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Abstract
Brain function relies on the ability to quickly process incoming information while being capable of
forming memories of past relevant events through the formation of novel synaptic connections. Synap-
tic connections are functionally strengthened or weakened to form new memories through synaptic
plasticity rules that strongly rely on neuronal rhythmic activities. Brain information processing, on
the other hand, is shaped by fluctuations in these neuronal rhythmic activities, each defining distinc-
tive brain states, which poses the question of how such fluctuations in brain states affect the outcome
of memory formation. This question is particularly relevant in the context of sleep-dependent memory
consolidation, wakefulness to sleep transitions being characterized by large modifications in global
neuronal activity. By combining computational models of neuronal activity switches and plasticity
rules, we show that switches to rhythmic brain activity reminiscent of sleep lead to a reset in synaptic
weights towards a basal value. This reset is shown to occur both in phenomenological and biophysi-
cal models of synaptic plasticity, and to be robust to neuronal and synaptic variability and network
heterogeneity. Analytical analyses further show that the mechanisms of the synaptic reset are rooted
in the endogenous nature of the sleep-like rhythmic activity. This sleep-dependent reset in synaptic
weights permits regularizing synaptic connections during sleep, which could be a key component of
sleep homeostasis and has the potential to play a central role in sleep-dependent memory consolidation.
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Introduction
Our brain has the ability to process information to quickly analyze or react to incoming events from the
environment, as well as to learn from experience to shape our memory. This information processing is
built on fluctuations in rhythmic neuronal patterns at the cellular and population levels, each defining
brain states [1–3]. These patterns are spatiotemporal signatures of large neuronal populations. The
switches between different brain states can be fast and localized, as observed for instance in brain areas
prior to movement initiation [4], or global and long-lasting, such as those characterizing wake-sleep
cycles [1, 5, 6]. These rhythms translate the collective activity of neurons interconnected via synaptic
connections.

At the cellular level, neurons are able to switch between different modes of excitability under the
control of neuromodulators [7]. In particular, the transition from wakefulness to sleep is associated
with dramatic modifications in neuromodulator concentrations, such as serotonin, norepinephrine,
dopamine and acetylcholine, which in turn induces a switch in neuronal activity in many brain regions
from asynchronous spiking to a rhythmic bursting activity [8]. These fluctuations have been shown to
critically shape memory, a property that is called sleep-dependent memory consolidation [9–11].

On the other hand, memory relies on the ability of neurons to modify their connections with other
cells through a mechanism called synaptic plasticity [12, 13]. A great deal of attention has been
paid to understand the rules of synaptic plasticity in behavior and learning [14]. Two categories of
synaptic plasticity models are common in the literature. The first one considers simple spike time
series as inputs for the plasticity rule, [15, 16] and the second uses calcium as a key driver [17, 18].
The validity and the role of these synaptic plasticity rules in shaping how a neuronal network learns
specific tasks has been extensively studied. However, our understanding of how such rules interact
with the fluctuations in brain states we observe during the sleep-wake cycle is still scarce [19–21].

In this paper, we explore how networks switch from asynchronous spiking to rhythmic bursting
as those observed in the wake-sleep transition affect the outcome of several synaptic plasticity rules.
We construct a neuronal circuit capable of reproducing the transition from tonic firing to bursting
under the control of neuromodulators. This circuit is made of conductance-based models and comprises
inhibitory neurons projecting GABA currents onto two layers of excitatory neurons connected through
AMPA currents. The synaptic connection between the two excitatory neuron layers is governed by a
synaptic plasticity rule. We compare 20 different rule variations, ranging from spike-time dependent
plasticity rules (such as pair-based and triplet [15, 16, 22–24]) to calcium-dependent rules [17, 25,
26]. All rules are parameterized in the spiking regime to fit experimental data obtained either on
a spike-timing protocol [27] or on a frequency-pairing protocol [28]. We then compare how strong
and weak synaptic weights acquired during wakefulness evolve as the network switches in rhythmic
bursting mode, an endogenous firing activity associated to sleep.

A switch to a rhythmic activity results in a reset of synaptic weights: whatever the strength
established during wakefulness, the network resets its connectivity to a single steady-state value during
sleep, regardless of the implemented plasticity rule, either being spike-time dependent or calcium-
based. We call this phenomenon a homeostatic reset of synaptic weights, as it fully relies on endogenous
properties of the network and promotes the regularization of synaptic weights during sleep. The
homeostatic reset is shown to be robust to the level of neuromodulation, and to both variability
and heterogeneity in circuit parameters. Further analytical investigations show that the mechanisms
underlying the reset are rooted in the interactions between the endogenous dynamics of network
rhythmic activity and the plasticity rules themselves, both being largely independent from initial
synaptic weights.
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Results

Switches to a rhythmic brain state reminiscent of sleep lead to a homeostatic reset
of synaptic weights

We first investigated how switches in brain states, neuromodulation of activity, and synaptic plasticity
interact by implementing a Spike-Timing-Dependent Plasticity (STDP) rule from [15] in a neuron
circuit capable of switching between asynchronous spiking and rhythmic bursting states [1, 29]. The
neuron circuit follows a conductance-based modeling paradigm and reproduces the activities observed
in cortical networks during switches brain states [3, 8, 30], among others. The circuit is composed of
an inhibitory neuron projecting GABA currents onto two excitatory neurons connected by an AMPA
current (Figure 1A, left). This 3-cell circuit provides an appropriate support to study the transition
between several firing activities and its functional consequence on the evolution of synaptic weight.
Indeed, this topology is often encountered in different brain regions; such as the thalamus between
reticular and relay cells [31, 32], the cortex between pyramidal and inhibitory cells [33, 34], or even
between different organs like striatum and basal ganglia [4, 35]. Applying a hyperpolarizing current
to the inhibitory cell, which models the effect of neuromodulators in our example (labeled NMOD in
Figure 1A), switches the whole circuit from asynchronous slow tonic firing to synchronous bursting,
which mimics the type of switch observed during transitions from wakefulness to sleep (Figure 1A,
right - more details on the circuit in SI Appendix).

