of this study was to use spectral–spatial deep learning
to map tree species proportions over a large area, including all types
of forest compositions from pure stands to highly mixed stands, using
S2 imagery and available georeferenced forest areas with tree species
proportions. There were two challenges to using the proposed method
.

• Mapping tree species in pure and mixed forest stands using images
with a pixel size too coarse to resolve individual trees ;

• Using forest inventory data that include both pure and mixed
stands.

We used a CNN to quantify the per-pixel proportions of the tree
species while considering the neighbouring environment. Methods for
directly predicting the per-pixel proportions of tree species using both
spectral and spatial information are lacking. The method was per-
formed for an entire administrative region, the Wallonia region (south-
ern Belgium), whose forest presents diversity relevant to the study in
terms of its structure (mixed and pure forest stands) and tree species
composition. A robust and transparent evaluation of the map accuracy
was performed using external data from the regional forest inventory
(plots) covering the same region.

2. Materials and methods

2.1. Study area

The study area was the Wallonia region (Fig. 1) in the southern
part of Belgium, which covers 16,901 km2, of which 33% is covered by
forests (Alderweireld et al., 2015, 2016). 52% of the forest is private
and 87% of the forest area is managed for harvesting. The first complete
cycle of the regional forest inventory of Wallonia was performed in
1994–2008. An official report (Alderweireld et al., 2015) divided the
forest into 12 stand types that are characteristic of the study area
(Table 1). The figures from this report illustrate the variety of forests in
Wallonia, with a large area of mixed stands containing a variety of tree
species. The three most common genera are Spruce, Oak, and Beech.
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Fig. 1. Geographical location and wooded areas of the study area, Wallonia region (southern Belgium). The study area is presented in grey in the inset map. The wooded areas
mask is in green. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
2.2. Workflow and datasets

In this study, classes were not mapped individually but rather as
vectors of tree species proportions. The tree species proportions are
represented as a vector of nine values in the same order as the tree
species classes (Table 3). For each proportion, the values ranged from
0 to 1, and the sum of the vectors was equal to 1. This vector of species
proportions was the target variable of a CNN model built to produce
the tree species proportions map at 2.5 m within the wooded areas of
the study area. A pre-existing map for the reference year 2018, at a
spatial resolution of 2 m, was used to mask the wooded areas within
Wallonia (Fig. 1). This wooded area mask was made as part of a project
aimed at generating a ‘‘forest mask’’(described and freely available at
http://geoportail.wallonie.be). The wooded areas mask corresponded
to forest areas more than 20 m wide and 0.5 hectares in area. The 10
bands of the S2 imagery were super-resolved at 2.5 m as described by
Latte and Lejeune (2020) and used as predictor variables in the CNN
model. Two databases were used as references for the target tree species
proportion vectors. The first, named as ‘‘forest parcel polygons’’, was
used for model training. The second, named as ‘‘assessment plots’’, was
used to assess the accuracy of the map (Fig. 2).

2.2.1. S2 super-resolved imagery
The S2 imagery, level 2 A flat reflectance, which was produced and

distributed by the Theia Data Center (https://www.theia-land.fr/en/),
was used as predictor data (Hagolle et al., 2020) (Fig. 2). The Wallonia
region is covered with eight S2 tiles. To obtain a cloud-free and
hole-free mosaic with homogeneous radiometry, surface reflectance
synthesis was generated considering the vegetation period (from 15
May to 15 September 2018). For this period, all available tiles with
cloud cover of less than 50% were downloaded. A total of 86 tiles
3

was selected for 13 dates from 18 May to 19 August. The cloud mask
computed using MAJA software was used (Baetens et al., 2019). A
time-weighted average of the cloud-free pixels was calculated to give
more weight to the mid-summer pixels. The dates of the S2 tiles were
converted to numerical values corresponding to the day number in the
considered time period of 125 days (from 15 May to 15 September
2018). Values from 1 to 125 were rescaled from −6 to 6. The weights of
S2 tiles were then calculated as the densities of a normal distribution
(mean = 0, sd = 2.5) for the corresponding date values. Finally, the
ten S2 bands (four at 10 m and six at 20 m) of the S2 time-weighted
mosaic were super-resolved at 2.5 m as described in Latte and Lejeune
(2020). PlanetScope scenes ‘‘analytic-sr’’, covering the study area from
26 June to July 02, were used in this process. The super-resolution
was not intended to improve the model performance but rather the
geometric accuracy of the map, that is, the boundaries and edges of
the mapped forest patches, in accordance with the wooded areas mask
(2 m, Fig. 1). Indeed, tree species proportions were still modelled using
stand-level information for training (see Section 2.2.2).