We then integrated a synaptic plasticity rule between the two excitatory neurons in the circuit.
The connection strength between the neurons, or synaptic weight, is characterized by a variable w
(Figure 1A). Synaptic plasticity is modeled by a synaptic rule describing the evolution of the synaptic
weight throughout time, which we call ∆w for conciseness (Figure 1A, right). Classical STDP was
used as the synaptic plasticity mechanism in the neuronal model due to its prevalence in the synaptic
plasticity literature, using a triplet model [15]. Because such plasticity rule is often not used in
combination with conductance-based models, it was parameterized in the spiking regime to fit well-
established experimental data obtained through a frequency pairing protocol [28] (more details on the
parameter model fitting see SI Appendix).

To investigate how switches in brain states affect synaptic connections in the presence of STDP,
we subjected six circuit models to two transitions from wakefulness to sleep and back, while letting
the plasticity rule run its course (Figure 1B, see Methodsfor details). Among these six circuits, three
were designed to exhibit a correlated activity between the excitatory neurons with the presynaptic
neuron firing slightly before the postsynaptic neuron, mimicking the activity of neurons receiving
functionally related inputs (dark blue curves in Figure 1B). The three others were designed to exhibit
an uncorrelated, random activity, mimicking the activity of neurons receiving unrelated inputs (light
blue curves in Figure 1B). We then compared the evolution of the synaptic weight in these six circuits
along the two wake-sleep cycles (see middle panel of Figure 1B).

During wakefulness, neurons are in spiking mode and the synaptic weights evolve in accordance with
the level of correlation between the presynaptic and postsynaptic neurons, in agreement with the STDP
rule. The connection strengths between neurons exhibiting correlated activities increase(Figure 1B,
top left), whereas the connection strengths between neurons exhibiting uncorrelated activities decrease
(Figure 1B, bottom left).

As the circuit switches to sleep, the neurons switch to a rhythmic bursting mode. This change
in activity radically affects the time evolution of the synaptic weights under the STDP rule: connec-
tions that were potentiated during the previous wakefulness phase start to depress (Figure 1B, top
right), whereas connections that were depressed start to potentiate (Figure 1B, bottom right), and
all connection strengths eventually converge to a single, stable point. This convergence point is fully
independent of what happened during wakefulness. We call this phenomenon a homeostatic reset of
synaptic weights, as it relies on a switch to an endogenous, rhythmic activity of the network and his
independent from external inputs and learning history.

The potential functional consequences of the homeostatic reset are twofold. On the one hand, it
promotes the regularization of synaptic weights during sleep, which in turn restores the ability to learn
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new information on the next day. On the other hand, it potentially disrupts any learning that may
have occurred during the previous day, if one solely relies on the evolution of w under the STDP rule.
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Figure 1: A homeostatic reset of synaptic weights is observed during rhythmic bursting mode
whatever the neuronal activity correlation in tonic spiking
A. (Left) scheme of the three-cell circuit. The circuit is composed of an inhibitory cell (I) (depicted by the
small light pink circle) that projects GABA current onto excitatory pre- and postsynaptic neurons. Applying
neuromodulators (labeled by NMOD, black line) onto the I-cell induces the transition from tonic (☼) to burst ($)
in the circuit. The synaptic weight w between the excitatory neurons is affected by a spike time-dependent
synaptic plasticity rule (STDP). (Right) Time evolution of membrane potentials of the circuit on tonic mode
(modeling wakefulness), and rhythmic bursting mode (modeling sleep). (x-scale: 1 s, y-scale: 50 mV.)
B. Evolution of the synaptic weight in 6 circuits during two wake-sleep transitions. During wakefulness (☼),
3 circuits have a strong (resp. weak) correlated activity between pre- and post-synaptic neurons resulting in
a synaptic weight increase (resp. decrease) shown in dark (resp. light) blue. During sleep mode ($), all the
synaptic weights are reset to the same value—a phenomenon that we called the homeostatic reset. Top and
bottom panels provide zooms on the voltage traces and the associated synaptic weight evolution during spiking
mode (learning) and bursting mode (homeostatic reset). (time window of 1 s, y-scale: 50 mV for Vm and 1 % for
w.)

The homeostatic reset occurs in both phenomenological and biophysical models of
synaptic plasticity

So far, we have seen that a classical STDP rule leads to a homeostatic reset in synaptic weights
during a switch in network state from wakefulness to sleep. We further investigated the generality
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of the homeostatic reset by testing 20 variations of 7 published synaptic plasticity models. These
synaptic plasticity models can be split into two categories (Figure 2A). The first category comprises
phenomenological models, which use spike timing of presynaptic and postsynaptic neurons as the
main input that drives changes in synaptic weights. Prominent examples of such models are the
pair-based rule using the pre- and post-spiking times [16, 23] and the triplet rule using pre-post-pre-
or post-pre-post-spiking activity to change the synaptic weight [15, 25] (Figure 2A, left blue box).
The second category comprises biophysical models, which use intracellular calcium concentration as
the key signal that drives synaptic change [17, 18, 25, 26] (Figure 2A, right blue box). The two
representations into the blue boxes are simplified to provide a comprehensive overview of the rules.
Their computational implementations are described in SI Appendix. Then, we compare two different
weight-dependency plasticity for each category of model by implementing either hard bounds or soft
bounds (more information in [36, 37]).

Altogether, 2 phenomenological rules (see Table 1) and 5 calcium-dependent plasticity rules (see
Table 2) are studied in this paper. Each parameter set is related to a region, a pairing protocol, a
type of bounds and other factors listed in Tables 1 and 2.

Name Region Bounds Reference ID

Pair-based H Soft [23] 1
H Hard [16] 2

Triplet

H Soft adapted from [15] 3
H Hard [15] 4
C Soft [25] 5
C Hard [15] 6

Table 1: Phenomenological models covered in this paper. Region is linked to the parameter choice depending
on the brain area where the rule is fitted: (C) cortex, (H) hippocampus. The weight-dependency is either
modeled by (Soft) soft bounds or (Hard) hard bounds.

Model Formalism Region Bounds Ca2+-coupling STD Reference ID

Graupner 2016

Th* C Soft No No [25] 1
Th C Soft No No adapted from [25] 2
Th H Soft No No adapted from [25] 3
Th C Hard No No adapted from [25] 9

Graupner 2012 Th C Soft No No [18] 4
Th H Soft No No [18] 5

Shouval 2002 Cont C Soft No No adapted from [17] 6
Cont C Hard No No adapted from [17] 10

Deperrois 2020
Th C Soft Yes No [26] 7
Th C Hard Yes No adapted from [26] 11
Cont C Hard Yes No adapted from [26] 12

Deperrois 2020
Th C Soft Yes Yes [26] 8
Th C Hard Yes Yes adapted from [26] 13
Cont C Hard Yes Yes adapted from [26] 14

Table 2: Biophysical models investigated in this paper. (Th*) stands for calcium thresholds such as two
opposing calcium-triggered pathways leading increases or decreases of synaptic strength [18, 25, 26]. (Th) uses
calcium-dependent steady state value and time-constant. (Cont) stands for the continuous function of the
calcium dependency [17]. Region is linked to the parameter choice depending on the brain area where the rule
is fitted: (C) cortex, (H) hippocampus. The weight-dependency is either modeled by soft bounds (Soft) or hard
bounds (Hard). (Ca2+-coupling) The presynaptic calcium influx is coupled with the synaptic weight (Yes/No).
The models include an equation considering the depression of presynaptic vesicles labeled short-term depression
(STD) (Yes/No). The parameters come from an original paper or are adapted to reproduce the frequency
dependency in a pairing protocol (for cortex as in [28]) or a STDP protocol (for hippocampus as in [27]).

This raised the issue that fitting plasticity rule is a complex problem. The paper aiming at com-
paring the general behavior of plasticity rules during switches from wakefulness to sleep, we first
parameterized all 20 model variations in the wakefulness state based on two well-established experi-
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mental plasticity induction protocols (Figure 2B). In the first induction protocol, the time lag between
pre- and postsynaptic spikes is tested for a given frequency after several pairs. This protocol permit-
ted to experimentally uncover the STDP rule [27]. Figure 2C shows the average (black curve) and
standard deviation (gray shadow) of the behavior of the different models after parameterization, to-
gether with the experimental data of [27] (circles). In the second induction protocol, a fixed time lag
is maintained while the impact of the stimulation frequency is explored. Similarly, Figure 2D shows
the average (black curve) and standard deviation (gray shadow) of the behavior of the different mod-
els after parameterization for the second protocol, together with the experimental data [28] (circles).
More information on the protocols can be found in SI Appendix. For each model, a specific datasheet
provides the parameter values as well as the validation on experimental data and the evolution of the
synaptic weight during burst mode (see SI Appendix).