2.2.2. Forest parcel polygons
A map of forest parcels extracted from the forest administration’s

geodatabase (Department of Nature and Forests, Public Service of
Wallonia, 2017) was used as the target data for model training (Figs. 2
and 3). This database contains almost 120,000 digitised forest polygons
distributed over the entire region (Table 3). For each polygon, the basal
area proportion of each tree species was estimated by the responsible
forest agents. The proportions of tree species classes (Table 3) were
calculated by summing the species-specific proportions. The poplar
class was poorly represented in the public geodatabase because a large
portion of the poplar stands is managed by private owners in the
study area. Thus, 178 additional polygons were digitised by visual

http://geoportail.wallonie.be/catalogue/2a5ef10f-36f8-4bb0-9188-781ac089b7ce.html
https://www.theia-land.fr/en/
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Fig. 2. Workflow of the study.
Table 2
Number of selected plots from the regional forest inventory of Wallonia by year of inventory and their cumulative percentages.
Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008

Number of plots 62 295 739 672 714 601 491 408 275 278 211
Cumulative percentage 1 8 23 37 52 65 75 84 90 96 100
interpretation from the orthophotos of the Public Service of Wallonia
(http://geoportail.wallonie.be). Only pure plantations were digitised to
avoid misclassifications. Poplar plantations are easily recognisable from
the sky because of the large and constant distance between plants.
A proportion value of 1.0 was assigned to the Poplars class for these
polygons.

Using this type of reference polygon to prepare a training dataset
improves the reproducibility of the study because these data are often
available for forest areas with a formal management plan. Based on the
polygon database, the tree species proportions used for model training
in the study were calculated using the basal areas of the dominant and
understory trees. Notably, diameter at breast height of trees cannot
be observed on satellite imagery; thus, we assumed that a CNN model
would learn the relationship between the tree crown proportions and
basal area proportions, as well as the variation of this relationship
between tree species. This likely added uncertainty to the predictions,
which is a limitation of this study.

2.2.3. Assessment plots
Another data source, the regional forest inventory of Wallonia

(Alderweireld et al., 2015, 2016), was used to independently evaluate
the map quality (Fig. 2). Field data from 4,746 plots with an 18
m radius visited since 2008 were used in this assessment (Table 2).
More than half of the selected plots were visited after 2013. Plots
with young plantations or regenerations, as well as plots without field
measurements, were discarded. The selected plots were systematically
distributed throughout Wallonia on a one-year basis (Fig. 4).

For each plot, the basal area per hectare (m2∕ha) was calculated by
tree species class using field measurements. These values were used
to determine the proportions of tree species. A large proportion of
these plots were mixed forest stands (a quarter presented a maximum
4

proportion <= 0.64). The representative dataset of this study area
confirmed the need to develop a suitable method for mapping mixed
forests. The plots were located using geographic positioning system
(GPS).

A few points must be noted regarding the data used to assess the
map accuracy. First, there is overlap between the assessment plots and
forest parcel polygons. Indeed, forest parcel polygons cover a large
part of the public forest, and assessment plots are in both public and
private forest stands. In the study area, 52% of the forest is private. This
may imply an optimistic bias in the map quality assessment. However,
the forest parcel polygons used for training and assessment plots differ
in nature. The first database consisted of polygons covering variable
areas and provided average information for a complete forest stand
(Fig. 3). However, locally, this information is approximately false in
the worst case. The second database provides local information for a
constant area (radius 18 m). This database was used to locally assess
the accuracy of the complete final map predicted by pixel of 2.5 m.
Second, there were time lags between measurement of the assessment
plots and the period covered by the S2 imagery. Finally, regarding the
GPS location of the plots, the root mean squared error (RMSE) reached
3–7 m under the canopy, depending on the forest type (Andersen
et al., 2009). For assessment, we therefore assumed that in most of
the mapped forest stands, the species composition did not change
significantly within a maximum radius of 7 m and over a period of
up to ten years (Table 2).

2.2.4. Tree species classes
Nine tree species classes were defined (Table 3) to map the basal

area proportions of tree species, which are exhaustive with respect to
tree species in the study area. These classes were defined according to
the most frequent stand types in Wallonia (Table 1).

http://geoportail.wallonie.be
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Fig. 3. (a) False colour image of S2 super-resolved imagery (red: B8 A, green: B11, blue: B12). (b) Forest parcel polygons displayed with the tree species class with the highest
proportion. (c) Forest parcel polygons displayed with the proportion of Oaks. (d) Forest parcels polygons displayed with the proportion of Beech. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Accuracy assessment of the tree species proportions map. We selected 4,746 plots of the regional forest inventory of Wallonia (Alderweireld et al., 2016). The wooded
areas mask is displayed in green. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Table 3
Definitions of tree species classes, number of forest parcel polygons used as target data in the model training (map of forest parcels extracted
from the forest administration’s geodatabase of the Department of Nature and Forests, Public Service of Wallonia) where the class is present,
and number of plots used in map assessment (selected from the regional forest inventory of Wallonia) where the class is present. As a discrete
element can contain several tree species classes, a forest parcel polygon or an assessment plot can be counted in more than one class.
Tree species class definition forest parcel polygons assessment plots

Spruces Tree species belonging to the genus Picea. 51560 1517
Oaks Native oak in the study area, Quercus robur L. and

Quercus petraea (Mattuschka) Lieblein.
21657 2285

Beech Fagus sylvatica L. 25804 1454
Douglas fir Pseudotsuga menziesii (Mirb.) Franco. 19119 344
Pines Tree species belonging to the genus Pinus. 6926 264
Poplars Hybrid black poplar, Populus x euramericana (Dode)

Guinier.
839 129

Larches Tree species belonging to the genus Larix. 8539 186
Birches Tree species belonging to the genus Betula. 10806 866
Other Tree species not included in other tree species

classes.
32548 1958

Total number of discrete elements 119991 4746
o
r
m
p

n
d
F
p
K

2.3. CNN

2.3.1. Preparation of predictor and target variables
The predictor data (S2 super-resolved imagery, Section 2.2.1) were

normalised by considering the entire region using Eq. (1). Normalising
the data is highly recommended, as it speeds up learning and conver-
gence and improves the CNN performance. The data were normalised
using the following equation:

𝑁𝑜𝑟𝑚𝑉 𝑎𝑙𝑏 =
𝑉 𝑎𝑙𝑏 − 𝑃1𝑠𝑡𝑏
𝑃99𝑡ℎ𝑏 − 𝑃1𝑠𝑡𝑏

(1)

where 𝑉 𝑎𝑙𝑏 denotes the values of the considered band b, 𝑃1𝑠𝑡𝑏 and 𝑃99𝑡ℎ𝑏
denote the first and 99th percentiles of the values of band b, and 𝑁𝑜𝑟𝑚𝑉 𝑎𝑙𝑏
denotes the normalised values of the band b.

Based on the entire set of forest parcel polygons (Section 2.2.2),
a multi-band raster was generated (same grid as the predictor data)
and used as target data in CNN training. Each band of this raster
corresponded to a proportion of tree species (sum of all bands equalling
to 1). A ‘No Data’ value was assigned to all pixels not covered by the
forest parcels polygons or outside the wooded areas mask.

2.3.2. CNN architecture
To model the tree species proportions in the form of a vector of nine

values as a function of the ten super-resolved S2 bands, a U-shaped
neural network (UNet) was implemented. The UNet architecture was
initially developed by Ronneberger et al. (2015) and is now among
the most widely used architectures for pixel-wise image segmentation,
including remote sensing (Iglovikov et al., 2017). Typically, the UNet
architecture contains two paths: the contraction path (also known
as the encoder) and symmetric expanding path (also known as the
decoder). The encoder comprises of several convolution and pooling
operations (downsampling). The decoder comprises several transposed
convolutions (upsampling). Features of the encoder and decoder were
concatenated at each level via skip connections. The output showed the
same spatial dimensions as the input.

Since 2015, numerous adaptations and improvements of the UNet
architecture have been proposed. In this study, we selected a nested
UNet, named as UNet++, which significantly improves the segmenta-
tion accuracy (Zhou et al., 2018). Compared with the original UNet,
UNet++ has two major modifications: redesigned skip pathways and
deep supervision. The former reduces the semantic gap between the
encoder and decoder features of subnetworks, and the latter enables the
outputs of each level to be combined. This architecture was described
in detail in Zhou et al. (2018). The data reconstruction part of the
architecture was slightly modified to obtain a vector of nine values
for which the sum equals 1 for each pixel as the final output (Softmax
6

activation function). r
2.3.3. Patches and batches preparation
When using a CNN in remote sensing, the data sample unit is the

patch, which can be described as a small multi-band image extracted
from a portion of the study area. In this study, the patch size was set as
400 × 400 pixels. To produce a patch dataset for CNN training, each
patch extent was generated by randomly selecting a class by randomly
selecting a forest parcel polygon where this class is present, regardless
of the proportion; in this polygon, a point was randomly generated.
This point was the centre of the 400 × 400 pixel window used to
extract data from the predictor raster, i.e. the ten S2 bands, and the
target raster, representing the proportions of the nine tree species . As
explained in Section 2.3.1, the target values were ‘‘No Data’’ for all
pixels not covered by the forest parcel polygons.

Because the CNN could not be trained using all patches together,
as it would require too much computer memory, these patches were
grouped into distinct batches. Each batch was used separately to train
the CNN to update the architecture weights progressively. Therefore,
preparing patches and batches is an important step. A total of 7,500
batches was generated, with each batch comprised of three randomly
generated patches.

The nine tree species classes were highly imbalanced in terms of
the area covered in the region (Table 3). This imbalance was not
compensated when constructing the training dataset, as the spatial
context is an essential component of learning. Nevertheless, the manner
by which the patch extents were generated ensured that each tree
species class had an equal chance of being represented in a patch.

The data within the patches were augmented by applying rotations
(22.5◦, 45◦, or 67.5◦) and flips (vertical and/or horizontal). For each
patch, the probability of augmentation was 50%. Data augmentation
acts as a regulariser and helps to reduce overfitting.