We generalized the computational experiment performed in Figure 1B to all 20 synaptic model
variations (see SI Appendix for a simulation trace of each individual simulation). In all model configu-
rations implementing a soft bound, a network switch from wakefulness mode to sleep mode generated
a homeostatic reset of synaptic weights, very reminiscent of what is shown in 1B. In all model con-
figurations implementing a hard bound, a network switches from wakefulness mode to sleep mode
generated a convergence of the synaptic weights towards the extreme value with a constant velocity
whatever its initial weight. Such saturation phenomenon of all synaptic weights was previously shown
in other applications (see for instance [38]). Although the convergence dynamics are different between
the two cases, the outcome is the same: a switch to sleep regularizes synaptic weights, potentially dis-
rupting any learning that might have occurred during the wakefulness period. This shows that such
sleep-induced homeostatic reset of synaptic weights is a robust phenomenon that does not depend on
the specifics of any synaptic plasticity model.
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Figure 2: Two categories of synaptic plasticity rules reproduce experimental data from plasticity-
induced protocol.
A. A three-cell circuit able to switch from tonic to burst. The synaptic weight w between pre- and postsynaptic
neurons is affected by plasticity. Two categories of plasticity rules are tested. (Left) Phenomenological models
focusing on the spike timing such as the pair-based and triplet models [14, 15, 25] such as w → w+∆w and ∆t =
tpost − tpre. The weight-dependency is affecting the potentiation/depression parameter A. (Right) Biophysical
models use the intracellular calcium to drive synaptic change such as τw([Ca])ẇ = F (w, [Ca]). Small (resp.
high) calcium level leads to slow (resp. fast) depression (resp. potentiation). Either the plasticity rule is a
continuous function of calcium (as in [17]) or use depression and potentiation levels (Ωd and Ωp) associated to
two calcium thresholds (depression or potentiation θd or θp), as in [25]). The weight-dependency modifies the
synaptic plasticity equation.
B. Plasticity induced protocols focus on maintaining either the simulation frequency and varying the pre- and
post-spike time ∆t = tpost − tpre [27] or maintaining a constant time lag and varying the spike frequency f [28].
C. The change of synaptic strength (∆w) is shown as a function of the pre-post pairings (∆t) for a frequency
of 1 Hz, reproducing [27] experimental data (circles). The fit obtained in all models for hippocampus data is
averaged. The mean (black line) and the standard deviation (gray shadow) are shown.
D. The change of the synaptic strength is shown as a function of frequency pairings for regular pre-post pairs
(∆t = 10 ms (full line) and ∆t = −10 ms (dotted line)) reproducing [28] experimental data obtained in cortex
(circles, squares, mean + std). The fit obtained in all models is averaged. The mean and standard deviation are
shown by the black line and the gray shadow, respectively.

The homeostatic reset is robust to variability and heterogeneity in circuit param-
eters

We next tested the robustness of the homeostatic reset to changes in the parameters of the neuronal
circuits. We introduced variability in three parameters: (i) the level of neuromodulator concentra-
tion, which is modeled by a variable inhibitory drive onto the circuit inhibitory neuron (Figure 3A),
(ii) variability in neuron intrinsic parameters such as maximal conductance values (Figure 3B), and
(iii) network size, with the introduction of heterogeneity in neuron parameters within the network
(Figure 3C).

The results of a variability in neuromodulator concentration is shown in Figure 3A. At the circuit
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Figure 3: The homeostatic reset occurs for the different category of synaptic plasticity rules and
is robust to intrinsic variability and network heterogeneity.
A. Pre- and postsynaptic neurons burst under neuromodulatory input. Different neuromodulator concentrations
lead to different bursting patterns (gray line - top traces). The time evolution of the synaptic weight is computed
in all synaptic plasticity models considering two weight-dependencies. (Left) Soft bounds lead to a homeostatic
reset (each blue line is associated to one initial value). The value of the reset is altered by bursting patterns
(see gray lines). (Right) For hard bounds, all synaptic weights saturate to the extreme values at different rates
depending on the burst profile. (Time window: 40 s.)
B. 10 circuits are generated with variability in their intrinsic parameters affecting the bursting rhythm. Each
circuit shows the homeostatic reset. (Averaged weight in black line and its standard deviation in color shadow,
time duration: 40 s.).
C. A fully connected feedforward network of 100 pre to 100 postsynaptic neurons is built with heterogeneous
intrinsic variability. All initial weights are initialized at random values between 0 and 1. Despite heterogeneity
in the network, all synaptic weights present the homeostatic reset and converge towards the same range of
values. Each voltage trace lasts 0.9 s - y-scale: 140 mV, 100 weight traces among the 10000 are shown for model
Ca 1, during 50 s.

level, different concentrations of neuromodulator leads to diverse bursting patterns. These bursting
patterns vary in terms of the number of spikes per burst, the intraburst frequency, the interburst
frequency and the duty cycle [1, 29], which can potentially strongly affect the behavior of the plasticity
rules. However, a homeostatic reset of synaptic weights is observed each time the circuit enters a
rhythmic pattern, and this reset is robust to the specific properties of the pattern itself. A change in
rhythmic pattern solely affects the convergence rate and reset value in the case of soft bounds, and
the slope of the linear convergence rate in the case of hard bounds (see Figure 3A, bottom panels,
where the different shades of gray represent one circuit simulated with one neuromodulator level). The
results show that the homeostatic reset is a robust phenomenon relying on network rhythmic state,
but whose reset value is tunable through neuromodulation level.

We then added some variability in order to grow closer to what is observed in biological systems [1,
39–42]. To this end, ten circuits varying in their parameter sets of maximal intrinsic conductances and
applied currents were simulated. The maximal conductances varied within an interval of 10 %. Each
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circuit is first verified to switch from tonic to bursting mode. Similarly to neuromodulation level,
introducing variability affects the bursting pattern, but also breaks the pattern symmetry between
the presynaptic and postsynaptic neurons: each neuron exhibits differences in its neuronal rhythm
(Figure 3B, top). This breaking of symmetry does not affect the outcome. In all 10 circuits, whatever
the initial weight acquired in tonic mode, the synaptic weights reset in rhythmic mode. The exact
value of the reset is simply slightly different in different circuits, as shown in Figure 3B, bottom (the
mean evolution of the weights in the 10 circuits is shown in black, whereas the colored shadows depict
the standard deviation for each initial condition). The mean reset value is equal to 0.6347 and the
standard deviation is equal to 0.0108 for the biophysical model 2. For phenomenological models, the
standard deviation is higher due to the sensitivity of the exact spike time inside the intraburst (for
the pair-based model: mean = 0.6002, std = 0.0714).

Finally, network size was increased to account for the impact of heterogeneity between neurons of
the same network. We built a heterogeneous network composed of 2 layers of 100 excitatory neurons
each fully connected in a feedforward configuration. Each neuron has different intrinsic properties.
The inhibitory neuron drives the transition from tonic to burst thanks to the neuromodulatory input
(see Figure 3C, left).The network is initialized with random connectivity, mimicking a situation after
a learning period (a similar procedure is done in [20, 21]). The neurons show different burst rhythms
with various intraburst frequencies and different number of spikes per burst (see Figure 3, center). The
evolution of the synaptic weights are displayed in Figure 3C, right. Network heterogeneity induces
heterogeneity in reset values within the network. This heterogeneity is related to the variability in
pre- and postsynaptic burst properties, it is not dependent on the initial synaptic weight (Figure 3C,
right).

Altogether, these different computational experiments convincingly show that the mechanisms
underlying the homeostatic reset of synaptic weights are robust to synaptic model type, the fitted
region, the presence of short-term depression, the neuromodulation level, the neuronal circuit vari-
ability and the network heterogeneity. In all cases, strong weights decrease and weak weights grow
toward a reset value. This exact value is moderately influenced by rhythm properties, hence tunable
by neuromodulator level. Turning soft-bound into hard bound simply drives all the weights toward
saturation.
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The endogenous nature of rhythmic bursting leads to homeostatic reset

In order to gain more insights into the mechanisms underlying the homeostatic reset, and particularly
understand why this phenomenon specifically occurs during sleep-dependent rhythmic activity, we an-
alyzed how phenomenological and biophysical plasticity models interact with circuit rhythmic activity.
In particular, we took advantage of previous analytical work linking the time evolution and conver-
gence of synaptic weights to either spike time statistics (for phenomenological models) or calcium
dynamics (for biophysical models) [22, 43–46].

In phenomenological models, the time evolution of a synaptic weight and its convergence occurs on
a time interval much larger than typical interspike intervals. Therefore, following the work of [37, 47],
we can average the dynamics of the synaptic weight (see Methods equation (1)) over a time interval
T and get

ẇ = −A−wµ
∫ 0

−∞
es/τ−

C(s; t)ds + A+(1 − w)µ
∫ ∞

0
e−s/τ+

C(s; t)ds,

where A+ and A− are the potentiation and depression parameters (see Methods), µ stands for the
weight-dependency, e−|s|/τ± stands for the STDP kernel in potentiation or depression with τ+ and
τ− being the time-constants given in the pair-based model, and C(s; t) is the (temporally averaged)
correlation function between the pre and post spike trains, respectively noted Spre(t) =

∑
k δ(t− tpre,k)

and Spost(t) =
∑

k δ(t − tpost,k), that is,

C(s; t) = 1
T

∫ t+T

t
Spre(τ)Spost(τ + s)dτ.

Assuming the stationarity of both spike trains, the correlation function is time-invariant, i.e., C(s; t) =
C(s), and the time evolution of the synaptic weight can be computed as [47]:

ẇ = A+(1 − w)µC+ − A−wµC−,

where C+ =
∫ ∞

0 e−s/τ+
C(s)ds and C− =

∫ 0
−∞ es/τ−

C(s)ds.
A qualitative analysis of this equation permits to understand why synaptic weights converge to-

wards a single steady-state for any stationary value of C(s), considering soft-bound dependency i.e.
µ = 1. The term A+(1 − w)C+ computes the weight increase due to all postsynaptic spikes follow-
ing presynaptic spikes considering the associated time lag. The term A−wC− computes the weight
decrease due to all postsynaptic spikes preceding presynaptic spikes. When modeling soft bounds,
both terms are weight-dependent, which deforms the plasticity kernel (Figure 4A). When the synaptic
weight is weak, the term A+(1 − w)C+ dominates, and potentiation overcomes depression (Figure 4A,
left). When the synaptic weight is strong, the term A−wC− dominates, and depression overcomes
potentiation (Figure 4A, center). The drift eventually stabilizes at the synaptic weight value for which
depression balances potentiation, i.e., A+(1 − w)C+ = A−wC− (Figure 4A, right). This convergence
value can be computed analytically by solving this balance equation, which leads to a convergence
value that is bound-dependent. The reset value wHR is obtained analytically by

wHR =
A+C+

A−C−

1 + A+C+

A−C−

.

This equation states that the reset value depends on a ratio between the potentiation parameter
weighted by the correlation between pre-post spikes and the depression parameter weighted by the
correlation between post-pre spikes.