2.3.4. Training
UNet++ includes weight regularisations to reduce overfitting and

improve model generalisation and robustness. For training, the Adam
optimiser (Kingma and Ba, 2014) was used, with a relatively low
learning rate of 1𝑒−4. The number of epochs was 5,000 and number
f steps per epoch was 50. For each step, one of 7,500 batches was
andomly selected. When reaching the learning plateau (i.e., no further
odel improvement) (Yoshida and Okada, 2019), the learning rate was
rogressively reduced by a step of −10% every 100 epochs.

A specific loss implementation is defined. The ‘No Data’ pixels were
ot used to compute loss. Thus, only pixels with forest parcel polygon
ata and inside the wooded areas mask (see Section 2.3.1) were used.
ive functions were tested: mean absolute error, mean squared error,
seudo-Huber (PH) (Barron, 2019), focal loss (Lin et al., 2017), and
ullback–Leibler divergence (Erven and Harremos, 2014). The best

esults were obtained using PH (Eq. (2)). The loss of each batch was
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w
computed by averaging the PH values of all selected pixels (all classes
considered).

𝑃𝐻 = 𝛿2 × (
√

1 + (𝑅𝑆
𝛿

)2 − 1) (2)

where 𝛿 (=2) denotes the delta value and 𝑅𝑆 denotes the residual value
for a pixel (true proportion minus predicted proportion).

2.4. Map prediction

Mapping prediction was performed within the wooded areas mask
using tiles of 400 × 400 pixels. To avoid undesirable effects at the
tile borders resulting from successive convolutions, a grid with an 8-
pixel overlap between tiles was used. Before merging the tiles, the
8-pixel overlap of each tile was removed (resulting in 392 × 392 pixels
remaining). To further improve the visual aspect, the map was obtained
from the average of 16 predictions corresponding to combinations of
four shifts (one-quarter left and/or up, or none) and four flips (vertical
and/or horizontal, or none).

As the loss function used (Eq. (2)) minimised the error in tree
species proportions but did not prevent small error in absent classes
(absent class = proportion 0.0), false-positives for small proportions
were frequent. Thus, a proportion threshold of 0.2 was applied to
improve the consistency of the map. Predicted proportion values below
0.2 were reduced to zero, and the proportions were recalculated to
sum to one. The final map was a 9-band raster, with each band
corresponding to the proportion of a tree species class.

2.5. Accuracy assessment of the map

2.5.1. Assessment protocol
Classification maps are typically evaluated using a confusion matrix

and indices derived from it, such as overall accuracy and producer’s
and user’s accuracies per class (Stehman and Foody, 2019). For this
study, because of the specific nature of the prediction, a vector of the
proportions of the nine tree species, such traditional methods were not
adapted. In the absence of a consensus for assessing compositional data
in the literature, we defined a new specific protocol that included new
indicators. The evaluation was divided into three parts, each focusing
on one specific element: (1) the majority class, (2) species composition
(presence or absence), and (3) species proportions (proportion values).

To compare the predicted tree species proportions with those ob-
served in the assessment plots, the predicted values of pixels inside the
18 m radius were extracted and averaged.

2.5.2. Majority class assessment
Plots with a majority class in the field were selected. These plots

corresponded to those whose tree species proportion vector contained a
class value higher than 0.6 according to the assessment data. Observed
and predicted classes with the highest proportion were used to build
a traditional confusion matrix and compute three values: the overall
accuracy (OA𝑚𝑎𝑗), producer’s accuracy per class (PA𝑚𝑎𝑗), and user’s
accuracy per class (UA𝑚𝑎𝑗). This assessment is most comparable to other
studies of tree species classification.

2.5.3. Species composition assessment
The species composition, that is, the presence or absence of tree

species classes, was derived from the vector of tree species proportions
by applying a simple Boolean filter (vector > 0). Three new indicators
were introduced: (1) mean score (MS), (2) mean producer’s score
(MPS), and (3) mean user’s score (MUS). The MS was computed by
averaging the proportion of correct attributions within a plot (Eq. (3)).
Similar to MS, MPS focused on the presence relative to the reference,
and MUS focused on the presence relative to the prediction (Eqs. (4)
and (5)):

𝑀𝑆 = 1
𝑛
∑ 𝑐𝑖 (3)
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𝑛 𝑖=1 9
here 𝑛 denotes the total number of assessment plots and, for plot 𝑖, 𝑐𝑖
denotes the number of correct attribution between the presence or absence
among the nine classes.

𝑀𝑃𝑆 = 1
𝑛

𝑛
∑

𝑖=1

𝑡𝑖
𝑐𝑟𝑖

(4)

where 𝑛 denotes the total number of assessment plots and, for plot 𝑖, 𝑡𝑖
denotes the number of true-positives among the number of classes 𝑐𝑟𝑖 present
in the plot i according to the reference.