We applied this methodology to compare the convergence of the synaptic weights in wakefulness
and sleep modes. To this end, we used the previously built heterogeneous network composed of 2 layers
of 100 excitatory neurons fully connected in a feedforward configuration (Figure 4B). The network
is initialized with random connectivities. In wakefulness mode, excitatory neurons receive external
stimulation at random frequencies, ranging from 0.01 Hz up to 50 Hz, which mimics the effect of sensory
inputs, among others (Figure 4B, top). In sleep mode, a neuromodulatory drive to the inhibitory cell
switches the network to sleep mode (Figure 4B, bottom).
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Figure 4: The homeostatic reset relies on the endogenous nature of rhythmic bursting during
sleep.
A. Weight-dependent plasticity modulates the potentiation and depression parameters with respect to the synap-
tic weights. The spike-time dependent plasticity kernel is weight-dependent. The potentiation and depression
traces are shown respectively in black and gray with the associated synaptic weight evolution considering two
successions of endogenous burst (x-scale: 0.6 s, y-scale for z: 0.06 %, y-scale for w: 2.5 %.)
B. A 2-layer feedforward network with the same 100 neurons fully connected to the same 100 postsynaptic
neurons. All the synaptic weights (resp. AMPA connections) are randomly initialized between 0 to 1 (resp. 0.01
to 4). In wakefulness, neurons are excited by external stimulation at random frequencies between 0.01 to 50 Hz.
In sleep, the neuromodulation (NMOD) level drives the neurons in burst mode.
C. (Left) The correlation between presynaptic spike trains and postsynaptic spike trains are computed. We
show the ratio between the positive correlation (C+ associates to the potentiation correlation when a postsy-
naptic neuron spikes after a presynaptic neuron) and the negative correlation (C− for a pre spikes after a post
spikes) in spiking regime and sleep-like regime (resp. top and bottom). (Center, top) In wakefulness, neurons
are in exogenous spiking mode. (Center, bottom) In sleep, neurons are in endogenous burst mode. (Right)
The spike trains correlation is computed for the entire simulation T and compared with the correlation at two
given times T1 and T2 (equal to 10 s and 40 s). Scatter plots between the reset value obtained via simulation
(converging point) and the predicted value obtained analytically.

First, we computed the correlation ratio C+/C− between the pre and post (binary) spike trains for
all 10 000 synaptically coupled pairs, both in wakefulness and sleep modes. The results are reported in
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a correlation matrix for each mode (Figure 4C, left). These correlation matrices show that correlation
values are highly heterogeneous in wakefulness mode, whereas they are highly homogeneous in sleep
mode. This is due to the fact that spike trains are variable in wakefulness, whereas the network
switches to a global, rhythmic activity in sleep mode (Figure 4C, center). As a consequence, synaptic
weights are predicted to converge towards many different values in wakefulness, but towards very
similar values in sleep, which partially explains why the homeostatic reset is only observed during
sleep.

Secondly, we compared the synaptic weight values obtained from model simulations with the
prediction values wHR. Prediction values were computed on the complete time period T , as well as
on two transient time periods T1 and T2, and results are provided on a raster plot for each time
period in both modes (Figure 4C, right - mean prediction error +- standard deviation over 8 different
neuromodulator drives: mean = 0.0031, std= 0.0027, see SI Appendix for details). The figures show
that, although there is an almost perfect match between simulated and predicted reset values in sleep
mode, simulated synaptic weights do not converge towards their predicted values during wakefulness
for any time window. This is explained by the assumption that the correlation function between the
spike trains is stationary over the time windows, i.e., C(s; t) ≈ C(s), is only true in sleep mode, due
to the endogenous nature of the rhythmic bursting activity. As a result, a reset of synaptic weights is
only really observed during sleep.

In biophysical models, a similar analytical approach can be derived based on calcium dynamics by
comparing the time spent in depression and potentiation [18]. Again the time evolution of a synaptic
weight and its convergence occur on a time interval much larger than typical calcium oscillations.
Therefore, we can average the dynamics of the synaptic weight (see Methods equation (2)) over a time
interval T and get

ẇ = 1
T

∫ t+T

t

1
τw([Ca](τ)) [Ω([Ca](τ)) − µ w] dτ,

where Ω([Ca]) and τw([Ca]) are functions that map intracellular calcium concentration to potentiation
(Ωp) and depression (Ωd) levels and potentiation (τp) and depression (τd) time-constants, as in [25]
(see SI Appendix). We note the effective time spent in each region αd and αp as the time spent
balanced by the time-constant of potentiation/depression in the corresponding region, that is,

αd = 1
τd

1
T

∫ t+T

t
I(θd < [Ca](τ) < θp)dτ,

αp = 1
τp

1
T

∫ t+T

t
I([Ca](τ) > θp)dτ,

where I(x) is the indicator function equals 1 when x is true and 0 when x is false. The synaptic
weights reach a stable state once the potentiation level Ωp and the depression level Ωd weighted by
their effective time spent in the corresponding regions are balanced. It gives

wHR = Ωdαd + Ωpαp

αd + αp .

The comparison between the value of the homeostatic reset obtained via computational simulations
and the analytic approach is provided in SI Appendix, Tab.S7. Again, wHR is only predictive if the
effective time spent in each region αd and αp can be considered stable over time, which is only true
in sleep mode, as attested by the good match between predicted and simulated reset values (mean
prediction error+-standard deviation over 8 different neuromodulatory drives: mean error = 0.0016,
std= 0.0019)).

Finally, both analytical analyses can be extended to the case of hard bounds. In this case, all
synaptic weights converge towards saturation in sleep mode, and the saturation speed λ, or slope,
depends on the neuromodulatory drive. In phenomenological models, this saturation slope can be
predicted by the equation

λ = A+C+ − A−C−,
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where T is the time-window considered to compute the correlation. In biophysical models, the sat-
uration slope corresponds to the sum of the depression rate and potentiation rate, each weighted by
the fraction of time spent in their corresponding regions αd and αp, which writes

λ = αpΩp + αdΩd.