𝑀𝑈𝑆 = 1
𝑛

𝑛
∑

𝑖=1

𝑡𝑖
𝑐𝑝𝑖

(5)

where 𝑛 denotes the total number of assessment plots and, for plot 𝑖, 𝑡𝑖
denotes the number of true-positives among the number of classes 𝑐𝑝𝑖 present
in plot i according to the prediction.

The tree species composition was also assessed according to tree
species class. Two traditional indicators were used: 1) producer’s accu-
racy (PA, Eq. (6)) and 2) user’s accuracy (UA, Eq. (7)).

𝑃𝐴𝑐𝑙 =
𝑡𝑐𝑙
𝑝𝑟𝑐𝑙

(6)

where, for the evaluated class 𝑐𝑙, 𝑡𝑐𝑙 denotes the number of true-positives
among the number of plots 𝑝𝑟𝑐𝑙 where the class 𝑐𝑙 is present according to
the reference.

𝑈𝐴𝑐𝑙 =
𝑡𝑐𝑙
𝑝𝑝𝑐𝑙

(7)

where, for the evaluated class 𝑐𝑙, 𝑡𝑐𝑙 denotes the number of true-positives
among the number of plots 𝑝𝑝𝑐𝑙 where the class 𝑐𝑙 is present according to
the prediction.

To evaluate the detection accuracy per species as a function of
their proportions, Eqs. (6) and (7) were applied to several subsets
of assessment plots by proportion ranges (0–0.2, 0.2–0.4, etc.). To
determine PA and UA, the plots were sorted based on the reference
and predicted proportions, respectively.

2.5.4. Assessment of tree species proportions
The residuals of the predicted proportions were also analysed. The

RMSE, variance of residuals (VAR𝑟𝑒𝑠), variance of reference proportions
(VAR𝑡𝑜𝑡), and adjusted coefficient of determination (R2

𝑎𝑑𝑗) were calcu-
lated. First, the nine classes of the tree species proportion vector were
considered (4746 plots × 9 classes). Second, RMSE, VAR𝑟𝑒𝑠, VAR𝑡𝑜𝑡, and
R2

𝑎𝑑𝑗 were calculated by class only using values for the class of interest
(4746 plots × 1 class).

2.6. Data processing and analysis tools

Preparation and processing of the predictor and target data, as well
as deep learning implementation and map accuracy assessment, were
performed in R (R Core Team, 2020), mainly using three R packages:
raster (Hijmans, 2019), sf (Pebesma, 2018), and keras (TensorFlow
backend) (Allaire and Chollet, 2019), and in connection with the
GDAL/OGR library (GDAL/OGR contributors, 2020) and Orfeo ToolBox
(Inglada and Christophe, 2009; Grizonnet et al., 2017).

3. Results

3.1. Tree species proportions map

Using our method, we produced a map of tree species proportions
in the Wallonia region (Fig. 1). The final map covered 16,901 km2 at
2.5 m spatial resolution (Fig. 5).
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Fig. 5. (a) Tree species proportions map for the Spruces class in the entire study area. (b) Tree species proportions map for the Oaks class. (c) Tree species proportions map
for the Beech class. (d) False colour image of the tree species proportions map (red: proportion of Oaks, green: proportion of Beech, blue: sum of proportions for the remaining
classes). To display this false colour image, the maximum channel values were set to 0.33. (e) False colour image of the S2 super-resolved imagery (red: B8 A, green: B11, blue:
B12) presented for the same extent as panel f. (f) False colour image of the tree species proportions map presented at a finer scale. The extent of the detailed view in panels e
and f is represented on the full false colour image (panel d) by a white rectangle. This extent is the same as that in Fig. 3. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
3.2. Accuracy assessment of the map

3.2.1. Majority class assessment
The OA𝑚𝑎𝑗 was 0.73. The Spruces class had the lowest confusion

with a PA𝑚𝑎𝑗 and UA𝑚𝑎𝑗 above 0.90 (Table 4). The lowest accura-
cies were observed for Poplars, Birches, and Other classes. The most
frequent classes (Spruces, Oaks, Beech, and Douglas fir) showed the
highest accuracies. The main confusion was observed between classes
8

often mixed with each other in the assessment plots; such as Oaks and
Beech, and Spruces and Douglas fir.

3.2.2. Species composition assessment
The MS value reached 0.89. The MPS and MUS values were 0.72

and 0.83, respectively.
The Spruces, Oaks, Beech, and Douglas fir classes achieved the best

global results, with PAs and UAs close to or higher than 0.70 (Table 5).
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Table 4
Confusion matrix built to assess detection of the majority class. Assessment plots with an observed class proportion higher than 0.6 were selected.
The confusion matrix was calculated by crossing the observed majority class and predicted majority class. The producer’s accuracy (PA𝑚𝑎𝑗 ) and user’s
accuracy (UA𝑚𝑎𝑗 ) were calculated per class.

Prediction Validation UA𝑚𝑎𝑗

Spruces Oaks Beech Douglas fir Pines Poplars Larches Birches Other

Spruces 1024 22 20 20 6 0 1 1 21 0.92
Oaks 10 693 77 2 9 1 0 5 83 0.79
Beech 7 74 467 1 3 2 0 0 25 0.81
Douglas fir 45 4 3 128 3 1 2 0 6 0.67
Pines 5 3 2 3 71 0 7 1 5 0.73
Poplars 0 5 1 1 1 27 2 0 20 0.47
Larches 6 4 2 4 2 1 58 0 3 0.72
Birches 12 45 8 1 8 1 2 24 47 0.16
Other 13 256 59 3 2 20 0 3 273 0.43

PA𝑚𝑎𝑗 0.91 0.63 0.73 0.79 0.68 0.51 0.81 0.71 0.57
.

Table 5
Number of true-positives (𝑡𝑐𝑙), Number of plot where a class is present according to the
reference (𝑝𝑟𝑐𝑙), number of plots where a class is present according to the prediction
(𝑝𝑝𝑐𝑙); producer’s accuracy (PA) and user’s accuracy (UA) by class. See Eqs. (6) and (7)

Class 𝑡𝑐𝑙 𝑝𝑟𝑐𝑙 𝑝𝑝𝑐𝑙 PA UA

Spruces 1178 1517 1312 0.78 0.90
Oaks 1922 2285 2437 0.84 0.79
Beech 967 1454 1224 0.67 0.79
Douglas fir 233 344 332 0.68 0.70
Pines 134 264 202 0.51 0.66
Poplars 59 129 106 0.46 0.56
Larches 77 186 116 0.41 0.66
Birches 87 866 112 0.10 0.78
Other 1163 1958 1526 0.59 0.76

Table 6
Root mean squared error (RMSE), adjusted coefficient of determination (R2

𝑎𝑑𝑗 ), variance
of the residuals (VAR𝑟𝑒𝑠) and variance of the reference proportions (VAR𝑡𝑜𝑡).

Class RMSE R2
𝑎𝑑𝑗 VAR𝑟𝑒𝑠 VAR𝑡𝑜𝑡

Spruces 0.18 0.80 0.03 0.17
Oaks 0.29 0.19 0.09 0.11
Beech 0.21 0.48 0.05 0.09
Douglas fir 0.13 0.54 0.02 0.04
Pines 0.11 0.28 0.01 0.02
Poplars 0.10 0.05 0.01 0.01
Larches 0.09 0.48 0.01 0.02
Birches 0.17 0.05 0.03 0.03
Other 0.29 0.10 0.08 0.09
Overall 0.19 0.50 0.04 0.07

The Oaks class exhibited the best PA with a value of 0.84, whereas
Spruces had the best UA with a value of 0.90. The lowest PA and UA
were observed for the Birch and Poplars classes with values of 0.10 and
0.56, respectively.

PAs and UAs increased in the range of proportions for all classes.
The best PAs were observed for the Oaks class, with values higher than
0.80 in all proportion ranges above 0.2 (Fig. 6). Except for the Poplars,
Larches, and Birches classes, all tree species classes had PAs higher
than or equal to 0.75 for the proportion range above 0.6 (Fig. 6). The
best UAs were observed for the Oaks, Birches and Other classes with
values higher than 0.63 in all proportions above 0.2. In the proportion
range of 0.6 to 1.0, the UAs were higher than 0.70 for all classes except
Poplars. Only the Oaks and Beech classes achieved high Pas and UAs
in low proportions. The PAs and UAs were higher than 0.70 from the
0.4 proportion.

3.2.3. Assessment of tree species proportions
The overall R2

𝑎𝑑𝑗 value was 0.50. The Spruces class reached the best
2
𝑎𝑑𝑗 . The lowest R2

𝑎𝑑𝑗 values were obtained for Poplars, Birches, and
ther classes (Table 6).
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4. Discussion

The method proposed in this study for mapping tree species pro-
portions using spectral–spatial deep learning expands traditional tree
species classification and mapping, as it allows for modelling of the
majority class, presence/absence of species, and composition basal area
proportions. Furthermore, the method was adapted to the complexity
of mixed forests and spatial resolution of current satellite imagery. It
also optimises the use of available forest inventory data in the model
conception by considering all pixels from pure stands to highly mixed
forest stands. This method is highly reproducible and applicable at a
large scale in cases where forest inventory data, in a broad sense, are
available, that is, georeferenced areas with tree species proportions.
The training dataset was derived from a map of forest parcels from
the Forest Administration, and the resulting map was assessed and
validated using a specific protocol that included new indicators with
independent data (plots of the regional forest inventory). The assess-
ment covered the full range of possible forest compositions in the study
area (𝑛 = 4,746 sample plots; Fig. 4).