The values of the saturation slope obtained via computational simulations match the analytic predic-
tions for both model types (SI Appendix, Tab.S7 - calcium model: mean error = 0.049, std= 0.039,
pair-based model: mean error = 0.027, std= 0.033 over 8 neuromodulatory drives). Complementary
explanations about the origin of the homeostatic reset are available in SI Appendix.

In summary, analytical analyses of the mechanisms underlying time evolution of synaptic weights
showed that a homeostatic reset solely occurs during sleep mode due to the endogenous, global nature
of the network rhythmic activity in this mode, both in phenomenological models and biophysical
models of synaptic plasticity.
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Discussion
A key step in understanding how switches in brain states affect memory encoding is finding ways
to study the interactions between synaptic plasticity rules and neuromodulation of brain activity. It
represents a challenge, as plasticity rules and neuromodulation target neurons at the molecular and
cellular levels, whereas brain states and memory emerge at the population level. In this work, we
leverage the power of computational modeling to study how network connections formed via any of
20 variations of 7 well-established plasticity rules are affected by a switch from asynchronous tonic
spiking to rhythmic bursting, mimicking wakefulness to sleep transitions. We showed that transitions
from wakefulness to sleep induce a homeostatic reset of all synaptic weights towards a specific value
for all tested synaptic plasticity rules.

For a newly described phenomenon in a computational modeling work to be of physiological rele-
vance, it has to be shown that it does not arise from an artifact of the choice of models and parameters
used in the study. We therefore thoroughly tested the robustness of the homeostatic reset to variability
in models and parameters. First, we showed that the homeostatic reset arises from both phenomenolog-
ical models and biophysical models of synaptic plasticity, which ruled out the possibility of an artifact
of the chosen model type. Second, the homeostatic reset was shown to be robust to changes in neu-
romodulator drive, variability in neuron and circuit parameters, and heterogeneity in larger neuronal
populations. Changes in neuromodulator drive however affected the reset value, which suggests that
the homeostatic reset is both a robust and tunable phenomenon. Finally, using mathematical analyses
that directly link firing activity or calcium dynamics to changes in synaptic weights, we showed that
the homeostatic reset is limited to the sleep period due to the highly endogenous, rhythmic activity
globally shared by the network during that period.

The main effect of the homeostatic reset is that it regularizes synaptic weights during sleep, or more
specifically synaptic efficacy, regardless of their evolution during the previous day. The consequences
of this regularization are twofold. On the one hand, it provides a mechanism by which synaptic
efficacy returns to a homeostatic set-point during sleep, restoring the ability of the network to learn
new information on the next day. Such a mechanism could play a central role in sleep homeostasis
[48–50]. On the other hand, the homeostatic reset disrupts any learning that occurred during the
previous day, which could lead to catastrophic forgetting [51]. This forgetting may be overcome via
mechanisms that transfer learning encoded in synaptic efficacy into long-lasting, structural changes
in synaptic connections, such as the number of receptors at each synapse, the number and size of
synapses, etc [52, 53]. Another possibility would be to overcome the homeostatic reset itself through
sleep-induced changes in synaptic rules, which could be controlled by neuromodulators [20, 54–56].

The results presented in this work put forward new challenges in experimental and computa-
tional study of synaptic plasticity and memory formation. We showed that maintaining learning rules
extracted from stereotyped plasticity protocol obtained in spiking mode is incompatible with sleep-
dependent memory consolidation. New plasticity-induction protocols, which consider the endogenous
bursting rhythm rather than imposing in-vitro spiking regime for instance, would provide a novel
viewpoint on synaptic plasticity rules [57]. Adding neuromodulators to drive the switches in activity
and potentially plasticity rules during the experiments could also provide novel insights. From a com-
putational viewpoint, this work highlights the importance of using models of neurons and networks
that are capable of switching between different physiologically relevant firing activities. It suggests
going beyond using spike-times or the output of reduced models such as integrate-and-fire neuron
models as input to the synaptic plasticity rule when studying sleep-dependent memory consolidation.
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Methods
Simulations were performed using the Julia programming language [58]. Analyses were performed
either in Matlab or Excel. Code files are freely available at https://github.com/KJacquerie/
HomeostaticReset.

Conductance-based modeling

All neurons are modeled using a single-compartment Hodgkin and Huxley formalism. The membrane
voltage Vm evolves as follows [1, 29]:

CmV̇m = −
∑

i

Iion,i + Iapp

where Cm is the membrane capacitance, Iion,i is the ith current carried by ionic channels i, and Iapp is
an external applied current. The description of the ionic currents and the associated parameters are
described in SI Appendix.

The neuron circuit is composed of three neurons. An inhibitory neuron (I) is connected to two
excitatory neurons through GABAA and GABAB connections. The two excitatory neurons are con-
nected in one direction through an AMPA synapse, the afferent neuron is called the presynaptic (pre)
neuron, and the efferent neuron is called the postsynaptic (post) neuron. The synaptic currents are
described in SI Appendix.

The inhibitory cell controls the rhythm of the circuit. A tonic rhythm in the inhibitory neuron puts
the two excitatory cells in a resting state. If the pre- or the postsynaptic cell receives a depolarizing
pulse, they generate an action potential. An hyperpolarizing current applied to the inhibitory neuron
switches the whole circuit in rhythmic bursting mode. This hyperpolarizing current model the effect
of a neuromodulator signal (NMOD) [8].