4.1. Map accuracy

The balance between MPS and MUS (0.72 and 0.83 respectively)
and the MS value (0.89) support that the model can predict the tree
species composition (presence or absence) in most cases in the study
area. For the most frequent classes, Spruces, Oaks, Beech, and Douglas
fir ( Table 1), the high PA and UA values (Table 5) demonstrate that the
model can detect these tree species classes for the majority of situations
encountered in the study area. For all classes, there was an increasing
proportion of false-negatives in the decreasing observed proportions
and increasing proportions of false-positives in the decreasing predicted
proportions (Fig. 6). This highlights the expected difficulty in building
a model that performs well for low proportions, particularly for less
common species. Nevertheless, the high values of PA and UA in the low
proportion ranges for the Oaks and Beech classes reveal the potential
of this approach for mapping mixed forest stands.

Because the majority tree species of a stand is an important param-
eter in forestry considerations, we also examined whether the model
could detect the majority class when one exists. The confusion matrix
(Table 4) showed a high OA𝑚𝑎𝑗 of 0.73. Lower PA𝑚𝑎𝑗 or UA𝑚𝑎𝑗 derived
from this matrix were compensated by very good accuracies for the
most frequent classes (Spruces, Oaks, Beech, and Douglas fir). These
higher accuracies show that our approach can map the majority of
tree species in mixed and pure forest stands in the study area. Further-
more, we achieved accuracies comparable to those computed for pure
stands only in the latest study conducted in European temperate forests
(Hemmerling et al., 2021).

The overall RMSE of the predicted proportions was 0.19 for an
R2

𝑎𝑑𝑗 value of 0.50. This result was expected, as the data used to

train the model were polygons providing average information for a
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Fig. 6. PAs and UAs by tree species class as a function of the range of proportions. For PAs, the 𝑥-axis corresponds to the observed proportions. For UAs, it corresponds to the
predicted proportions. The number of plots used to calculate the accuracies (𝑝𝑟𝑐𝑙 and 𝑝𝑝𝑐𝑙 , Eqs. (6) and (7)) is shown below the corresponding bars. As described in Section 2.4,
predicted proportion values lower than 0.2 were filtered to prevent false-positives. Thus, the UA bar is absent from the 0–0.2 range in all classes.
complete forest stand. Nevertheless, this accuracy was very satisfactory
for analysing the tree species composition and majority tree species in
the study area. Spruces, the largest class in the study area, achieved
an R2

𝑎𝑑𝑗 value of 0.80. This class is mostly composed of pure or
almost pure stands in the study area. This characteristic is reflected
in the distribution of the number of assessment plots per proportion
10
range (Fig. 6). Therefore, the variance in its proportions is higher
(Table 6), increasing R2

𝑎𝑑𝑗 . In addition, this class, as the most com-
mon tree species, is more likely to be represented in patches used
in CNN training, even when not targeted during patch generation
(Section 2.3.3).
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Gudex-Cross et al. (2017) performed the most comparable and
recent study as the current study. Using spectral unmixing of multi-
temporal Landsat imagery, the authors quantified the basal area per-
centage of ten tree species/genera using a stepwise linear regression
model. They also performed validation using 50 plots distributed over
their study area (Landsat Row 29, Path 14) and achieved R2

𝑎𝑑𝑗 values
from 0.24 to 0.59 depending on the species. Although these statistics
were calculated from a proportionally smaller number of observations,
they are comparable to our results, highlighting the difficulty of mod-
elling continuous variables, such as the basal area of an individual
tree species. To produce a forest thematic map in their study, post-
treatment was applied to the percentage basal area rasters obtained
from pixel-based spectral unmixing (object-based hierarchical classifi-
cation scheme). This step requires the definition of arbitrary clustering
choices. Because their final forest thematic map was evaluated after
this step, comparison was not relevant. Moreover, the quality of the
final map depended on the accuracy of the predicted proportions of
tree species. Therefore, to ensure consistency and reproducibility, our
method can be used to assess tree species composition and majority
classes before a hierarchical classification is chosen, such that the
direct focus can be placed on the presence or absence of species in the
predicted species proportion vector.

4.2. Innovative method for tree species mapping

Compared to the most recent studies using machine learning or deep
learning to process satellite images for tree species classification (Xi
et al., 2021; Zagajewski et al., 2021; Xie et al., 2021; Bjerreskov et al.,
2021; Grabska et al., 2020; Immitzer et al., 2019; Grabska et al., 2019;
Hoscilo and Lewandowska, 2019; Persson et al., 2018; Wessel et al.,
2018; Bolyn et al., 2018), the proposed method is not limited to spectral
information but also includes spatial information, as recently explored
by Illarionova et al. (2021). This innovation, enabled by using a CNN,
considers the neighbourhood pixels of the targeted pixel for prediction.
Therefore, it is an inclusive method for considering groups of pixels for
mapping. The prediction was better and more robust because of the
nested levels of observation. The mapped object is spatially variable.
A forest stand must be considered at several scales of analysis, from
the pixel to the whole patch. In contrast to classical segmentation, the
CNN allowed us to learn the segmentation parameters directly with
regard to the variable to be predicted. The CNN included this step
in the model architecture rather than performing pre-processing for
object-based analysis.

Predicting tree species proportions at the pixel level based on their
surroundings overcame the two challenges of this study. First, it al-
lowed for mapping of the whole forest, including all types of species
compositions (pure or mixed stands), even though the resolution of the
satellite image was not sufficient to differentiate individual trees. Thus,
our method allows reliable characterisation of forest species over large
geographical areas and addresses the lack of relevant studies in this
field of research raised by Fassnacht et al. (2016).

Second, this approach allowed us to optimise the use of the available
forest inventory data in model training and validation by considering
all pixels from pure to highly mixed forest stands. The scarcity of spatial
data required for remote sensing studies provides an opportunity for
a wide range of applications. A recurrent problem is the availability
of a representative training dataset. An ideal dataset composed of the
precise positioning of tree crowns and their characteristics is rare. How-
ever, forest managers often use databases that reference the proportion
of tree species per forest plot, stand, or polygon. Thus, Illarionova et al.
(2021) proposed an additional strategy. They first trained a CNN model
to find homogeneous areas within each forest stand, presenting a tree
species class with a proportion higher than 0.5. They then trained a
final model for tree species classification in the detected pure areas.
Rather than focusing only on homogeneous areas, our reproducible
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method enables the use of full forest inventory data. Moreover, a
mapping approach via a quantitative variable rather than a qualitative
approach can be used to consider the gradients that exist in nature,
making this model generalisable to many subjects.

Our method requires some improvements. First, Poplars stands grow
and change very rapidly compared to other classes (plantation cycle of
20–25 years). Therefore, in the proportion range 0.8–1.0, the assess-
ment plots data were much more likely to be outdated compared to the
other mapped classes. Designing a suitable assessment dataset would
improve the analysis of this class.

Second, finding reference data for less frequent classes is an in-
trinsic problem in model-based mapping. Therefore, in this study,
special attention was paid to class balancing during the preparation of
patches and batches for CNN training (see Section 2.3.3). Nevertheless,
lower results were obtained for minority classes (Poplars, Larches,
and Birches). Thus, balancing classes and augmenting data cannot
completely compensate for a large lack of data. The best dataset would
be that which is most representative of the population variability of
every class in the study area. Therefore, new reference data should be
collected to improve the model .

Finally, a major improvement to the proposed model would be to
add a temporal dimension by upgrading spectral–spatial deep learning
to ‘spectral-spatial–temporal’ deep learning. This is supported by recent
studies that highlighted the importance of using S2 time series for
tree species classification (Xi et al., 2021; Hemmerling et al., 2021).
Their findings suggest that this upgrade would significantly improve
the model performance.

4.3. Deep learning for remote sensing mapping

We demonstrated that deep learning is advantageous for remote
sensing mapping. As discussed above, the use of spectral–spatial mod-
elling (rather than spectral modelling alone) makes a substantial dif-
ference in this field, which necessarily involves spatial considerations.
Few studies have been conducted on tree species classification using
deep learning with satellite imagery, and previous studies did not use
spatial information in their architecture (Xi et al., 2021; D’Amico et al.,
2021). In addition, considering the temporal dimension, as discussed
above, further research of tree species mapping using spectral–spatial–
temporal deep learning is needed.

Another advantage of NNs is their flexibility, as CNN models and
frameworks can be retrained using a custom dataset for any use case
(O’Mahony et al., 2020). Based on their customisability, it is possible
to adapt the architecture, loss function, and output data type. In this
study, only this tool could learn from compositional data (i.e. vectors
of tree species proportions as target data). In addition, considering the
high learning performance of CNNs, they have vast potential for use in
modelling complex objects, particularly in remote sensing for forestry
or other environmental applications.

Finally, deep learning techniques are powerful only when coupled
with sufficient data (O’Mahony et al., 2020). Ideally, well-distributed
spatial data with good coverage should be used but are not always
available. The proposed method makes the best use of available ref-
erence data in forested areas.

5. Conclusion

This study addressed two major challenges in tree species mapping.
First, we propose a method for predicting tree species basal area pro-
portions that is adapted to the complexity of mixed forests and satellite
spatial resolutions coarser than the size of tree crowns. Second, this
method optimises the use of available forest management and inventory
data by considering all pixels of pure and mixed forest stands. These
two advances enabled the production of a robust tree species map for a
large geographical area. Particularly, high performance was achieved
for detecting Oaks and Beech tree species classes in areas with low

species proportions.
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We also proposed a robust assessment method for tree species
proportions maps that allows separate assessment of the 1) majority
species, 2) species composition (presence or absence), and 3) species
proportions (proportion values). When forest inventory data, in a broad
sense, are available, that is, georeferenced areas with tree species
proportions, the method is highly reproducible and allows for remote
sensing studies at scales comparable to field forest inventories and for
all types of forest compositions.

The use of spatial information, in addition to spectral information,
was crucial for achieving the objectives of the study and resulted in
high performance. As recent studies of tree species classification using
remote sensing have highlighted the importance of using time series in
model performance, we will next include a temporal dimension in the
architecture model to take advantage of species phenology.
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