Synaptic plasticity

The synaptic connection between the presynaptic neuron and the postsynaptic neuron is subjected
to plasticity. The time evolution of this connection is studied during both tonic and bursting modes.
This AMPA synapse is modeled by gAMPA = wḡAMPA where w the synaptic weight, and ḡAMPA isthe
constant maximal conductance. A very small initial connectivity ḡAMPA equal to 0.01 mS/cm2 is
taken such as the induced Excitatory Post-Synaptic Potential (EPSP) at the postsynaptic site does
not initiate a spike. The variable w is weighing the synaptic current and is driven by a synaptic
plasticity rule.

Two main categories of synaptic plasticity rules are explored in this paper: phenomenological rules
and calcium-based rules. The first category uses the pre- and postsynaptic spike times to drive the
synaptic change while the second category uses the calcium signal.

Phenomenological models

The pair-based model considers the pre- and postsynaptic spike time (resp. tpre and tpost) with a time
difference ∆t = tpost − tpre to induce the change in synaptic weight. To reproduce the classical STDP
window, a pair-based model was implemented [14, 16, 22–24]:

w →
{

w + A+(1 − w)µe−∆t/τ+
, at tpost if tpre < tpost,

w − A−wµe∆t/τ−
, at tpre if tpre > tpost,

where A+ > 0, A− > 0 and µ is the weight-dependency parameter (µ is equal to 1 for soft-bounds
and to 0 for hard-bounds) [16, 24]. The functions e−|∆t|/τ± are the temporal kernel of potentiation
and depression. If we introduce Spre(t) =

∑
k δ(t − tpre,k) and Spost(t) =

∑
k δ(t − tpost,k) for the spike

trains of pre- and postsynaptic neurons, the evolution of the synaptic weight can be written as follows:

ẇ = −A−wµ
[∫ 0

−∞
es/τ−

Spost(t − s)ds

]
Spre(t) + A+(1 − w)µ

[∫ ∞

0
e−s/τ+

Spre(t − s)ds

]
Spost(t). (1)
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The triplet-based model extends the pair-based model to account for three spikes patterns, such as
pre-post-pre and post-pre-post [15]. Similarly to pair-based model, the triplet model was implemented
using trace variables following [15]. More details are provided in SI Appendix.

Biophysical models

Calcium dynamics are modeled following [18, 25]. The global equation for calcium-dependent plasticity
rule can be written such as

τw([Ca])ẇ = Ω([Ca]) − µ w, (2)

where µ modulates the weight-dependency: µ = 0 (resp. µ = 1) refers to hard (resp. soft) bounds.
In total, five major calcium-based dependent models are investigated in this paper. Some rules were
adapted to fit either frequency-dependent protocol (cortical experimental data) or a STDP protocol
(hippocampus experimental data). Different weight-dependencies (soft bounds or hard bounds) are
compared. The impact of the coupling between the presynaptic calcium influx and the synaptic weight
or the presence of short-term depression are also tested [26]. Calcium-based rules are either imple-
mented using two-triggered calcium thresholds for potentiation and depression, or using a continuous
function for the calcium dependency. More details are provided in SI Appendix.

Computational experiments

Figure 1B simulates two successive periods of tonic activity (wakefulness) and bursting activity (sleep)
of 40 s each for 6 neuronal circuits. During wakefulness, correlated circuits are obtained by applying
pre-post pairs of spikes at different frequencies that induces an increase in synaptic weight. For un-
correlated circuits, pre and post cells fire independently at the nominal same frequency f0. Spike tim-
ings are generated with interspike intervals following independent Normal distributions N ( 1

f0
, (0.3

f0
)2).

During sleep, the level of neuromodulators is modeled by an hyperpolarizing current applied to the
inhibitory neuron (more details in SI Appendix).

In Figure 3A, the variability in neuromodulator concentrations (shades of gray) is obtained by
applying different applied current to the inhibitory cell, ranging from −1 to −1.7 nA/cm2 resulting in
different bursting patterns (see all traces in SI Appendix, Fig.S5 ). Figure 3B depicts the mean of the
synaptic weight time evolution for 10 circuits in which variability in the ionic conductances is added.
Each circuit is initialized with maximal conductances that are randomly picked with respect to an
uniform distribution in an interval of 10 % around its nominal value ḡ0, such as [ḡ0 − 0.1ḡ0, ḡ0 + 0.1ḡ0].
The plasticity rule used is the calcium model from [25]. Figure 3C considers a network of 2 layers with
100 presynaptic neurons fully connected to 100 postsynaptic neurons in a feedforward configuration.
The connections (colors) are initialized randomly between 0 and 1. Intrinsic parameters of all cells
are randomized by adding variability in the ionic conductances gK,Ca and gCa,T in the same way as in
the Figure 3B, with 20 % variability. The plasticity rule used is the calcium model from [25].

Synaptic weight equilibrium value can be found by analytical demonstration (see on SI Appendix
for details).

Figure 4A shows the kernel of spike-time dependent plasticity considering the synaptic weight-
dependency. It unravels the effective value of the potentiation and depression increment respectively
labeled A+(1 − w) and A−w. Figure 4C (left) gives the ratio between the positive and negative
correlation. The positive correlation describes the correlation for presynaptic spike followed by a
postsynaptic spike. The negative correlation describes the inverse relation for a postsynaptic spike
followed by a presynaptic spike. Figure 4C (right), the simulated value is equal to the converging value
in the time evolution of the synaptic weight. The predicted value is computed from the analytical
formula provided wHR.

More details on all computational experiments can be found on SI Appendix.
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